Predicting Days to Maturity, Plant Height, and Grain Yield in Soybean: A Machine and Deep Learning Approach Using Multispectral Data

In soybean, there is a lack of research aiming to compare the performance of machine learning (ML) and deep learning (DL) methods to predict more than one agronomic variable, such as days to maturity (DM), plant height (PH), and grain yield (GY). As these variables are important to developing an ove...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 13; no. 22; p. 4632
Main Authors Teodoro, Paulo Eduardo, Teodoro, Larissa Pereira Ribeiro, Baio, Fábio Henrique Rojo, da Silva Junior, Carlos Antonio, dos Santos, Regimar Garcia, Ramos, Ana Paula Marques, Pinheiro, Mayara Maezano Faita, Osco, Lucas Prado, Gonçalves, Wesley Nunes, Carneiro, Alexsandro Monteiro, Junior, José Marcato, Pistori, Hemerson, Shiratsuchi, Luciano Shozo
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2021
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs13224632

Cover

Abstract In soybean, there is a lack of research aiming to compare the performance of machine learning (ML) and deep learning (DL) methods to predict more than one agronomic variable, such as days to maturity (DM), plant height (PH), and grain yield (GY). As these variables are important to developing an overall precision farming model, we propose a machine learning approach to predict DM, PH, and GY for soybean cultivars based on multispectral bands. The field experiment considered 524 genotypes of soybeans in the 2017/2018 and 2018/2019 growing seasons and a multitemporal–multispectral dataset collected by embedded sensor in an unmanned aerial vehicle (UAV). We proposed a multilayer deep learning regression network, trained during 2000 epochs using an adaptive subgradient method, a random Gaussian initialization, and a 50% dropout in the first hidden layer for regularization. Three different scenarios, including only spectral bands, only vegetation indices, and spectral bands plus vegetation indices, were adopted to infer each variable (PH, DM, and GY). The DL model performance was compared against shallow learning methods such as random forest (RF), support vector machine (SVM), and linear regression (LR). The results indicate that our approach has the potential to predict soybean-related variables using multispectral bands only. Both DL and RF models presented a strong (r surpassing 0.77) prediction capacity for the PH variable, regardless of the adopted input variables group. Our results demonstrated that the DL model (r = 0.66) was superior to predict DM when the input variable was the spectral bands. For GY, all machine learning models evaluated presented similar performance (r ranging from 0.42 to 0.44) for each tested scenario. In conclusion, this study demonstrated an efficient approach to a computational solution capable of predicting multiple important soybean crop variables based on remote sensing data. Future research could benefit from the information presented here and be implemented in subsequent processes related to soybean cultivars or other types of agronomic crops.
AbstractList In soybean, there is a lack of research aiming to compare the performance of machine learning (ML) and deep learning (DL) methods to predict more than one agronomic variable, such as days to maturity (DM), plant height (PH), and grain yield (GY). As these variables are important to developing an overall precision farming model, we propose a machine learning approach to predict DM, PH, and GY for soybean cultivars based on multispectral bands. The field experiment considered 524 genotypes of soybeans in the 2017/2018 and 2018/2019 growing seasons and a multitemporal–multispectral dataset collected by embedded sensor in an unmanned aerial vehicle (UAV). We proposed a multilayer deep learning regression network, trained during 2000 epochs using an adaptive subgradient method, a random Gaussian initialization, and a 50% dropout in the first hidden layer for regularization. Three different scenarios, including only spectral bands, only vegetation indices, and spectral bands plus vegetation indices, were adopted to infer each variable (PH, DM, and GY). The DL model performance was compared against shallow learning methods such as random forest (RF), support vector machine (SVM), and linear regression (LR). The results indicate that our approach has the potential to predict soybean-related variables using multispectral bands only. Both DL and RF models presented a strong (r surpassing 0.77) prediction capacity for the PH variable, regardless of the adopted input variables group. Our results demonstrated that the DL model (r = 0.66) was superior to predict DM when the input variable was the spectral bands. For GY, all machine learning models evaluated presented similar performance (r ranging from 0.42 to 0.44) for each tested scenario. In conclusion, this study demonstrated an efficient approach to a computational solution capable of predicting multiple important soybean crop variables based on remote sensing data. Future research could benefit from the information presented here and be implemented in subsequent processes related to soybean cultivars or other types of agronomic crops.
Author Osco, Lucas Prado
Gonçalves, Wesley Nunes
da Silva Junior, Carlos Antonio
Carneiro, Alexsandro Monteiro
Pinheiro, Mayara Maezano Faita
dos Santos, Regimar Garcia
Teodoro, Larissa Pereira Ribeiro
Ramos, Ana Paula Marques
Shiratsuchi, Luciano Shozo
Junior, José Marcato
Teodoro, Paulo Eduardo
Baio, Fábio Henrique Rojo
Pistori, Hemerson
Author_xml – sequence: 1
  givenname: Paulo Eduardo
  orcidid: 0000-0002-8236-542X
  surname: Teodoro
  fullname: Teodoro, Paulo Eduardo
– sequence: 2
  givenname: Larissa Pereira Ribeiro
  orcidid: 0000-0002-8121-0119
  surname: Teodoro
  fullname: Teodoro, Larissa Pereira Ribeiro
– sequence: 3
  givenname: Fábio Henrique Rojo
  orcidid: 0000-0002-9522-0342
  surname: Baio
  fullname: Baio, Fábio Henrique Rojo
– sequence: 4
  givenname: Carlos Antonio
  orcidid: 0000-0002-7102-2077
  surname: da Silva Junior
  fullname: da Silva Junior, Carlos Antonio
– sequence: 5
  givenname: Regimar Garcia
  orcidid: 0000-0002-9586-2943
  surname: dos Santos
  fullname: dos Santos, Regimar Garcia
– sequence: 6
  givenname: Ana Paula Marques
  orcidid: 0000-0001-6633-2903
  surname: Ramos
  fullname: Ramos, Ana Paula Marques
– sequence: 7
  givenname: Mayara Maezano Faita
  orcidid: 0000-0002-4915-3185
  surname: Pinheiro
  fullname: Pinheiro, Mayara Maezano Faita
– sequence: 8
  givenname: Lucas Prado
  orcidid: 0000-0002-0258-536X
  surname: Osco
  fullname: Osco, Lucas Prado
– sequence: 9
  givenname: Wesley Nunes
  orcidid: 0000-0002-8815-6653
  surname: Gonçalves
  fullname: Gonçalves, Wesley Nunes
– sequence: 10
  givenname: Alexsandro Monteiro
  surname: Carneiro
  fullname: Carneiro, Alexsandro Monteiro
– sequence: 11
  givenname: José Marcato
  orcidid: 0000-0002-9096-6866
  surname: Junior
  fullname: Junior, José Marcato
– sequence: 12
  givenname: Hemerson
  orcidid: 0000-0001-8181-760X
  surname: Pistori
  fullname: Pistori, Hemerson
– sequence: 13
  givenname: Luciano Shozo
  surname: Shiratsuchi
  fullname: Shiratsuchi, Luciano Shozo
BookMark eNptkU1vFDEMhkeoSJTSC78gEheEuhAnmY9wW7XQVtqKStADp8iT8WyzmiZDkj3snR9OtgsCVeQS23neN7L9sjrywVNVvQb-XkrNP8QEUgjVSPGsOha8FQsltDj6J35Rnaa04eVICZqr4-rnbaTB2ez8ml3gLrEc2A3mbXR5d8ZuJ_SZXZFb3-czhn5glxGdZ98dTQMrwdew6wn9R7YsKnvvPD1SF0QzWxFGv_ddznMM5ZXdpX16s52ySzPZHHEqn2Z8VT0fcUp0-vs-qe4-f_p2frVYfbm8Pl-uFlZqlRd9raDjzdAitBLqsetK3HQCOmp7qIGgGVQrdIuDBk0NjCNxqmu0rVa8tfKkuj74DgE3Zo7uAePOBHTmsRDi2mDMzk5kFGqCEfsRoFfCgkZSne2VLGUuAIrX24NX6e3HllI2Dy5ZmsrEKGyTEY1saujqlhf0zRN0E7bRl04LVcy6GtSe4gfKxpBSpNFYlzG74Muc3GSAm_2Wzd8tF8m7J5I_Pf0H_gVnvab1
CitedBy_id crossref_primary_10_3390_rs15174286
crossref_primary_10_1002_agj2_70012
crossref_primary_10_3390_agriculture14081368
crossref_primary_10_3390_rs16234343
crossref_primary_10_1016_j_plaphe_2025_100019
crossref_primary_10_1186_s42397_024_00204_y
crossref_primary_10_3390_rs15010079
crossref_primary_10_3390_agronomy14091890
crossref_primary_10_1038_s41598_022_12863_5
crossref_primary_10_3390_rs15112761
crossref_primary_10_1016_j_compag_2023_108064
crossref_primary_10_1093_insilicoplants_diae012
crossref_primary_10_3390_rs14112596
