Spectral-Spatial Interaction Network for Multispectral Image and Panchromatic Image Fusion
Recently, with the rapid development of deep learning (DL), an increasing number of DL-based methods are applied in pansharpening. Benefiting from the powerful feature extraction capability of deep learning, DL-based methods have achieved state-of-the-art performance in pansharpening. However, most...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 14; no. 16; p. 4100 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2072-4292 2072-4292 |
DOI | 10.3390/rs14164100 |
Cover
Abstract | Recently, with the rapid development of deep learning (DL), an increasing number of DL-based methods are applied in pansharpening. Benefiting from the powerful feature extraction capability of deep learning, DL-based methods have achieved state-of-the-art performance in pansharpening. However, most DL-based methods simply fuse multi-spectral (MS) images and panchromatic (PAN) images by concatenating, which can not make full use of the spectral information and spatial information of MS and PAN images, respectively. To address this issue, we propose a spectral-spatial interaction Network (SSIN) for pansharpening. Different from previous works, we extract the features of PAN and MS, respectively, and then interact them repetitively to incorporate spectral and spatial information progressively. In order to enhance the spectral-spatial information fusion, we further propose spectral-spatial attention (SSA) module to yield a more effective spatial-spectral information transfer in the network. Extensive experiments on QuickBird, WorldView-4, and WorldView-2 images demonstrate that our SSIN significantly outperforms other methods in terms of both objective assessment and visual quality. |
---|---|
AbstractList | Recently, with the rapid development of deep learning (DL), an increasing number of DL-based methods are applied in pansharpening. Benefiting from the powerful feature extraction capability of deep learning, DL-based methods have achieved state-of-the-art performance in pansharpening. However, most DL-based methods simply fuse multi-spectral (MS) images and panchromatic (PAN) images by concatenating, which can not make full use of the spectral information and spatial information of MS and PAN images, respectively. To address this issue, we propose a spectral-spatial interaction Network (SSIN) for pansharpening. Different from previous works, we extract the features of PAN and MS, respectively, and then interact them repetitively to incorporate spectral and spatial information progressively. In order to enhance the spectral-spatial information fusion, we further propose spectral-spatial attention (SSA) module to yield a more effective spatial-spectral information transfer in the network. Extensive experiments on QuickBird, WorldView-4, and WorldView-2 images demonstrate that our SSIN significantly outperforms other methods in terms of both objective assessment and visual quality. |
Author | Nie, Zihao Chen, Lihui Yang, Xiaomin Jeon, Seunggil |
Author_xml | – sequence: 1 givenname: Zihao surname: Nie fullname: Nie, Zihao – sequence: 2 givenname: Lihui surname: Chen fullname: Chen, Lihui – sequence: 3 givenname: Seunggil surname: Jeon fullname: Jeon, Seunggil – sequence: 4 givenname: Xiaomin surname: Yang fullname: Yang, Xiaomin |
BookMark | eNptkU9rGzEQxUVJoWniSz_BQi6lsKn-rbU6BhM3BrcpJLn0ImZH2mSd9cqRtIR8-8q1SYqJLiOG33vMzPtMjgY_OEK-MHouhKbfQ2SSTSWj9AM55lTxUnLNj_77fyKTGFc0PyGYpvKY_LnZOEwB-vJmA6mDvlgMyQXA1Pmh-OXSsw-PRetD8XPsUxf3dLFYw70rYLDFbxjwIfh1VuO-PR9jVp-Sjy300U329YTczS9vZ1fl8vrHYnaxLFFomcqmZY0S0iEwSRtloaqVaqGyDWIDDQJgrTgyCwJs5bgWeZHG1kpYrPRUixOy2PlaDyuzCd0awovx0Jl_DR_uDYQ8XO8MNjVz6KiUDKWl2R1rqVsKwFvZasheX3dem-CfRheTWXcRXd_D4PwYDVesFkpUkmb07ABd-TEMedNM0akUnFOWqW87CoOPMbj2dUBGzTY185ZahukBjF2CbRL55l3_nuQvoJScpQ |
CitedBy_id | crossref_primary_10_3390_rs16010075 crossref_primary_10_3390_electronics13142802 crossref_primary_10_1109_JSEN_2023_3300263 crossref_primary_10_3390_rs15112945 crossref_primary_10_3390_rs14205203 |
Cites_doi | 10.1109/JSTARS.2020.3032472 10.1109/JSTARS.2011.2176467 10.1080/01431169608948717 10.1016/j.compag.2016.12.006 10.1016/B978-0-08-051581-6.50065-9 10.1109/JSTARS.2021.3126645 10.1109/TGRS.2012.2213604 10.1109/ICCV48922.2021.01442 10.1109/JSTARS.2021.3117944 10.1109/TGRS.2006.881758 10.1109/TSMCB.2012.2198810 10.1109/TGRS.2014.2361734 10.1109/CVPR.2016.182 10.1109/CVPRW.2017.151 10.1109/CVPR.2017.19 10.1109/TGRS.2010.2067219 10.1109/TGRS.2007.901007 10.1109/TGRS.2007.907604 10.1109/ICCV.2017.193 10.1109/RSIP.2017.7958794 10.1145/3474085.3475600 10.1109/MGRS.2020.2976696 10.1109/MGRS.2020.3019315 10.1109/TGRS.2010.2051674 10.1007/978-3-030-67070-2_3 10.3390/rs8070594 10.1007/978-3-319-10602-1 10.1109/TGRS.2008.916211 10.1109/LGRS.2009.2022650 10.1016/j.inffus.2012.05.003 10.1016/j.inffus.2016.03.003 10.1007/978-3-030-01234-2_18 10.1016/j.inffus.2018.05.006 10.1109/TGRS.2018.2878007 10.1007/978-3-030-58592-1_18 10.14358/PERS.72.5.591 10.14358/PERS.74.2.193 10.1109/IGARSS.2017.8128408 10.1007/s11554-021-01080-4 10.1109/CVPR42600.2020.01155 10.1109/JSTARS.2018.2794888 10.1007/s11263-006-6852-x 10.3390/rs12101674 10.1016/j.inffus.2019.07.010 10.1109/TGRS.2019.2906073 10.1109/TGRS.2002.803623 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs14164100 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_cb81ece0441c4d0abcc849f0aa2f4f9a 10_3390_rs14164100 |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c394t-bf1b734eca140b7da5877fa5dbccbabcaac872c1da3ad5e293292bd873dc59693 |
IEDL.DBID | 8FG |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:27:17 EDT 2025 Thu Sep 04 20:31:49 EDT 2025 Fri Jul 25 09:33:42 EDT 2025 Thu Apr 24 22:55:10 EDT 2025 Tue Jul 01 01:59:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-bf1b734eca140b7da5877fa5dbccbabcaac872c1da3ad5e293292bd873dc59693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2706432201?pq-origsite=%requestingapplication% |
PQID | 2706432201 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cb81ece0441c4d0abcc849f0aa2f4f9a proquest_miscellaneous_2718373540 proquest_journals_2706432201 crossref_primary_10_3390_rs14164100 crossref_citationtrail_10_3390_rs14164100 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Liu (ref_13) 2020; 55 ref_55 ref_54 ref_53 ref_51 ref_19 Du (ref_3) 2013; 14 ref_18 ref_16 Vivone (ref_59) 2014; 53 ref_15 Aiazzi (ref_61) 2006; 72 Aiazzi (ref_28) 2007; 45 Wald (ref_52) 1997; 63 Lei (ref_10) 2022; 60 Garzelli (ref_30) 2008; 46 ref_24 Pradhan (ref_32) 2006; 44 ref_22 Meng (ref_40) 2018; 57 Garzelli (ref_57) 2009; 6 ref_21 ref_20 Carper (ref_25) 1990; 56 Aiazzi (ref_34) 2002; 40 Ballester (ref_39) 2006; 69 Ghassemian (ref_31) 2016; 32 ref_27 Li (ref_42) 2010; 49 Zhong (ref_17) 2021; 14 Meng (ref_1) 2019; 46 ref_33 Yang (ref_36) 2020; 14 Guan (ref_46) 2022; 60 Kwarteng (ref_26) 1989; 55 Zhang (ref_41) 2012; 42 Alparone (ref_58) 2008; 74 Vivone (ref_23) 2020; 9 Vivone (ref_60) 2019; 57 Lai (ref_44) 2021; 18 Yang (ref_14) 2022; 60 ref_47 Palsson (ref_56) 2011; 5 ref_45 Mascarenhas (ref_38) 1996; 17 Gilbertson (ref_2) 2017; 134 Meng (ref_37) 2020; 9 Zhu (ref_43) 2012; 51 Chen (ref_9) 2022; 60 Yuan (ref_12) 2018; 11 Choi (ref_29) 2010; 49 Shah (ref_35) 2008; 46 ref_49 ref_48 ref_8 Li (ref_11) 2021; 14 ref_5 ref_4 ref_7 ref_6 |
References_xml | – volume: 14 start-page: 389 year: 2020 ident: ref_36 article-title: Pansharpening based on joint-guided detail extraction publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2020.3032472 – ident: ref_49 – ident: ref_55 – volume: 5 start-page: 281 year: 2011 ident: ref_56 article-title: Classification of pansharpened urban satellite images publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. doi: 10.1109/JSTARS.2011.2176467 – volume: 17 start-page: 1457 year: 1996 ident: ref_38 article-title: Multispectral image data fusion under a Bayesian approach publication-title: Int. J. Remote Sens. doi: 10.1080/01431169608948717 – volume: 134 start-page: 151 year: 2017 ident: ref_2 article-title: Effect of pan-sharpening multi-temporal Landsat 8 imagery for crop type differentiation using different classification techniques publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2016.12.006 – ident: ref_33 doi: 10.1016/B978-0-08-051581-6.50065-9 – volume: 14 start-page: 11879 year: 2021 ident: ref_17 article-title: Attention FPNet: Two-Branch Remote Sensing Image Pansharpening Network Based on Attention Feature Fusion publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3126645 – volume: 51 start-page: 2827 year: 2012 ident: ref_43 article-title: A sparse image fusion algorithm with application to pan-sharpening publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2213604 – ident: ref_18 doi: 10.1109/ICCV48922.2021.01442 – volume: 14 start-page: 10303 year: 2021 ident: ref_11 article-title: Pansharpening via Subpixel Convolutional Residual Network publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. doi: 10.1109/JSTARS.2021.3117944 – volume: 44 start-page: 3674 year: 2006 ident: ref_32 article-title: Estimation of the number of decomposition levels for a wavelet-based multiresolution multisensor image fusion publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2006.881758 – volume: 42 start-page: 1693 year: 2012 ident: ref_41 article-title: Adjustable model-based fusion method for multispectral and panchromatic images publication-title: IEEE Trans. Syst. Man Cybern. Part (Cybern.) doi: 10.1109/TSMCB.2012.2198810 – volume: 53 start-page: 2565 year: 2014 ident: ref_59 article-title: A critical comparison among pansharpening algorithms publication-title: IEEE Trans. Geosci. Remote. Sens. doi: 10.1109/TGRS.2014.2361734 – ident: ref_20 doi: 10.1109/CVPR.2016.182 – ident: ref_27 – volume: 63 start-page: 691 year: 1997 ident: ref_52 article-title: Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images publication-title: Photogramm. Eng. Remote Sens. – ident: ref_21 doi: 10.1109/CVPRW.2017.151 – ident: ref_22 doi: 10.1109/CVPR.2017.19 – volume: 49 start-page: 738 year: 2010 ident: ref_42 article-title: A new pan-sharpening method using a compressed sensing technique publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2067219 – volume: 45 start-page: 3230 year: 2007 ident: ref_28 article-title: Improving component substitution pansharpening through multivariate regression of MS + Pan data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2007.901007 – volume: 46 start-page: 228 year: 2008 ident: ref_30 article-title: Optimal MMSE Pan Sharpening of Very High Resolution Multispectral Images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2007.907604 – ident: ref_7 doi: 10.1109/ICCV.2017.193 – ident: ref_45 – volume: 60 start-page: 1 year: 2022 ident: ref_46 article-title: Multistage Dual-Attention Guided Fusion Network for Hyperspectral Pansharpening publication-title: IEEE Trans. Geosci. Remote. Sens. – ident: ref_8 doi: 10.1109/RSIP.2017.7958794 – ident: ref_15 doi: 10.1145/3474085.3475600 – volume: 9 start-page: 18 year: 2020 ident: ref_37 article-title: A large-scale benchmark data set for evaluating pansharpening performance: Overview and implementation publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2020.2976696 – ident: ref_53 – volume: 9 start-page: 53 year: 2020 ident: ref_23 article-title: A new benchmark based on recent advances in multispectral pansharpening: Revisiting pansharpening with classical and emerging pansharpening methods publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2020.3019315 – volume: 49 start-page: 295 year: 2010 ident: ref_29 article-title: A new adaptive component-substitution-based satellite image fusion by using partial replacement publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2051674 – ident: ref_24 – ident: ref_51 doi: 10.1007/978-3-030-67070-2_3 – volume: 55 start-page: 339 year: 1989 ident: ref_26 article-title: Extracting spectral contrast in Landsat Thematic Mapper image data using selective principal component analysis publication-title: Photogramm. Eng. Remote Sens. – ident: ref_6 doi: 10.3390/rs8070594 – ident: ref_5 doi: 10.1007/978-3-319-10602-1 – volume: 46 start-page: 1323 year: 2008 ident: ref_35 article-title: An efficient pan-sharpening method via a combined adaptive PCA approach and contourlets publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.916211 – volume: 6 start-page: 662 year: 2009 ident: ref_57 article-title: Hypercomplex quality assessment of multi/hyperspectral images publication-title: IEEE Geosci. Remote. Sens. Lett. doi: 10.1109/LGRS.2009.2022650 – volume: 14 start-page: 19 year: 2013 ident: ref_3 article-title: Information fusion techniques for change detection from multi-temporal remote sensing images publication-title: Inf. Fusion doi: 10.1016/j.inffus.2012.05.003 – volume: 32 start-page: 75 year: 2016 ident: ref_31 article-title: A review of remote sensing image fusion methods publication-title: Inf. Fusion doi: 10.1016/j.inffus.2016.03.003 – ident: ref_48 doi: 10.1007/978-3-030-01234-2_18 – volume: 46 start-page: 102 year: 2019 ident: ref_1 article-title: Review of the pansharpening methods for remote sensing images based on the idea of meta-analysis: Practical discussion and challenges publication-title: Inf. Fusion doi: 10.1016/j.inffus.2018.05.006 – volume: 60 start-page: 1 year: 2022 ident: ref_10 article-title: NLRNet: An Efficient Nonlocal Attention ResNet for Pansharpening publication-title: IEEE Trans. Geosci. Remote. Sens. – volume: 57 start-page: 2840 year: 2018 ident: ref_40 article-title: Pansharpening for cloud-contaminated very high-resolution remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2878007 – ident: ref_47 doi: 10.1007/978-3-030-58592-1_18 – volume: 72 start-page: 591 year: 2006 ident: ref_61 article-title: MTF-tailored multiscale fusion of high-resolution MS and Pan imagery publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.72.5.591 – volume: 74 start-page: 193 year: 2008 ident: ref_58 article-title: Multispectral and panchromatic data fusion assessment without reference publication-title: Photogramm. Eng. Remote. Sens. doi: 10.14358/PERS.74.2.193 – ident: ref_4 doi: 10.1109/IGARSS.2017.8128408 – ident: ref_54 – volume: 18 start-page: 1635 year: 2021 ident: ref_44 article-title: Real-time and effective pan-sharpening for remote sensing using multi-scale fusion network publication-title: J.-Real-Time Image Process. doi: 10.1007/s11554-021-01080-4 – volume: 60 start-page: 1 year: 2022 ident: ref_14 article-title: Dual-Stream Convolutional Neural Network With Residual Information Enhancement for Pansharpening publication-title: IEEE Trans. Geosci. Remote Sens. – ident: ref_50 doi: 10.1109/CVPR42600.2020.01155 – volume: 11 start-page: 978 year: 2018 ident: ref_12 article-title: A multiscale and multidepth convolutional neural network for remote sensing imagery pan-sharpening publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2018.2794888 – volume: 69 start-page: 43 year: 2006 ident: ref_39 article-title: A variational model for P+ XS image fusion publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-006-6852-x – ident: ref_16 doi: 10.3390/rs12101674 – volume: 55 start-page: 1 year: 2020 ident: ref_13 article-title: Remote sensing image fusion based on two-stream fusion network publication-title: Inf. Fusion doi: 10.1016/j.inffus.2019.07.010 – volume: 56 start-page: 459 year: 1990 ident: ref_25 article-title: The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data publication-title: Photogramm. Eng. Remote Sens. – volume: 60 start-page: 1 year: 2022 ident: ref_9 article-title: ArbRPN: A Bidirectional Recurrent Pansharpening Network for Multispectral Images With Arbitrary Numbers of Bands publication-title: IEEE Trans. Geosci. Remote Sens. – ident: ref_19 – volume: 57 start-page: 6421 year: 2019 ident: ref_60 article-title: Robust band-dependent spatial-detail approaches for panchromatic sharpening publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2906073 – volume: 40 start-page: 2300 year: 2002 ident: ref_34 article-title: Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2002.803623 |
SSID | ssj0000331904 |
Score | 2.3647058 |
Snippet | Recently, with the rapid development of deep learning (DL), an increasing number of DL-based methods are applied in pansharpening. Benefiting from the powerful... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 4100 |
SubjectTerms | Computer vision Data integration Decomposition Deep learning Design Feature extraction Image processing information exchange Information transfer Machine learning Methods Multisensor fusion multispectral imagery Neural networks Optimization panchromatic imagery pansharpening Quality assessment Remote sensing Spatial data spectral-spatial attention spectral-spatial interaction network Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQCyyIpygvGcHCENVxnDgeAVEBEhUDlSqWyE91gBT1MfDvuXPSUgkkFlbnBuvOvvvu4vuOkMs0C6mwMk-0ZzIBL8kTpYJKHHeADwAgFAF7h5_6xf1APA7z4cqoL3wT1tADN4rrWlOm3noGYdsKx7SxthQqMK15EEFFaMQUW0mmog_O4Ggx0fCRZpDXdyfTFLCHSLGVbSUCRaL-H344BpfeNtlqUSG9bnazQ9Z8vUs22gHlo8898opz4rEokeAMYTgzNJbymq4E2m_eclMAoDR21E5bafrwDv6C6trRZzDvaDKODK3tcm-OpbJ9MujdvdzeJ-1YhMRmSswSE1IjM-GthuTISKfzUsqgcweqMaAfrW0puU2dzrTLPcRzrrhxpcyczVWhsgOyXo9rf0iocNIVgRsvWRClU4aVGrOwwgAscdx0yNVCVZVtOcNxdMVbBbkDqrX6VmuHXCxlPxqmjF-lblDjSwlkt44LYPOqtXn1l8075GRhr6q9ctOKS0RXHABNh5wvP8NlwT8guvbjOcqAB5NY6jr6j30ck02O3RDxPeAJWZ9N5v4UMMrMnMXj-AX7yefo priority: 102 providerName: Directory of Open Access Journals |
Title | Spectral-Spatial Interaction Network for Multispectral Image and Panchromatic Image Fusion |
URI | https://www.proquest.com/docview/2706432201 https://www.proquest.com/docview/2718373540 https://doaj.org/article/cb81ece0441c4d0abcc849f0aa2f4f9a |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9UwDLdgO8Bl4lM8GE9BcOEQrU3TpjmhDfYYiD1NwKSJS5VPdoB2ex8H_nvsNO8NCcSpUmpVqu3YPzuxDfCqrGIpnaq5CYXiaCUF1zpq7oVHfIAAoYlUO3w6b07O5ceL-iIn3Jb5WuXGJiZD7QdHOfIDoch5CvRXb66uOU2NotPVPELjNuyWAn0tVYrP3m9zLEWFClbIsStphdH9wWJZIgKRJRW0_eGHUrv-v6xxcjGze7CXsSE7HIV5H26F_gHcyWPKL389hG80LZ5SE5wmCaPmsJTQG2sT2Hy80c0QhrJUV7vM1OzDT7QazPSenaGQLxdD6tOal2drSpg9gvPZ8de3JzwPR-Cu0nLFbSytqmRwBkMkq7ypW6Wiqb11zhrrjHGtEq70pjK-DujVhRbWt6ryrtaNrh7DTj_04Qkw6ZVvorBBFVG2XtuiNRSLNRbBiRd2Aq83rOpc7hxOAyx-dBhBEFu7G7ZO4OWW9mrsl_FPqiPi-JaCelynhWHxvctbpnO2LYMLBQI2J32B_-RaqWNhjIgyajOB_Y28urzxlt2NmkzgxfY1bhk6BzF9GNZEg3ZMUcLr6f8_8QzuCqp2SPf99mFntViH54hBVnaaFG0Ku4fvTj99wefR8fzs8zRF9L8Bd_vhlg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcigXRHmILS0YAQcOVh3bieMDQuWx7NJ2xaGVKi7BT3qApOxDqH-K39iZPLZIIG69OqNImXyeGY9n5iPkRSZTprzOmY1cM7CSghmTDAsiQHwAAUKRsHf4eFZMTtWns_xsg_weemGwrHKwia2hDo3HHPm-0Og8BfirNxc_GbJG4e3qQKHRweIwXv6CI9vi9fQ9_N-XQow_nLybsJ5VgHlp1JK5lDktVfQWzhZOB5uXWiebB-e9s85b60stfBastCGP4A6FES6UWgafmwKHL4HJv6WklFhCWI4_rnM6XAKgueqmoEpp-P58kUHEozJsoPvD77X0AH9Z_9alje-SO30sSg868GyTjVjfI1s9Lfr55X3yBdnpMRXCkLkYkErbBGLXC0FnXQU5hbCXtn28i16aTn-AlaK2DvQzgOp83rRzYfvl8QoTdA_I6Y2o7SHZrJs6PiJUBR2KJFzUPKkyGMdLi2e_wkEwFIQbkVeDqirfTypHwozvFZxYUK3VtVpH5Pla9qKbz_FPqbeo8bUEztRuF5r5t6rfopV3ZRZ95BAgehU4fJMvlUncWpFUMnZEdof_VfUbfVFdw3JEnq0fwxbFexdbx2aFMmA3NSbYdv7_iqdka3JyfFQdTWeHj8ltgZ0Wba3hLtlczldxD-KfpXvSgo6SrzeN8it20B0W |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgEXxFMsLWAEHDhE69hOHB8QAkroUlj1QKWKS_CTHmhS9iHUv8avYyZxtkggbr06o0iZfPP0PAh5louYS6eKzASmMtCSPNM66sxzD_4BOAhlxN7hT_Ny_0h-OC6Ot8ivsRcGyypHndgrat85zJFPuULjycFeTWMqizjcq1-d_chwgxTetI7rNAaIHITznxC-LV_O9uBfP-e8fvf57X6WNgxkTmi5ymzMrRIyOANxhlXeFJVS0RTeOmeNdca4SnGXeyOMLwKYRq659ZUS3hW6xEFMoP6vKAFygl3q9ftNfocJADeTw0RUITSbLpY5eD8yx2a6P2xgvyrgL0vQm7f6JrmR_FL6egDSLbIV2tvkWlqRfnJ-h3zBTfWYFslwizGglvbJxKEvgs6HanIKLjDte3qXiZrOTkFjUdN6eggAO1l0_YzYdFyvMVl3lxxdCtvuke22a8N9QqVXvozcBsWirLy2rDIYB5YWHCPP7YS8GFnVuDS1HJdnfG8gekG2NhdsnZCnG9qzYVbHP6neIMc3FDhfuz_oFt-aJK6Ns1UeXGDgLDrpGXyTq6SOzBgeZdRmQnbH_9UkoV82FxCdkCebxyCueAdj2tCtkQZ0qMJk24P_v-IxuQr4bj7O5gc75DrHpou-7HCXbK8W6_AQXKGVfdRjjpKvlw3y3zmIIUk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral-Spatial+Interaction+Network+for+Multispectral+Image+and+Panchromatic+Image+Fusion&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Nie%2C+Zihao&rft.au=Chen%2C+Lihui&rft.au=Jeon%2C+Seunggil&rft.au=Yang%2C+Xiaomin&rft.date=2022-08-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=14&rft.issue=16&rft.spage=4100&rft_id=info:doi/10.3390%2Frs14164100&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs14164100 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |