Spectral-Spatial Interaction Network for Multispectral Image and Panchromatic Image Fusion

Recently, with the rapid development of deep learning (DL), an increasing number of DL-based methods are applied in pansharpening. Benefiting from the powerful feature extraction capability of deep learning, DL-based methods have achieved state-of-the-art performance in pansharpening. However, most...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 14; no. 16; p. 4100
Main Authors Nie, Zihao, Chen, Lihui, Jeon, Seunggil, Yang, Xiaomin
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2022
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs14164100

Cover

Abstract Recently, with the rapid development of deep learning (DL), an increasing number of DL-based methods are applied in pansharpening. Benefiting from the powerful feature extraction capability of deep learning, DL-based methods have achieved state-of-the-art performance in pansharpening. However, most DL-based methods simply fuse multi-spectral (MS) images and panchromatic (PAN) images by concatenating, which can not make full use of the spectral information and spatial information of MS and PAN images, respectively. To address this issue, we propose a spectral-spatial interaction Network (SSIN) for pansharpening. Different from previous works, we extract the features of PAN and MS, respectively, and then interact them repetitively to incorporate spectral and spatial information progressively. In order to enhance the spectral-spatial information fusion, we further propose spectral-spatial attention (SSA) module to yield a more effective spatial-spectral information transfer in the network. Extensive experiments on QuickBird, WorldView-4, and WorldView-2 images demonstrate that our SSIN significantly outperforms other methods in terms of both objective assessment and visual quality.
AbstractList Recently, with the rapid development of deep learning (DL), an increasing number of DL-based methods are applied in pansharpening. Benefiting from the powerful feature extraction capability of deep learning, DL-based methods have achieved state-of-the-art performance in pansharpening. However, most DL-based methods simply fuse multi-spectral (MS) images and panchromatic (PAN) images by concatenating, which can not make full use of the spectral information and spatial information of MS and PAN images, respectively. To address this issue, we propose a spectral-spatial interaction Network (SSIN) for pansharpening. Different from previous works, we extract the features of PAN and MS, respectively, and then interact them repetitively to incorporate spectral and spatial information progressively. In order to enhance the spectral-spatial information fusion, we further propose spectral-spatial attention (SSA) module to yield a more effective spatial-spectral information transfer in the network. Extensive experiments on QuickBird, WorldView-4, and WorldView-2 images demonstrate that our SSIN significantly outperforms other methods in terms of both objective assessment and visual quality.
Author Nie, Zihao
Chen, Lihui
Yang, Xiaomin
Jeon, Seunggil
Author_xml – sequence: 1
  givenname: Zihao
  surname: Nie
  fullname: Nie, Zihao
– sequence: 2
  givenname: Lihui
  surname: Chen
  fullname: Chen, Lihui
– sequence: 3
  givenname: Seunggil
  surname: Jeon
  fullname: Jeon, Seunggil
– sequence: 4
  givenname: Xiaomin
  surname: Yang
  fullname: Yang, Xiaomin
BookMark eNptkU9rGzEQxUVJoWniSz_BQi6lsKn-rbU6BhM3BrcpJLn0ImZH2mSd9cqRtIR8-8q1SYqJLiOG33vMzPtMjgY_OEK-MHouhKbfQ2SSTSWj9AM55lTxUnLNj_77fyKTGFc0PyGYpvKY_LnZOEwB-vJmA6mDvlgMyQXA1Pmh-OXSsw-PRetD8XPsUxf3dLFYw70rYLDFbxjwIfh1VuO-PR9jVp-Sjy300U329YTczS9vZ1fl8vrHYnaxLFFomcqmZY0S0iEwSRtloaqVaqGyDWIDDQJgrTgyCwJs5bgWeZHG1kpYrPRUixOy2PlaDyuzCd0awovx0Jl_DR_uDYQ8XO8MNjVz6KiUDKWl2R1rqVsKwFvZasheX3dem-CfRheTWXcRXd_D4PwYDVesFkpUkmb07ABd-TEMedNM0akUnFOWqW87CoOPMbj2dUBGzTY185ZahukBjF2CbRL55l3_nuQvoJScpQ
CitedBy_id crossref_primary_10_3390_rs16010075
crossref_primary_10_3390_electronics13142802
crossref_primary_10_1109_JSEN_2023_3300263
crossref_primary_10_3390_rs15112945
crossref_primary_10_3390_rs14205203
Cites_doi 10.1109/JSTARS.2020.3032472
10.1109/JSTARS.2011.2176467
10.1080/01431169608948717
10.1016/j.compag.2016.12.006
10.1016/B978-0-08-051581-6.50065-9
10.1109/JSTARS.2021.3126645
10.1109/TGRS.2012.2213604
10.1109/ICCV48922.2021.01442
10.1109/JSTARS.2021.3117944
10.1109/TGRS.2006.881758
10.1109/TSMCB.2012.2198810
10.1109/TGRS.2014.2361734
10.1109/CVPR.2016.182
10.1109/CVPRW.2017.151
10.1109/CVPR.2017.19
10.1109/TGRS.2010.2067219
10.1109/TGRS.2007.901007
10.1109/TGRS.2007.907604
10.1109/ICCV.2017.193
10.1109/RSIP.2017.7958794
10.1145/3474085.3475600
10.1109/MGRS.2020.2976696
10.1109/MGRS.2020.3019315
10.1109/TGRS.2010.2051674
10.1007/978-3-030-67070-2_3
10.3390/rs8070594
10.1007/978-3-319-10602-1
10.1109/TGRS.2008.916211
10.1109/LGRS.2009.2022650
10.1016/j.inffus.2012.05.003
10.1016/j.inffus.2016.03.003
10.1007/978-3-030-01234-2_18
10.1016/j.inffus.2018.05.006
10.1109/TGRS.2018.2878007
10.1007/978-3-030-58592-1_18
10.14358/PERS.72.5.591
10.14358/PERS.74.2.193
10.1109/IGARSS.2017.8128408
10.1007/s11554-021-01080-4
10.1109/CVPR42600.2020.01155
10.1109/JSTARS.2018.2794888
10.1007/s11263-006-6852-x
10.3390/rs12101674
10.1016/j.inffus.2019.07.010
10.1109/TGRS.2019.2906073
10.1109/TGRS.2002.803623
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs14164100
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_cb81ece0441c4d0abcc849f0aa2f4f9a
10_3390_rs14164100
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c394t-bf1b734eca140b7da5877fa5dbccbabcaac872c1da3ad5e293292bd873dc59693
IEDL.DBID 8FG
ISSN 2072-4292
IngestDate Wed Aug 27 01:27:17 EDT 2025
Thu Sep 04 20:31:49 EDT 2025
Fri Jul 25 09:33:42 EDT 2025
Thu Apr 24 22:55:10 EDT 2025
Tue Jul 01 01:59:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-bf1b734eca140b7da5877fa5dbccbabcaac872c1da3ad5e293292bd873dc59693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2706432201?pq-origsite=%requestingapplication%
PQID 2706432201
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_cb81ece0441c4d0abcc849f0aa2f4f9a
proquest_miscellaneous_2718373540
proquest_journals_2706432201
crossref_primary_10_3390_rs14164100
crossref_citationtrail_10_3390_rs14164100
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Liu (ref_13) 2020; 55
ref_55
ref_54
ref_53
ref_51
ref_19
Du (ref_3) 2013; 14
ref_18
ref_16
Vivone (ref_59) 2014; 53
ref_15
Aiazzi (ref_61) 2006; 72
Aiazzi (ref_28) 2007; 45
Wald (ref_52) 1997; 63
Lei (ref_10) 2022; 60
Garzelli (ref_30) 2008; 46
ref_24
Pradhan (ref_32) 2006; 44
ref_22
Meng (ref_40) 2018; 57
Garzelli (ref_57) 2009; 6
ref_21
ref_20
Carper (ref_25) 1990; 56
Aiazzi (ref_34) 2002; 40
Ballester (ref_39) 2006; 69
Ghassemian (ref_31) 2016; 32
ref_27
Li (ref_42) 2010; 49
Zhong (ref_17) 2021; 14
Meng (ref_1) 2019; 46
ref_33
Yang (ref_36) 2020; 14
Guan (ref_46) 2022; 60
Kwarteng (ref_26) 1989; 55
Zhang (ref_41) 2012; 42
Alparone (ref_58) 2008; 74
Vivone (ref_23) 2020; 9
Vivone (ref_60) 2019; 57
Lai (ref_44) 2021; 18
Yang (ref_14) 2022; 60
ref_47
Palsson (ref_56) 2011; 5
ref_45
Mascarenhas (ref_38) 1996; 17
Gilbertson (ref_2) 2017; 134
Meng (ref_37) 2020; 9
Zhu (ref_43) 2012; 51
Chen (ref_9) 2022; 60
Yuan (ref_12) 2018; 11
Choi (ref_29) 2010; 49
Shah (ref_35) 2008; 46
ref_49
ref_48
ref_8
Li (ref_11) 2021; 14
ref_5
ref_4
ref_7
ref_6
References_xml – volume: 14
  start-page: 389
  year: 2020
  ident: ref_36
  article-title: Pansharpening based on joint-guided detail extraction
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.3032472
– ident: ref_49
– ident: ref_55
– volume: 5
  start-page: 281
  year: 2011
  ident: ref_56
  article-title: Classification of pansharpened urban satellite images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens.
  doi: 10.1109/JSTARS.2011.2176467
– volume: 17
  start-page: 1457
  year: 1996
  ident: ref_38
  article-title: Multispectral image data fusion under a Bayesian approach
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169608948717
– volume: 134
  start-page: 151
  year: 2017
  ident: ref_2
  article-title: Effect of pan-sharpening multi-temporal Landsat 8 imagery for crop type differentiation using different classification techniques
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.12.006
– ident: ref_33
  doi: 10.1016/B978-0-08-051581-6.50065-9
– volume: 14
  start-page: 11879
  year: 2021
  ident: ref_17
  article-title: Attention FPNet: Two-Branch Remote Sensing Image Pansharpening Network Based on Attention Feature Fusion
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3126645
– volume: 51
  start-page: 2827
  year: 2012
  ident: ref_43
  article-title: A sparse image fusion algorithm with application to pan-sharpening
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2213604
– ident: ref_18
  doi: 10.1109/ICCV48922.2021.01442
– volume: 14
  start-page: 10303
  year: 2021
  ident: ref_11
  article-title: Pansharpening via Subpixel Convolutional Residual Network
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens.
  doi: 10.1109/JSTARS.2021.3117944
– volume: 44
  start-page: 3674
  year: 2006
  ident: ref_32
  article-title: Estimation of the number of decomposition levels for a wavelet-based multiresolution multisensor image fusion
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.881758
– volume: 42
  start-page: 1693
  year: 2012
  ident: ref_41
  article-title: Adjustable model-based fusion method for multispectral and panchromatic images
  publication-title: IEEE Trans. Syst. Man Cybern. Part (Cybern.)
  doi: 10.1109/TSMCB.2012.2198810
– volume: 53
  start-page: 2565
  year: 2014
  ident: ref_59
  article-title: A critical comparison among pansharpening algorithms
  publication-title: IEEE Trans. Geosci. Remote. Sens.
  doi: 10.1109/TGRS.2014.2361734
– ident: ref_20
  doi: 10.1109/CVPR.2016.182
– ident: ref_27
– volume: 63
  start-page: 691
  year: 1997
  ident: ref_52
  article-title: Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images
  publication-title: Photogramm. Eng. Remote Sens.
– ident: ref_21
  doi: 10.1109/CVPRW.2017.151
– ident: ref_22
  doi: 10.1109/CVPR.2017.19
– volume: 49
  start-page: 738
  year: 2010
  ident: ref_42
  article-title: A new pan-sharpening method using a compressed sensing technique
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2067219
– volume: 45
  start-page: 3230
  year: 2007
  ident: ref_28
  article-title: Improving component substitution pansharpening through multivariate regression of MS + Pan data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2007.901007
– volume: 46
  start-page: 228
  year: 2008
  ident: ref_30
  article-title: Optimal MMSE Pan Sharpening of Very High Resolution Multispectral Images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2007.907604
– ident: ref_7
  doi: 10.1109/ICCV.2017.193
– ident: ref_45
– volume: 60
  start-page: 1
  year: 2022
  ident: ref_46
  article-title: Multistage Dual-Attention Guided Fusion Network for Hyperspectral Pansharpening
  publication-title: IEEE Trans. Geosci. Remote. Sens.
– ident: ref_8
  doi: 10.1109/RSIP.2017.7958794
– ident: ref_15
  doi: 10.1145/3474085.3475600
– volume: 9
  start-page: 18
  year: 2020
  ident: ref_37
  article-title: A large-scale benchmark data set for evaluating pansharpening performance: Overview and implementation
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2020.2976696
– ident: ref_53
– volume: 9
  start-page: 53
  year: 2020
  ident: ref_23
  article-title: A new benchmark based on recent advances in multispectral pansharpening: Revisiting pansharpening with classical and emerging pansharpening methods
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2020.3019315
– volume: 49
  start-page: 295
  year: 2010
  ident: ref_29
  article-title: A new adaptive component-substitution-based satellite image fusion by using partial replacement
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2051674
– ident: ref_24
– ident: ref_51
  doi: 10.1007/978-3-030-67070-2_3
– volume: 55
  start-page: 339
  year: 1989
  ident: ref_26
  article-title: Extracting spectral contrast in Landsat Thematic Mapper image data using selective principal component analysis
  publication-title: Photogramm. Eng. Remote Sens.
– ident: ref_6
  doi: 10.3390/rs8070594
– ident: ref_5
  doi: 10.1007/978-3-319-10602-1
– volume: 46
  start-page: 1323
  year: 2008
  ident: ref_35
  article-title: An efficient pan-sharpening method via a combined adaptive PCA approach and contourlets
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.916211
– volume: 6
  start-page: 662
  year: 2009
  ident: ref_57
  article-title: Hypercomplex quality assessment of multi/hyperspectral images
  publication-title: IEEE Geosci. Remote. Sens. Lett.
  doi: 10.1109/LGRS.2009.2022650
– volume: 14
  start-page: 19
  year: 2013
  ident: ref_3
  article-title: Information fusion techniques for change detection from multi-temporal remote sensing images
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2012.05.003
– volume: 32
  start-page: 75
  year: 2016
  ident: ref_31
  article-title: A review of remote sensing image fusion methods
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2016.03.003
– ident: ref_48
  doi: 10.1007/978-3-030-01234-2_18
– volume: 46
  start-page: 102
  year: 2019
  ident: ref_1
  article-title: Review of the pansharpening methods for remote sensing images based on the idea of meta-analysis: Practical discussion and challenges
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.05.006
– volume: 60
  start-page: 1
  year: 2022
  ident: ref_10
  article-title: NLRNet: An Efficient Nonlocal Attention ResNet for Pansharpening
  publication-title: IEEE Trans. Geosci. Remote. Sens.
– volume: 57
  start-page: 2840
  year: 2018
  ident: ref_40
  article-title: Pansharpening for cloud-contaminated very high-resolution remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2878007
– ident: ref_47
  doi: 10.1007/978-3-030-58592-1_18
– volume: 72
  start-page: 591
  year: 2006
  ident: ref_61
  article-title: MTF-tailored multiscale fusion of high-resolution MS and Pan imagery
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.72.5.591
– volume: 74
  start-page: 193
  year: 2008
  ident: ref_58
  article-title: Multispectral and panchromatic data fusion assessment without reference
  publication-title: Photogramm. Eng. Remote. Sens.
  doi: 10.14358/PERS.74.2.193
– ident: ref_4
  doi: 10.1109/IGARSS.2017.8128408
– ident: ref_54
– volume: 18
  start-page: 1635
  year: 2021
  ident: ref_44
  article-title: Real-time and effective pan-sharpening for remote sensing using multi-scale fusion network
  publication-title: J.-Real-Time Image Process.
  doi: 10.1007/s11554-021-01080-4
– volume: 60
  start-page: 1
  year: 2022
  ident: ref_14
  article-title: Dual-Stream Convolutional Neural Network With Residual Information Enhancement for Pansharpening
  publication-title: IEEE Trans. Geosci. Remote Sens.
– ident: ref_50
  doi: 10.1109/CVPR42600.2020.01155
– volume: 11
  start-page: 978
  year: 2018
  ident: ref_12
  article-title: A multiscale and multidepth convolutional neural network for remote sensing imagery pan-sharpening
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2794888
– volume: 69
  start-page: 43
  year: 2006
  ident: ref_39
  article-title: A variational model for P+ XS image fusion
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-006-6852-x
– ident: ref_16
  doi: 10.3390/rs12101674
– volume: 55
  start-page: 1
  year: 2020
  ident: ref_13
  article-title: Remote sensing image fusion based on two-stream fusion network
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.07.010
– volume: 56
  start-page: 459
  year: 1990
  ident: ref_25
  article-title: The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 60
  start-page: 1
  year: 2022
  ident: ref_9
  article-title: ArbRPN: A Bidirectional Recurrent Pansharpening Network for Multispectral Images With Arbitrary Numbers of Bands
  publication-title: IEEE Trans. Geosci. Remote Sens.
– ident: ref_19
– volume: 57
  start-page: 6421
  year: 2019
  ident: ref_60
  article-title: Robust band-dependent spatial-detail approaches for panchromatic sharpening
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2906073
– volume: 40
  start-page: 2300
  year: 2002
  ident: ref_34
  article-title: Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2002.803623
SSID ssj0000331904
Score 2.3647058
Snippet Recently, with the rapid development of deep learning (DL), an increasing number of DL-based methods are applied in pansharpening. Benefiting from the powerful...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4100
SubjectTerms Computer vision
Data integration
Decomposition
Deep learning
Design
Feature extraction
Image processing
information exchange
Information transfer
Machine learning
Methods
Multisensor fusion
multispectral imagery
Neural networks
Optimization
panchromatic imagery
pansharpening
Quality assessment
Remote sensing
Spatial data
spectral-spatial attention
spectral-spatial interaction network
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQCyyIpygvGcHCENVxnDgeAVEBEhUDlSqWyE91gBT1MfDvuXPSUgkkFlbnBuvOvvvu4vuOkMs0C6mwMk-0ZzIBL8kTpYJKHHeADwAgFAF7h5_6xf1APA7z4cqoL3wT1tADN4rrWlOm3noGYdsKx7SxthQqMK15EEFFaMQUW0mmog_O4Ggx0fCRZpDXdyfTFLCHSLGVbSUCRaL-H344BpfeNtlqUSG9bnazQ9Z8vUs22gHlo8898opz4rEokeAMYTgzNJbymq4E2m_eclMAoDR21E5bafrwDv6C6trRZzDvaDKODK3tcm-OpbJ9MujdvdzeJ-1YhMRmSswSE1IjM-GthuTISKfzUsqgcweqMaAfrW0puU2dzrTLPcRzrrhxpcyczVWhsgOyXo9rf0iocNIVgRsvWRClU4aVGrOwwgAscdx0yNVCVZVtOcNxdMVbBbkDqrX6VmuHXCxlPxqmjF-lblDjSwlkt44LYPOqtXn1l8075GRhr6q9ctOKS0RXHABNh5wvP8NlwT8guvbjOcqAB5NY6jr6j30ck02O3RDxPeAJWZ9N5v4UMMrMnMXj-AX7yefo
  priority: 102
  providerName: Directory of Open Access Journals
Title Spectral-Spatial Interaction Network for Multispectral Image and Panchromatic Image Fusion
URI https://www.proquest.com/docview/2706432201
https://www.proquest.com/docview/2718373540
https://doaj.org/article/cb81ece0441c4d0abcc849f0aa2f4f9a
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9UwDLdgO8Bl4lM8GE9BcOEQrU3TpjmhDfYYiD1NwKSJS5VPdoB2ex8H_nvsNO8NCcSpUmpVqu3YPzuxDfCqrGIpnaq5CYXiaCUF1zpq7oVHfIAAoYlUO3w6b07O5ceL-iIn3Jb5WuXGJiZD7QdHOfIDoch5CvRXb66uOU2NotPVPELjNuyWAn0tVYrP3m9zLEWFClbIsStphdH9wWJZIgKRJRW0_eGHUrv-v6xxcjGze7CXsSE7HIV5H26F_gHcyWPKL389hG80LZ5SE5wmCaPmsJTQG2sT2Hy80c0QhrJUV7vM1OzDT7QazPSenaGQLxdD6tOal2drSpg9gvPZ8de3JzwPR-Cu0nLFbSytqmRwBkMkq7ypW6Wiqb11zhrrjHGtEq70pjK-DujVhRbWt6ryrtaNrh7DTj_04Qkw6ZVvorBBFVG2XtuiNRSLNRbBiRd2Aq83rOpc7hxOAyx-dBhBEFu7G7ZO4OWW9mrsl_FPqiPi-JaCelynhWHxvctbpnO2LYMLBQI2J32B_-RaqWNhjIgyajOB_Y28urzxlt2NmkzgxfY1bhk6BzF9GNZEg3ZMUcLr6f8_8QzuCqp2SPf99mFntViH54hBVnaaFG0Ku4fvTj99wefR8fzs8zRF9L8Bd_vhlg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcigXRHmILS0YAQcOVh3bieMDQuWx7NJ2xaGVKi7BT3qApOxDqH-K39iZPLZIIG69OqNImXyeGY9n5iPkRSZTprzOmY1cM7CSghmTDAsiQHwAAUKRsHf4eFZMTtWns_xsg_weemGwrHKwia2hDo3HHPm-0Og8BfirNxc_GbJG4e3qQKHRweIwXv6CI9vi9fQ9_N-XQow_nLybsJ5VgHlp1JK5lDktVfQWzhZOB5uXWiebB-e9s85b60stfBastCGP4A6FES6UWgafmwKHL4HJv6WklFhCWI4_rnM6XAKgueqmoEpp-P58kUHEozJsoPvD77X0AH9Z_9alje-SO30sSg868GyTjVjfI1s9Lfr55X3yBdnpMRXCkLkYkErbBGLXC0FnXQU5hbCXtn28i16aTn-AlaK2DvQzgOp83rRzYfvl8QoTdA_I6Y2o7SHZrJs6PiJUBR2KJFzUPKkyGMdLi2e_wkEwFIQbkVeDqirfTypHwozvFZxYUK3VtVpH5Pla9qKbz_FPqbeo8bUEztRuF5r5t6rfopV3ZRZ95BAgehU4fJMvlUncWpFUMnZEdof_VfUbfVFdw3JEnq0fwxbFexdbx2aFMmA3NSbYdv7_iqdka3JyfFQdTWeHj8ltgZ0Wba3hLtlczldxD-KfpXvSgo6SrzeN8it20B0W
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgEXxFMsLWAEHDhE69hOHB8QAkroUlj1QKWKS_CTHmhS9iHUv8avYyZxtkggbr06o0iZfPP0PAh5louYS6eKzASmMtCSPNM66sxzD_4BOAhlxN7hT_Ny_0h-OC6Ot8ivsRcGyypHndgrat85zJFPuULjycFeTWMqizjcq1-d_chwgxTetI7rNAaIHITznxC-LV_O9uBfP-e8fvf57X6WNgxkTmi5ymzMrRIyOANxhlXeFJVS0RTeOmeNdca4SnGXeyOMLwKYRq659ZUS3hW6xEFMoP6vKAFygl3q9ftNfocJADeTw0RUITSbLpY5eD8yx2a6P2xgvyrgL0vQm7f6JrmR_FL6egDSLbIV2tvkWlqRfnJ-h3zBTfWYFslwizGglvbJxKEvgs6HanIKLjDte3qXiZrOTkFjUdN6eggAO1l0_YzYdFyvMVl3lxxdCtvuke22a8N9QqVXvozcBsWirLy2rDIYB5YWHCPP7YS8GFnVuDS1HJdnfG8gekG2NhdsnZCnG9qzYVbHP6neIMc3FDhfuz_oFt-aJK6Ns1UeXGDgLDrpGXyTq6SOzBgeZdRmQnbH_9UkoV82FxCdkCebxyCueAdj2tCtkQZ0qMJk24P_v-IxuQr4bj7O5gc75DrHpou-7HCXbK8W6_AQXKGVfdRjjpKvlw3y3zmIIUk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral-Spatial+Interaction+Network+for+Multispectral+Image+and+Panchromatic+Image+Fusion&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Nie%2C+Zihao&rft.au=Chen%2C+Lihui&rft.au=Jeon%2C+Seunggil&rft.au=Yang%2C+Xiaomin&rft.date=2022-08-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=14&rft.issue=16&rft.spage=4100&rft_id=info:doi/10.3390%2Frs14164100&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs14164100
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon