A degenerate migration-consumption model in domains of arbitrary dimension
In a smoothly bounded convex domain with ≥ 1, a no-flux initial-boundary value problem for is considered under the assumption that near the origin, the function suitably generalizes the prototype given by By means of separate approaches, it is shown that in both cases ∈ (0, 1) and ∈ [1, 2] some glob...
Saved in:
Published in | Advanced nonlinear studies Vol. 24; no. 3; pp. 592 - 615 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
De Gruyter
01.07.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2169-0375 2169-0375 |
DOI | 10.1515/ans-2023-0131 |
Cover
Abstract | In a smoothly bounded convex domain
with
≥ 1, a no-flux initial-boundary value problem for
is considered under the assumption that near the origin, the function
suitably generalizes the prototype given by
By means of separate approaches, it is shown that in both cases
∈ (0, 1) and
∈ [1, 2] some global weak solutions exist which, inter alia, satisfy
with sup
) < ∞ if
∈ [1, 2]. |
---|---|
AbstractList | In a smoothly bounded convex domain
with
≥ 1, a no-flux initial-boundary value problem for
is considered under the assumption that near the origin, the function
suitably generalizes the prototype given by
By means of separate approaches, it is shown that in both cases
∈ (0, 1) and
∈ [1, 2] some global weak solutions exist which, inter alia, satisfy
with sup
) < ∞ if
∈ [1, 2]. In a smoothly bounded convex domain Ω⊂Rn ${\Omega}\subset {\mathbb{R}}^{n}$ with n ≥ 1, a no-flux initial-boundary value problem forut=Δuϕ(v),vt=Δv−uv, $$\begin{cases}_{t}={\Delta}\left(u\phi \left(v\right)\right),\quad \hfill \\ {v}_{t}={\Delta}v-uv,\quad \hfill \end{cases}$$ is considered under the assumption that near the origin, the function ϕ suitably generalizes the prototype given byϕ(ξ)=ξα,ξ∈[0,ξ0]. $$\phi \left(\xi \right)={\xi }^{\alpha },\qquad \xi \in \left[0,{\xi }_{0}\right].$$ By means of separate approaches, it is shown that in both cases α ∈ (0, 1) and α ∈ [1, 2] some global weak solutions exist which, inter alia, satisfyC(T)≔ess supt∈(0,T)∫Ωu(⋅,t)lnu(⋅,t)<∞for all T>0, $$C\left(T\right){:=}\underset{t\in \left(0,T\right)}{\text{ess\,sup}}{\int }_{{\Omega}}u\left(\cdot ,t\right)\mathrm{ln}u\left(\cdot ,t\right){< }\infty \qquad \text{for\,all\,}T{ >}0,$$ with supT>0 C(T) < ∞ if α ∈ [1, 2]. In a smoothly bounded convex domain Ω ⊂ R n ${\Omega}\subset {\mathbb{R}}^{n}$ with n ≥ 1, a no-flux initial-boundary value problem for u t = Δ u ϕ ( v ) , v t = Δ v − u v , $$\begin{cases}_{t}={\Delta}\left(u\phi \left(v\right)\right),\quad \hfill \\ {v}_{t}={\Delta}v-uv,\quad \hfill \end{cases}$$ is considered under the assumption that near the origin, the function ϕ suitably generalizes the prototype given by ϕ ( ξ ) = ξ α , ξ ∈ [ 0 , ξ 0 ] . $$\phi \left(\xi \right)={\xi }^{\alpha },\qquad \xi \in \left[0,{\xi }_{0}\right].$$ By means of separate approaches, it is shown that in both cases α ∈ (0, 1) and α ∈ [1, 2] some global weak solutions exist which, inter alia, satisfy C ( T ) ≔ ess sup t ∈ ( 0 , T ) ∫ Ω u ( ⋅ , t ) ln u ( ⋅ , t ) < ∞ for all T > 0 , $$C\left(T\right){:=}\underset{t\in \left(0,T\right)}{\text{ess\,sup}}{\int }_{{\Omega}}u\left(\cdot ,t\right)\mathrm{ln}u\left(\cdot ,t\right){< }\infty \qquad \text{for\,all\,}T{ >}0,$$ with sup T >0 C ( T ) < ∞ if α ∈ [1, 2]. |
Author | Winkler, Michael |
Author_xml | – sequence: 1 givenname: Michael surname: Winkler fullname: Winkler, Michael email: michael.winkler@math.uni-paderborn.de organization: Universität Paderborn, Institut für Mathematik, 33098 Paderborn, Germany |
BookMark | eNp1kM1qHDEQhEVwILbjY-7zAhPrpzWzIidjktjB4It9Fi2pZ9EyIxlpluC3t9YbQjBxX7poqormO2MnKSdi7IvgX4UW-hJT7SWXqudCiQ_sVIrB9FyN-uQf_Yld1LrjbcBI0PqU_brqAm0pUcGVuiVu24459T6nul-eDrpbcqC5i6kLecGYapenDouLa8Hy3IW4UKrN95l9nHCudPFnn7PHH98frm_6u_uft9dXd71XBtYenVNgwghSEziYpokmBBwAwSA3OGgvMQyjliAGB5wQiG-cpEGNLgijztntsTdk3NmnEpf2hs0Y7eshl63FskY_kxUIgHoMQaFpTXrjaePVYDxMDrXjras_dvmSay00_e0T3B642sbVHrjaA9fmV2_8Pq6vxBqMOL-b-nZM_cZ5pdKAl_1zE3aX9yU1Vv_PSVDaSPUCuAqSnw |
CitedBy_id | crossref_primary_10_1007_s00245_024_10215_5 crossref_primary_10_1016_j_nonrwa_2024_104314 crossref_primary_10_1007_s00033_025_02433_w crossref_primary_10_1007_s00033_024_02303_x crossref_primary_10_1007_s00033_025_02450_9 crossref_primary_10_1016_j_nonrwa_2024_104174 crossref_primary_10_1007_s00028_024_01029_7 crossref_primary_10_3934_dcdsb_2025007 crossref_primary_10_1016_j_aml_2024_109327 |
Cites_doi | 10.1093/imammb/dqv030 10.1016/0022-5193(71)90050-6 10.1007/BF00249679 10.1016/j.jde.2020.04.001 10.1016/j.jtbi.2013.05.033 10.1142/S1664360722500126 10.1016/j.physa.2013.07.022 10.1088/1361-6544/aaf513 10.1088/1361-6544/ace22e 10.1007/s00526-021-01943-5 10.1016/j.na.2022.112987 10.3934/dcdsb.2022009 10.1112/jlms.12420 10.1063/1.5061738 10.1137/S0036139995288976 10.4310/CMS.2023.v21.n2.a1 10.4171/aihpc/73 10.1080/03605302.2011.591865 10.1103/PhysRevLett.108.198102 10.1006/jtbi.1997.0462 10.1126/science.1209042 10.1016/j.jde.2021.07.029 10.1007/s00033-020-1276-y 10.1017/prm.2020.38 10.4310/CMS.2023.v21.n6.a14 10.1142/S0218202517500282 10.1137/17M1144647 10.1007/s00033-021-01493-y 10.1016/0022-5193(70)90092-5 10.1007/s00526-021-02053-y 10.1007/s10440-021-00450-1 10.1088/1361-6544/ab9bae 10.3934/eect.2020040 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1515/ans-2023-0131 |
DatabaseName | CrossRef DOAJ - The Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-0375 |
EndPage | 615 |
ExternalDocumentID | oai_doaj_org_article_1a44a57dd3a940e58ce8c369c4fba5b0 10_1515_ans_2023_0131 10_1515_ans_2023_0131243592 |
GrantInformation_xml | – fundername: „Deutsche Forschungsgemeinschaft“ grantid: Project No. 462888149 |
GroupedDBID | 0R~ 23M 5GY AAGVJ AAJBH AAPJK AAQCX AAXCG ABAQN ABFKT ABJNI ABSOE ABYKJ ACEFL ACGFS ACZBO ADGQD ADJVZ AEICA AENEX AEQDQ AERZL AFBDD AFCXV AFYRI AHGSO AHVWV AKXKS ALMA_UNASSIGNED_HOLDINGS AMVHM ASYPN BAKPI BBCWN BCIFA CFGNV EBS GROUPED_DOAJ IY9 J9A O9- P2P QD8 SLJYH WTRAM AAYXX CITATION |
ID | FETCH-LOGICAL-c394t-abb349d7425e4b4fffefa4a64a49a09a65c2ad6752416b40ea4e08b2e637bd193 |
IEDL.DBID | DOA |
ISSN | 2169-0375 |
IngestDate | Wed Aug 27 01:20:05 EDT 2025 Tue Jul 01 01:37:05 EDT 2025 Thu Apr 24 23:12:27 EDT 2025 Sat Sep 06 16:59:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-abb349d7425e4b4fffefa4a64a49a09a65c2ad6752416b40ea4e08b2e637bd193 |
OpenAccessLink | https://doaj.org/article/1a44a57dd3a940e58ce8c369c4fba5b0 |
PageCount | 24 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1a44a57dd3a940e58ce8c369c4fba5b0 crossref_primary_10_1515_ans_2023_0131 crossref_citationtrail_10_1515_ans_2023_0131 walterdegruyter_journals_10_1515_ans_2023_0131243592 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Advanced nonlinear studies |
PublicationYear | 2024 |
Publisher | De Gruyter |
Publisher_xml | – name: De Gruyter |
References | 2024052110325260865_j_ans-2023-0131_ref_003 2024052110325260865_j_ans-2023-0131_ref_025 2024052110325260865_j_ans-2023-0131_ref_026 2024052110325260865_j_ans-2023-0131_ref_004 2024052110325260865_j_ans-2023-0131_ref_005 2024052110325260865_j_ans-2023-0131_ref_027 2024052110325260865_j_ans-2023-0131_ref_006 2024052110325260865_j_ans-2023-0131_ref_028 2024052110325260865_j_ans-2023-0131_ref_007 2024052110325260865_j_ans-2023-0131_ref_029 2024052110325260865_j_ans-2023-0131_ref_008 2024052110325260865_j_ans-2023-0131_ref_009 2024052110325260865_j_ans-2023-0131_ref_020 2024052110325260865_j_ans-2023-0131_ref_021 2024052110325260865_j_ans-2023-0131_ref_022 2024052110325260865_j_ans-2023-0131_ref_001 2024052110325260865_j_ans-2023-0131_ref_023 2024052110325260865_j_ans-2023-0131_ref_024 2024052110325260865_j_ans-2023-0131_ref_036 2024052110325260865_j_ans-2023-0131_ref_014 2024052110325260865_j_ans-2023-0131_ref_015 2024052110325260865_j_ans-2023-0131_ref_016 2024052110325260865_j_ans-2023-0131_ref_017 2024052110325260865_j_ans-2023-0131_ref_018 2024052110325260865_j_ans-2023-0131_ref_019 2024052110325260865_j_ans-2023-0131_ref_030 2024052110325260865_j_ans-2023-0131_ref_031 2024052110325260865_j_ans-2023-0131_ref_010 2024052110325260865_j_ans-2023-0131_ref_032 2024052110325260865_j_ans-2023-0131_ref_033 2024052110325260865_j_ans-2023-0131_ref_012 2024052110325260865_j_ans-2023-0131_ref_034 2024052110325260865_j_ans-2023-0131_ref_013 2024052110325260865_j_ans-2023-0131_ref_035 |
References_xml | – ident: 2024052110325260865_j_ans-2023-0131_ref_005 doi: 10.1093/imammb/dqv030 – ident: 2024052110325260865_j_ans-2023-0131_ref_016 doi: 10.1016/0022-5193(71)90050-6 – ident: 2024052110325260865_j_ans-2023-0131_ref_021 doi: 10.1007/BF00249679 – ident: 2024052110325260865_j_ans-2023-0131_ref_007 doi: 10.1016/j.jde.2020.04.001 – ident: 2024052110325260865_j_ans-2023-0131_ref_003 doi: 10.1016/j.jtbi.2013.05.033 – ident: 2024052110325260865_j_ans-2023-0131_ref_034 doi: 10.1142/S1664360722500126 – ident: 2024052110325260865_j_ans-2023-0131_ref_018 doi: 10.1016/j.physa.2013.07.022 – ident: 2024052110325260865_j_ans-2023-0131_ref_001 doi: 10.1088/1361-6544/aaf513 – ident: 2024052110325260865_j_ans-2023-0131_ref_033 doi: 10.1088/1361-6544/ace22e – ident: 2024052110325260865_j_ans-2023-0131_ref_008 doi: 10.1007/s00526-021-01943-5 – ident: 2024052110325260865_j_ans-2023-0131_ref_010 doi: 10.1016/j.na.2022.112987 – ident: 2024052110325260865_j_ans-2023-0131_ref_032 doi: 10.3934/dcdsb.2022009 – ident: 2024052110325260865_j_ans-2023-0131_ref_004 doi: 10.1112/jlms.12420 – ident: 2024052110325260865_j_ans-2023-0131_ref_029 doi: 10.1063/1.5061738 – ident: 2024052110325260865_j_ans-2023-0131_ref_026 doi: 10.1137/S0036139995288976 – ident: 2024052110325260865_j_ans-2023-0131_ref_019 doi: 10.4310/CMS.2023.v21.n2.a1 – ident: 2024052110325260865_j_ans-2023-0131_ref_035 doi: 10.4171/aihpc/73 – ident: 2024052110325260865_j_ans-2023-0131_ref_030 doi: 10.1080/03605302.2011.591865 – ident: 2024052110325260865_j_ans-2023-0131_ref_006 doi: 10.1103/PhysRevLett.108.198102 – ident: 2024052110325260865_j_ans-2023-0131_ref_014 doi: 10.1006/jtbi.1997.0462 – ident: 2024052110325260865_j_ans-2023-0131_ref_022 doi: 10.1126/science.1209042 – ident: 2024052110325260865_j_ans-2023-0131_ref_012 doi: 10.1016/j.jde.2021.07.029 – ident: 2024052110325260865_j_ans-2023-0131_ref_023 doi: 10.1007/s00033-020-1276-y – ident: 2024052110325260865_j_ans-2023-0131_ref_025 doi: 10.1017/prm.2020.38 – ident: 2024052110325260865_j_ans-2023-0131_ref_017 doi: 10.4310/CMS.2023.v21.n6.a14 – ident: 2024052110325260865_j_ans-2023-0131_ref_027 doi: 10.1142/S0218202517500282 – ident: 2024052110325260865_j_ans-2023-0131_ref_013 doi: 10.1137/17M1144647 – ident: 2024052110325260865_j_ans-2023-0131_ref_020 doi: 10.1007/s00033-021-01493-y – ident: 2024052110325260865_j_ans-2023-0131_ref_015 doi: 10.1016/0022-5193(70)90092-5 – ident: 2024052110325260865_j_ans-2023-0131_ref_036 doi: 10.1007/s00526-021-02053-y – ident: 2024052110325260865_j_ans-2023-0131_ref_028 – ident: 2024052110325260865_j_ans-2023-0131_ref_009 doi: 10.1007/s10440-021-00450-1 – ident: 2024052110325260865_j_ans-2023-0131_ref_031 doi: 10.1088/1361-6544/ab9bae – ident: 2024052110325260865_j_ans-2023-0131_ref_024 doi: 10.3934/eect.2020040 |
SSID | ssj0000492455 |
Score | 2.3893082 |
Snippet | In a smoothly bounded convex domain
with
≥ 1, a no-flux initial-boundary value problem for
is considered under the assumption that near the origin, the... In a smoothly bounded convex domain Ω ⊂ R n ${\Omega}\subset {\mathbb{R}}^{n}$ with n ≥ 1, a no-flux initial-boundary value problem for u t = Δ u ϕ ( v ) , v t... In a smoothly bounded convex domain Ω⊂Rn ${\Omega}\subset {\mathbb{R}}^{n}$ with n ≥ 1, a no-flux initial-boundary value problem forut=Δuϕ(v),vt=Δv−uv,... |
SourceID | doaj crossref walterdegruyter |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 592 |
SubjectTerms | 35K51 35K57 (secondary) 35K65 (primary) 35Q92 92C17 a priori estimate chemotaxis degenerate diffusion |
Title | A degenerate migration-consumption model in domains of arbitrary dimension |
URI | https://www.degruyter.com/doi/10.1515/ans-2023-0131 https://doaj.org/article/1a44a57dd3a940e58ce8c369c4fba5b0 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA1SL_ZQ_MT6RQ7iydC4O1k3xyrWUlAPKnhbks2sVGwr7Yr4751kt1JF8eJ1ySbLmyQzb5N5w9ihKmgFGbAiVcoJiGQuLEYgYjxB6XwabUikvbpO-vcweFAPC6W-_J2wSh64Aq5DHYFRp87FRoNEleaY5nGicyisUTawdanlApl6quLeiAaqRTXJZ3do4xe-VLjwAjNfnFDQ6m-y1ls4n3b4OH19L-fnocHN9FZZq44Pebf6rjW2hON11lxQDdxggy6n14NcdIl8NHysjCjykE0ZtgAeCtzw4Zi7yYi4_4xPCm6mdhiS7Lnzkv7-N9kmu-9d3J33RV0SQeSxhlIYa2PQjvisQrBQFAUWBkwCBrSR2iQqj4wjEkCOObGElwGUqY0wiU-to2BtizXGkzFuM67TIpyRYUQ2kWiJZ1jUJ6mMIVXWxG12PMcoy2u9cF-24jnzvIEgzQjSzEOaeUjb7Oiz-UsllPFbwzMP-Gcjr28dHpDVs9rq2V9WbzP4Zq6sXnuzn0eNKCzU0c5_jL3LVqhbqO7s7rFGOX3FfYpMSnvAlrv9y9ubgzAZPwD-iONs |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5Be4AeKp5iefqAOGFtmozT-LggylLacqCVuFl-TJaVugnazQrx7xk7aVReF67JWLZmbM_DM98AvFQ1nyCLTlZKBYl55qWjHGVBB5SFWEabCmlPz8r5BR5_UVfZhJshrTLQYr390fUIqdPQ-m0MlI1YA6yBp3yNy9j4W0a4mOnXbnV5E3bLqkT2v3Zn8_efP42BFjaBc55zwNf8Y_Av-ijB9u_B_vf0VD2u45rGOboD-4OpKGa9bO_CDWruwd41AMH7cDwTPDwhR3ckVstFL0_pU2Flug1E6nUjlo0I7coum41oa2HXbpnq7UWI6P4xYvYALo7enb-dy6E7gvSFxk5a5wrUgV1bReiwrmuqLdoSLWqbaVsqn9vA_gDr6NJhRhYpq1xOZXHoAtttD2GnaRt6BEJXdXouo5zFk5Fjl8ORPqiyAivlbDGB11c8Mn6ADo8dLC5NdCGYpYZZaiJLTWTpBF6N5N96zIx_Eb6JDB-JItR1-tCuF2Y4OYZ3Elp1GEJhNS9OVZ4qX5TaY-2sctkE8DdxmeEYbv4-a84Wos4f_9-wF3Brfn56Yk4-nH18Arf5L_bJu09hp1tv6RmbKJ17PmzCn282464 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BKyF6qHiKpTx8QJywNk3GbnxcHstSoCBBpd4sP1cr0aTaZoX67xk7IVpeF67JjGzN2J6HPd8APBORdpBBy2shPMeycNyGEnkVDkPhUxltLqT9eCIXp3h8Js62qvjTs0ofluvNVdcjpE596zYpUTZiDZAFntIxzlPjb57gYqYXPl6HXSlrSSt9d7Z4--XTmGchD7ikIQd4zT94fzFHGbV_D_a_55vqcRpbBmd-C_YHT5HNetXehmuhuQN7W_iBd-F4xog9A0d3gZ2vlr06uct1lfkwYLnVDVs1zLfnZtVcsjYys7arXG7PfAL3Twmze3A6f_P11YIPzRG4qxR23FhbofIU2YqAFmOMIRo0Eg0qUygjhSuNp3CATLS0WASDoahtGWR1ZD25bfdhp2mb8ACYqmO-LQslaacIliIOG9RhXVRYC2uqCbz4KSPtBuTw1MDim04RBIlUk0h1EqlOIp3A85H8oofM-BfhyyTwkSghXecP7Xqph42jaSGhEUfeV0bR5ETtQu0qqRxGa4QtJoC_qUsPu_Dy76OW5CCq8uH_sT2FG59fz_WHdyfvD-Am_cT-6e4j2OnWm_CYHJTOPhnW4A8fC-LU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+degenerate+migration-consumption+model+in+domains+of+arbitrary+dimension&rft.jtitle=Advanced+nonlinear+studies&rft.au=Winkler%2C+Michael&rft.date=2024-07-01&rft.issn=2169-0375&rft.eissn=2169-0375&rft.volume=24&rft.issue=3&rft.spage=592&rft.epage=615&rft_id=info:doi/10.1515%2Fans-2023-0131&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_ans_2023_0131 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-0375&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-0375&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-0375&client=summon |