crossref_primary_10_1016_j_compag_2024_108685
crossref_primary_10_3390_bioengineering9100495
crossref_primary_10_3390_seeds2030026
crossref_primary_10_3390_agriculture14112088
crossref_primary_10_3389_fpls_2024_1401246
crossref_primary_10_3390_agriengineering6020090
crossref_primary_10_3390_rs17010107
crossref_primary_10_1016_j_rsase_2023_101110
crossref_primary_10_1590_1413_7054202448005224
crossref_primary_10_3390_app14135482
crossref_primary_10_1016_j_rse_2024_114454
crossref_primary_10_1038_s41597_025_04738_x
crossref_primary_10_1186_s43014_023_00205_5
crossref_primary_10_3390_rs16061003
crossref_primary_10_3390_drones8100559
crossref_primary_10_1038_s41598_025_85714_8
crossref_primary_10_3390_agriengineering6020063
crossref_primary_10_1016_j_atech_2024_100665
crossref_primary_10_1016_j_jspr_2023_102115
crossref_primary_10_3390_agronomy14092059
crossref_primary_10_1038_s41598_024_81260_x
crossref_primary_10_3390_rs14246345
crossref_primary_10_1007_s10681_024_03301_w
crossref_primary_10_3390_agronomy15010063
crossref_primary_10_1117_1_JRS_18_018503
crossref_primary_10_3390_rs15112758
crossref_primary_10_1016_j_compag_2024_108993
crossref_primary_10_3390_plants12162893
crossref_primary_10_1117_1_JRS_18_046511
crossref_primary_10_1111_jac_12654
crossref_primary_10_3390_agriengineering6010002
crossref_primary_10_3390_agriculture13010110
Cites_doi 10.3390/s20174802
10.1016/j.biortech.2015.01.083
10.3390/agronomy10111741
10.1109/ICIP.2017.8297010
10.1016/j.compag.2019.104859
10.3390/rs11182075
10.3389/fpls.2019.01750
10.1016/j.fcr.2009.10.016
10.1016/j.compag.2020.105731
10.1016/j.sjbs.2017.01.024
10.1007/s10681-019-2439-9
10.3390/rs12193237
10.3390/rs12060906
10.3390/s18082674
10.1002/aps3.11371
10.1016/j.biosystemseng.2015.10.003
10.1016/j.compag.2020.105791
10.3390/s19204363
10.2134/agronj2000.924780x
10.3390/agriculture10080348
10.1016/j.compag.2018.07.016
10.1016/j.compag.2019.105197
10.18227/1982-8470ragro.v5i1.418
10.1016/j.compag.2017.03.010
10.1016/j.rse.2019.04.016
10.3390/rs11232797
10.1016/j.rse.2019.111410
10.1117/1.JRS.11.042609
10.1109/TPAMI.2016.2644615
10.2135/cropsci2016.05.0343
10.1016/j.compag.2018.05.012
10.1016/j.compag.2015.11.018
10.3390/rs11242925
10.1016/j.isprsjprs.2019.12.012
10.1371/journal.pone.0156571
10.1016/j.rse.2016.10.005
10.1038/nature14539
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs13224632
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Agriculture
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_4a9e1fabf11b42c19ae48cb439e10211
10_3390_rs13224632
GeographicLocations Brazil
GeographicLocations_xml – name: Brazil
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c394t-b541806d7a17315f886d768218e7b151e16d47297ad919e61ffe0e55ac79407c3
IEDL.DBID 8FG
ISSN 2072-4292
IngestDate Wed Aug 27 01:17:41 EDT 2025
Fri Sep 05 11:53:56 EDT 2025
Fri Jul 25 09:31:01 EDT 2025
Tue Jul 01 01:58:55 EDT 2025
Thu Apr 24 23:10:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-b541806d7a17315f886d768218e7b151e16d47297ad919e61ffe0e55ac79407c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0258-536X
0000-0002-9096-6866
0000-0002-8815-6653
0000-0002-8236-542X
0000-0002-9586-2943
0000-0001-6633-2903
0000-0001-8181-760X
0000-0002-8121-0119
0000-0002-4915-3185
0000-0002-9522-0342
0000-0002-7102-2077
OpenAccessLink https://www.proquest.com/docview/2602185140?pq-origsite=%requestingapplication%
PQID 2602185140
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_4a9e1fabf11b42c19ae48cb439e10211
proquest_miscellaneous_2636518570
proquest_journals_2602185140
crossref_citationtrail_10_3390_rs13224632
crossref_primary_10_3390_rs13224632
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Morrison (ref_36) 2000; 92
Ramos (ref_13) 2017; 137
Khanal (ref_24) 2018; 153
Masuka (ref_35) 2017; 57
ref_10
Badrinarayanan (ref_26) 2017; 39
Khaki (ref_1) 2020; 10
Vani (ref_9) 2015; 188
Amatya (ref_8) 2015; 146
Chlingaryan (ref_16) 2018; 151
Jin (ref_30) 2019; 228
ref_19
Pantazi (ref_11) 2016; 121
Ball (ref_27) 2017; 11
ref_17
Su (ref_14) 2017; 24
Sakamoto (ref_18) 2019; 160
Todeschini (ref_38) 2019; 215
Yu (ref_20) 2016; 187
Barbosa (ref_32) 2020; 170
Eugenio (ref_40) 2020; 20
Nevavuori (ref_31) 2019; 163
Xie (ref_39) 2020; 178
Finoto (ref_34) 2011; 5
ref_23
ref_22
ref_21
Baio (ref_2) 2020; 18
LeCun (ref_33) 2015; 521
Jin (ref_37) 2010; 115
ref_3
Ramos (ref_15) 2020; 178
ref_29
ref_28
Hunt (ref_12) 2019; 233
ref_5
Soltis (ref_25) 2020; 8
ref_4
ref_7
ref_6
References_xml – volume: 20
  start-page: 100397
  year: 2020
  ident: ref_40
  article-title: Estimation of soybean yield from machine learning techniques and multispectral RPAS imagery
  publication-title: Remote Sens. Appl. Soc. Environ.
– ident: ref_28
  doi: 10.3390/s20174802
– volume: 188
  start-page: 128
  year: 2015
  ident: ref_9
  article-title: Prediction of sugar yields during hydrolysis of lignocellulosic biomass using artificial neural network modeling
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.01.083
– ident: ref_21
  doi: 10.3390/agronomy10111741
– ident: ref_29
  doi: 10.1109/ICIP.2017.8297010
– volume: 163
  start-page: 104859
  year: 2019
  ident: ref_31
  article-title: Crop yield prediction with deep convolutional neural networks
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.104859
– ident: ref_6
  doi: 10.3390/rs11182075
– volume: 10
  start-page: 1750
  year: 2020
  ident: ref_1
  article-title: A CNN-RNN Framework for Crop Yield Prediction
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.01750
– volume: 115
  start-page: 116
  year: 2010
  ident: ref_37
  article-title: Agronomic and physiological contributions to the yield improvement of soybean cultivars released from 1950 to 2006 in Northeast China
  publication-title: Field Crop. Res.
  doi: 10.1016/j.fcr.2009.10.016
– volume: 178
  start-page: 105731
  year: 2020
  ident: ref_39
  article-title: A review on plant high-throughput phenotyping traits using UAV-based sensors
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105731
– volume: 24
  start-page: 537
  year: 2017
  ident: ref_14
  article-title: Support vector machine-based open crop model (SBOCM): Case of rice production in China
  publication-title: Saudi J. Biol. Sci.
  doi: 10.1016/j.sjbs.2017.01.024
– volume: 215
  start-page: 124
  year: 2019
  ident: ref_38
  article-title: Soybean genetic progress in South Brazil: Physiological, phenological and agronomic traits
  publication-title: Euphytica
  doi: 10.1007/s10681-019-2439-9
– ident: ref_4
  doi: 10.3390/rs12193237
– ident: ref_7
  doi: 10.3390/rs12060906
– ident: ref_17
  doi: 10.3390/s18082674
– volume: 8
  start-page: e11371
  year: 2020
  ident: ref_25
  article-title: Plants meet machines: Prospects in machine learning for plant biology
  publication-title: Appl. Plant Sci.
  doi: 10.1002/aps3.11371
– volume: 146
  start-page: 3
  year: 2015
  ident: ref_8
  article-title: Detection of cherry tree branches with full foliage in planar architecture for automated sweet-cherry harvesting
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2015.10.003
– volume: 178
  start-page: 105791
  year: 2020
  ident: ref_15
  article-title: A random forest ranking approach to predict yield in maize with uav-based vegetation spectral indices
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105791
– ident: ref_19
  doi: 10.3390/s19204363
– volume: 92
  start-page: 780
  year: 2000
  ident: ref_36
  article-title: Agronomic Changes from 58 Years of Genetic Improvement of Short-Season Soybean Cultivars in Canada
  publication-title: Agron. J.
  doi: 10.2134/agronj2000.924780x
– ident: ref_23
  doi: 10.3390/agriculture10080348
– volume: 153
  start-page: 213
  year: 2018
  ident: ref_24
  article-title: Integration of high resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.07.016
– volume: 170
  start-page: 105197
  year: 2020
  ident: ref_32
  article-title: Modeling yield response to crop management using convolutional neural networks
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.105197
– volume: 5
  start-page: 44
  year: 2011
  ident: ref_34
  article-title: Efeito da aplicação de fungicida sobre caracteres agronômicos e severidade das doenças de final de ciclo na cultura da soja
  publication-title: Rev. Agro@Mbiente On-Line
  doi: 10.18227/1982-8470ragro.v5i1.418
– volume: 18
  start-page: 100318
  year: 2020
  ident: ref_2
  article-title: UAV-multispectral and vegetation indices in soybean grain yield prediction based on in situ observation
  publication-title: Remote Sens. Appl. Soc. Environ.
– volume: 137
  start-page: 9
  year: 2017
  ident: ref_13
  article-title: Automatic fruit count on coffee branches using computer vision
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.03.010
– volume: 228
  start-page: 115
  year: 2019
  ident: ref_30
  article-title: Smallholder maize area and yield mapping at national scales with Google Earth Engine
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.04.016
– ident: ref_5
  doi: 10.3390/rs11232797
– volume: 233
  start-page: 111410
  year: 2019
  ident: ref_12
  article-title: High resolution wheat yield mapping using Sentinel-2
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111410
– volume: 11
  start-page: 042609
  year: 2017
  ident: ref_27
  article-title: Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.11.042609
– volume: 39
  start-page: 2481
  year: 2017
  ident: ref_26
  article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– volume: 57
  start-page: 168
  year: 2017
  ident: ref_35
  article-title: Gains in Maize Genetic Improvement in Eastern and Southern Africa: I. CIMMYT Hybrid Breeding Pipeline
  publication-title: Crop. Sci.
  doi: 10.2135/cropsci2016.05.0343
– volume: 151
  start-page: 61
  year: 2018
  ident: ref_16
  article-title: Machine Learning Approaches for Crop Yield Prediction and Nitrogen Status Estimation in Precision Agriculture: A Review
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.05.012
– volume: 121
  start-page: 57
  year: 2016
  ident: ref_11
  article-title: Wheat yield prediction using machine learning and advanced sensing techniques
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2015.11.018
– ident: ref_3
  doi: 10.3390/rs11242925
– volume: 160
  start-page: 208
  year: 2019
  ident: ref_18
  article-title: Incorporating environmental variables into a MODIS-based crop yield estimation method for United States corn and soybeans through the use of a random forest regression algorithm
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.12.012
– ident: ref_10
  doi: 10.1371/journal.pone.0156571
– ident: ref_22
– volume: 187
  start-page: 91
  year: 2016
  ident: ref_20
  article-title: Development of methods to improve soybean yield estimation and predict plant maturity with an unmanned aerial vehicle based platform
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.10.005
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_33
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
SSID ssj0000331904
Score 2.5319552
Snippet In soybean, there is a lack of research aiming to compare the performance of machine learning (ML) and deep learning (DL) methods to predict more than one...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4632
SubjectTerms Agricultural production
Agriculture
Agronomic crops
Agronomy
Artificial intelligence
Band spectra
Computer applications
Corn
Crop yield
Crops
Cultivars
data collection
Decision making
Deep learning
deep neural network
Embedded sensors
Farmers
field experimentation
Genotypes
Grain
grain yield
Growing season
Learning algorithms
Machine learning
model validation
Multilayers
multispectral remote sensing data
Neural networks
Performance evaluation
plant height
Precision agriculture
prediction
regression analysis
Regularization
Remote sensing
Remote sensing systems
Seasons
Sensors
shallow learner
Soybeans
Spectral bands
Support vector machines
Unmanned aerial vehicles
Variables
Vegetation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBVhL-2ltElLtk2CQnMprFnJlr9y23STLoGEQrOwOZmRNW4OxQ67zmHv_eGdkZ3NlhR6yU3YYxDSSDPPGr0nxEmKVRpDqoOkQhMY2huDvCxt4JyDMANlndc6vLpOZnNzuYgXW1JfXBPW0QN3Azc2kKOuwFZaWxOWOgc0WWkpjiKrUnvgQ2FsC0z5PTgi11Km4yONCNePlyvGXSaJwr8ikCfqf7YP--By8Va86bNCOel6807sYL0rXvUC5XfrPfH7-5JPVLhGWU5hvZJtI6-Yk5OS6JFk5aFWzvxfzpGE2slvrPwgb7k8TVLjR7O2CPWpnNBXXD2J3mqKeC97htWfctLTi0tfRiD91Vx_EXNJXZtCC-_F_OL85uss6AUUgjLKTRvY2OhMJS4FnUY6rrKM2klGUR1TS6EedeIMZdcpuFznmOiqQoVxDCWtUpWW0QcxqJsa94WkRBEUglKWAAiBHADtQmszE2oXIeRD8eVxUIuyZxdnkYtfBaEMnoDiaQKG4vPG9r7j1Pin1RnPzcaCebD9A_KOoveO4n_eMRQHjzNb9ItzVRCEoyGgTFENxfHmNS0rPiuBGpsHtomSmHmy1MeX6Mcn8TrkYhh_ifFADNrlAx5SNtPaI--4fwBTrPGp
  priority: 102
  providerName: Directory of Open Access Journals
Title Predicting Days to Maturity, Plant Height, and Grain Yield in Soybean: A Machine and Deep Learning Approach Using Multispectral Data
URI https://www.proquest.com/docview/2602185140
https://www.proquest.com/docview/2636518570
https://doaj.org/article/4a9e1fabf11b42c19ae48cb439e10211
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ADMLS
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: 8FG
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagPQAHBAXEQlkZwQWpUe3EeXFBKdvtCrFVRalUTpEfk-WAkiWbHvbOD2fG690KgTjFSiZR5LE9D4-_j7G3OTR5qnMZZQ2oSOHaGJXWmsg5p-NCC-M81-H8PJtdqU_X6XVIuK1CWeV2TfQLtess5ciP0e9Ga4TmXXxY_oyINYp2VwOFxl22L2McSXRSfHq2y7GIBAeYUBtU0gSj--N-RdGXypL4Dzvk4fr_Wo29iZk-Yg-Db8irjTIfszvQHrAH1aIP-BhwwO4F0vLv6yfs10VPuyxUt8wner3iQ8fnhNOJjvURJzaigc985vOI69bxM2KD4N-oZI1j47JbG9Dte17hW1RRCV5qArDkAXV1wasAOc59aQH3x3X94cwef3SiB_2UXU1Pv36cRYFUIbJJqYbIpEoWInO5lnki06YosJ0V2LeQGzT_IDOn0OPOtStlCZlsGhCQptrizBW5TZ6xvbZr4Tnj6DxqAVoIg0EJBj5aSxcbU6hYugR0OWLvtl1c24A4TsQXP2qMPEgd9a06RuzNTna5wdn4p9QJaWonQdjY_kbXL-ow1WqlS5CNNo2URsVWlhpUYQ16XkA85nLEDrd6rsOEXdW3w2vEXu8e41Sj_RPdQndDMkmWEnaWePH_T7xk92MqffFHFg_Z3tDfwCv0XQYz9gN0zParyfzzJV5PTs8vvox9JuA39srxig
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKORQOCAqIhQJGwAGpUe3YeSEhtLBst7RbIdFK7SnY8WQ5oGTJpkJ75_fwG5nxJlshELfeomRiRZnxPOzx9zH2IoEyiUwig7gEHWj0jUFWFDZwzpkwNcI6z3U4PY4np_rjWXS2wX71Z2GorbL3id5Ru7qgNfI9zLsxGmF4F2_n3wNijaLd1Z5CY2UWh7D8gSXb4s3BCPX7MgzHH07eT4KOVSAoVKbbwEZapiJ2iZGJklGZpngdpzg4JBbjH8jYaUw5E-MymUEsyxIERJEp0HRFUigc9xq7rpVShNWfjvfXazpCoUELvUJBVSoTe82Cqj0dq_CPuOfpAf7y_j6kjW-zW10uyocr47nDNqDaZjeHs6bD44BtttWRpH9d3mU_PzW0q0N90nxklgve1nxKuKCYyO9yYj9q-cSvtO5yUzm-T-wT_Jxa5DhefK6XFkz1mg_xLergBC81ApjzDuV1xocdxDn3rQzcHw_2h0Eb_NCRac09dnolv_s-26zqCh4wjsmqEWCEsFgEYaFljHShtakOpVNgsgF71f_ivOgQzolo41uOlQ6pI79Ux4A9X8vOV7ge_5R6R5paSxAWt79RN7O8m9q5NhnI0thSSqvDQmYGdFpYzPSAeNPlgO30es47B7HIL815wJ6tH-PUpv0aU0F9QTIqjgirSzz8_xBP2dbkZHqUHx0cHz5iN0Jqu_HHJXfYZttcwGPMm1r7xBsrZ1-uenb8BkbzKHg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVOJxQFBABAosAg5ItbJrr19IFUpJQ0ppFAGVysnsesfhgJzguEK58-v4VcxsNqkQiFtvlj1-yDO7M7M7832MPU-hSmOdyiCpQAUK58YgL0sTWGt1mGlhrOM6PBkno1P17iw-22K_1r0wVFa5nhPdRG1nJa2R9zDuRm-E7l30Kl8WMRkMX8-_B8QgRTutazoN7WkW7L6DG_NNHsew_IHp3GL_aIC6fxGGw8NPb0aBZxwIyihXbWBiJTOR2FTLNJJxlWV4nGT4YkgN-kaQiVUYjqba5jKHRFYVCIhjXaJZi7SM8LlX2HZK_aIdtn1wOJ582Kz4iAjNXagVRmoU5aLXLCgXVEkU_uEVHXnAX77BObzhLXbTR6q8vzKt22wL6h12oz9tPFoH7LBrnkL96_IO-zlpaM-Hqqj5QC8XvJ3xE0INxTB_jxM3UstHbh12j-va8rfETcE_UwEdx4OPs6UBXb_ifbyL6jvBSQ0A5txjwE553wOgc1fowF3zsGsVbfBDB7rVd9nppfzwe6xTz2q4zziGslqAFsJgioRpmNbShsZkKpQ2Ap132cv1Ly5Kj39ONBzfCsyDSB3FhTq67NlGdr5C_fin1AFpaiNBSN3uxKyZFn7gF0rnICttKimNCkuZa1BZaTAOBGJVl122u9Zz4aePRXFh7F32dHMZBz7t5ugaZuckEyUxIXmJB_9_xBN2FUdK8f5ofPyQXQ-pJsf1Uu6yTtucwyMMqlrz2FsrZ18ue4D8Bp4WM1I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Days+to+Maturity%2C+Plant+Height%2C+and+Grain+Yield+in+Soybean%3A+A+Machine+and+Deep+Learning+Approach+Using+Multispectral+Data&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Teodoro%2C+Paulo+Eduardo&rft.au=Larissa+Pereira+Ribeiro+Teodoro&rft.au=F%C3%A1bio+Henrique+Rojo+Baio&rft.au=Carlos+Antonio+da+Silva+Junior&rft.date=2021-11-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=13&rft.issue=22&rft.spage=4632&rft_id=info:doi/10.3390%2Frs13224632&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon