Predicting Days to Maturity, Plant Height, and Grain Yield in Soybean: A Machine and Deep Learning Approach Using Multispectral Data
In soybean, there is a lack of research aiming to compare the performance of machine learning (ML) and deep learning (DL) methods to predict more than one agronomic variable, such as days to maturity (DM), plant height (PH), and grain yield (GY). As these variables are important to developing an ove...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 13; no. 22; p. 4632 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2072-4292 2072-4292 |
DOI | 10.3390/rs13224632 |
Cover
Abstract | In soybean, there is a lack of research aiming to compare the performance of machine learning (ML) and deep learning (DL) methods to predict more than one agronomic variable, such as days to maturity (DM), plant height (PH), and grain yield (GY). As these variables are important to developing an overall precision farming model, we propose a machine learning approach to predict DM, PH, and GY for soybean cultivars based on multispectral bands. The field experiment considered 524 genotypes of soybeans in the 2017/2018 and 2018/2019 growing seasons and a multitemporal–multispectral dataset collected by embedded sensor in an unmanned aerial vehicle (UAV). We proposed a multilayer deep learning regression network, trained during 2000 epochs using an adaptive subgradient method, a random Gaussian initialization, and a 50% dropout in the first hidden layer for regularization. Three different scenarios, including only spectral bands, only vegetation indices, and spectral bands plus vegetation indices, were adopted to infer each variable (PH, DM, and GY). The DL model performance was compared against shallow learning methods such as random forest (RF), support vector machine (SVM), and linear regression (LR). The results indicate that our approach has the potential to predict soybean-related variables using multispectral bands only. Both DL and RF models presented a strong (r surpassing 0.77) prediction capacity for the PH variable, regardless of the adopted input variables group. Our results demonstrated that the DL model (r = 0.66) was superior to predict DM when the input variable was the spectral bands. For GY, all machine learning models evaluated presented similar performance (r ranging from 0.42 to 0.44) for each tested scenario. In conclusion, this study demonstrated an efficient approach to a computational solution capable of predicting multiple important soybean crop variables based on remote sensing data. Future research could benefit from the information presented here and be implemented in subsequent processes related to soybean cultivars or other types of agronomic crops. |
---|---|
AbstractList | In soybean, there is a lack of research aiming to compare the performance of machine learning (ML) and deep learning (DL) methods to predict more than one agronomic variable, such as days to maturity (DM), plant height (PH), and grain yield (GY). As these variables are important to developing an overall precision farming model, we propose a machine learning approach to predict DM, PH, and GY for soybean cultivars based on multispectral bands. The field experiment considered 524 genotypes of soybeans in the 2017/2018 and 2018/2019 growing seasons and a multitemporal–multispectral dataset collected by embedded sensor in an unmanned aerial vehicle (UAV). We proposed a multilayer deep learning regression network, trained during 2000 epochs using an adaptive subgradient method, a random Gaussian initialization, and a 50% dropout in the first hidden layer for regularization. Three different scenarios, including only spectral bands, only vegetation indices, and spectral bands plus vegetation indices, were adopted to infer each variable (PH, DM, and GY). The DL model performance was compared against shallow learning methods such as random forest (RF), support vector machine (SVM), and linear regression (LR). The results indicate that our approach has the potential to predict soybean-related variables using multispectral bands only. Both DL and RF models presented a strong (r surpassing 0.77) prediction capacity for the PH variable, regardless of the adopted input variables group. Our results demonstrated that the DL model (r = 0.66) was superior to predict DM when the input variable was the spectral bands. For GY, all machine learning models evaluated presented similar performance (r ranging from 0.42 to 0.44) for each tested scenario. In conclusion, this study demonstrated an efficient approach to a computational solution capable of predicting multiple important soybean crop variables based on remote sensing data. Future research could benefit from the information presented here and be implemented in subsequent processes related to soybean cultivars or other types of agronomic crops. |
Author | Osco, Lucas Prado Gonçalves, Wesley Nunes da Silva Junior, Carlos Antonio Carneiro, Alexsandro Monteiro Pinheiro, Mayara Maezano Faita dos Santos, Regimar Garcia Teodoro, Larissa Pereira Ribeiro Ramos, Ana Paula Marques Shiratsuchi, Luciano Shozo Junior, José Marcato Teodoro, Paulo Eduardo Baio, Fábio Henrique Rojo Pistori, Hemerson |
Author_xml | – sequence: 1 givenname: Paulo Eduardo orcidid: 0000-0002-8236-542X surname: Teodoro fullname: Teodoro, Paulo Eduardo – sequence: 2 givenname: Larissa Pereira Ribeiro orcidid: 0000-0002-8121-0119 surname: Teodoro fullname: Teodoro, Larissa Pereira Ribeiro – sequence: 3 givenname: Fábio Henrique Rojo orcidid: 0000-0002-9522-0342 surname: Baio fullname: Baio, Fábio Henrique Rojo – sequence: 4 givenname: Carlos Antonio orcidid: 0000-0002-7102-2077 surname: da Silva Junior fullname: da Silva Junior, Carlos Antonio – sequence: 5 givenname: Regimar Garcia orcidid: 0000-0002-9586-2943 surname: dos Santos fullname: dos Santos, Regimar Garcia – sequence: 6 givenname: Ana Paula Marques orcidid: 0000-0001-6633-2903 surname: Ramos fullname: Ramos, Ana Paula Marques – sequence: 7 givenname: Mayara Maezano Faita orcidid: 0000-0002-4915-3185 surname: Pinheiro fullname: Pinheiro, Mayara Maezano Faita – sequence: 8 givenname: Lucas Prado orcidid: 0000-0002-0258-536X surname: Osco fullname: Osco, Lucas Prado – sequence: 9 givenname: Wesley Nunes orcidid: 0000-0002-8815-6653 surname: Gonçalves fullname: Gonçalves, Wesley Nunes – sequence: 10 givenname: Alexsandro Monteiro surname: Carneiro fullname: Carneiro, Alexsandro Monteiro – sequence: 11 givenname: José Marcato orcidid: 0000-0002-9096-6866 surname: Junior fullname: Junior, José Marcato – sequence: 12 givenname: Hemerson orcidid: 0000-0001-8181-760X surname: Pistori fullname: Pistori, Hemerson – sequence: 13 givenname: Luciano Shozo surname: Shiratsuchi fullname: Shiratsuchi, Luciano Shozo |
BookMark | eNptkU1vFDEMhkeoSJTSC78gEheEuhAnmY9wW7XQVtqKStADp8iT8WyzmiZDkj3snR9OtgsCVeQS23neN7L9sjrywVNVvQb-XkrNP8QEUgjVSPGsOha8FQsltDj6J35Rnaa04eVICZqr4-rnbaTB2ez8ml3gLrEc2A3mbXR5d8ZuJ_SZXZFb3-czhn5glxGdZ98dTQMrwdew6wn9R7YsKnvvPD1SF0QzWxFGv_ddznMM5ZXdpX16s52ySzPZHHEqn2Z8VT0fcUp0-vs-qe4-f_p2frVYfbm8Pl-uFlZqlRd9raDjzdAitBLqsetK3HQCOmp7qIGgGVQrdIuDBk0NjCNxqmu0rVa8tfKkuj74DgE3Zo7uAePOBHTmsRDi2mDMzk5kFGqCEfsRoFfCgkZSne2VLGUuAIrX24NX6e3HllI2Dy5ZmsrEKGyTEY1saujqlhf0zRN0E7bRl04LVcy6GtSe4gfKxpBSpNFYlzG74Muc3GSAm_2Wzd8tF8m7J5I_Pf0H_gVnvab1 |
CitedBy_id | crossref_primary_10_3390_rs15174286 crossref_primary_10_1002_agj2_70012 crossref_primary_10_3390_agriculture14081368 crossref_primary_10_3390_rs16234343 crossref_primary_10_1016_j_plaphe_2025_100019 crossref_primary_10_1186_s42397_024_00204_y crossref_primary_10_3390_rs15010079 crossref_primary_10_3390_agronomy14091890 crossref_primary_10_1038_s41598_022_12863_5 crossref_primary_10_3390_rs15112761 crossref_primary_10_1016_j_compag_2023_108064 crossref_primary_10_1093_insilicoplants_diae012 crossref_primary_10_3390_rs14112596 crossref_primary_10_1016_j_compag_2024_108685 crossref_primary_10_3390_bioengineering9100495 crossref_primary_10_3390_seeds2030026 crossref_primary_10_3390_agriculture14112088 crossref_primary_10_3389_fpls_2024_1401246 crossref_primary_10_3390_agriengineering6020090 crossref_primary_10_3390_rs17010107 crossref_primary_10_1016_j_rsase_2023_101110 crossref_primary_10_1590_1413_7054202448005224 crossref_primary_10_3390_app14135482 crossref_primary_10_1016_j_rse_2024_114454 crossref_primary_10_1038_s41597_025_04738_x crossref_primary_10_1186_s43014_023_00205_5 crossref_primary_10_3390_rs16061003 crossref_primary_10_3390_drones8100559 crossref_primary_10_1038_s41598_025_85714_8 crossref_primary_10_3390_agriengineering6020063 crossref_primary_10_1016_j_atech_2024_100665 crossref_primary_10_1016_j_jspr_2023_102115 crossref_primary_10_3390_agronomy14092059 crossref_primary_10_1038_s41598_024_81260_x crossref_primary_10_3390_rs14246345 crossref_primary_10_1007_s10681_024_03301_w crossref_primary_10_3390_agronomy15010063 crossref_primary_10_1117_1_JRS_18_018503 crossref_primary_10_3390_rs15112758 crossref_primary_10_1016_j_compag_2024_108993 crossref_primary_10_3390_plants12162893 crossref_primary_10_1117_1_JRS_18_046511 crossref_primary_10_1111_jac_12654 crossref_primary_10_3390_agriengineering6010002 crossref_primary_10_3390_agriculture13010110 |
Cites_doi | 10.3390/s20174802 10.1016/j.biortech.2015.01.083 10.3390/agronomy10111741 10.1109/ICIP.2017.8297010 10.1016/j.compag.2019.104859 10.3390/rs11182075 10.3389/fpls.2019.01750 10.1016/j.fcr.2009.10.016 10.1016/j.compag.2020.105731 10.1016/j.sjbs.2017.01.024 10.1007/s10681-019-2439-9 10.3390/rs12193237 10.3390/rs12060906 10.3390/s18082674 10.1002/aps3.11371 10.1016/j.biosystemseng.2015.10.003 10.1016/j.compag.2020.105791 10.3390/s19204363 10.2134/agronj2000.924780x 10.3390/agriculture10080348 10.1016/j.compag.2018.07.016 10.1016/j.compag.2019.105197 10.18227/1982-8470ragro.v5i1.418 10.1016/j.compag.2017.03.010 10.1016/j.rse.2019.04.016 10.3390/rs11232797 10.1016/j.rse.2019.111410 10.1117/1.JRS.11.042609 10.1109/TPAMI.2016.2644615 10.2135/cropsci2016.05.0343 10.1016/j.compag.2018.05.012 10.1016/j.compag.2015.11.018 10.3390/rs11242925 10.1016/j.isprsjprs.2019.12.012 10.1371/journal.pone.0156571 10.1016/j.rse.2016.10.005 10.1038/nature14539 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs13224632 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Agriculture |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_4a9e1fabf11b42c19ae48cb439e10211 10_3390_rs13224632 |
GeographicLocations | Brazil |
GeographicLocations_xml | – name: Brazil |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c394t-b541806d7a17315f886d768218e7b151e16d47297ad919e61ffe0e55ac79407c3 |
IEDL.DBID | 8FG |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:17:41 EDT 2025 Fri Sep 05 11:53:56 EDT 2025 Fri Jul 25 09:31:01 EDT 2025 Tue Jul 01 01:58:55 EDT 2025 Thu Apr 24 23:10:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-b541806d7a17315f886d768218e7b151e16d47297ad919e61ffe0e55ac79407c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0258-536X 0000-0002-9096-6866 0000-0002-8815-6653 0000-0002-8236-542X 0000-0002-9586-2943 0000-0001-6633-2903 0000-0001-8181-760X 0000-0002-8121-0119 0000-0002-4915-3185 0000-0002-9522-0342 0000-0002-7102-2077 |
OpenAccessLink | https://www.proquest.com/docview/2602185140?pq-origsite=%requestingapplication% |
PQID | 2602185140 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4a9e1fabf11b42c19ae48cb439e10211 proquest_miscellaneous_2636518570 proquest_journals_2602185140 crossref_citationtrail_10_3390_rs13224632 crossref_primary_10_3390_rs13224632 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Morrison (ref_36) 2000; 92 Ramos (ref_13) 2017; 137 Khanal (ref_24) 2018; 153 Masuka (ref_35) 2017; 57 ref_10 Badrinarayanan (ref_26) 2017; 39 Khaki (ref_1) 2020; 10 Vani (ref_9) 2015; 188 Amatya (ref_8) 2015; 146 Chlingaryan (ref_16) 2018; 151 Jin (ref_30) 2019; 228 ref_19 Pantazi (ref_11) 2016; 121 Ball (ref_27) 2017; 11 ref_17 Su (ref_14) 2017; 24 Sakamoto (ref_18) 2019; 160 Todeschini (ref_38) 2019; 215 Yu (ref_20) 2016; 187 Barbosa (ref_32) 2020; 170 Eugenio (ref_40) 2020; 20 Nevavuori (ref_31) 2019; 163 Xie (ref_39) 2020; 178 Finoto (ref_34) 2011; 5 ref_23 ref_22 ref_21 Baio (ref_2) 2020; 18 LeCun (ref_33) 2015; 521 Jin (ref_37) 2010; 115 ref_3 Ramos (ref_15) 2020; 178 ref_29 ref_28 Hunt (ref_12) 2019; 233 ref_5 Soltis (ref_25) 2020; 8 ref_4 ref_7 ref_6 |
References_xml | – volume: 20 start-page: 100397 year: 2020 ident: ref_40 article-title: Estimation of soybean yield from machine learning techniques and multispectral RPAS imagery publication-title: Remote Sens. Appl. Soc. Environ. – ident: ref_28 doi: 10.3390/s20174802 – volume: 188 start-page: 128 year: 2015 ident: ref_9 article-title: Prediction of sugar yields during hydrolysis of lignocellulosic biomass using artificial neural network modeling publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.01.083 – ident: ref_21 doi: 10.3390/agronomy10111741 – ident: ref_29 doi: 10.1109/ICIP.2017.8297010 – volume: 163 start-page: 104859 year: 2019 ident: ref_31 article-title: Crop yield prediction with deep convolutional neural networks publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.104859 – ident: ref_6 doi: 10.3390/rs11182075 – volume: 10 start-page: 1750 year: 2020 ident: ref_1 article-title: A CNN-RNN Framework for Crop Yield Prediction publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.01750 – volume: 115 start-page: 116 year: 2010 ident: ref_37 article-title: Agronomic and physiological contributions to the yield improvement of soybean cultivars released from 1950 to 2006 in Northeast China publication-title: Field Crop. Res. doi: 10.1016/j.fcr.2009.10.016 – volume: 178 start-page: 105731 year: 2020 ident: ref_39 article-title: A review on plant high-throughput phenotyping traits using UAV-based sensors publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105731 – volume: 24 start-page: 537 year: 2017 ident: ref_14 article-title: Support vector machine-based open crop model (SBOCM): Case of rice production in China publication-title: Saudi J. Biol. Sci. doi: 10.1016/j.sjbs.2017.01.024 – volume: 215 start-page: 124 year: 2019 ident: ref_38 article-title: Soybean genetic progress in South Brazil: Physiological, phenological and agronomic traits publication-title: Euphytica doi: 10.1007/s10681-019-2439-9 – ident: ref_4 doi: 10.3390/rs12193237 – ident: ref_7 doi: 10.3390/rs12060906 – ident: ref_17 doi: 10.3390/s18082674 – volume: 8 start-page: e11371 year: 2020 ident: ref_25 article-title: Plants meet machines: Prospects in machine learning for plant biology publication-title: Appl. Plant Sci. doi: 10.1002/aps3.11371 – volume: 146 start-page: 3 year: 2015 ident: ref_8 article-title: Detection of cherry tree branches with full foliage in planar architecture for automated sweet-cherry harvesting publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2015.10.003 – volume: 178 start-page: 105791 year: 2020 ident: ref_15 article-title: A random forest ranking approach to predict yield in maize with uav-based vegetation spectral indices publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105791 – ident: ref_19 doi: 10.3390/s19204363 – volume: 92 start-page: 780 year: 2000 ident: ref_36 article-title: Agronomic Changes from 58 Years of Genetic Improvement of Short-Season Soybean Cultivars in Canada publication-title: Agron. J. doi: 10.2134/agronj2000.924780x – ident: ref_23 doi: 10.3390/agriculture10080348 – volume: 153 start-page: 213 year: 2018 ident: ref_24 article-title: Integration of high resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.07.016 – volume: 170 start-page: 105197 year: 2020 ident: ref_32 article-title: Modeling yield response to crop management using convolutional neural networks publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.105197 – volume: 5 start-page: 44 year: 2011 ident: ref_34 article-title: Efeito da aplicação de fungicida sobre caracteres agronômicos e severidade das doenças de final de ciclo na cultura da soja publication-title: Rev. Agro@Mbiente On-Line doi: 10.18227/1982-8470ragro.v5i1.418 – volume: 18 start-page: 100318 year: 2020 ident: ref_2 article-title: UAV-multispectral and vegetation indices in soybean grain yield prediction based on in situ observation publication-title: Remote Sens. Appl. Soc. Environ. – volume: 137 start-page: 9 year: 2017 ident: ref_13 article-title: Automatic fruit count on coffee branches using computer vision publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.03.010 – volume: 228 start-page: 115 year: 2019 ident: ref_30 article-title: Smallholder maize area and yield mapping at national scales with Google Earth Engine publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.04.016 – ident: ref_5 doi: 10.3390/rs11232797 – volume: 233 start-page: 111410 year: 2019 ident: ref_12 article-title: High resolution wheat yield mapping using Sentinel-2 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111410 – volume: 11 start-page: 042609 year: 2017 ident: ref_27 article-title: Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.11.042609 – volume: 39 start-page: 2481 year: 2017 ident: ref_26 article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – volume: 57 start-page: 168 year: 2017 ident: ref_35 article-title: Gains in Maize Genetic Improvement in Eastern and Southern Africa: I. CIMMYT Hybrid Breeding Pipeline publication-title: Crop. Sci. doi: 10.2135/cropsci2016.05.0343 – volume: 151 start-page: 61 year: 2018 ident: ref_16 article-title: Machine Learning Approaches for Crop Yield Prediction and Nitrogen Status Estimation in Precision Agriculture: A Review publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.05.012 – volume: 121 start-page: 57 year: 2016 ident: ref_11 article-title: Wheat yield prediction using machine learning and advanced sensing techniques publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2015.11.018 – ident: ref_3 doi: 10.3390/rs11242925 – volume: 160 start-page: 208 year: 2019 ident: ref_18 article-title: Incorporating environmental variables into a MODIS-based crop yield estimation method for United States corn and soybeans through the use of a random forest regression algorithm publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.12.012 – ident: ref_10 doi: 10.1371/journal.pone.0156571 – ident: ref_22 – volume: 187 start-page: 91 year: 2016 ident: ref_20 article-title: Development of methods to improve soybean yield estimation and predict plant maturity with an unmanned aerial vehicle based platform publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.10.005 – volume: 521 start-page: 436 year: 2015 ident: ref_33 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 |
SSID | ssj0000331904 |
Score | 2.5319552 |
Snippet | In soybean, there is a lack of research aiming to compare the performance of machine learning (ML) and deep learning (DL) methods to predict more than one... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 4632 |
SubjectTerms | Agricultural production Agriculture Agronomic crops Agronomy Artificial intelligence Band spectra Computer applications Corn Crop yield Crops Cultivars data collection Decision making Deep learning deep neural network Embedded sensors Farmers field experimentation Genotypes Grain grain yield Growing season Learning algorithms Machine learning model validation Multilayers multispectral remote sensing data Neural networks Performance evaluation plant height Precision agriculture prediction regression analysis Regularization Remote sensing Remote sensing systems Seasons Sensors shallow learner Soybeans Spectral bands Support vector machines Unmanned aerial vehicles Variables Vegetation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBVhL-2ltElLtk2CQnMprFnJlr9y23STLoGEQrOwOZmRNW4OxQ67zmHv_eGdkZ3NlhR6yU3YYxDSSDPPGr0nxEmKVRpDqoOkQhMY2huDvCxt4JyDMANlndc6vLpOZnNzuYgXW1JfXBPW0QN3Azc2kKOuwFZaWxOWOgc0WWkpjiKrUnvgQ2FsC0z5PTgi11Km4yONCNePlyvGXSaJwr8ikCfqf7YP--By8Va86bNCOel6807sYL0rXvUC5XfrPfH7-5JPVLhGWU5hvZJtI6-Yk5OS6JFk5aFWzvxfzpGE2slvrPwgb7k8TVLjR7O2CPWpnNBXXD2J3mqKeC97htWfctLTi0tfRiD91Vx_EXNJXZtCC-_F_OL85uss6AUUgjLKTRvY2OhMJS4FnUY6rrKM2klGUR1TS6EedeIMZdcpuFznmOiqQoVxDCWtUpWW0QcxqJsa94WkRBEUglKWAAiBHADtQmszE2oXIeRD8eVxUIuyZxdnkYtfBaEMnoDiaQKG4vPG9r7j1Pin1RnPzcaCebD9A_KOoveO4n_eMRQHjzNb9ItzVRCEoyGgTFENxfHmNS0rPiuBGpsHtomSmHmy1MeX6Mcn8TrkYhh_ifFADNrlAx5SNtPaI--4fwBTrPGp priority: 102 providerName: Directory of Open Access Journals |
Title | Predicting Days to Maturity, Plant Height, and Grain Yield in Soybean: A Machine and Deep Learning Approach Using Multispectral Data |
URI | https://www.proquest.com/docview/2602185140 https://www.proquest.com/docview/2636518570 https://doaj.org/article/4a9e1fabf11b42c19ae48cb439e10211 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: 8FG dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagPQAHBAXEQlkZwQWpUe3EeXFBKdvtCrFVRalUTpEfk-WAkiWbHvbOD2fG690KgTjFSiZR5LE9D4-_j7G3OTR5qnMZZQ2oSOHaGJXWmsg5p-NCC-M81-H8PJtdqU_X6XVIuK1CWeV2TfQLtess5ciP0e9Ga4TmXXxY_oyINYp2VwOFxl22L2McSXRSfHq2y7GIBAeYUBtU0gSj--N-RdGXypL4Dzvk4fr_Wo29iZk-Yg-Db8irjTIfszvQHrAH1aIP-BhwwO4F0vLv6yfs10VPuyxUt8wner3iQ8fnhNOJjvURJzaigc985vOI69bxM2KD4N-oZI1j47JbG9Dte17hW1RRCV5qArDkAXV1wasAOc59aQH3x3X94cwef3SiB_2UXU1Pv36cRYFUIbJJqYbIpEoWInO5lnki06YosJ0V2LeQGzT_IDOn0OPOtStlCZlsGhCQptrizBW5TZ6xvbZr4Tnj6DxqAVoIg0EJBj5aSxcbU6hYugR0OWLvtl1c24A4TsQXP2qMPEgd9a06RuzNTna5wdn4p9QJaWonQdjY_kbXL-ow1WqlS5CNNo2URsVWlhpUYQ16XkA85nLEDrd6rsOEXdW3w2vEXu8e41Sj_RPdQndDMkmWEnaWePH_T7xk92MqffFHFg_Z3tDfwCv0XQYz9gN0zParyfzzJV5PTs8vvox9JuA39srxig |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKORQOCAqIhQJGwAGpUe3YeSEhtLBst7RbIdFK7SnY8WQ5oGTJpkJ75_fwG5nxJlshELfeomRiRZnxPOzx9zH2IoEyiUwig7gEHWj0jUFWFDZwzpkwNcI6z3U4PY4np_rjWXS2wX71Z2GorbL3id5Ru7qgNfI9zLsxGmF4F2_n3wNijaLd1Z5CY2UWh7D8gSXb4s3BCPX7MgzHH07eT4KOVSAoVKbbwEZapiJ2iZGJklGZpngdpzg4JBbjH8jYaUw5E-MymUEsyxIERJEp0HRFUigc9xq7rpVShNWfjvfXazpCoUELvUJBVSoTe82Cqj0dq_CPuOfpAf7y_j6kjW-zW10uyocr47nDNqDaZjeHs6bD44BtttWRpH9d3mU_PzW0q0N90nxklgve1nxKuKCYyO9yYj9q-cSvtO5yUzm-T-wT_Jxa5DhefK6XFkz1mg_xLergBC81ApjzDuV1xocdxDn3rQzcHw_2h0Eb_NCRac09dnolv_s-26zqCh4wjsmqEWCEsFgEYaFljHShtakOpVNgsgF71f_ivOgQzolo41uOlQ6pI79Ux4A9X8vOV7ge_5R6R5paSxAWt79RN7O8m9q5NhnI0thSSqvDQmYGdFpYzPSAeNPlgO30es47B7HIL815wJ6tH-PUpv0aU0F9QTIqjgirSzz8_xBP2dbkZHqUHx0cHz5iN0Jqu_HHJXfYZttcwGPMm1r7xBsrZ1-uenb8BkbzKHg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVOJxQFBABAosAg5ItbJrr19IFUpJQ0ppFAGVysnsesfhgJzguEK58-v4VcxsNqkQiFtvlj1-yDO7M7M7832MPU-hSmOdyiCpQAUK58YgL0sTWGt1mGlhrOM6PBkno1P17iw-22K_1r0wVFa5nhPdRG1nJa2R9zDuRm-E7l30Kl8WMRkMX8-_B8QgRTutazoN7WkW7L6DG_NNHsew_IHp3GL_aIC6fxGGw8NPb0aBZxwIyihXbWBiJTOR2FTLNJJxlWV4nGT4YkgN-kaQiVUYjqba5jKHRFYVCIhjXaJZi7SM8LlX2HZK_aIdtn1wOJ582Kz4iAjNXagVRmoU5aLXLCgXVEkU_uEVHXnAX77BObzhLXbTR6q8vzKt22wL6h12oz9tPFoH7LBrnkL96_IO-zlpaM-Hqqj5QC8XvJ3xE0INxTB_jxM3UstHbh12j-va8rfETcE_UwEdx4OPs6UBXb_ifbyL6jvBSQ0A5txjwE553wOgc1fowF3zsGsVbfBDB7rVd9nppfzwe6xTz2q4zziGslqAFsJgioRpmNbShsZkKpQ2Ap132cv1Ly5Kj39ONBzfCsyDSB3FhTq67NlGdr5C_fin1AFpaiNBSN3uxKyZFn7gF0rnICttKimNCkuZa1BZaTAOBGJVl122u9Zz4aePRXFh7F32dHMZBz7t5ugaZuckEyUxIXmJB_9_xBN2FUdK8f5ofPyQXQ-pJsf1Uu6yTtucwyMMqlrz2FsrZ18ue4D8Bp4WM1I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Days+to+Maturity%2C+Plant+Height%2C+and+Grain+Yield+in+Soybean%3A+A+Machine+and+Deep+Learning+Approach+Using+Multispectral+Data&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Teodoro%2C+Paulo+Eduardo&rft.au=Larissa+Pereira+Ribeiro+Teodoro&rft.au=F%C3%A1bio+Henrique+Rojo+Baio&rft.au=Carlos+Antonio+da+Silva+Junior&rft.date=2021-11-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=13&rft.issue=22&rft.spage=4632&rft_id=info:doi/10.3390%2Frs13224632&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |