Comparison of Random Forest and Support Vector Machine Classifiers for Regional Land Cover Mapping Using Coarse Resolution FY-3C Images

The type of algorithm employed to classify remote sensing imageries plays a great role in affecting the accuracy. In recent decades, machine learning (ML) has received great attention due to its robustness in remote sensing image classification. In this regard, random forest (RF) and support vector...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 14; no. 3; p. 574
Main Authors Adugna, Tesfaye, Xu, Wenbo, Fan, Jinlong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2022
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs14030574

Cover

Abstract The type of algorithm employed to classify remote sensing imageries plays a great role in affecting the accuracy. In recent decades, machine learning (ML) has received great attention due to its robustness in remote sensing image classification. In this regard, random forest (RF) and support vector machine (SVM) are two of the most widely used ML algorithms to generate land cover (LC) maps from satellite imageries. Although several comparisons have been conducted between these two algorithms, the findings are contradicting. Moreover, the comparisons were made on local-scale LC map generation either from high or medium resolution images using various software, but not Python. In this paper, we compared the performance of these two algorithms for large area LC mapping of parts of Africa using coarse resolution imageries in the Python platform by the employing Scikit-Learn (sklearn) library. We employed a big dataset, 297 metrics, comprised of systematically selected 9-month composite FegnYun-3C (FY-3C) satellite images with 1 km resolution. Several experiments were performed using a range of values to determine the best values for the two most important parameters of each classifier, the number of trees and the number of variables, for RF, and penalty value and gamma for SVM, and to obtain the best model of each algorithm. Our results showed that RF outperformed SVM yielding 0.86 (OA) and 0.83 (k), which are 1–2% and 3% higher than the best SVM model, respectively. In addition, RF performed better in mixed class classification; however, it performed almost the same when classifying relatively pure classes with distinct spectral variation, i.e., consisting of less mixed pixels. Furthermore, RF is more efficient in handling large input datasets where the SVM fails. Hence, RF is a more robust ML algorithm especially for heterogeneous large area mapping using coarse resolution images. Finally, default parameter values in the sklearn library work well for satellite image classification with minor/or no adjustment for these algorithms.
AbstractList The type of algorithm employed to classify remote sensing imageries plays a great role in affecting the accuracy. In recent decades, machine learning (ML) has received great attention due to its robustness in remote sensing image classification. In this regard, random forest (RF) and support vector machine (SVM) are two of the most widely used ML algorithms to generate land cover (LC) maps from satellite imageries. Although several comparisons have been conducted between these two algorithms, the findings are contradicting. Moreover, the comparisons were made on local-scale LC map generation either from high or medium resolution images using various software, but not Python. In this paper, we compared the performance of these two algorithms for large area LC mapping of parts of Africa using coarse resolution imageries in the Python platform by the employing Scikit-Learn (sklearn) library. We employed a big dataset, 297 metrics, comprised of systematically selected 9-month composite FegnYun-3C (FY-3C) satellite images with 1 km resolution. Several experiments were performed using a range of values to determine the best values for the two most important parameters of each classifier, the number of trees and the number of variables, for RF, and penalty value and gamma for SVM, and to obtain the best model of each algorithm. Our results showed that RF outperformed SVM yielding 0.86 (OA) and 0.83 (k), which are 1–2% and 3% higher than the best SVM model, respectively. In addition, RF performed better in mixed class classification; however, it performed almost the same when classifying relatively pure classes with distinct spectral variation, i.e., consisting of less mixed pixels. Furthermore, RF is more efficient in handling large input datasets where the SVM fails. Hence, RF is a more robust ML algorithm especially for heterogeneous large area mapping using coarse resolution images. Finally, default parameter values in the sklearn library work well for satellite image classification with minor/or no adjustment for these algorithms.
Author Fan, Jinlong
Xu, Wenbo
Adugna, Tesfaye
Author_xml – sequence: 1
  givenname: Tesfaye
  orcidid: 0000-0003-3235-587X
  surname: Adugna
  fullname: Adugna, Tesfaye
– sequence: 2
  givenname: Wenbo
  surname: Xu
  fullname: Xu, Wenbo
– sequence: 3
  givenname: Jinlong
  surname: Fan
  fullname: Fan, Jinlong
BookMark eNp9kV2L1DAUhous4Lrujb8g4I0o1Xy2zaWUHR0YEVZX8KqcpidjhkxTk1bZX-DfNnVEZRFzkY_Dc57AeR8WZ2MYsSgeM_pCCE1fxsQkFVTV8l5xzmnNS8k1P_vr_qC4TOlA8xKCaSrPi-9tOE4QXQojCZZcwziEI9mEiGkm-UHeL9MU4kw-oplDJG_BfHYjktZDSs46jInYXL_GvQsjeLJbm9rwFVd2mty4Jzdp3dsAMWEGU_DLnGGy-VSKlmyPsMf0qLhvwSe8_HVeFDebqw_tm3L37vW2fbUrjdByLvvGIqsVqB64Rmq0HNCyRgy9YoiqtzVDwcygONPS1FBRZaURldRaK2aZuCi2J-8Q4NBN0R0h3nYBXPezEOK-gzg747GrlOg1NpVCxmWteFagkk1Tc8tqaXh2PT-5lnGC22_g_W8ho90aSfcnkkw_PdFTDF-WPN7u6JJB72HEsKSOV9ldMUGbjD65gx7CEvN0V4rXDW8o05l6dqJMDClFtP__nd6BjZthjWGO4Py_Wn4AOWu2_g
CitedBy_id crossref_primary_10_1038_s41598_024_68991_7
crossref_primary_10_3390_rs16203781
crossref_primary_10_1080_01431161_2023_2244644
crossref_primary_10_1007_s11356_023_27395_2
crossref_primary_10_3390_computation10090145
crossref_primary_10_3390_land13071011
crossref_primary_10_1186_s40537_023_00810_8
crossref_primary_10_3390_app12115736
crossref_primary_10_1002_rse2_428
crossref_primary_10_1007_s41748_024_00393_1
crossref_primary_10_3390_rs15133303
crossref_primary_10_1016_j_rsase_2023_100984
crossref_primary_10_4236_jgis_2023_156033
crossref_primary_10_1007_s10661_024_12616_z
crossref_primary_10_3390_pr10081611
crossref_primary_10_3390_rs15123168
crossref_primary_10_1007_s40808_024_01999_0
crossref_primary_10_3390_rs16030580
crossref_primary_10_3390_su141912178
crossref_primary_10_1007_s10661_023_12289_0
crossref_primary_10_1016_j_heliyon_2023_e21253
crossref_primary_10_3390_rs15143511
crossref_primary_10_1109_JSTARS_2022_3185185
crossref_primary_10_1109_JSTARS_2024_3522950
crossref_primary_10_1016_j_atech_2023_100325
crossref_primary_10_1007_s10980_024_01914_z
crossref_primary_10_1080_16583655_2024_2420468
crossref_primary_10_1016_j_rsase_2023_101040
crossref_primary_10_3390_ijgi11080423
crossref_primary_10_3390_land13010001
crossref_primary_10_3390_f14122376
crossref_primary_10_1007_s12145_024_01623_w
crossref_primary_10_3390_ijerph20032513
crossref_primary_10_3390_agriculture13010098
crossref_primary_10_3390_rs15092342
crossref_primary_10_3390_rs15040989
crossref_primary_10_1080_01431161_2024_2394238
crossref_primary_10_3390_geographies2020012
crossref_primary_10_3390_cryst14121057
crossref_primary_10_1109_JSTARS_2022_3189528
crossref_primary_10_1016_j_jenvman_2024_120192
crossref_primary_10_1155_2024_4020990
crossref_primary_10_1007_s42452_023_05496_4
crossref_primary_10_3390_rs14235941
crossref_primary_10_1016_j_envc_2025_101118
crossref_primary_10_26848_rbgf_v17_4_p2582_2605
crossref_primary_10_3389_frsen_2023_1148328
crossref_primary_10_3390_ijgi13040123
crossref_primary_10_1007_s11356_025_36273_y
crossref_primary_10_3390_land13030335
crossref_primary_10_1007_s12040_024_02463_4
crossref_primary_10_3389_frsen_2025_1532280
crossref_primary_10_1080_00032719_2024_2446722
crossref_primary_10_1109_JSTARS_2024_3469728
crossref_primary_10_1080_15481603_2023_2192157
crossref_primary_10_1016_j_jenvman_2024_120921
crossref_primary_10_1016_j_isprsjprs_2024_09_003
crossref_primary_10_18359_rcin_6996
crossref_primary_10_1016_j_jag_2023_103569
crossref_primary_10_1007_s41651_022_00130_0
crossref_primary_10_3390_rs14102469
crossref_primary_10_1016_j_ress_2024_110607
crossref_primary_10_1016_j_indic_2023_100248
crossref_primary_10_1080_07038992_2024_2430496
crossref_primary_10_3390_agriculture14111876
crossref_primary_10_3390_s24051587
crossref_primary_10_30897_ijegeo_1479116
crossref_primary_10_1016_j_rsma_2024_103972
crossref_primary_10_1016_j_jag_2023_103555
crossref_primary_10_37908_mkutbd_1485236
crossref_primary_10_1093_forsci_fxad047
crossref_primary_10_3390_rs16010030
crossref_primary_10_3390_rs16224330
crossref_primary_10_3390_atmos13111887
crossref_primary_10_1016_j_envc_2023_100800
crossref_primary_10_1007_s11356_022_22761_y
crossref_primary_10_3390_drones7110668
crossref_primary_10_1080_17538947_2023_2186505
crossref_primary_10_1016_j_envc_2024_100906
crossref_primary_10_3390_su15043218
crossref_primary_10_47134_ijlj_v1i4_2792
crossref_primary_10_1186_s40529_024_00433_z
crossref_primary_10_3390_rs15133353
crossref_primary_10_1016_j_kjs_2024_100286
crossref_primary_10_3390_d14090706
crossref_primary_10_1117_1_JRS_17_034514
crossref_primary_10_1016_j_jaridenv_2024_105293
crossref_primary_10_3390_f16010015
crossref_primary_10_1016_j_jhazmat_2024_135695
crossref_primary_10_26848_rbgf_v17_5_p3715_3735
crossref_primary_10_3390_rs16142684
crossref_primary_10_3390_land12122188
crossref_primary_10_3390_rs15174140
crossref_primary_10_3390_s25020431
crossref_primary_10_3390_en16104056
crossref_primary_10_47164_ijngc_v13i3_820
crossref_primary_10_3390_drones8100585
crossref_primary_10_1007_s11269_024_03746_7
crossref_primary_10_1016_j_jag_2022_103154
crossref_primary_10_3390_rs16010091
crossref_primary_10_3390_rs16050868
crossref_primary_10_3390_rs16142677
crossref_primary_10_1016_j_ecoinf_2023_101989
crossref_primary_10_3390_drones7010061
crossref_primary_10_3389_ffgc_2024_1396999
crossref_primary_10_1016_j_asr_2024_12_036
crossref_primary_10_1016_j_ecoinf_2024_102847
crossref_primary_10_1016_j_ecoinf_2024_102607
crossref_primary_10_3390_rs14184452
crossref_primary_10_4995_raet_2024_20832
crossref_primary_10_1016_j_rsase_2024_101320
Cites_doi 10.1016/j.rse.2003.11.016
10.1109/JSTARS.2013.2282166
10.1029/1999JD900243
10.3390/rs70100153
10.1080/01431161.2018.1452075
10.1080/01431161.2014.903435
10.1080/014311600210218
10.1007/978-94-017-9813-6_13
10.14358/PERS.77.1.27
10.1080/01431161.2018.1433343
10.1007/s13351-020-0027-5
10.1023/A:1010933404324
10.1016/S0034-4257(97)00049-7
10.1080/10106048709354084
10.1109/TGRS.2004.831865
10.1016/j.rse.2009.08.016
10.3390/s18010018
10.1016/j.isprsjprs.2013.11.013
10.1080/01431161.2013.788261
10.1080/01431161.2014.1001086
10.1016/j.scib.2020.06.014
10.11728/cjss2014.05.703
10.3390/rs13163249
10.3390/rs13214461
10.1016/j.isprsjprs.2016.01.011
10.1080/01431160110040323
10.3390/rs10091336
10.1080/01431160412331269698
10.1007/s13351-019-9063-4
10.1080/014311600210092
10.3390/rs70809655
10.14358/PERS.80.2.179-189
10.1080/014311697217099
10.1007/s13157-012-0373-x
10.1080/014311600210209
10.1109/ICDSE.2012.6282329
10.1109/TGRS.2010.2041784
10.1016/j.isprsjprs.2010.11.001
10.1080/22797254.2017.1299557
10.1007/s00376-021-0425-3
10.1016/j.isprsjprs.2011.11.002
10.1016/j.rse.2015.09.008
10.1080/01431160512331314083
10.1109/TGRS.2012.2216272
10.1016/j.rse.2016.02.028
10.1016/j.patrec.2005.08.011
10.2747/1548-1603.49.5.623
10.1109/TGRS.2004.827257
10.3390/rs6020964
10.1111/j.1365-2699.2004.01073.x
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
ADTOC
UNPAY
DOA
DOI 10.3390/rs14030574
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_653b9e865e124752999e548872f174c2
10.3390/rs14030574
10_3390_rs14030574
GeographicLocations Africa
GeographicLocations_xml – name: Africa
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c394t-b8fe175a5ba29e0c94def183db51ee5bf71e31cd52194c7a605f4c36499951f13
IEDL.DBID UNPAY
ISSN 2072-4292
IngestDate Fri Oct 03 12:43:46 EDT 2025
Sun Oct 26 02:09:26 EDT 2025
Fri Sep 05 12:05:53 EDT 2025
Fri Jul 25 09:49:04 EDT 2025
Thu Oct 16 04:41:21 EDT 2025
Thu Apr 24 22:55:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-b8fe175a5ba29e0c94def183db51ee5bf71e31cd52194c7a605f4c36499951f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3235-587X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2072-4292/14/3/574/pdf?version=1644197526
PQID 2627828019
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_653b9e865e124752999e548872f174c2
unpaywall_primary_10_3390_rs14030574
proquest_miscellaneous_2648861308
proquest_journals_2627828019
crossref_primary_10_3390_rs14030574
crossref_citationtrail_10_3390_rs14030574
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wulder (ref_16) 2018; 39
Pal (ref_24) 2005; 26
ref_57
Cihlar (ref_4) 2000; 21
Maxwell (ref_18) 2018; 39
ref_55
Lawrence (ref_41) 2015; 170
Feng (ref_5) 2020; 65
ref_15
Friedl (ref_7) 2010; 114
Mountrakis (ref_13) 2011; 66
Han (ref_48) 2020; 34
Belgiu (ref_21) 2016; 114
Foody (ref_19) 2004; 42
Roujean (ref_3) 2011; 13
Loveland (ref_10) 1997; 18
Waske (ref_17) 2010; 48
Friedl (ref_29) 1997; 61
Mutanga (ref_39) 2014; 88
Xian (ref_47) 2021; 38
Ghimire (ref_14) 2012; 49
Ghosh (ref_38) 2014; 26
Gislason (ref_58) 2006; 27
Pal (ref_25) 2005; 26
Li (ref_34) 2014; 6
ref_63
Guan (ref_59) 2013; 34
ref_27
Beaubien (ref_1) 1999; 104
Jensen (ref_50) 1987; 2
Pedregosa (ref_60) 2011; 12
Yang (ref_53) 2011; 77
Yang (ref_46) 2019; 33
Zhang (ref_36) 2013; 33
Latifovic (ref_2) 2004; 90
ref_35
Otukei (ref_30) 2010; 12
Qian (ref_61) 2015; 7
Hansen (ref_11) 2000; 21
Melgani (ref_62) 2004; 42
Arino (ref_12) 2008; 136
Tang (ref_44) 2014; 34
Breiman (ref_54) 2001; 45
Ghimire (ref_23) 2012; 67
Ghosh (ref_22) 2014; 26
Khatami (ref_28) 2016; 177
Hansen (ref_52) 2000; 21
Maxwell (ref_20) 2015; 36
Colditz (ref_51) 2015; 7
ref_45
ref_43
ref_42
Mayaux (ref_8) 2004; 31
Shang (ref_40) 2013; 7
Huang (ref_26) 2002; 23
Adam (ref_31) 2014; 35
Dalponte (ref_32) 2012; 51
ref_49
ref_9
Raczko (ref_33) 2017; 50
Maxwell (ref_37) 2014; 80
Liaw (ref_56) 2002; 2
ref_6
References_xml – volume: 90
  start-page: 153
  year: 2004
  ident: ref_2
  article-title: Accuracy assessment using sub-pixel fractional error matrices of global land cover products derived from satellite data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2003.11.016
– ident: ref_9
– volume: 7
  start-page: 2481
  year: 2013
  ident: ref_40
  article-title: Classification of Australian native forest species using hyperspectral remote sensing and machine-learning classification algorithms
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2013.2282166
– volume: 104
  start-page: 27909
  year: 1999
  ident: ref_1
  article-title: Land cover from multiple thematic mapper scenes using a new enhancement-classification methodology
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/1999JD900243
– volume: 7
  start-page: 153
  year: 2015
  ident: ref_61
  article-title: Comparing machine learning classifiers for object-based land cover classification using very high-resolution imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs70100153
– ident: ref_55
– volume: 39
  start-page: 4254
  year: 2018
  ident: ref_16
  article-title: Land cover 2.0
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2018.1452075
– volume: 35
  start-page: 3440
  year: 2014
  ident: ref_31
  article-title: Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: Evaluating the performance of random forest and support vector machines classifiers
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2014.903435
– volume: 21
  start-page: 1365
  year: 2000
  ident: ref_52
  article-title: A comparison of the IGBP DISCover and University of Maryland 1 km global land cover products
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311600210218
– ident: ref_63
  doi: 10.1007/978-94-017-9813-6_13
– volume: 77
  start-page: 27
  year: 2011
  ident: ref_53
  article-title: Parameterizing support vector machines for land cover classification
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.77.1.27
– volume: 39
  start-page: 2784
  year: 2018
  ident: ref_18
  article-title: Implementation of machine-learning classification in remote sensing: An applied review
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2018.1433343
– volume: 34
  start-page: 775
  year: 2020
  ident: ref_48
  article-title: Vegetation products derived from Fengyun-3D medium resolution spectral imager-II
  publication-title: J. Meteorol. Res.
  doi: 10.1007/s13351-020-0027-5
– ident: ref_27
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_54
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 61
  start-page: 399
  year: 1997
  ident: ref_29
  article-title: Decision tree classification of land cover from remotely sensed data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(97)00049-7
– volume: 2
  start-page: 65
  year: 1987
  ident: ref_50
  article-title: Introductory digital image processing: A remote sensing perspective
  publication-title: Geocarto Int.
  doi: 10.1080/10106048709354084
– volume: 42
  start-page: 1778
  year: 2004
  ident: ref_62
  article-title: Classification of hyperspectral remote sensing images with support vector machines
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2004.831865
– volume: 114
  start-page: 168
  year: 2010
  ident: ref_7
  article-title: MODIS collection 5 global land cover: Algorithm refinements and characterization of new datasets
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.08.016
– ident: ref_35
  doi: 10.3390/s18010018
– volume: 88
  start-page: 48
  year: 2014
  ident: ref_39
  article-title: Detecting Sirex noctilio grey-attacked and lightning-struck pine trees using airborne hyperspectral data, random forest and support vector machines classifiers
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.11.013
– volume: 136
  start-page: 25
  year: 2008
  ident: ref_12
  article-title: The most detailed portrait of Earth
  publication-title: Eur. Space Agency
– volume: 34
  start-page: 5166
  year: 2013
  ident: ref_59
  article-title: Integration of orthoimagery and lidar data for object-based urban thematic mapping using random forests
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2013.788261
– volume: 36
  start-page: 954
  year: 2015
  ident: ref_20
  article-title: Assessing machine-learning algorithms and image-and lidar-derived variables for GEOBIA classification of mining and mine reclamation
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2014.1001086
– volume: 65
  start-page: 1604
  year: 2020
  ident: ref_5
  article-title: Land cover mapping toward finer scales
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2020.06.014
– volume: 34
  start-page: 703
  year: 2014
  ident: ref_44
  article-title: FY-3 meteorological satellites and the applications
  publication-title: China J. Space Sci.
  doi: 10.11728/cjss2014.05.703
– ident: ref_45
  doi: 10.3390/rs13163249
– volume: 26
  start-page: 298
  year: 2014
  ident: ref_38
  article-title: A comparison of selected classification algorithms for mapping bamboo patches in lower Gangetic plains using very high resolution WorldView 2 imagery
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_42
  doi: 10.3390/rs13214461
– volume: 114
  start-page: 24
  year: 2016
  ident: ref_21
  article-title: Random forest in remote sensing: A review of applications and future directions
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.01.011
– volume: 23
  start-page: 725
  year: 2002
  ident: ref_26
  article-title: An assessment of support vector machines for land cover classification
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160110040323
– ident: ref_49
  doi: 10.3390/rs10091336
– volume: 26
  start-page: 217
  year: 2005
  ident: ref_25
  article-title: Random forest classifier for remote sensing classification
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160412331269698
– volume: 33
  start-page: 1113
  year: 2019
  ident: ref_46
  article-title: Capability of fengyun-3D satellite in earth system observation
  publication-title: J. Meteorol. Res.
  doi: 10.1007/s13351-019-9063-4
– volume: 21
  start-page: 1093
  year: 2000
  ident: ref_4
  article-title: Land cover mapping of large areas from satellites: Status and research priorities
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311600210092
– volume: 7
  start-page: 9655
  year: 2015
  ident: ref_51
  article-title: An evaluation of different training sample allocation schemes for discrete and continuous land cover classification using decision tree-based algorithms
  publication-title: Remote Sens.
  doi: 10.3390/rs70809655
– volume: 80
  start-page: 179
  year: 2014
  ident: ref_37
  article-title: Combining RapidEye satellite imagery and Lidar for mapping of mining and mine reclamation
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.80.2.179-189
– volume: 13
  start-page: 207
  year: 2011
  ident: ref_3
  article-title: Comparison and relative quality assessment of the GLC2000, GLOBCOVER, MODIS and ECOCLIMAP land cover datasets at the African continental scale
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 18
  start-page: 3289
  year: 1997
  ident: ref_10
  article-title: The IGBP-DIS global 1 km land cover dataset, DISCover: First results
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311697217099
– volume: 12
  start-page: S27
  year: 2010
  ident: ref_30
  article-title: Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 2
  start-page: 18
  year: 2002
  ident: ref_56
  article-title: Classification and regression by random Forest
  publication-title: R News
– volume: 33
  start-page: 233
  year: 2013
  ident: ref_36
  article-title: Object-based vegetation mapping in the Kissimmee River watershed using HyMap data and machine learning techniques
  publication-title: Wetlands
  doi: 10.1007/s13157-012-0373-x
– volume: 21
  start-page: 1331
  year: 2000
  ident: ref_11
  article-title: Global land cover classification at 1 km spatial resolution using a classification tree approach
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311600210209
– ident: ref_57
  doi: 10.1109/ICDSE.2012.6282329
– volume: 26
  start-page: 49
  year: 2014
  ident: ref_22
  article-title: A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 48
  start-page: 2880
  year: 2010
  ident: ref_17
  article-title: Sensitivity of support vector machines to random feature selection in classification of hyperspectral data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2041784
– volume: 66
  start-page: 247
  year: 2011
  ident: ref_13
  article-title: Support vector machines in remote sensing: A review
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2010.11.001
– ident: ref_6
– volume: 50
  start-page: 144
  year: 2017
  ident: ref_33
  article-title: Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images
  publication-title: Eur. J. Remote Sens.
  doi: 10.1080/22797254.2017.1299557
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_60
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 38
  start-page: 1
  year: 2021
  ident: ref_47
  article-title: Fengyun meteorological satellite products for earth system science applications
  publication-title: Adv. Atmos. Sci.
  doi: 10.1007/s00376-021-0425-3
– volume: 67
  start-page: 93
  year: 2012
  ident: ref_23
  article-title: An Assessment of the effectiveness of a random forest classifier for land-cover classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2011.11.002
– ident: ref_15
– volume: 170
  start-page: 115
  year: 2015
  ident: ref_41
  article-title: The AmericaView classification methods accuracy comparison project: A rigorous approach for model selection
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.09.008
– volume: 26
  start-page: 1007
  year: 2005
  ident: ref_24
  article-title: Support vector machines for classification in remote sensing
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160512331314083
– volume: 51
  start-page: 2632
  year: 2012
  ident: ref_32
  article-title: Tree species classification in boreal forests with hyperspectral data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2216272
– volume: 177
  start-page: 89
  year: 2016
  ident: ref_28
  article-title: A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.02.028
– ident: ref_43
– volume: 27
  start-page: 294
  year: 2006
  ident: ref_58
  article-title: Random forests for land cover classification
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.08.011
– volume: 49
  start-page: 623
  year: 2012
  ident: ref_14
  article-title: An evaluation of bagging, boosting, and random forests for land-cover classification in Cape Cod, Massachusetts, USA
  publication-title: Giscience Remote Sens.
  doi: 10.2747/1548-1603.49.5.623
– volume: 42
  start-page: 1335
  year: 2004
  ident: ref_19
  article-title: A relative evaluation of multiclass image classification by support vector machines
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2004.827257
– volume: 6
  start-page: 964
  year: 2014
  ident: ref_34
  article-title: Comparison of classification algorithms and training sample sizes in urban land classification with Landsat thematic mapper imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs6020964
– volume: 31
  start-page: 861
  year: 2004
  ident: ref_8
  article-title: A new land-cover map of Africa for the year 2000
  publication-title: J. Biogeogr.
  doi: 10.1111/j.1365-2699.2004.01073.x
SSID ssj0000331904
Score 2.62179
Snippet The type of algorithm employed to classify remote sensing imageries plays a great role in affecting the accuracy. In recent decades, machine learning (ML) has...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 574
SubjectTerms Africa
Algorithms
Classification
Classifiers
computer software
data collection
Datasets
image analysis
Image classification
Land cover
land cover mapping
large area
Learning algorithms
Libraries
Machine learning
machine learning (ML)
Mapping
Mathematical models
Neural networks
Parameters
Performance evaluation
Python
Radiometers
random forest (RF)
Remote sensing
Satellite imagery
satellites
Scikit-Learn (sklearn)
Support vector machines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqLvSCSj9EClRTlUsPEZvYTpwjXXUFCHpApaKnyHbGtNKSReyuEL-Av82ME8IiVe2lxzgTy7LHnjfjyTwh9rQOBebGprr0NlVlE2hLkZeiCJw41ShnPAf0T78Vh-fq-EJfrFB9cU5YVx64m7j9QktXoSk0kiUqNZ2eFRLKNmUeCEz7ePqOTLXiTMUzWJJqjVRXj1SSX79_M-fKdIRO1DMLFAv1P0OX68v22t7d2ul0xdBMXomNHiHCQTeyTfEC29divScr_3X3RtyPB-5AmAU4s20zuwLm2JwvgB6AmToJVcOPGJGH05gviRD5L38H5r4GgqpwhpcxDggn_NGYczlJlus1XELMJKA2cnsROMTfKShMfqZyDEdXdArN34rzydfv48O051NIvazUInUmIKEFq53NKxz5SjUYaEs3TmeI2oUyQ5n5hix6pXxpydMJysuCnSKdhUy-E2vtrMUtAZnBkDvtrQx8PZNZY60mbFVKR_2aLBGfH-e49n2xcea8mNbkdPB61E_rkYhPg-x1V2Ljj1JfeKkGCS6LHRtIWepeWep_KUsidh4Xuu736rzOi5xgElnqKhEfh9e0y_jqxLY4W7IM9cKulknE3qAgfxnu-_8x3G3xMue_LWKS-I5YW9wscZcw0MJ9iOr-AJ-UAN8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7aFcEE8RWpARvXCIuontxDkgRFddFURXaEVROUW2Y2-RtsmyD1X9BfxtZrxJSiXUY5JJstqZ8XwznswHcCilz1yqdCxzq2ORVx5dCrMUgeDEiEoYZamgfzbJTs_Flwt5sQOT7lsYaqvs1sSwUFeNpRr5UZqlGMxwPS0-Ln7HxBpFu6sdhYZuqRWqD2HE2APYTWky1gB2j08m36Z91WXI0eSGYjunlGO-f7Rc0cQ6RC3iTmQKA_zvoM69Tb3QN9d6Pv8nAI0fw6MWObJPW1U_gR1XP4W9lsT88uYZ_Bn1nIKs8Wyq66q5YsS9uVozPGDE4Ilom_0IlXp2FvooHQu8mL88cWIzhLBs6mahPsi-0k0j6vFEWZrjMGOhwwDPYTrsGJX-t4bLxj9jPmKfr3B1Wj2H8_HJ99Fp3PIsxJYXYh0b5R2iCC2NTgs3tIWonEdXr4xMnJPG54njia0w0hfC5hozIC8szyhZkolP-AsY1E3tXgJLlPOpkVZzT9s2iVZaS8RcOTf4XJVE8L77j0vbDiEnLox5ickI6aO81UcE73rZxXb0xn-ljklVvQSNyw4nmuWsbL2vzCQ3hVOZdAhncokhuHCYqqk89ZiR2TSCg07RZevDq_LW4iJ4219G76MtFV27ZkMy-BRKwVQEh72B3PNzX93_pn14mNL3FaEt_AAG6-XGvUbUszZvWlP-C2hLAMo
  priority: 102
  providerName: ProQuest
Title Comparison of Random Forest and Support Vector Machine Classifiers for Regional Land Cover Mapping Using Coarse Resolution FY-3C Images
URI https://www.proquest.com/docview/2627828019
https://www.proquest.com/docview/2648861308
https://www.mdpi.com/2072-4292/14/3/574/pdf?version=1644197526
https://doaj.org/article/653b9e865e124752999e548872f174c2
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ADMLS
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: 8FG
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6x9mG8MH5qZaMyYi88ZF0cOz-eUFdWBlqrqVC0PUW2Y5eJLq2aFjT-Af5t7tI0MIQQ4qlqco6c2md_3_l6H8CBlC60PFaejIzyRJQ5dClkKQLBiRaZ0LGhgP5gGJ6OxbsLeVEF3IoqrRKp-FW5SPOjiHukp9TxRSdA7i4688y9-lJFknzay5NI8nALmqFELN6A5nh43r0kRblN23VN0gC5fWdRUHU6RCji1i5UFuu_hTC3V_lc3XxV0-kvm01_B9JNN9c5Jp8PV0t9aL79VsHx_9_jPtyrcCjrrifOA7hj84ewXUmif7p5BN97tUIhmzk2Unk2u2ak5FksGX5hpAeK2J19LOP-bFBmZVpWqmxeOVLYZgiI2chOymgjO6NGPcoYRVuqCjFhZb4CXkNybRkdJKzdgPUvvaDH3l7jWlc8hnH_5EPv1KtUGzwTJGLp6dhZxCRKasUTe2QSkVmHC0empW-t1C7ybeCbDHFDIkykkE85YYKQqJf0nR88gUY-y-0uMD-2jmtpVODoEMhXsVL4K4ko0Pjc2G_By80opqYqaU7KGtMUqQ2NePpzxFvworadrwt5_NHqmCZDbUHFt8sLs8UkrXw5DWWgExuH0iI4wmHDjlskfnHEHfI7w1uwv5lKabUiFCkPOYIxxANJC57Xt9GX6YBG5Xa2Iht8ChG6uAUH9RT8S3ef_pvZHtzl9K-NMtl8HxrLxco-Qyy11G3Yivtv2tDsvh6cvcfP45Ph-ahdRibalTP9AIsgHIU
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9hAuiKcwLbCIcuBgNd6HH4cK0dAooUmEohaVk7u73g1IqZ3moSq_gH_Fb2PGsV0qod56jDNeW573zux8hOxL6ULLYuXLyChfRJkDlYIsRUBwokUmdGxwQ384Cntn4uu5PN8if-qzMNhWWdvE0lBnhcE98gMWMnBmYE-TT7MrH1GjsLpaQ2ioClohOyxHjFUHO07s-hpSuMVh_wvw-wNj3ePTTs-vUAZ8wxOx9HXsLPhQJbViiW2bRGTWgaBnWgbWSu2iwPLAZODnEmEiBfG_E4aHmCrIwAUc1n1AdgQXCSR_O0fHo2_jZpenzUHE22IzF5XzpH0wX-CEPIiSxC1PWAIG3IpyW6t8ptbXajr9x-F1H5NHVaRKP29E6wnZsvlT0qpA03-un5HfnQbDkBaOjlWeFZcUsT4XSwo_KCKGQnRPv5eVATos-zYtLXE4fznE4KYQMtOxnZT7kXSAN3WwpxRocW7EhJYdDXAN0m9LsdSwURTa_eHzDu1fgjVcPCdn9_LFX5DtvMjtS0KD2DqmpVHcYZkoULFSEmK8iGtYNw488rH-xqmphp4j9sY0heQH-ZHe8MMj7xva2WbUx3-pjpBVDQWO5y4vFPNJWml7GkquExuH0kL4FElw-YmF1DCOmIMM0DCP7NWMTiubsUhvJNwj75q_QduxhKNyW6yQBlbBlC_2yH4jIHe87qu7n_SWtHqnw0E66I9OdslDhmc7ypb0PbK9nK_sa4i4lvpNJdaUXNy3Jv0FbWs-Ag
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIlEuiKdwKbCIcuBgJd6HHweEIMU09CFUUdSezHq9GyqldogTVfkF_Cd-HTPrR6mEeusxznhted47s_MRsi2lDQ2LlS8jrXwRFRZUCrIUAcFJLgqRxxo39A8Ow91j8eVEnqyRP91ZGGyr7GyiM9RFpXGPfMBCBs4M7GkysG1bxNed9P3sl48IUlhp7eA0GhHZM6sLSN_qd-Md4PUbxtJP30a7fosw4GueiIWfx9aA_1QyVywxQ52IwlgQ8iKXgTEyt1FgeKAL8HGJ0JGC2N8KzUNME2RgAw7r3iK3I5zijqfU08_9_s6Qg3APRTMRlfNkOJjXOBsP4iNxxQc6qIAr8e3Gspyp1YWaTv9xdel9cq-NUemHRqgekDVTPiQbLVz6z9Uj8nvUoxfSytIjVRbVOUWUz3pB4QdFrFCI6-l3VxOgB65j01CHwHlmEX2bQrBMj8zE7UTSfbxphN2kQIsTIybU9TLANUi8DcUiQ6MiND31-YiOz8EO1o_J8Y187ydkvaxK85TQIDaW5VIrbrFAFKhYKQnRXcRzWDcOPPK2-8aZbsedI-rGNIO0B_mRXfLDI6972lkz5OO_VB-RVT0FDuZ2F6r5JGv1PAslzxMTh9JA4BRJcPaJgaQwjpiF3E8zj2x1jM5aa1Fnl7LtkVf936DnWLxRpamWSAOrYLIXe2S7F5BrXnfz-ie9JHdAf7L98eHeM3KX4aEO14u-RdYX86V5DqHWIn_hZJqSHzetRH8BvNY7nA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgeygX3ohAQUb0wiHd-pXHCZUVq4JohSoWtafIduylYpusNllQ-QP8bWYSb6AIIcQxySRyYo_9fePJfITsKuUTxzMdq9TqWKalB5cCliIBnBhZSpNZDOgfHSeHM_n2VJ2GgFsT0iqBip93kzTfT3mMekpjJscCuLscL0v_8kuIJDFcy_NU8eQ62UoUYPER2Zodvz84Q0W5zb19TVIB3H68arA6HSAUeWUV6or1X0GY2-tqqS-_6sXil8VmeosUm2b2OSaf99at2bPffqvg-P_vcZvcDDiUHvQD5w655qq7ZDtIon-6vEe-TwaFQlp7eqKrsr6gqOTZtBQOKOqBAnanH7u4Pz3qsjId7VQ2zz0qbFMAxPTEzbtoI32HN00wYxRssSrEnHb5CnAOyLWjuJHQuwGdnsViQt9cwFzX3Cez6esPk8M4qDbEVuSyjU3mHWASrYzmudu3uSydh4mjNIo5p4xPmRPMloAbcmlTDXzKSysSpF6KeSYekFFVV-4hoSxznhtltfC4CcR0pjV8JZkKA8_NWERebHqxsKGkOSprLAqgNtjjxc8ej8jzwXbZF_L4o9UrHAyDBRbf7k7Uq3kRfLlIlDC5yxLlABxBt0HDHRC_LOUe-J3lEdnZDKUizAhNwRMOYAzwQB6RZ8Nl8GXcoNGVq9doA09BQpdFZHcYgn9p7qN_M3tMbnD8a6NLNt8ho3a1dk8AS7XmaXCYH73AF3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Random+Forest+and+Support+Vector+Machine+Classifiers+for+Regional+Land+Cover+Mapping+Using+Coarse+Resolution+FY-3C+Images&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Adugna%2C+Tesfaye&rft.au=Xu%2C+Wenbo&rft.au=Fan%2C+Jinlong&rft.date=2022-02-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=14&rft.issue=3&rft.spage=574&rft_id=info:doi/10.3390%2Frs14030574&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs14030574
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon