A degenerate migration-consumption model in domains of arbitrary dimension

In a smoothly bounded convex domain with ≥ 1, a no-flux initial-boundary value problem for is considered under the assumption that near the origin, the function suitably generalizes the prototype given by By means of separate approaches, it is shown that in both cases ∈ (0, 1) and ∈ [1, 2] some glob...

Full description

Saved in:
Bibliographic Details
Published inAdvanced nonlinear studies Vol. 24; no. 3; pp. 592 - 615
Main Author Winkler, Michael
Format Journal Article
LanguageEnglish
Published De Gruyter 01.07.2024
Subjects
Online AccessGet full text
ISSN2169-0375
2169-0375
DOI10.1515/ans-2023-0131

Cover

Abstract In a smoothly bounded convex domain with ≥ 1, a no-flux initial-boundary value problem for is considered under the assumption that near the origin, the function suitably generalizes the prototype given by By means of separate approaches, it is shown that in both cases ∈ (0, 1) and ∈ [1, 2] some global weak solutions exist which, inter alia, satisfy with sup ) < ∞ if ∈ [1, 2].
AbstractList In a smoothly bounded convex domain with ≥ 1, a no-flux initial-boundary value problem for is considered under the assumption that near the origin, the function suitably generalizes the prototype given by By means of separate approaches, it is shown that in both cases ∈ (0, 1) and ∈ [1, 2] some global weak solutions exist which, inter alia, satisfy with sup ) < ∞ if ∈ [1, 2].
In a smoothly bounded convex domain Ω⊂Rn ${\Omega}\subset {\mathbb{R}}^{n}$ with n ≥ 1, a no-flux initial-boundary value problem forut=Δuϕ(v),vt=Δv−uv, $$\begin{cases}_{t}={\Delta}\left(u\phi \left(v\right)\right),\quad \hfill \\ {v}_{t}={\Delta}v-uv,\quad \hfill \end{cases}$$ is considered under the assumption that near the origin, the function ϕ suitably generalizes the prototype given byϕ(ξ)=ξα,ξ∈[0,ξ0]. $$\phi \left(\xi \right)={\xi }^{\alpha },\qquad \xi \in \left[0,{\xi }_{0}\right].$$ By means of separate approaches, it is shown that in both cases α ∈ (0, 1) and α ∈ [1, 2] some global weak solutions exist which, inter alia, satisfyC(T)≔ess supt∈(0,T)∫Ωu(⋅,t)ln⁡u(⋅,t)<∞for all T>0, $$C\left(T\right){:=}\underset{t\in \left(0,T\right)}{\text{ess\,sup}}{\int }_{{\Omega}}u\left(\cdot ,t\right)\mathrm{ln}u\left(\cdot ,t\right){< }\infty \qquad \text{for\,all\,}T{ >}0,$$ with supT>0 C(T) < ∞ if α ∈ [1, 2].
In a smoothly bounded convex domain Ω ⊂ R n ${\Omega}\subset {\mathbb{R}}^{n}$ with n ≥ 1, a no-flux initial-boundary value problem for u t = Δ u ϕ ( v ) , v t = Δ v − u v , $$\begin{cases}_{t}={\Delta}\left(u\phi \left(v\right)\right),\quad \hfill \\ {v}_{t}={\Delta}v-uv,\quad \hfill \end{cases}$$ is considered under the assumption that near the origin, the function ϕ suitably generalizes the prototype given by ϕ ( ξ ) = ξ α , ξ ∈ [ 0 , ξ 0 ] . $$\phi \left(\xi \right)={\xi }^{\alpha },\qquad \xi \in \left[0,{\xi }_{0}\right].$$ By means of separate approaches, it is shown that in both cases α ∈ (0, 1) and α ∈ [1, 2] some global weak solutions exist which, inter alia, satisfy C ( T ) ≔ ess sup t ∈ ( 0 , T ) ∫ Ω u ( ⋅ , t ) ln ⁡ u ( ⋅ , t ) < ∞ for all  T > 0 , $$C\left(T\right){:=}\underset{t\in \left(0,T\right)}{\text{ess\,sup}}{\int }_{{\Omega}}u\left(\cdot ,t\right)\mathrm{ln}u\left(\cdot ,t\right){< }\infty \qquad \text{for\,all\,}T{ >}0,$$ with sup T >0 C ( T ) < ∞ if α ∈ [1, 2].
Author Winkler, Michael
Author_xml – sequence: 1
  givenname: Michael
  surname: Winkler
  fullname: Winkler, Michael
  email: michael.winkler@math.uni-paderborn.de
  organization: Universität Paderborn, Institut für Mathematik, 33098 Paderborn, Germany
BookMark eNp1kM1qHDEQhEVwILbjY-7zAhPrpzWzIidjktjB4It9Fi2pZ9EyIxlpluC3t9YbQjBxX7poqormO2MnKSdi7IvgX4UW-hJT7SWXqudCiQ_sVIrB9FyN-uQf_Yld1LrjbcBI0PqU_brqAm0pUcGVuiVu24459T6nul-eDrpbcqC5i6kLecGYapenDouLa8Hy3IW4UKrN95l9nHCudPFnn7PHH98frm_6u_uft9dXd71XBtYenVNgwghSEziYpokmBBwAwSA3OGgvMQyjliAGB5wQiG-cpEGNLgijztntsTdk3NmnEpf2hs0Y7eshl63FskY_kxUIgHoMQaFpTXrjaePVYDxMDrXjras_dvmSay00_e0T3B642sbVHrjaA9fmV2_8Pq6vxBqMOL-b-nZM_cZ5pdKAl_1zE3aX9yU1Vv_PSVDaSPUCuAqSnw
CitedBy_id crossref_primary_10_1007_s00245_024_10215_5
crossref_primary_10_1016_j_nonrwa_2024_104314
crossref_primary_10_1007_s00033_025_02433_w
crossref_primary_10_1007_s00033_024_02303_x
crossref_primary_10_1007_s00033_025_02450_9
crossref_primary_10_1016_j_nonrwa_2024_104174
crossref_primary_10_1007_s00028_024_01029_7
crossref_primary_10_3934_dcdsb_2025007
crossref_primary_10_1016_j_aml_2024_109327
Cites_doi 10.1093/imammb/dqv030
10.1016/0022-5193(71)90050-6
10.1007/BF00249679
10.1016/j.jde.2020.04.001
10.1016/j.jtbi.2013.05.033
10.1142/S1664360722500126
10.1016/j.physa.2013.07.022
10.1088/1361-6544/aaf513
10.1088/1361-6544/ace22e
10.1007/s00526-021-01943-5
10.1016/j.na.2022.112987
10.3934/dcdsb.2022009
10.1112/jlms.12420
10.1063/1.5061738
10.1137/S0036139995288976
10.4310/CMS.2023.v21.n2.a1
10.4171/aihpc/73
10.1080/03605302.2011.591865
10.1103/PhysRevLett.108.198102
10.1006/jtbi.1997.0462
10.1126/science.1209042
10.1016/j.jde.2021.07.029
10.1007/s00033-020-1276-y
10.1017/prm.2020.38
10.4310/CMS.2023.v21.n6.a14
10.1142/S0218202517500282
10.1137/17M1144647
10.1007/s00033-021-01493-y
10.1016/0022-5193(70)90092-5
10.1007/s00526-021-02053-y
10.1007/s10440-021-00450-1
10.1088/1361-6544/ab9bae
10.3934/eect.2020040
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1515/ans-2023-0131
DatabaseName CrossRef
DOAJ - The Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-0375
EndPage 615
ExternalDocumentID oai_doaj_org_article_1a44a57dd3a940e58ce8c369c4fba5b0
10_1515_ans_2023_0131
10_1515_ans_2023_0131243592
GrantInformation_xml – fundername: „Deutsche Forschungsgemeinschaft“
  grantid: Project No. 462888149
GroupedDBID 0R~
23M
5GY
AAGVJ
AAJBH
AAPJK
AAQCX
AAXCG
ABAQN
ABFKT
ABJNI
ABSOE
ABYKJ
ACEFL
ACGFS
ACZBO
ADGQD
ADJVZ
AEICA
AENEX
AEQDQ
AERZL
AFBDD
AFCXV
AFYRI
AHGSO
AHVWV
AKXKS
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ASYPN
BAKPI
BBCWN
BCIFA
CFGNV
EBS
GROUPED_DOAJ
IY9
J9A
O9-
P2P
QD8
SLJYH
WTRAM
AAYXX
CITATION
ID FETCH-LOGICAL-c394t-abb349d7425e4b4fffefa4a64a49a09a65c2ad6752416b40ea4e08b2e637bd193
IEDL.DBID DOA
ISSN 2169-0375
IngestDate Wed Aug 27 01:20:05 EDT 2025
Tue Jul 01 01:37:05 EDT 2025
Thu Apr 24 23:12:27 EDT 2025
Sat Sep 06 16:59:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-abb349d7425e4b4fffefa4a64a49a09a65c2ad6752416b40ea4e08b2e637bd193
OpenAccessLink https://doaj.org/article/1a44a57dd3a940e58ce8c369c4fba5b0
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_1a44a57dd3a940e58ce8c369c4fba5b0
crossref_primary_10_1515_ans_2023_0131
crossref_citationtrail_10_1515_ans_2023_0131
walterdegruyter_journals_10_1515_ans_2023_0131243592
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Advanced nonlinear studies
PublicationYear 2024
Publisher De Gruyter
Publisher_xml – name: De Gruyter
References 2024052110325260865_j_ans-2023-0131_ref_003
2024052110325260865_j_ans-2023-0131_ref_025
2024052110325260865_j_ans-2023-0131_ref_026
2024052110325260865_j_ans-2023-0131_ref_004
2024052110325260865_j_ans-2023-0131_ref_005
2024052110325260865_j_ans-2023-0131_ref_027
2024052110325260865_j_ans-2023-0131_ref_006
2024052110325260865_j_ans-2023-0131_ref_028
2024052110325260865_j_ans-2023-0131_ref_007
2024052110325260865_j_ans-2023-0131_ref_029
2024052110325260865_j_ans-2023-0131_ref_008
2024052110325260865_j_ans-2023-0131_ref_009
2024052110325260865_j_ans-2023-0131_ref_020
2024052110325260865_j_ans-2023-0131_ref_021
2024052110325260865_j_ans-2023-0131_ref_022
2024052110325260865_j_ans-2023-0131_ref_001
2024052110325260865_j_ans-2023-0131_ref_023
2024052110325260865_j_ans-2023-0131_ref_024
2024052110325260865_j_ans-2023-0131_ref_036
2024052110325260865_j_ans-2023-0131_ref_014
2024052110325260865_j_ans-2023-0131_ref_015
2024052110325260865_j_ans-2023-0131_ref_016
2024052110325260865_j_ans-2023-0131_ref_017
2024052110325260865_j_ans-2023-0131_ref_018
2024052110325260865_j_ans-2023-0131_ref_019
2024052110325260865_j_ans-2023-0131_ref_030
2024052110325260865_j_ans-2023-0131_ref_031
2024052110325260865_j_ans-2023-0131_ref_010
2024052110325260865_j_ans-2023-0131_ref_032
2024052110325260865_j_ans-2023-0131_ref_033
2024052110325260865_j_ans-2023-0131_ref_012
2024052110325260865_j_ans-2023-0131_ref_034
2024052110325260865_j_ans-2023-0131_ref_013
2024052110325260865_j_ans-2023-0131_ref_035
References_xml – ident: 2024052110325260865_j_ans-2023-0131_ref_005
  doi: 10.1093/imammb/dqv030
– ident: 2024052110325260865_j_ans-2023-0131_ref_016
  doi: 10.1016/0022-5193(71)90050-6
– ident: 2024052110325260865_j_ans-2023-0131_ref_021
  doi: 10.1007/BF00249679
– ident: 2024052110325260865_j_ans-2023-0131_ref_007
  doi: 10.1016/j.jde.2020.04.001
– ident: 2024052110325260865_j_ans-2023-0131_ref_003
  doi: 10.1016/j.jtbi.2013.05.033
– ident: 2024052110325260865_j_ans-2023-0131_ref_034
  doi: 10.1142/S1664360722500126
– ident: 2024052110325260865_j_ans-2023-0131_ref_018
  doi: 10.1016/j.physa.2013.07.022
– ident: 2024052110325260865_j_ans-2023-0131_ref_001
  doi: 10.1088/1361-6544/aaf513
– ident: 2024052110325260865_j_ans-2023-0131_ref_033
  doi: 10.1088/1361-6544/ace22e
– ident: 2024052110325260865_j_ans-2023-0131_ref_008
  doi: 10.1007/s00526-021-01943-5
– ident: 2024052110325260865_j_ans-2023-0131_ref_010
  doi: 10.1016/j.na.2022.112987
– ident: 2024052110325260865_j_ans-2023-0131_ref_032
  doi: 10.3934/dcdsb.2022009
– ident: 2024052110325260865_j_ans-2023-0131_ref_004
  doi: 10.1112/jlms.12420
– ident: 2024052110325260865_j_ans-2023-0131_ref_029
  doi: 10.1063/1.5061738
– ident: 2024052110325260865_j_ans-2023-0131_ref_026
  doi: 10.1137/S0036139995288976
– ident: 2024052110325260865_j_ans-2023-0131_ref_019
