Laser beam melting and heat-treatment of 1.2343 (AISI H11) tool steel – microstructure and mechanical properties
Laser Beam Melting (LBM) of metals is an innovative additive manufacturing technology for producing complexly shaped parts. However, the spectrum of available materials is yet limited and the qualification of further alloys is subject of ongoing research. Considering tooling applications e.g. for in...
Saved in:
Published in | Materials science & engineering. A, Structural materials : properties, microstructure and processing Vol. 742; pp. 109 - 115 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
10.01.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0921-5093 1873-4936 |
DOI | 10.1016/j.msea.2018.11.001 |
Cover
Abstract | Laser Beam Melting (LBM) of metals is an innovative additive manufacturing technology for producing complexly shaped parts. However, the spectrum of available materials is yet limited and the qualification of further alloys is subject of ongoing research. Considering tooling applications e.g. for injection moulding low alloyed tool steels like 1.2343 (AISI H11) would be of particular interest. The feasibility of processing 1.2343 by LBM has already been shown. Besides the LBM-process itself, also a heat-treatment process has to be taken into account. Heat-treatment is necessary to reduce the process-inherent internal stress and to adjust the desired mechanical properties. Hence, an experimental study on the heat-treatment of laser beam molten specimens made from 1.2343 is conducted. The resulting microstructure is characterised by metallographic microsections and electron backscatter diffraction (EBSD). Additionally, hardness measurements and tensile tests give information about the mechanical properties in dependence of the build direction and the heat-treatment strategy. The ultimate tensile strength after annealing reached 2148 ± 16 MPa along with an elongation at break of 8.8 ± 1.1 %. The hardness of the LBM-generated material was determined to 737 ± 16 HV1 after hardening and to 585 ± 9 HV1 after annealing. |
---|---|
AbstractList | Laser Beam Melting (LBM) of metals is an innovative additive manufacturing technology for producing complexly shaped parts. However, the spectrum of available materials is yet limited and the qualification of further alloys is subject of ongoing research. Considering tooling applications e.g. for injection moulding low alloyed tool steels like 1.2343 (AISI H11) would be of particular interest. The feasibility of processing 1.2343 by LBM has already been shown. Besides the LBM-process itself, also a heat-treatment process has to be taken into account. Heat-treatment is necessary to reduce the process-inherent internal stress and to adjust the desired mechanical properties. Hence, an experimental study on the heat-treatment of laser beam molten specimens made from 1.2343 is conducted. The resulting microstructure is characterised by metallographic microsections and electron backscatter diffraction (EBSD). Additionally, hardness measurements and tensile tests give information about the mechanical properties in dependence of the build direction and the heat-treatment strategy. The ultimate tensile strength after annealing reached 2148 ± 16 MPa along with an elongation at break of 8.8 ± 1.1 %. The hardness of the LBM-generated material was determined to 737 ± 16 HV1 after hardening and to 585 ± 9 HV1 after annealing. |
Author | Hentschel, Oliver Schmidt, Michael Bischof, Corinna Zettl, Julian Nagulin, Konstantin Yu Heberle, Johannes Huber, Florian |
Author_xml | – sequence: 1 givenname: Florian surname: Huber fullname: Huber, Florian email: florian.huber@lpt.uni-erlangen.de organization: Institute of Photonic Technologies, Friedrich-Alexander-Universität Erlangen-Nürnberg, Konrad-Zuse-Strasse 3/5, 91052 Erlangen, Germany – sequence: 2 givenname: Corinna surname: Bischof fullname: Bischof, Corinna organization: Institute of Photonic Technologies, Friedrich-Alexander-Universität Erlangen-Nürnberg, Konrad-Zuse-Strasse 3/5, 91052 Erlangen, Germany – sequence: 3 givenname: Oliver surname: Hentschel fullname: Hentschel, Oliver organization: Institute of Photonic Technologies, Friedrich-Alexander-Universität Erlangen-Nürnberg, Konrad-Zuse-Strasse 3/5, 91052 Erlangen, Germany – sequence: 4 givenname: Johannes surname: Heberle fullname: Heberle, Johannes organization: Institute of Photonic Technologies, Friedrich-Alexander-Universität Erlangen-Nürnberg, Konrad-Zuse-Strasse 3/5, 91052 Erlangen, Germany – sequence: 5 givenname: Julian surname: Zettl fullname: Zettl, Julian organization: Institute of Photonic Technologies, Friedrich-Alexander-Universität Erlangen-Nürnberg, Konrad-Zuse-Strasse 3/5, 91052 Erlangen, Germany – sequence: 6 givenname: Konstantin Yu surname: Nagulin fullname: Nagulin, Konstantin Yu organization: Kazan National Research Technical University named after A. N. Tupolev - KAI, Корпус No5, Ulitsa Karla Marksa, 31, Kazan, Russia – sequence: 7 givenname: Michael surname: Schmidt fullname: Schmidt, Michael organization: Institute of Photonic Technologies, Friedrich-Alexander-Universität Erlangen-Nürnberg, Konrad-Zuse-Strasse 3/5, 91052 Erlangen, Germany |
BookMark | eNp9kM9KAzEQxoMoWKsv4CngRQ-7ZpL90wUvRdQWCh7Uc8imszZlN6lJKnjzHXxDn8Rd68lDLzMMfL9vZr4TcmidRULOgaXAoLhep11AlXIGkxQgZQwOyAgmpUiyShSHZMQqDknOKnFMTkJYs16RsXxE_EIF9LRG1dEO22jsK1V2SVeoYhJ9Xzu0kbqGQspFJujldP40pzOAKxqda2mIiC39_vyindHehei3Om49_rp0qFfKGq1auvFugz4aDKfkqFFtwLO_PiYv93fPt7Nk8fgwv50uEi2qLCa6KkCoumINqjLTTc2aohB82eRa5zUrdD9mdV1ngFqoShVlyTLUZakqXkLOxZhc7Hz71W9bDFGu3dbbfqXkMMkZLwUbVHynGo4PHhu58aZT_kMCk0O2ci2HbOWQrQSQfXI9NPkHaRNVNM5Gr0y7H73Zodi__m7Qy6ANWo1L41FHuXRmH_4DtZaW9Q |
CitedBy_id | crossref_primary_10_1007_s11665_021_05548_z crossref_primary_10_1111_ffe_14025 crossref_primary_10_18311_jmmf_2023_44018 crossref_primary_10_1088_1742_6596_1687_1_012004 crossref_primary_10_3390_ma15249002 crossref_primary_10_1007_s11665_021_06059_7 crossref_primary_10_1002_adem_202100350 crossref_primary_10_1002_adem_202300009 crossref_primary_10_1016_j_mtcomm_2022_104332 crossref_primary_10_1080_17452759_2021_1964268 crossref_primary_10_3390_mi15080958 crossref_primary_10_1007_s12540_023_01574_9 crossref_primary_10_1007_s12008_024_01983_z crossref_primary_10_3390_jmmp6060139 crossref_primary_10_3390_ma12142284 crossref_primary_10_1007_s40195_022_01461_z crossref_primary_10_1016_j_jmatprotec_2023_117946 crossref_primary_10_1016_j_jallcom_2024_176035 crossref_primary_10_3390_ma15051679 crossref_primary_10_1016_j_procir_2022_08_143 crossref_primary_10_1115_1_4062788 crossref_primary_10_1016_j_msea_2019_138633 crossref_primary_10_1016_j_pmatsci_2022_101051 crossref_primary_10_3390_machines12040255 crossref_primary_10_3390_jmmp6030063 crossref_primary_10_1016_j_cirp_2019_05_001 crossref_primary_10_1016_j_msea_2021_140801 crossref_primary_10_3390_ma16072659 crossref_primary_10_3390_met10010116 crossref_primary_10_1016_j_jallcom_2023_171390 crossref_primary_10_1016_j_corsci_2020_108594 crossref_primary_10_3390_met11030458 crossref_primary_10_1016_j_mtcomm_2025_111803 crossref_primary_10_1002_adem_202100049 crossref_primary_10_1016_j_msea_2023_145799 crossref_primary_10_1007_s00170_022_08848_3 crossref_primary_10_3390_met10111474 crossref_primary_10_1002_srin_202200775 crossref_primary_10_3390_met11101640 crossref_primary_10_1016_j_msea_2025_148237 crossref_primary_10_1016_j_cirpj_2023_08_002 crossref_primary_10_1016_j_ijmachtools_2021_103804 crossref_primary_10_1557_s43580_024_01009_6 crossref_primary_10_3390_cryst12111670 crossref_primary_10_1016_j_msea_2021_141718 crossref_primary_10_3390_met12050735 crossref_primary_10_1016_j_jmatprotec_2021_117358 crossref_primary_10_1016_j_jmrt_2024_09_033 crossref_primary_10_1016_j_mfglet_2021_03_003 crossref_primary_10_1007_s10853_020_05109_0 crossref_primary_10_1080_10408436_2023_2255616 crossref_primary_10_1002_srin_202200807 crossref_primary_10_1016_j_prostr_2022_12_270 crossref_primary_10_1016_j_matdes_2022_110453 |
Cites_doi | 10.1007/s12541-011-0125-5 10.1016/j.matchar.2018.01.015 10.1007/s00170-015-7647-4 10.1016/j.actamat.2016.07.019 10.1007/s11663-014-0267-9 10.1016/j.commatsci.2018.04.027 10.1016/j.procir.2015.08.082 10.1007/s00170-003-1844-2 10.1007/s00501-007-0285-x 10.1016/j.jmatprotec.2017.11.032 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright Elsevier BV Jan 10, 2019 |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright Elsevier BV Jan 10, 2019 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.msea.2018.11.001 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4936 |
EndPage | 115 |
ExternalDocumentID | 10_1016_j_msea_2018_11_001 S0921509318315193 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SMS SPC SPCBC SSM SSZ T5K ~02 ~G- 29M 6TJ 8WZ A6W AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SEW SSH WUQ 7SR 8BQ 8FD AFXIZ EFKBS JG9 |
ID | FETCH-LOGICAL-c394t-c9613ab90fea74cfb0f6632df5cc5b06cf664bbb41ec3a9a67704ec77a9271523 |
IEDL.DBID | AIKHN |
ISSN | 0921-5093 |
IngestDate | Sun Jul 13 05:38:27 EDT 2025 Tue Jul 01 03:29:46 EDT 2025 Thu Apr 24 22:56:18 EDT 2025 Fri Feb 23 02:28:51 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Laser powder bed fusion AISI H11 1.2343 Additive manufacturing Microstructure Heat-treatment Tensile strength |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-c9613ab90fea74cfb0f6632df5cc5b06cf664bbb41ec3a9a67704ec77a9271523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2185027302 |
PQPubID | 2045432 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2185027302 crossref_primary_10_1016_j_msea_2018_11_001 crossref_citationtrail_10_1016_j_msea_2018_11_001 elsevier_sciencedirect_doi_10_1016_j_msea_2018_11_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-10 |
PublicationDateYYYYMMDD | 2019-01-10 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Ahn (bib3) 2011; 12 Totten (bib15) 2007 Fette, Sander, Wulfsberg, Zierk, Hermann, Stoess (bib4) 2015; 35 Hölker, Tekaya (bib5) 2015; 83 Wegst, Wegst (bib9) 2013 Herzog, Seyda, Wycisk, Emmelmann (bib6) 2016; 117 Mayer, Scheu, Leitner, Clemens, Siller (bib14) 2007; 152 VDI 3405 Part 2 - Beam Melting of metallic parts - Qualification, quality assurance and post processing, 2013. C. Bischof, C. Scheitler, L. Kneisel, A.I. Gorunov, M. Schmid, Influence of Preheating Temperature and Carbon Content on Crack Formation during Laser Beam Melting of AISI H11 Tool Steel, in: Proceedings of the ICAT 2016, Nürnberg, Germany, November 29th–30 Mukherjee, Wei, De, DebRoy (bib19) 2018; 150 Over (bib8) 2003 Wu, San, Chang, Lin, Marwan, Baba, Hwang (bib20) 2017; 254 DIN 17022-1 Heat treatment of ferrous products – Hardening and tempering, Beuth, 1994. S. Meyer, DMLS: der Weg zur optimierten Werkzeugtemperierung für hochqualitative, kostenoptimerte, spritzgegossene Teile. EOS GmbH, 2009. Jansen (bib10) 2014 Pinkteron, Li (bib11) 2005; 25 DIN EN ISO 6892-1, Berlin, Germany: Beuth, 2016. Wohlers (bib1) 2016 Casati, Lecis, Andrianopoli, Vadani (bib13) 2018; 137 Vander Voort (bib16) 1999 Holzweissig, Brenne, Schapper, Niendorf (bib12) 2015; 46 Ahn (10.1016/j.msea.2018.11.001_bib3) 2011; 12 Mayer (10.1016/j.msea.2018.11.001_bib14) 2007; 152 Mukherjee (10.1016/j.msea.2018.11.001_bib19) 2018; 150 10.1016/j.msea.2018.11.001_bib2 Pinkteron (10.1016/j.msea.2018.11.001_bib11) 2005; 25 Wohlers (10.1016/j.msea.2018.11.001_bib1) 2016 10.1016/j.msea.2018.11.001_bib21 10.1016/j.msea.2018.11.001_bib7 Casati (10.1016/j.msea.2018.11.001_bib13) 2018; 137 Fette (10.1016/j.msea.2018.11.001_bib4) 2015; 35 Wu (10.1016/j.msea.2018.11.001_bib20) 2017; 254 Herzog (10.1016/j.msea.2018.11.001_bib6) 2016; 117 Wegst (10.1016/j.msea.2018.11.001_bib9) 2013 10.1016/j.msea.2018.11.001_bib18 10.1016/j.msea.2018.11.001_bib17 Vander Voort (10.1016/j.msea.2018.11.001_bib16) 1999 Totten (10.1016/j.msea.2018.11.001_bib15) 2007 Holzweissig (10.1016/j.msea.2018.11.001_bib12) 2015; 46 Hölker (10.1016/j.msea.2018.11.001_bib5) 2015; 83 Over (10.1016/j.msea.2018.11.001_bib8) 2003 Jansen (10.1016/j.msea.2018.11.001_bib10) 2014 |
References_xml | – volume: 25 start-page: 471 year: 2005 end-page: 479 ident: bib11 article-title: Direct additive laser manufacturing using gas- and water-atomised H13 tool steel powders publication-title: Int. J. Adv. Manuf. Technol. – year: 1999 ident: bib16 article-title: Metallography, Principles and Practice – volume: 35 start-page: 25 year: 2015 end-page: 35 ident: bib4 article-title: Optimized and cost-efficient compression molds manufactured by selective laser melting for the production of thermoset fiber reinforced plastic aircraft components publication-title: Proc. CIRP – volume: 83 start-page: 1209 year: 2015 end-page: 1220 ident: bib5 article-title: Advancements in the manufacturing of dies for hot aluminum extrusion with conformal cooling channels publication-title: Int. J. Adv. Manuf. Technol. – reference: DIN EN ISO 6892-1, Berlin, Germany: Beuth, 2016. – volume: 152 start-page: 132 year: 2007 end-page: 136 ident: bib14 article-title: Influence of the cooling rate on the mechanical properties of a hot-work tool steel publication-title: Berg- und Hüttenmännische Monatshefte – volume: 150 start-page: 369 year: 2018 end-page: 380 ident: bib19 article-title: Heat and fluid flow in additive manufacturing – Part II: powder bed fusion of stainless steel, and titanium, nickel and aluminum base alloys publication-title: Comput. Mater. Sci. – volume: 254 start-page: 72 year: 2017 end-page: 78 ident: bib20 article-title: Numerical modeling of melt-pool behavior in selective laser melting with random powder distribution and experimental validation publication-title: J. Mater. Process. – reference: DIN 17022-1 Heat treatment of ferrous products – Hardening and tempering, Beuth, 1994. – reference: S. Meyer, DMLS: der Weg zur optimierten Werkzeugtemperierung für hochqualitative, kostenoptimerte, spritzgegossene Teile. EOS GmbH, 2009. – volume: 46 start-page: 545 year: 2015 end-page: 549 ident: bib12 article-title: Microstructural characterization and mechanical performance of hot work tool steel processed by selective laser melting publication-title: Met. Mater. Trans. C – volume: 12 start-page: 925 year: 2011 end-page: 938 ident: bib3 article-title: Applications of laser assisted metal rapid tooling process to manufacture of molding & forming tools - state of the art publication-title: Int. J. Prec. Eng. Manuf. – year: 2003 ident: bib8 article-title: Generative Fertigung von Bauteilen aus Werkzeugstahl X38CrMoV5-1 und Titan TiAl6V4mit "Selective Laser Melting" (Dissertation) – reference: VDI 3405 Part 2 - Beam Melting of metallic parts - Qualification, quality assurance and post processing, 2013. – reference: C. Bischof, C. Scheitler, L. Kneisel, A.I. Gorunov, M. Schmid, Influence of Preheating Temperature and Carbon Content on Crack Formation during Laser Beam Melting of AISI H11 Tool Steel, in: Proceedings of the ICAT 2016, Nürnberg, Germany, November 29th–30 – year: 2013 ident: bib9 article-title: Stahlschlüssel - Key to Steel 2016: Nachschlagewerk Dt./Engl./Franz – year: 2016 ident: bib1 publication-title: Wholers Report 2016 – volume: 117 start-page: 371 year: 2016 end-page: 392 ident: bib6 article-title: Additive manufacturing of metals publication-title: Acta Mater. – year: 2014 ident: bib10 publication-title: Generative Fertigung von Konturnah Temperierten Werkzeugen Mittels Selective Laser Melting (Dissertation) – volume: 137 start-page: 20 year: 2018 end-page: 57 ident: bib13 article-title: Microstructure and mechanical behavior of hot-work tool steels processed by selective laser melting publication-title: Mater. Charact. – year: 2007 ident: bib15 publication-title: Steel Heat Treatment Handbook – volume: 12 start-page: 925 year: 2011 ident: 10.1016/j.msea.2018.11.001_bib3 article-title: Applications of laser assisted metal rapid tooling process to manufacture of molding & forming tools - state of the art publication-title: Int. J. Prec. Eng. Manuf. doi: 10.1007/s12541-011-0125-5 – volume: 137 start-page: 20 year: 2018 ident: 10.1016/j.msea.2018.11.001_bib13 article-title: Microstructure and mechanical behavior of hot-work tool steels processed by selective laser melting publication-title: Mater. Charact. doi: 10.1016/j.matchar.2018.01.015 – year: 2014 ident: 10.1016/j.msea.2018.11.001_bib10 – volume: 83 start-page: 1209 year: 2015 ident: 10.1016/j.msea.2018.11.001_bib5 article-title: Advancements in the manufacturing of dies for hot aluminum extrusion with conformal cooling channels publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-015-7647-4 – ident: 10.1016/j.msea.2018.11.001_bib17 – ident: 10.1016/j.msea.2018.11.001_bib18 – ident: 10.1016/j.msea.2018.11.001_bib2 – year: 2003 ident: 10.1016/j.msea.2018.11.001_bib8 – ident: 10.1016/j.msea.2018.11.001_bib7 – year: 1999 ident: 10.1016/j.msea.2018.11.001_bib16 – year: 2013 ident: 10.1016/j.msea.2018.11.001_bib9 – volume: 117 start-page: 371 year: 2016 ident: 10.1016/j.msea.2018.11.001_bib6 article-title: Additive manufacturing of metals publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.07.019 – year: 2016 ident: 10.1016/j.msea.2018.11.001_bib1 – volume: 46 start-page: 545 year: 2015 ident: 10.1016/j.msea.2018.11.001_bib12 article-title: Microstructural characterization and mechanical performance of hot work tool steel processed by selective laser melting publication-title: Met. Mater. Trans. C doi: 10.1007/s11663-014-0267-9 – volume: 150 start-page: 369 year: 2018 ident: 10.1016/j.msea.2018.11.001_bib19 article-title: Heat and fluid flow in additive manufacturing – Part II: powder bed fusion of stainless steel, and titanium, nickel and aluminum base alloys publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2018.04.027 – volume: 35 start-page: 25 year: 2015 ident: 10.1016/j.msea.2018.11.001_bib4 article-title: Optimized and cost-efficient compression molds manufactured by selective laser melting for the production of thermoset fiber reinforced plastic aircraft components publication-title: Proc. CIRP doi: 10.1016/j.procir.2015.08.082 – volume: 25 start-page: 471 year: 2005 ident: 10.1016/j.msea.2018.11.001_bib11 article-title: Direct additive laser manufacturing using gas- and water-atomised H13 tool steel powders publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-003-1844-2 – volume: 152 start-page: 132 year: 2007 ident: 10.1016/j.msea.2018.11.001_bib14 article-title: Influence of the cooling rate on the mechanical properties of a hot-work tool steel publication-title: Berg- und Hüttenmännische Monatshefte doi: 10.1007/s00501-007-0285-x – year: 2007 ident: 10.1016/j.msea.2018.11.001_bib15 – volume: 254 start-page: 72 year: 2017 ident: 10.1016/j.msea.2018.11.001_bib20 article-title: Numerical modeling of melt-pool behavior in selective laser melting with random powder distribution and experimental validation publication-title: J. Mater. Process. doi: 10.1016/j.jmatprotec.2017.11.032 – ident: 10.1016/j.msea.2018.11.001_bib21 |
SSID | ssj0001405 |
Score | 2.5037756 |
Snippet | Laser Beam Melting (LBM) of metals is an innovative additive manufacturing technology for producing complexly shaped parts. However, the spectrum of available... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 109 |
SubjectTerms | Additive manufacturing AISI H11 1.2343 Annealing Dependence Electron backscatter diffraction Elongation Heat treating Heat treatment Injection molding Laser beam melting Laser powder bed fusion Lasers Low alloy steels Mechanical properties Microstructure Residual stress Tensile strength Tensile tests Tool steels Tooling Ultimate tensile strength |
Title | Laser beam melting and heat-treatment of 1.2343 (AISI H11) tool steel – microstructure and mechanical properties |
URI | https://dx.doi.org/10.1016/j.msea.2018.11.001 https://www.proquest.com/docview/2185027302 |
Volume | 742 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgXOCAeIrBmHLgAEJlTV-hxwkxbTx2GZO4VUmWSKB1m8a4Iv4D_5Bfgr2mEyC0A8dUcVrZrj-n_ewAnCRaapUE1jNxEnqRUtxT3BIthyvM57UaaKpGvu8m7X508xg_rsBVWQtDtEoX-4uYPo_W7krDabMxeXpq9PwU4Qo35OiUnPKQVVgLEO0vK7DW7Ny2u4uAjPecMxlxvkcCrnamoHnl6FHE8Lq8oGae7myYP_DpV6Sew09rCzZd3siaxaNtw4oZ7cDGt26CuzC9Q0SaMmVkznIzJD4zk6MBo3DrLQjlbGwZ7ljDKGSnzU6vw9qcn7HZeDxkaHAzZJ_vHywnml7RWvZ1auar5IZqhMmkbEIf8KfUiXUP-q3rh6u2545U8HSYRjNPpwjfUqW-NVJE2irfYsoRDGysdaz8ROMQDaYibnQoU5kI4UdGCyHTQCDUh_tQGY1H5gAY5mUWDSyUsPSzNZGpMQhtCPihkgMlqsBLRWba9RunYy-GWUkse85I-RkpHzcixK6rwvlCZlJ021g6Oy7tk_3wmQzhYKlcrTRm5t7YlwxTnZh6-_jB4T-XPYJ1HJGbI7bVoIJGMseYscxUHVYv3njd-eUXs0XqNg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gHtSD8RlR1D140JhCSx9rj4RIQIELkHDb7C67CYYCQbwa_4P_0F_iTLv1FePBY9vdbTMznW-2_WaGkItICSWjmnF0GPlOIKXnSM8gLceTEM8rOVaYjdztRa1hcDcKRwXSyHNhkFZpfX_m01Nvbc9UrTSri8mk2ndjgCvYkINRehiHrJH1ANscgFFXnj95HnDHlMcIox0cbjNnMpJXAvaE_K6bCpbytJ1hfkGnH346BZ_mDtm2USOtZw-2Swp6tke2vtQS3CfLDuDRkkotEproKbKZqZiNKTpb54NOTueGwn7VD3x6WW_327TleVd0NZ9PKahbT-nbyytNkKSXFZZ9Wup0lURjhjAqlC7w8_0S67AekGHzdtBoObahgqP8OFg5KgbwFjJ2jRYsUEa6BgKO2tiESoXSjRQcgrpk4Gnli1hEjLmBVoyJuMYA6P1DUpzNZ_qIUIjKDKiXSWbwV2skYq0B2ADufSnGkpWIlwuSK1ttHJteTHlOK3vgKHyOwodtCHLrSuT6Y84iq7Xx5-gw1w__ZjEcwODPeeVcmdy-r48cAp0QK_u4teN_LntONlqDbod32r37E7IJV9DgAeXKpAgK06cQu6zkWWqb75NW6vg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser+beam+melting+and+heat-treatment+of+1.2343+%28AISI+H11%29+tool+steel+%E2%80%93+microstructure+and+mechanical+properties&rft.jtitle=Materials+science+%26+engineering.+A%2C+Structural+materials+%3A+properties%2C+microstructure+and+processing&rft.au=Huber%2C+Florian&rft.au=Bischof%2C+Corinna&rft.au=Hentschel%2C+Oliver&rft.au=Heberle%2C+Johannes&rft.date=2019-01-10&rft.issn=0921-5093&rft.volume=742&rft.spage=109&rft.epage=115&rft_id=info:doi/10.1016%2Fj.msea.2018.11.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_msea_2018_11_001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-5093&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-5093&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-5093&client=summon |