Comparison of Random Forest and Support Vector Machine Classifiers for Regional Land Cover Mapping Using Coarse Resolution FY-3C Images
The type of algorithm employed to classify remote sensing imageries plays a great role in affecting the accuracy. In recent decades, machine learning (ML) has received great attention due to its robustness in remote sensing image classification. In this regard, random forest (RF) and support vector...
Saved in:
| Published in | Remote sensing (Basel, Switzerland) Vol. 14; no. 3; p. 574 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.02.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2072-4292 2072-4292 |
| DOI | 10.3390/rs14030574 |
Cover
| Abstract | The type of algorithm employed to classify remote sensing imageries plays a great role in affecting the accuracy. In recent decades, machine learning (ML) has received great attention due to its robustness in remote sensing image classification. In this regard, random forest (RF) and support vector machine (SVM) are two of the most widely used ML algorithms to generate land cover (LC) maps from satellite imageries. Although several comparisons have been conducted between these two algorithms, the findings are contradicting. Moreover, the comparisons were made on local-scale LC map generation either from high or medium resolution images using various software, but not Python. In this paper, we compared the performance of these two algorithms for large area LC mapping of parts of Africa using coarse resolution imageries in the Python platform by the employing Scikit-Learn (sklearn) library. We employed a big dataset, 297 metrics, comprised of systematically selected 9-month composite FegnYun-3C (FY-3C) satellite images with 1 km resolution. Several experiments were performed using a range of values to determine the best values for the two most important parameters of each classifier, the number of trees and the number of variables, for RF, and penalty value and gamma for SVM, and to obtain the best model of each algorithm. Our results showed that RF outperformed SVM yielding 0.86 (OA) and 0.83 (k), which are 1–2% and 3% higher than the best SVM model, respectively. In addition, RF performed better in mixed class classification; however, it performed almost the same when classifying relatively pure classes with distinct spectral variation, i.e., consisting of less mixed pixels. Furthermore, RF is more efficient in handling large input datasets where the SVM fails. Hence, RF is a more robust ML algorithm especially for heterogeneous large area mapping using coarse resolution images. Finally, default parameter values in the sklearn library work well for satellite image classification with minor/or no adjustment for these algorithms. |
|---|---|
| AbstractList | The type of algorithm employed to classify remote sensing imageries plays a great role in affecting the accuracy. In recent decades, machine learning (ML) has received great attention due to its robustness in remote sensing image classification. In this regard, random forest (RF) and support vector machine (SVM) are two of the most widely used ML algorithms to generate land cover (LC) maps from satellite imageries. Although several comparisons have been conducted between these two algorithms, the findings are contradicting. Moreover, the comparisons were made on local-scale LC map generation either from high or medium resolution images using various software, but not Python. In this paper, we compared the performance of these two algorithms for large area LC mapping of parts of Africa using coarse resolution imageries in the Python platform by the employing Scikit-Learn (sklearn) library. We employed a big dataset, 297 metrics, comprised of systematically selected 9-month composite FegnYun-3C (FY-3C) satellite images with 1 km resolution. Several experiments were performed using a range of values to determine the best values for the two most important parameters of each classifier, the number of trees and the number of variables, for RF, and penalty value and gamma for SVM, and to obtain the best model of each algorithm. Our results showed that RF outperformed SVM yielding 0.86 (OA) and 0.83 (k), which are 1–2% and 3% higher than the best SVM model, respectively. In addition, RF performed better in mixed class classification; however, it performed almost the same when classifying relatively pure classes with distinct spectral variation, i.e., consisting of less mixed pixels. Furthermore, RF is more efficient in handling large input datasets where the SVM fails. Hence, RF is a more robust ML algorithm especially for heterogeneous large area mapping using coarse resolution images. Finally, default parameter values in the sklearn library work well for satellite image classification with minor/or no adjustment for these algorithms. |
| Author | Fan, Jinlong Xu, Wenbo Adugna, Tesfaye |
| Author_xml | – sequence: 1 givenname: Tesfaye orcidid: 0000-0003-3235-587X surname: Adugna fullname: Adugna, Tesfaye – sequence: 2 givenname: Wenbo surname: Xu fullname: Xu, Wenbo – sequence: 3 givenname: Jinlong surname: Fan fullname: Fan, Jinlong |
| BookMark | eNp9kV2L1DAUhous4Lrujb8g4I0o1Xy2zaWUHR0YEVZX8KqcpidjhkxTk1bZX-DfNnVEZRFzkY_Dc57AeR8WZ2MYsSgeM_pCCE1fxsQkFVTV8l5xzmnNS8k1P_vr_qC4TOlA8xKCaSrPi-9tOE4QXQojCZZcwziEI9mEiGkm-UHeL9MU4kw-oplDJG_BfHYjktZDSs46jInYXL_GvQsjeLJbm9rwFVd2mty4Jzdp3dsAMWEGU_DLnGGy-VSKlmyPsMf0qLhvwSe8_HVeFDebqw_tm3L37vW2fbUrjdByLvvGIqsVqB64Rmq0HNCyRgy9YoiqtzVDwcygONPS1FBRZaURldRaK2aZuCi2J-8Q4NBN0R0h3nYBXPezEOK-gzg747GrlOg1NpVCxmWteFagkk1Tc8tqaXh2PT-5lnGC22_g_W8ho90aSfcnkkw_PdFTDF-WPN7u6JJB72HEsKSOV9ldMUGbjD65gx7CEvN0V4rXDW8o05l6dqJMDClFtP__nd6BjZthjWGO4Py_Wn4AOWu2_g |
| CitedBy_id | crossref_primary_10_1038_s41598_024_68991_7 crossref_primary_10_3390_rs16203781 crossref_primary_10_1080_01431161_2023_2244644 crossref_primary_10_1007_s11356_023_27395_2 crossref_primary_10_3390_computation10090145 crossref_primary_10_3390_land13071011 crossref_primary_10_1186_s40537_023_00810_8 crossref_primary_10_3390_app12115736 crossref_primary_10_1002_rse2_428 crossref_primary_10_1007_s41748_024_00393_1 crossref_primary_10_3390_rs15133303 crossref_primary_10_1016_j_rsase_2023_100984 crossref_primary_10_4236_jgis_2023_156033 crossref_primary_10_1007_s10661_024_12616_z crossref_primary_10_3390_pr10081611 crossref_primary_10_3390_rs15123168 crossref_primary_10_1007_s40808_024_01999_0 crossref_primary_10_3390_rs16030580 crossref_primary_10_3390_su141912178 crossref_primary_10_1007_s10661_023_12289_0 crossref_primary_10_1016_j_heliyon_2023_e21253 crossref_primary_10_3390_rs15143511 crossref_primary_10_1109_JSTARS_2022_3185185 crossref_primary_10_1109_JSTARS_2024_3522950 crossref_primary_10_1016_j_atech_2023_100325 crossref_primary_10_1007_s10980_024_01914_z crossref_primary_10_1080_16583655_2024_2420468 crossref_primary_10_1016_j_rsase_2023_101040 crossref_primary_10_3390_ijgi11080423 crossref_primary_10_3390_land13010001 crossref_primary_10_3390_f14122376 crossref_primary_10_1007_s12145_024_01623_w crossref_primary_10_3390_ijerph20032513 crossref_primary_10_3390_agriculture13010098 crossref_primary_10_3390_rs15092342 crossref_primary_10_3390_rs15040989 crossref_primary_10_1080_01431161_2024_2394238 crossref_primary_10_3390_geographies2020012 crossref_primary_10_3390_cryst14121057 crossref_primary_10_1109_JSTARS_2022_3189528 crossref_primary_10_1016_j_jenvman_2024_120192 crossref_primary_10_1155_2024_4020990 crossref_primary_10_1007_s42452_023_05496_4 crossref_primary_10_3390_rs14235941 crossref_primary_10_1016_j_envc_2025_101118 crossref_primary_10_26848_rbgf_v17_4_p2582_2605 crossref_primary_10_3389_frsen_2023_1148328 crossref_primary_10_3390_ijgi13040123 crossref_primary_10_1007_s11356_025_36273_y crossref_primary_10_3390_land13030335 crossref_primary_10_1007_s12040_024_02463_4 crossref_primary_10_3389_frsen_2025_1532280 crossref_primary_10_1080_00032719_2024_2446722 crossref_primary_10_1109_JSTARS_2024_3469728 crossref_primary_10_1080_15481603_2023_2192157 crossref_primary_10_1016_j_jenvman_2024_120921 crossref_primary_10_1016_j_isprsjprs_2024_09_003 crossref_primary_10_18359_rcin_6996 crossref_primary_10_1016_j_jag_2023_103569 crossref_primary_10_1007_s41651_022_00130_0 crossref_primary_10_3390_rs14102469 crossref_primary_10_1016_j_ress_2024_110607 crossref_primary_10_1016_j_indic_2023_100248 crossref_primary_10_1080_07038992_2024_2430496 crossref_primary_10_3390_agriculture14111876 crossref_primary_10_3390_s24051587 crossref_primary_10_30897_ijegeo_1479116 crossref_primary_10_1016_j_rsma_2024_103972 crossref_primary_10_1016_j_jag_2023_103555 crossref_primary_10_37908_mkutbd_1485236 crossref_primary_10_1093_forsci_fxad047 crossref_primary_10_3390_rs16010030 crossref_primary_10_3390_rs16224330 crossref_primary_10_3390_atmos13111887 crossref_primary_10_1016_j_envc_2023_100800 crossref_primary_10_1007_s11356_022_22761_y crossref_primary_10_3390_drones7110668 crossref_primary_10_1080_17538947_2023_2186505 crossref_primary_10_1016_j_envc_2024_100906 crossref_primary_10_3390_su15043218 crossref_primary_10_47134_ijlj_v1i4_2792 crossref_primary_10_1186_s40529_024_00433_z crossref_primary_10_3390_rs15133353 crossref_primary_10_1016_j_kjs_2024_100286 crossref_primary_10_3390_d14090706 crossref_primary_10_1117_1_JRS_17_034514 crossref_primary_10_1016_j_jaridenv_2024_105293 crossref_primary_10_3390_f16010015 crossref_primary_10_1016_j_jhazmat_2024_135695 crossref_primary_10_26848_rbgf_v17_5_p3715_3735 crossref_primary_10_3390_rs16142684 crossref_primary_10_3390_land12122188 crossref_primary_10_3390_rs15174140 crossref_primary_10_3390_s25020431 crossref_primary_10_3390_en16104056 crossref_primary_10_47164_ijngc_v13i3_820 crossref_primary_10_3390_drones8100585 crossref_primary_10_1007_s11269_024_03746_7 crossref_primary_10_1016_j_jag_2022_103154 crossref_primary_10_3390_rs16010091 crossref_primary_10_3390_rs16050868 crossref_primary_10_3390_rs16142677 crossref_primary_10_1016_j_ecoinf_2023_101989 crossref_primary_10_3390_drones7010061 crossref_primary_10_3389_ffgc_2024_1396999 crossref_primary_10_1016_j_asr_2024_12_036 crossref_primary_10_1016_j_ecoinf_2024_102847 crossref_primary_10_1016_j_ecoinf_2024_102607 crossref_primary_10_3390_rs14184452 crossref_primary_10_4995_raet_2024_20832 crossref_primary_10_1016_j_rsase_2024_101320 |
| Cites_doi | 10.1016/j.rse.2003.11.016 10.1109/JSTARS.2013.2282166 10.1029/1999JD900243 10.3390/rs70100153 10.1080/01431161.2018.1452075 10.1080/01431161.2014.903435 10.1080/014311600210218 10.1007/978-94-017-9813-6_13 10.14358/PERS.77.1.27 10.1080/01431161.2018.1433343 10.1007/s13351-020-0027-5 10.1023/A:1010933404324 10.1016/S0034-4257(97)00049-7 10.1080/10106048709354084 10.1109/TGRS.2004.831865 10.1016/j.rse.2009.08.016 10.3390/s18010018 10.1016/j.isprsjprs.2013.11.013 10.1080/01431161.2013.788261 10.1080/01431161.2014.1001086 10.1016/j.scib.2020.06.014 10.11728/cjss2014.05.703 10.3390/rs13163249 10.3390/rs13214461 10.1016/j.isprsjprs.2016.01.011 10.1080/01431160110040323 10.3390/rs10091336 10.1080/01431160412331269698 10.1007/s13351-019-9063-4 10.1080/014311600210092 10.3390/rs70809655 10.14358/PERS.80.2.179-189 10.1080/014311697217099 10.1007/s13157-012-0373-x 10.1080/014311600210209 10.1109/ICDSE.2012.6282329 10.1109/TGRS.2010.2041784 10.1016/j.isprsjprs.2010.11.001 10.1080/22797254.2017.1299557 10.1007/s00376-021-0425-3 10.1016/j.isprsjprs.2011.11.002 10.1016/j.rse.2015.09.008 10.1080/01431160512331314083 10.1109/TGRS.2012.2216272 10.1016/j.rse.2016.02.028 10.1016/j.patrec.2005.08.011 10.2747/1548-1603.49.5.623 10.1109/TGRS.2004.827257 10.3390/rs6020964 10.1111/j.1365-2699.2004.01073.x |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 ADTOC UNPAY DOA |
| DOI | 10.3390/rs14030574 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_653b9e865e124752999e548872f174c2 10.3390/rs14030574 10_3390_rs14030574 |
| GeographicLocations | Africa |
| GeographicLocations_xml | – name: Africa |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c394t-b8fe175a5ba29e0c94def183db51ee5bf71e31cd52194c7a605f4c36499951f13 |
| IEDL.DBID | UNPAY |
| ISSN | 2072-4292 |
| IngestDate | Fri Oct 03 12:43:46 EDT 2025 Sun Oct 26 02:09:26 EDT 2025 Fri Sep 05 12:05:53 EDT 2025 Fri Jul 25 09:49:04 EDT 2025 Thu Oct 16 04:41:21 EDT 2025 Thu Apr 24 22:55:53 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c394t-b8fe175a5ba29e0c94def183db51ee5bf71e31cd52194c7a605f4c36499951f13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3235-587X |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2072-4292/14/3/574/pdf?version=1644197526 |
| PQID | 2627828019 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_653b9e865e124752999e548872f174c2 unpaywall_primary_10_3390_rs14030574 proquest_miscellaneous_2648861308 proquest_journals_2627828019 crossref_primary_10_3390_rs14030574 crossref_citationtrail_10_3390_rs14030574 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Wulder (ref_16) 2018; 39 Pal (ref_24) 2005; 26 ref_57 Cihlar (ref_4) 2000; 21 Maxwell (ref_18) 2018; 39 ref_55 Lawrence (ref_41) 2015; 170 Feng (ref_5) 2020; 65 ref_15 Friedl (ref_7) 2010; 114 Mountrakis (ref_13) 2011; 66 Han (ref_48) 2020; 34 Belgiu (ref_21) 2016; 114 Foody (ref_19) 2004; 42 Roujean (ref_3) 2011; 13 Loveland (ref_10) 1997; 18 Waske (ref_17) 2010; 48 Friedl (ref_29) 1997; 61 Mutanga (ref_39) 2014; 88 Xian (ref_47) 2021; 38 Ghimire (ref_14) 2012; 49 Ghosh (ref_38) 2014; 26 Gislason (ref_58) 2006; 27 Pal (ref_25) 2005; 26 Li (ref_34) 2014; 6 ref_63 Guan (ref_59) 2013; 34 ref_27 Beaubien (ref_1) 1999; 104 Jensen (ref_50) 1987; 2 Pedregosa (ref_60) 2011; 12 Yang (ref_53) 2011; 77 Yang (ref_46) 2019; 33 Zhang (ref_36) 2013; 33 Latifovic (ref_2) 2004; 90 ref_35 Otukei (ref_30) 2010; 12 Qian (ref_61) 2015; 7 Hansen (ref_11) 2000; 21 Melgani (ref_62) 2004; 42 Arino (ref_12) 2008; 136 Tang (ref_44) 2014; 34 Breiman (ref_54) 2001; 45 Ghimire (ref_23) 2012; 67 Ghosh (ref_22) 2014; 26 Khatami (ref_28) 2016; 177 Hansen (ref_52) 2000; 21 Maxwell (ref_20) 2015; 36 Colditz (ref_51) 2015; 7 ref_45 ref_43 ref_42 Mayaux (ref_8) 2004; 31 Shang (ref_40) 2013; 7 Huang (ref_26) 2002; 23 Adam (ref_31) 2014; 35 Dalponte (ref_32) 2012; 51 ref_49 ref_9 Raczko (ref_33) 2017; 50 Maxwell (ref_37) 2014; 80 Liaw (ref_56) 2002; 2 ref_6 |
| References_xml | – volume: 90 start-page: 153 year: 2004 ident: ref_2 article-title: Accuracy assessment using sub-pixel fractional error matrices of global land cover products derived from satellite data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2003.11.016 – ident: ref_9 – volume: 7 start-page: 2481 year: 2013 ident: ref_40 article-title: Classification of Australian native forest species using hyperspectral remote sensing and machine-learning classification algorithms publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2013.2282166 – volume: 104 start-page: 27909 year: 1999 ident: ref_1 article-title: Land cover from multiple thematic mapper scenes using a new enhancement-classification methodology publication-title: J. Geophys. Res. Atmos. doi: 10.1029/1999JD900243 – volume: 7 start-page: 153 year: 2015 ident: ref_61 article-title: Comparing machine learning classifiers for object-based land cover classification using very high-resolution imagery publication-title: Remote Sens. doi: 10.3390/rs70100153 – ident: ref_55 – volume: 39 start-page: 4254 year: 2018 ident: ref_16 article-title: Land cover 2.0 publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2018.1452075 – volume: 35 start-page: 3440 year: 2014 ident: ref_31 article-title: Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: Evaluating the performance of random forest and support vector machines classifiers publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2014.903435 – volume: 21 start-page: 1365 year: 2000 ident: ref_52 article-title: A comparison of the IGBP DISCover and University of Maryland 1 km global land cover products publication-title: Int. J. Remote Sens. doi: 10.1080/014311600210218 – ident: ref_63 doi: 10.1007/978-94-017-9813-6_13 – volume: 77 start-page: 27 year: 2011 ident: ref_53 article-title: Parameterizing support vector machines for land cover classification publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.77.1.27 – volume: 39 start-page: 2784 year: 2018 ident: ref_18 article-title: Implementation of machine-learning classification in remote sensing: An applied review publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2018.1433343 – volume: 34 start-page: 775 year: 2020 ident: ref_48 article-title: Vegetation products derived from Fengyun-3D medium resolution spectral imager-II publication-title: J. Meteorol. Res. doi: 10.1007/s13351-020-0027-5 – ident: ref_27 – volume: 45 start-page: 5 year: 2001 ident: ref_54 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 61 start-page: 399 year: 1997 ident: ref_29 article-title: Decision tree classification of land cover from remotely sensed data publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(97)00049-7 – volume: 2 start-page: 65 year: 1987 ident: ref_50 article-title: Introductory digital image processing: A remote sensing perspective publication-title: Geocarto Int. doi: 10.1080/10106048709354084 – volume: 42 start-page: 1778 year: 2004 ident: ref_62 article-title: Classification of hyperspectral remote sensing images with support vector machines publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2004.831865 – volume: 114 start-page: 168 year: 2010 ident: ref_7 article-title: MODIS collection 5 global land cover: Algorithm refinements and characterization of new datasets publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.08.016 – ident: ref_35 doi: 10.3390/s18010018 – volume: 88 start-page: 48 year: 2014 ident: ref_39 article-title: Detecting Sirex noctilio grey-attacked and lightning-struck pine trees using airborne hyperspectral data, random forest and support vector machines classifiers publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.11.013 – volume: 136 start-page: 25 year: 2008 ident: ref_12 article-title: The most detailed portrait of Earth publication-title: Eur. Space Agency – volume: 34 start-page: 5166 year: 2013 ident: ref_59 article-title: Integration of orthoimagery and lidar data for object-based urban thematic mapping using random forests publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2013.788261 – volume: 36 start-page: 954 year: 2015 ident: ref_20 article-title: Assessing machine-learning algorithms and image-and lidar-derived variables for GEOBIA classification of mining and mine reclamation publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2014.1001086 – volume: 65 start-page: 1604 year: 2020 ident: ref_5 article-title: Land cover mapping toward finer scales publication-title: Sci. Bull. doi: 10.1016/j.scib.2020.06.014 – volume: 34 start-page: 703 year: 2014 ident: ref_44 article-title: FY-3 meteorological satellites and the applications publication-title: China J. Space Sci. doi: 10.11728/cjss2014.05.703 – ident: ref_45 doi: 10.3390/rs13163249 – volume: 26 start-page: 298 year: 2014 ident: ref_38 article-title: A comparison of selected classification algorithms for mapping bamboo patches in lower Gangetic plains using very high resolution WorldView 2 imagery publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_42 doi: 10.3390/rs13214461 – volume: 114 start-page: 24 year: 2016 ident: ref_21 article-title: Random forest in remote sensing: A review of applications and future directions publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.01.011 – volume: 23 start-page: 725 year: 2002 ident: ref_26 article-title: An assessment of support vector machines for land cover classification publication-title: Int. J. Remote Sens. doi: 10.1080/01431160110040323 – ident: ref_49 doi: 10.3390/rs10091336 – volume: 26 start-page: 217 year: 2005 ident: ref_25 article-title: Random forest classifier for remote sensing classification publication-title: Int. J. Remote Sens. doi: 10.1080/01431160412331269698 – volume: 33 start-page: 1113 year: 2019 ident: ref_46 article-title: Capability of fengyun-3D satellite in earth system observation publication-title: J. Meteorol. Res. doi: 10.1007/s13351-019-9063-4 – volume: 21 start-page: 1093 year: 2000 ident: ref_4 article-title: Land cover mapping of large areas from satellites: Status and research priorities publication-title: Int. J. Remote Sens. doi: 10.1080/014311600210092 – volume: 7 start-page: 9655 year: 2015 ident: ref_51 article-title: An evaluation of different training sample allocation schemes for discrete and continuous land cover classification using decision tree-based algorithms publication-title: Remote Sens. doi: 10.3390/rs70809655 – volume: 80 start-page: 179 year: 2014 ident: ref_37 article-title: Combining RapidEye satellite imagery and Lidar for mapping of mining and mine reclamation publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.80.2.179-189 – volume: 13 start-page: 207 year: 2011 ident: ref_3 article-title: Comparison and relative quality assessment of the GLC2000, GLOBCOVER, MODIS and ECOCLIMAP land cover datasets at the African continental scale publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 18 start-page: 3289 year: 1997 ident: ref_10 article-title: The IGBP-DIS global 1 km land cover dataset, DISCover: First results publication-title: Int. J. Remote Sens. doi: 10.1080/014311697217099 – volume: 12 start-page: S27 year: 2010 ident: ref_30 article-title: Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 2 start-page: 18 year: 2002 ident: ref_56 article-title: Classification and regression by random Forest publication-title: R News – volume: 33 start-page: 233 year: 2013 ident: ref_36 article-title: Object-based vegetation mapping in the Kissimmee River watershed using HyMap data and machine learning techniques publication-title: Wetlands doi: 10.1007/s13157-012-0373-x – volume: 21 start-page: 1331 year: 2000 ident: ref_11 article-title: Global land cover classification at 1 km spatial resolution using a classification tree approach publication-title: Int. J. Remote Sens. doi: 10.1080/014311600210209 – ident: ref_57 doi: 10.1109/ICDSE.2012.6282329 – volume: 26 start-page: 49 year: 2014 ident: ref_22 article-title: A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 48 start-page: 2880 year: 2010 ident: ref_17 article-title: Sensitivity of support vector machines to random feature selection in classification of hyperspectral data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2041784 – volume: 66 start-page: 247 year: 2011 ident: ref_13 article-title: Support vector machines in remote sensing: A review publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2010.11.001 – ident: ref_6 – volume: 50 start-page: 144 year: 2017 ident: ref_33 article-title: Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images publication-title: Eur. J. Remote Sens. doi: 10.1080/22797254.2017.1299557 – volume: 12 start-page: 2825 year: 2011 ident: ref_60 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 38 start-page: 1 year: 2021 ident: ref_47 article-title: Fengyun meteorological satellite products for earth system science applications publication-title: Adv. Atmos. Sci. doi: 10.1007/s00376-021-0425-3 – volume: 67 start-page: 93 year: 2012 ident: ref_23 article-title: An Assessment of the effectiveness of a random forest classifier for land-cover classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2011.11.002 – ident: ref_15 – volume: 170 start-page: 115 year: 2015 ident: ref_41 article-title: The AmericaView classification methods accuracy comparison project: A rigorous approach for model selection publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.09.008 – volume: 26 start-page: 1007 year: 2005 ident: ref_24 article-title: Support vector machines for classification in remote sensing publication-title: Int. J. Remote Sens. doi: 10.1080/01431160512331314083 – volume: 51 start-page: 2632 year: 2012 ident: ref_32 article-title: Tree species classification in boreal forests with hyperspectral data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2216272 – volume: 177 start-page: 89 year: 2016 ident: ref_28 article-title: A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.02.028 – ident: ref_43 – volume: 27 start-page: 294 year: 2006 ident: ref_58 article-title: Random forests for land cover classification publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2005.08.011 – volume: 49 start-page: 623 year: 2012 ident: ref_14 article-title: An evaluation of bagging, boosting, and random forests for land-cover classification in Cape Cod, Massachusetts, USA publication-title: Giscience Remote Sens. doi: 10.2747/1548-1603.49.5.623 – volume: 42 start-page: 1335 year: 2004 ident: ref_19 article-title: A relative evaluation of multiclass image classification by support vector machines publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2004.827257 – volume: 6 start-page: 964 year: 2014 ident: ref_34 article-title: Comparison of classification algorithms and training sample sizes in urban land classification with Landsat thematic mapper imagery publication-title: Remote Sens. doi: 10.3390/rs6020964 – volume: 31 start-page: 861 year: 2004 ident: ref_8 article-title: A new land-cover map of Africa for the year 2000 publication-title: J. Biogeogr. doi: 10.1111/j.1365-2699.2004.01073.x |
| SSID | ssj0000331904 |
| Score | 2.62179 |
| Snippet | The type of algorithm employed to classify remote sensing imageries plays a great role in affecting the accuracy. In recent decades, machine learning (ML) has... |
| SourceID | doaj unpaywall proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 574 |
| SubjectTerms | Africa Algorithms Classification Classifiers computer software data collection Datasets image analysis Image classification Land cover land cover mapping large area Learning algorithms Libraries Machine learning machine learning (ML) Mapping Mathematical models Neural networks Parameters Performance evaluation Python Radiometers random forest (RF) Remote sensing Satellite imagery satellites Scikit-Learn (sklearn) Support vector machines |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqLvSCSj9EClRTlUsPEZvYTpwjXXUFCHpApaKnyHbGtNKSReyuEL-Av82ME8IiVe2lxzgTy7LHnjfjyTwh9rQOBebGprr0NlVlE2hLkZeiCJw41ShnPAf0T78Vh-fq-EJfrFB9cU5YVx64m7j9QktXoSk0kiUqNZ2eFRLKNmUeCEz7ePqOTLXiTMUzWJJqjVRXj1SSX79_M-fKdIRO1DMLFAv1P0OX68v22t7d2ul0xdBMXomNHiHCQTeyTfEC29divScr_3X3RtyPB-5AmAU4s20zuwLm2JwvgB6AmToJVcOPGJGH05gviRD5L38H5r4GgqpwhpcxDggn_NGYczlJlus1XELMJKA2cnsROMTfKShMfqZyDEdXdArN34rzydfv48O051NIvazUInUmIKEFq53NKxz5SjUYaEs3TmeI2oUyQ5n5hix6pXxpydMJysuCnSKdhUy-E2vtrMUtAZnBkDvtrQx8PZNZY60mbFVKR_2aLBGfH-e49n2xcea8mNbkdPB61E_rkYhPg-x1V2Ljj1JfeKkGCS6LHRtIWepeWep_KUsidh4Xuu736rzOi5xgElnqKhEfh9e0y_jqxLY4W7IM9cKulknE3qAgfxnu-_8x3G3xMue_LWKS-I5YW9wscZcw0MJ9iOr-AJ-UAN8 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7aFcEE8RWpARvXCIuontxDkgRFddFURXaEVROUW2Y2-RtsmyD1X9BfxtZrxJSiXUY5JJstqZ8XwznswHcCilz1yqdCxzq2ORVx5dCrMUgeDEiEoYZamgfzbJTs_Flwt5sQOT7lsYaqvs1sSwUFeNpRr5UZqlGMxwPS0-Ln7HxBpFu6sdhYZuqRWqD2HE2APYTWky1gB2j08m36Z91WXI0eSGYjunlGO-f7Rc0cQ6RC3iTmQKA_zvoM69Tb3QN9d6Pv8nAI0fw6MWObJPW1U_gR1XP4W9lsT88uYZ_Bn1nIKs8Wyq66q5YsS9uVozPGDE4Ilom_0IlXp2FvooHQu8mL88cWIzhLBs6mahPsi-0k0j6vFEWZrjMGOhwwDPYTrsGJX-t4bLxj9jPmKfr3B1Wj2H8_HJ99Fp3PIsxJYXYh0b5R2iCC2NTgs3tIWonEdXr4xMnJPG54njia0w0hfC5hozIC8szyhZkolP-AsY1E3tXgJLlPOpkVZzT9s2iVZaS8RcOTf4XJVE8L77j0vbDiEnLox5ickI6aO81UcE73rZxXb0xn-ljklVvQSNyw4nmuWsbL2vzCQ3hVOZdAhncokhuHCYqqk89ZiR2TSCg07RZevDq_LW4iJ4219G76MtFV27ZkMy-BRKwVQEh72B3PNzX93_pn14mNL3FaEt_AAG6-XGvUbUszZvWlP-C2hLAMo priority: 102 providerName: ProQuest |
| Title | Comparison of Random Forest and Support Vector Machine Classifiers for Regional Land Cover Mapping Using Coarse Resolution FY-3C Images |
| URI | https://www.proquest.com/docview/2627828019 https://www.proquest.com/docview/2648861308 https://www.mdpi.com/2072-4292/14/3/574/pdf?version=1644197526 https://doaj.org/article/653b9e865e124752999e548872f174c2 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: 8FG dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6x9mG8MH5qZaMyYi88ZF0cOz-eUFdWBlqrqVC0PUW2Y5eJLq2aFjT-Af5t7tI0MIQQ4qlqco6c2md_3_l6H8CBlC60PFaejIzyRJQ5dClkKQLBiRaZ0LGhgP5gGJ6OxbsLeVEF3IoqrRKp-FW5SPOjiHukp9TxRSdA7i4688y9-lJFknzay5NI8nALmqFELN6A5nh43r0kRblN23VN0gC5fWdRUHU6RCji1i5UFuu_hTC3V_lc3XxV0-kvm01_B9JNN9c5Jp8PV0t9aL79VsHx_9_jPtyrcCjrrifOA7hj84ewXUmif7p5BN97tUIhmzk2Unk2u2ak5FksGX5hpAeK2J19LOP-bFBmZVpWqmxeOVLYZgiI2chOymgjO6NGPcoYRVuqCjFhZb4CXkNybRkdJKzdgPUvvaDH3l7jWlc8hnH_5EPv1KtUGzwTJGLp6dhZxCRKasUTe2QSkVmHC0empW-t1C7ybeCbDHFDIkykkE85YYKQqJf0nR88gUY-y-0uMD-2jmtpVODoEMhXsVL4K4ko0Pjc2G_By80opqYqaU7KGtMUqQ2NePpzxFvworadrwt5_NHqmCZDbUHFt8sLs8UkrXw5DWWgExuH0iI4wmHDjlskfnHEHfI7w1uwv5lKabUiFCkPOYIxxANJC57Xt9GX6YBG5Xa2Iht8ChG6uAUH9RT8S3ef_pvZHtzl9K-NMtl8HxrLxco-Qyy11G3Yivtv2tDsvh6cvcfP45Ph-ahdRibalTP9AIsgHIU |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9hAuiKcwLbCIcuBgNd6HH4cK0dAooUmEohaVk7u73g1IqZ3moSq_gH_Fb2PGsV0qod56jDNeW573zux8hOxL6ULLYuXLyChfRJkDlYIsRUBwokUmdGxwQ384Cntn4uu5PN8if-qzMNhWWdvE0lBnhcE98gMWMnBmYE-TT7MrH1GjsLpaQ2ioClohOyxHjFUHO07s-hpSuMVh_wvw-wNj3ePTTs-vUAZ8wxOx9HXsLPhQJbViiW2bRGTWgaBnWgbWSu2iwPLAZODnEmEiBfG_E4aHmCrIwAUc1n1AdgQXCSR_O0fHo2_jZpenzUHE22IzF5XzpH0wX-CEPIiSxC1PWAIG3IpyW6t8ptbXajr9x-F1H5NHVaRKP29E6wnZsvlT0qpA03-un5HfnQbDkBaOjlWeFZcUsT4XSwo_KCKGQnRPv5eVATos-zYtLXE4fznE4KYQMtOxnZT7kXSAN3WwpxRocW7EhJYdDXAN0m9LsdSwURTa_eHzDu1fgjVcPCdn9_LFX5DtvMjtS0KD2DqmpVHcYZkoULFSEmK8iGtYNw488rH-xqmphp4j9sY0heQH-ZHe8MMj7xva2WbUx3-pjpBVDQWO5y4vFPNJWml7GkquExuH0kL4FElw-YmF1DCOmIMM0DCP7NWMTiubsUhvJNwj75q_QduxhKNyW6yQBlbBlC_2yH4jIHe87qu7n_SWtHqnw0E66I9OdslDhmc7ypb0PbK9nK_sa4i4lvpNJdaUXNy3Jv0FbWs-Ag |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIlEuiKdwKbCIcuBgJd6HHweEIMU09CFUUdSezHq9GyqldogTVfkF_Cd-HTPrR6mEeusxznhted47s_MRsi2lDQ2LlS8jrXwRFRZUCrIUAcFJLgqRxxo39A8Ow91j8eVEnqyRP91ZGGyr7GyiM9RFpXGPfMBCBs4M7GkysG1bxNed9P3sl48IUlhp7eA0GhHZM6sLSN_qd-Md4PUbxtJP30a7fosw4GueiIWfx9aA_1QyVywxQ52IwlgQ8iKXgTEyt1FgeKAL8HGJ0JGC2N8KzUNME2RgAw7r3iK3I5zijqfU08_9_s6Qg3APRTMRlfNkOJjXOBsP4iNxxQc6qIAr8e3Gspyp1YWaTv9xdel9cq-NUemHRqgekDVTPiQbLVz6z9Uj8nvUoxfSytIjVRbVOUWUz3pB4QdFrFCI6-l3VxOgB65j01CHwHlmEX2bQrBMj8zE7UTSfbxphN2kQIsTIybU9TLANUi8DcUiQ6MiND31-YiOz8EO1o_J8Y187ydkvaxK85TQIDaW5VIrbrFAFKhYKQnRXcRzWDcOPPK2-8aZbsedI-rGNIO0B_mRXfLDI6972lkz5OO_VB-RVT0FDuZ2F6r5JGv1PAslzxMTh9JA4BRJcPaJgaQwjpiF3E8zj2x1jM5aa1Fnl7LtkVf936DnWLxRpamWSAOrYLIXe2S7F5BrXnfz-ie9JHdAf7L98eHeM3KX4aEO14u-RdYX86V5DqHWIn_hZJqSHzetRH8BvNY7nA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgeygX3ohAQUb0wiHd-pXHCZUVq4JohSoWtafIduylYpusNllQ-QP8bWYSb6AIIcQxySRyYo_9fePJfITsKuUTxzMdq9TqWKalB5cCliIBnBhZSpNZDOgfHSeHM_n2VJ2GgFsT0iqBip93kzTfT3mMekpjJscCuLscL0v_8kuIJDFcy_NU8eQ62UoUYPER2Zodvz84Q0W5zb19TVIB3H68arA6HSAUeWUV6or1X0GY2-tqqS-_6sXil8VmeosUm2b2OSaf99at2bPffqvg-P_vcZvcDDiUHvQD5w655qq7ZDtIon-6vEe-TwaFQlp7eqKrsr6gqOTZtBQOKOqBAnanH7u4Pz3qsjId7VQ2zz0qbFMAxPTEzbtoI32HN00wYxRssSrEnHb5CnAOyLWjuJHQuwGdnsViQt9cwFzX3Cez6esPk8M4qDbEVuSyjU3mHWASrYzmudu3uSydh4mjNIo5p4xPmRPMloAbcmlTDXzKSysSpF6KeSYekFFVV-4hoSxznhtltfC4CcR0pjV8JZkKA8_NWERebHqxsKGkOSprLAqgNtjjxc8ej8jzwXbZF_L4o9UrHAyDBRbf7k7Uq3kRfLlIlDC5yxLlABxBt0HDHRC_LOUe-J3lEdnZDKUizAhNwRMOYAzwQB6RZ8Nl8GXcoNGVq9doA09BQpdFZHcYgn9p7qN_M3tMbnD8a6NLNt8ho3a1dk8AS7XmaXCYH73AF3w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Random+Forest+and+Support+Vector+Machine+Classifiers+for+Regional+Land+Cover+Mapping+Using+Coarse+Resolution+FY-3C+Images&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Adugna%2C+Tesfaye&rft.au=Xu%2C+Wenbo&rft.au=Fan%2C+Jinlong&rft.date=2022-02-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=14&rft.issue=3&rft.spage=574&rft_id=info:doi/10.3390%2Frs14030574&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs14030574 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |