Laser beam melting and heat-treatment of 1.2343 (AISI H11) tool steel – microstructure and mechanical properties

Laser Beam Melting (LBM) of metals is an innovative additive manufacturing technology for producing complexly shaped parts. However, the spectrum of available materials is yet limited and the qualification of further alloys is subject of ongoing research. Considering tooling applications e.g. for in...

Full description

Saved in:
Bibliographic Details
Published inMaterials science & engineering. A, Structural materials : properties, microstructure and processing Vol. 742; pp. 109 - 115
Main Authors Huber, Florian, Bischof, Corinna, Hentschel, Oliver, Heberle, Johannes, Zettl, Julian, Nagulin, Konstantin Yu, Schmidt, Michael
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 10.01.2019
Elsevier BV
Subjects
Online AccessGet full text
ISSN0921-5093
1873-4936
DOI10.1016/j.msea.2018.11.001

Cover

Abstract Laser Beam Melting (LBM) of metals is an innovative additive manufacturing technology for producing complexly shaped parts. However, the spectrum of available materials is yet limited and the qualification of further alloys is subject of ongoing research. Considering tooling applications e.g. for injection moulding low alloyed tool steels like 1.2343 (AISI H11) would be of particular interest. The feasibility of processing 1.2343 by LBM has already been shown. Besides the LBM-process itself, also a heat-treatment process has to be taken into account. Heat-treatment is necessary to reduce the process-inherent internal stress and to adjust the desired mechanical properties. Hence, an experimental study on the heat-treatment of laser beam molten specimens made from 1.2343 is conducted. The resulting microstructure is characterised by metallographic microsections and electron backscatter diffraction (EBSD). Additionally, hardness measurements and tensile tests give information about the mechanical properties in dependence of the build direction and the heat-treatment strategy. The ultimate tensile strength after annealing reached 2148 ± 16 MPa along with an elongation at break of 8.8 ± 1.1 %. The hardness of the LBM-generated material was determined to 737 ± 16 HV1 after hardening and to 585 ± 9 HV1 after annealing.
AbstractList Laser Beam Melting (LBM) of metals is an innovative additive manufacturing technology for producing complexly shaped parts. However, the spectrum of available materials is yet limited and the qualification of further alloys is subject of ongoing research. Considering tooling applications e.g. for injection moulding low alloyed tool steels like 1.2343 (AISI H11) would be of particular interest. The feasibility of processing 1.2343 by LBM has already been shown. Besides the LBM-process itself, also a heat-treatment process has to be taken into account. Heat-treatment is necessary to reduce the process-inherent internal stress and to adjust the desired mechanical properties. Hence, an experimental study on the heat-treatment of laser beam molten specimens made from 1.2343 is conducted. The resulting microstructure is characterised by metallographic microsections and electron backscatter diffraction (EBSD). Additionally, hardness measurements and tensile tests give information about the mechanical properties in dependence of the build direction and the heat-treatment strategy. The ultimate tensile strength after annealing reached 2148 ± 16 MPa along with an elongation at break of 8.8 ± 1.1 %. The hardness of the LBM-generated material was determined to 737 ± 16 HV1 after hardening and to 585 ± 9 HV1 after annealing.
Author Hentschel, Oliver
Schmidt, Michael
Bischof, Corinna
Zettl, Julian
Nagulin, Konstantin Yu
Heberle, Johannes
Huber, Florian
Author_xml – sequence: 1
  givenname: Florian
  surname: Huber
  fullname: Huber, Florian
  email: florian.huber@lpt.uni-erlangen.de
  organization: Institute of Photonic Technologies, Friedrich-Alexander-Universität Erlangen-Nürnberg, Konrad-Zuse-Strasse 3/5, 91052 Erlangen, Germany
– sequence: 2
  givenname: Corinna
  surname: Bischof
  fullname: Bischof, Corinna
  organization: Institute of Photonic Technologies, Friedrich-Alexander-Universität Erlangen-Nürnberg, Konrad-Zuse-Strasse 3/5, 91052 Erlangen, Germany
– sequence: 3
  givenname: Oliver
  surname: Hentschel
  fullname: Hentschel, Oliver
  organization: Institute of Photonic Technologies, Friedrich-Alexander-Universität Erlangen-Nürnberg, Konrad-Zuse-Strasse 3/5, 91052 Erlangen, Germany
– sequence: 4
  givenname: Johannes
  surname: Heberle
  fullname: Heberle, Johannes
  organization: Institute of Photonic Technologies, Friedrich-Alexander-Universität Erlangen-Nürnberg, Konrad-Zuse-Strasse 3/5, 91052 Erlangen, Germany
– sequence: 5
  givenname: Julian
  surname: Zettl
  fullname: Zettl, Julian
  organization: Institute of Photonic Technologies, Friedrich-Alexander-Universität Erlangen-Nürnberg, Konrad-Zuse-Strasse 3/5, 91052 Erlangen, Germany
– sequence: 6
  givenname: Konstantin Yu
  surname: Nagulin
  fullname: Nagulin, Konstantin Yu
  organization: Kazan National Research Technical University named after A. N. Tupolev - KAI, Корпус No5, Ulitsa Karla Marksa, 31, Kazan, Russia
– sequence: 7
  givenname: Michael
  surname: Schmidt
  fullname: Schmidt, Michael
  organization: Institute of Photonic Technologies, Friedrich-Alexander-Universität Erlangen-Nürnberg, Konrad-Zuse-Strasse 3/5, 91052 Erlangen, Germany
BookMark eNp9kM9KAzEQxoMoWKsv4CngRQ-7ZpL90wUvRdQWCh7Uc8imszZlN6lJKnjzHXxDn8Rd68lDLzMMfL9vZr4TcmidRULOgaXAoLhep11AlXIGkxQgZQwOyAgmpUiyShSHZMQqDknOKnFMTkJYs16RsXxE_EIF9LRG1dEO22jsK1V2SVeoYhJ9Xzu0kbqGQspFJujldP40pzOAKxqda2mIiC39_vyindHehei3Om49_rp0qFfKGq1auvFugz4aDKfkqFFtwLO_PiYv93fPt7Nk8fgwv50uEi2qLCa6KkCoumINqjLTTc2aohB82eRa5zUrdD9mdV1ngFqoShVlyTLUZakqXkLOxZhc7Hz71W9bDFGu3dbbfqXkMMkZLwUbVHynGo4PHhu58aZT_kMCk0O2ci2HbOWQrQSQfXI9NPkHaRNVNM5Gr0y7H73Zodi__m7Qy6ANWo1L41FHuXRmH_4DtZaW9Q
CitedBy_id crossref_primary_10_1007_s11665_021_05548_z
crossref_primary_10_1111_ffe_14025
crossref_primary_10_18311_jmmf_2023_44018
crossref_primary_10_1088_1742_6596_1687_1_012004
crossref_primary_10_3390_ma15249002
crossref_primary_10_1007_s11665_021_06059_7
crossref_primary_10_1002_adem_202100350
crossref_primary_10_1002_adem_202300009
crossref_primary_10_1016_j_mtcomm_2022_104332
crossref_primary_10_1080_17452759_2021_1964268
crossref_primary_10_3390_mi15080958
crossref_primary_10_1007_s12540_023_01574_9
crossref_primary_10_1007_s12008_024_01983_z
crossref_primary_10_3390_jmmp6060139
crossref_primary_10_3390_ma12142284
crossref_primary_10_1007_s40195_022_01461_z
crossref_primary_10_1016_j_jmatprotec_2023_117946
crossref_primary_10_1016_j_jallcom_2024_176035
crossref_primary_10_3390_ma15051679
crossref_primary_10_1016_j_procir_2022_08_143
crossref_primary_10_1115_1_4062788
crossref_primary_10_1016_j_msea_2019_138633
crossref_primary_10_1016_j_pmatsci_2022_101051
crossref_primary_10_3390_machines12040255
crossref_primary_10_3390_jmmp6030063
crossref_primary_10_1016_j_cirp_2019_05_001
crossref_primary_10_1016_j_msea_2021_140801
crossref_primary_10_3390_ma16072659
crossref_primary_10_3390_met10010116
crossref_primary_10_1016_j_jallcom_2023_171390
crossref_primary_10_1016_j_corsci_2020_108594
crossref_primary_10_3390_met11030458
crossref_primary_10_1016_j_mtcomm_2025_111803
crossref_primary_10_1002_adem_202100049
crossref_primary_10_1016_j_msea_2023_145799
crossref_primary_10_1007_s00170_022_08848_3
crossref_primary_10_3390_met10111474
crossref_primary_10_1002_srin_202200775
crossref_primary_10_3390_met11101640
crossref_primary_10_1016_j_msea_2025_148237
crossref_primary_10_1016_j_cirpj_2023_08_002
crossref_primary_10_1016_j_ijmachtools_2021_103804
crossref_primary_10_1557_s43580_024_01009_6
crossref_primary_10_3390_cryst12111670
crossref_primary_10_1016_j_msea_2021_141718
crossref_primary_10_3390_met12050735
crossref_primary_10_1016_j_jmatprotec_2021_117358
crossref_primary_10_1016_j_jmrt_2024_09_033
crossref_primary_10_1016_j_mfglet_2021_03_003
crossref_primary_10_1007_s10853_020_05109_0
crossref_primary_10_1080_10408436_2023_2255616
crossref_primary_10_1002_srin_202200807
crossref_primary_10_1016_j_prostr_2022_12_270
crossref_primary_10_1016_j_matdes_2022_110453
Cites_doi 10.1007/s12541-011-0125-5
10.1016/j.matchar.2018.01.015
10.1007/s00170-015-7647-4
10.1016/j.actamat.2016.07.019
10.1007/s11663-014-0267-9
10.1016/j.commatsci.2018.04.027
10.1016/j.procir.2015.08.082
10.1007/s00170-003-1844-2
10.1007/s00501-007-0285-x
10.1016/j.jmatprotec.2017.11.032
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright Elsevier BV Jan 10, 2019
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright Elsevier BV Jan 10, 2019
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1016/j.msea.2018.11.001
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4936
EndPage 115
ExternalDocumentID 10_1016_j_msea_2018_11_001
S0921509318315193
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SSM
SSZ
T5K
~02
~G-
29M
6TJ
8WZ
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEW
SSH
WUQ
7SR
8BQ
8FD
AFXIZ
EFKBS
JG9
ID FETCH-LOGICAL-c394t-c9613ab90fea74cfb0f6632df5cc5b06cf664bbb41ec3a9a67704ec77a9271523
IEDL.DBID AIKHN
ISSN 0921-5093
IngestDate Sun Jul 13 05:38:27 EDT 2025
Tue Jul 01 03:29:46 EDT 2025
Thu Apr 24 22:56:18 EDT 2025
Fri Feb 23 02:28:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Laser powder bed fusion
AISI H11 1.2343
Additive manufacturing
Microstructure
Heat-treatment
Tensile strength
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-c9613ab90fea74cfb0f6632df5cc5b06cf664bbb41ec3a9a67704ec77a9271523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2185027302
PQPubID 2045432
PageCount 7
ParticipantIDs proquest_journals_2185027302
crossref_primary_10_1016_j_msea_2018_11_001
crossref_citationtrail_10_1016_j_msea_2018_11_001
elsevier_sciencedirect_doi_10_1016_j_msea_2018_11_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-10
PublicationDateYYYYMMDD 2019-01-10
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-10
  day: 10
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Materials science & engineering. A, Structural materials : properties, microstructure and processing
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Ahn (bib3) 2011; 12
Totten (bib15) 2007
Fette, Sander, Wulfsberg, Zierk, Hermann, Stoess (bib4) 2015; 35
Hölker, Tekaya (bib5) 2015; 83
Wegst, Wegst (bib9) 2013
Herzog, Seyda, Wycisk, Emmelmann (bib6) 2016; 117
Mayer, Scheu, Leitner, Clemens, Siller (bib14) 2007; 152
VDI 3405 Part 2 - Beam Melting of metallic parts - Qualification, quality assurance and post processing, 2013.
C. Bischof, C. Scheitler, L. Kneisel, A.I. Gorunov, M. Schmid, Influence of Preheating Temperature and Carbon Content on Crack Formation during Laser Beam Melting of AISI H11 Tool Steel, in: Proceedings of the ICAT 2016, Nürnberg, Germany, November 29th–30
Mukherjee, Wei, De, DebRoy (bib19) 2018; 150
Over (bib8) 2003
Wu, San, Chang, Lin, Marwan, Baba, Hwang (bib20) 2017; 254
DIN 17022-1 Heat treatment of ferrous products – Hardening and tempering, Beuth, 1994.
S. Meyer, DMLS: der Weg zur optimierten Werkzeugtemperierung für hochqualitative, kostenoptimerte, spritzgegossene Teile. EOS GmbH, 2009.
Jansen (bib10) 2014
Pinkteron, Li (bib11) 2005; 25
DIN EN ISO 6892-1, Berlin, Germany: Beuth, 2016.
Wohlers (bib1) 2016
Casati, Lecis, Andrianopoli, Vadani (bib13) 2018; 137
Vander Voort (bib16) 1999
Holzweissig, Brenne, Schapper, Niendorf (bib12) 2015; 46
Ahn (10.1016/j.msea.2018.11.001_bib3) 2011; 12
Mayer (10.1016/j.msea.2018.11.001_bib14) 2007; 152
Mukherjee (10.1016/j.msea.2018.11.001_bib19) 2018; 150
10.1016/j.msea.2018.11.001_bib2
Pinkteron (10.1016/j.msea.2018.11.001_bib11) 2005; 25
Wohlers (10.1016/j.msea.2018.11.001_bib1) 2016
10.1016/j.msea.2018.11.001_bib21
10.1016/j.msea.2018.11.001_bib7
Casati (10.1016/j.msea.2018.11.001_bib13) 2018; 137
Fette (10.1016/j.msea.2018.11.001_bib4) 2015; 35
Wu (10.1016/j.msea.2018.11.001_bib20) 2017; 254
Herzog (10.1016/j.msea.2018.11.001_bib6) 2016; 117
Wegst (10.1016/j.msea.2018.11.001_bib9) 2013
10.1016/j.msea.2018.11.001_bib18
10.1016/j.msea.2018.11.001_bib17
Vander Voort (10.1016/j.msea.2018.11.001_bib16) 1999
Totten (10.1016/j.msea.2018.11.001_bib15) 2007
Holzweissig (10.1016/j.msea.2018.11.001_bib12) 2015; 46
Hölker (10.1016/j.msea.2018.11.001_bib5) 2015; 83
Over (10.1016/j.msea.2018.11.001_bib8) 2003
Jansen (10.1016/j.msea.2018.11.001_bib10) 2014
References_xml – volume: 25
  start-page: 471
  year: 2005
  end-page: 479
  ident: bib11
  article-title: Direct additive laser manufacturing using gas- and water-atomised H13 tool steel powders
  publication-title: Int. J. Adv. Manuf. Technol.
– year: 1999
  ident: bib16
  article-title: Metallography, Principles and Practice
– volume: 35
  start-page: 25
  year: 2015
  end-page: 35
  ident: bib4
  article-title: Optimized and cost-efficient compression molds manufactured by selective laser melting for the production of thermoset fiber reinforced plastic aircraft components
  publication-title: Proc. CIRP
– volume: 83
  start-page: 1209
  year: 2015
  end-page: 1220
  ident: bib5
  article-title: Advancements in the manufacturing of dies for hot aluminum extrusion with conformal cooling channels
  publication-title: Int. J. Adv. Manuf. Technol.
– reference: DIN EN ISO 6892-1, Berlin, Germany: Beuth, 2016.
– volume: 152
  start-page: 132
  year: 2007
  end-page: 136
  ident: bib14
  article-title: Influence of the cooling rate on the mechanical properties of a hot-work tool steel
  publication-title: Berg- und Hüttenmännische Monatshefte
– volume: 150
  start-page: 369
  year: 2018
  end-page: 380
  ident: bib19
  article-title: Heat and fluid flow in additive manufacturing – Part II: powder bed fusion of stainless steel, and titanium, nickel and aluminum base alloys
  publication-title: Comput. Mater. Sci.
– volume: 254
  start-page: 72
  year: 2017
  end-page: 78
  ident: bib20
  article-title: Numerical modeling of melt-pool behavior in selective laser melting with random powder distribution and experimental validation
  publication-title: J. Mater. Process.
– reference: DIN 17022-1 Heat treatment of ferrous products – Hardening and tempering, Beuth, 1994.
– reference: S. Meyer, DMLS: der Weg zur optimierten Werkzeugtemperierung für hochqualitative, kostenoptimerte, spritzgegossene Teile. EOS GmbH, 2009.
– volume: 46
  start-page: 545
  year: 2015
  end-page: 549
  ident: bib12
  article-title: Microstructural characterization and mechanical performance of hot work tool steel processed by selective laser melting
  publication-title: Met. Mater. Trans. C
– volume: 12
  start-page: 925
  year: 2011
  end-page: 938
  ident: bib3
  article-title: Applications of laser assisted metal rapid tooling process to manufacture of molding & forming tools - state of the art
  publication-title: Int. J. Prec. Eng. Manuf.
– year: 2003
  ident: bib8
  article-title: Generative Fertigung von Bauteilen aus Werkzeugstahl X38CrMoV5-1 und Titan TiAl6V4mit "Selective Laser Melting" (Dissertation)
– reference: VDI 3405 Part 2 - Beam Melting of metallic parts - Qualification, quality assurance and post processing, 2013.
– reference: C. Bischof, C. Scheitler, L. Kneisel, A.I. Gorunov, M. Schmid, Influence of Preheating Temperature and Carbon Content on Crack Formation during Laser Beam Melting of AISI H11 Tool Steel, in: Proceedings of the ICAT 2016, Nürnberg, Germany, November 29th–30
– year: 2013
  ident: bib9
  article-title: Stahlschlüssel - Key to Steel 2016: Nachschlagewerk Dt./Engl./Franz
– year: 2016
  ident: bib1
  publication-title: Wholers Report 2016
– volume: 117
  start-page: 371
  year: 2016
  end-page: 392
  ident: bib6
  article-title: Additive manufacturing of metals
  publication-title: Acta Mater.
– year: 2014
  ident: bib10
  publication-title: Generative Fertigung von Konturnah Temperierten Werkzeugen Mittels Selective Laser Melting (Dissertation)
– volume: 137
  start-page: 20
  year: 2018
  end-page: 57
  ident: bib13
  article-title: Microstructure and mechanical behavior of hot-work tool steels processed by selective laser melting
  publication-title: Mater. Charact.
– year: 2007
  ident: bib15
  publication-title: Steel Heat Treatment Handbook
– volume: 12
  start-page: 925
  year: 2011
  ident: 10.1016/j.msea.2018.11.001_bib3
  article-title: Applications of laser assisted metal rapid tooling process to manufacture of molding & forming tools - state of the art
  publication-title: Int. J. Prec. Eng. Manuf.
  doi: 10.1007/s12541-011-0125-5
– volume: 137
  start-page: 20
  year: 2018
  ident: 10.1016/j.msea.2018.11.001_bib13
  article-title: Microstructure and mechanical behavior of hot-work tool steels processed by selective laser melting
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2018.01.015
– year: 2014
  ident: 10.1016/j.msea.2018.11.001_bib10
– volume: 83
  start-page: 1209
  year: 2015
  ident: 10.1016/j.msea.2018.11.001_bib5
  article-title: Advancements in the manufacturing of dies for hot aluminum extrusion with conformal cooling channels
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-015-7647-4
– ident: 10.1016/j.msea.2018.11.001_bib17
– ident: 10.1016/j.msea.2018.11.001_bib18
– ident: 10.1016/j.msea.2018.11.001_bib2
– year: 2003
  ident: 10.1016/j.msea.2018.11.001_bib8
– ident: 10.1016/j.msea.2018.11.001_bib7
– year: 1999
  ident: 10.1016/j.msea.2018.11.001_bib16
– year: 2013
  ident: 10.1016/j.msea.2018.11.001_bib9
– volume: 117
  start-page: 371
  year: 2016
  ident: 10.1016/j.msea.2018.11.001_bib6
  article-title: Additive manufacturing of metals
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.07.019
– year: 2016
  ident: 10.1016/j.msea.2018.11.001_bib1
– volume: 46
  start-page: 545
  year: 2015
  ident: 10.1016/j.msea.2018.11.001_bib12
  article-title: Microstructural characterization and mechanical performance of hot work tool steel processed by selective laser melting
  publication-title: Met. Mater. Trans. C
  doi: 10.1007/s11663-014-0267-9
– volume: 150
  start-page: 369
  year: 2018
  ident: 10.1016/j.msea.2018.11.001_bib19
  article-title: Heat and fluid flow in additive manufacturing – Part II: powder bed fusion of stainless steel, and titanium, nickel and aluminum base alloys
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2018.04.027
– volume: 35
  start-page: 25
  year: 2015
  ident: 10.1016/j.msea.2018.11.001_bib4
  article-title: Optimized and cost-efficient compression molds manufactured by selective laser melting for the production of thermoset fiber reinforced plastic aircraft components
  publication-title: Proc. CIRP
  doi: 10.1016/j.procir.2015.08.082
– volume: 25
  start-page: 471
  year: 2005
  ident: 10.1016/j.msea.2018.11.001_bib11
  article-title: Direct additive laser manufacturing using gas- and water-atomised H13 tool steel powders
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-003-1844-2
– volume: 152
  start-page: 132
  year: 2007
  ident: 10.1016/j.msea.2018.11.001_bib14
  article-title: Influence of the cooling rate on the mechanical properties of a hot-work tool steel
  publication-title: Berg- und Hüttenmännische Monatshefte
  doi: 10.1007/s00501-007-0285-x
– year: 2007
  ident: 10.1016/j.msea.2018.11.001_bib15
– volume: 254
  start-page: 72
  year: 2017
  ident: 10.1016/j.msea.2018.11.001_bib20
  article-title: Numerical modeling of melt-pool behavior in selective laser melting with random powder distribution and experimental validation
  publication-title: J. Mater. Process.
  doi: 10.1016/j.jmatprotec.2017.11.032
– ident: 10.1016/j.msea.2018.11.001_bib21
SSID ssj0001405
Score 2.5037756
Snippet Laser Beam Melting (LBM) of metals is an innovative additive manufacturing technology for producing complexly shaped parts. However, the spectrum of available...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109
SubjectTerms Additive manufacturing
AISI H11 1.2343
Annealing
Dependence
Electron backscatter diffraction
Elongation
Heat treating
Heat treatment
Injection molding
Laser beam melting
Laser powder bed fusion
Lasers
Low alloy steels
Mechanical properties
Microstructure
Residual stress
Tensile strength
Tensile tests
Tool steels
Tooling
Ultimate tensile strength
Title Laser beam melting and heat-treatment of 1.2343 (AISI H11) tool steel – microstructure and mechanical properties
URI https://dx.doi.org/10.1016/j.msea.2018.11.001
https://www.proquest.com/docview/2185027302
Volume 742
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgXOCAeIrBmHLgAEJlTV-hxwkxbTx2GZO4VUmWSKB1m8a4Iv4D_5Bfgr2mEyC0A8dUcVrZrj-n_ewAnCRaapUE1jNxEnqRUtxT3BIthyvM57UaaKpGvu8m7X508xg_rsBVWQtDtEoX-4uYPo_W7krDabMxeXpq9PwU4Qo35OiUnPKQVVgLEO0vK7DW7Ny2u4uAjPecMxlxvkcCrnamoHnl6FHE8Lq8oGae7myYP_DpV6Sew09rCzZd3siaxaNtw4oZ7cDGt26CuzC9Q0SaMmVkznIzJD4zk6MBo3DrLQjlbGwZ7ljDKGSnzU6vw9qcn7HZeDxkaHAzZJ_vHywnml7RWvZ1auar5IZqhMmkbEIf8KfUiXUP-q3rh6u2545U8HSYRjNPpwjfUqW-NVJE2irfYsoRDGysdaz8ROMQDaYibnQoU5kI4UdGCyHTQCDUh_tQGY1H5gAY5mUWDSyUsPSzNZGpMQhtCPihkgMlqsBLRWba9RunYy-GWUkse85I-RkpHzcixK6rwvlCZlJ021g6Oy7tk_3wmQzhYKlcrTRm5t7YlwxTnZh6-_jB4T-XPYJ1HJGbI7bVoIJGMseYscxUHVYv3njd-eUXs0XqNg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gHtSD8RlR1D140JhCSx9rj4RIQIELkHDb7C67CYYCQbwa_4P_0F_iTLv1FePBY9vdbTMznW-2_WaGkItICSWjmnF0GPlOIKXnSM8gLceTEM8rOVaYjdztRa1hcDcKRwXSyHNhkFZpfX_m01Nvbc9UrTSri8mk2ndjgCvYkINRehiHrJH1ANscgFFXnj95HnDHlMcIox0cbjNnMpJXAvaE_K6bCpbytJ1hfkGnH346BZ_mDtm2USOtZw-2Swp6tke2vtQS3CfLDuDRkkotEproKbKZqZiNKTpb54NOTueGwn7VD3x6WW_327TleVd0NZ9PKahbT-nbyytNkKSXFZZ9Wup0lURjhjAqlC7w8_0S67AekGHzdtBoObahgqP8OFg5KgbwFjJ2jRYsUEa6BgKO2tiESoXSjRQcgrpk4Gnli1hEjLmBVoyJuMYA6P1DUpzNZ_qIUIjKDKiXSWbwV2skYq0B2ADufSnGkpWIlwuSK1ttHJteTHlOK3vgKHyOwodtCHLrSuT6Y84iq7Xx5-gw1w__ZjEcwODPeeVcmdy-r48cAp0QK_u4teN_LntONlqDbod32r37E7IJV9DgAeXKpAgK06cQu6zkWWqb75NW6vg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser+beam+melting+and+heat-treatment+of+1.2343+%28AISI+H11%29+tool+steel+%E2%80%93+microstructure+and+mechanical+properties&rft.jtitle=Materials+science+%26+engineering.+A%2C+Structural+materials+%3A+properties%2C+microstructure+and+processing&rft.au=Huber%2C+Florian&rft.au=Bischof%2C+Corinna&rft.au=Hentschel%2C+Oliver&rft.au=Heberle%2C+Johannes&rft.date=2019-01-10&rft.issn=0921-5093&rft.volume=742&rft.spage=109&rft.epage=115&rft_id=info:doi/10.1016%2Fj.msea.2018.11.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_msea_2018_11_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-5093&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-5093&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-5093&client=summon