  doi: 10.4310/CMS.2023.v21.n2.a1
– ident: 2024052110325260865_j_ans-2023-0131_ref_035
  doi: 10.4171/aihpc/73
– ident: 2024052110325260865_j_ans-2023-0131_ref_030
  doi: 10.1080/03605302.2011.591865
– ident: 2024052110325260865_j_ans-2023-0131_ref_006
  doi: 10.1103/PhysRevLett.108.198102
– ident: 2024052110325260865_j_ans-2023-0131_ref_014
  doi: 10.1006/jtbi.1997.0462
– ident: 2024052110325260865_j_ans-2023-0131_ref_022
  doi: 10.1126/science.1209042
– ident: 2024052110325260865_j_ans-2023-0131_ref_012
  doi: 10.1016/j.jde.2021.07.029
– ident: 2024052110325260865_j_ans-2023-0131_ref_023
  doi: 10.1007/s00033-020-1276-y
– ident: 2024052110325260865_j_ans-2023-0131_ref_025
  doi: 10.1017/prm.2020.38
– ident: 2024052110325260865_j_ans-2023-0131_ref_017
  doi: 10.4310/CMS.2023.v21.n6.a14
– ident: 2024052110325260865_j_ans-2023-0131_ref_027
  doi: 10.1142/S0218202517500282
– ident: 2024052110325260865_j_ans-2023-0131_ref_013
  doi: 10.1137/17M1144647
– ident: 2024052110325260865_j_ans-2023-0131_ref_020
  doi: 10.1007/s00033-021-01493-y
– ident: 2024052110325260865_j_ans-2023-0131_ref_015
  doi: 10.1016/0022-5193(70)90092-5
– ident: 2024052110325260865_j_ans-2023-0131_ref_036
  doi: 10.1007/s00526-021-02053-y
– ident: 2024052110325260865_j_ans-2023-0131_ref_028
– ident: 2024052110325260865_j_ans-2023-0131_ref_009
  doi: 10.1007/s10440-021-00450-1
– ident: 2024052110325260865_j_ans-2023-0131_ref_031
  doi: 10.1088/1361-6544/ab9bae
– ident: 2024052110325260865_j_ans-2023-0131_ref_024
  doi: 10.3934/eect.2020040
SSID ssj0000492455
Score 2.3893082
Snippet In a smoothly bounded convex domain with ≥ 1, a no-flux initial-boundary value problem for is considered under the assumption that near the origin, the...
In a smoothly bounded convex domain Ω ⊂ R n ${\Omega}\subset {\mathbb{R}}^{n}$ with n ≥ 1, a no-flux initial-boundary value problem for u t = Δ u ϕ ( v ) , v t...
In a smoothly bounded convex domain Ω⊂Rn ${\Omega}\subset {\mathbb{R}}^{n}$ with n ≥ 1, a no-flux initial-boundary value problem forut=Δuϕ(v),vt=Δv−uv,...
SourceID doaj
crossref
walterdegruyter
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 592
SubjectTerms 35K51
35K57 (secondary)
35K65 (primary)
35Q92
92C17
a priori estimate
chemotaxis
degenerate diffusion
Title A degenerate migration-consumption model in domains of arbitrary dimension
URI https://www.degruyter.com/doi/10.1515/ans-2023-0131
https://doaj.org/article/1a44a57dd3a940e58ce8c369c4fba5b0
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA1SL_ZQ_MT6RQ7iydC4O1k3xyrWUlAPKnhbks2sVGwr7Yr4751kt1JF8eJ1ySbLmyQzb5N5w9ihKmgFGbAiVcoJiGQuLEYgYjxB6XwabUikvbpO-vcweFAPC6W-_J2wSh64Aq5DHYFRp87FRoNEleaY5nGicyisUTawdanlApl6quLeiAaqRTXJZ3do4xe-VLjwAjNfnFDQ6m-y1ls4n3b4OH19L-fnocHN9FZZq44Pebf6rjW2hON11lxQDdxggy6n14NcdIl8NHysjCjykE0ZtgAeCtzw4Zi7yYi4_4xPCm6mdhiS7Lnzkv7-N9kmu-9d3J33RV0SQeSxhlIYa2PQjvisQrBQFAUWBkwCBrSR2iQqj4wjEkCOObGElwGUqY0wiU-to2BtizXGkzFuM67TIpyRYUQ2kWiJZ1jUJ6mMIVXWxG12PMcoy2u9cF-24jnzvIEgzQjSzEOaeUjb7Oiz-UsllPFbwzMP-Gcjr28dHpDVs9rq2V9WbzP4Zq6sXnuzn0eNKCzU0c5_jL3LVqhbqO7s7rFGOX3FfYpMSnvAlrv9y9ubgzAZPwD-iONs
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5Be4AeKp5iefqAOGFtmozT-LggylLacqCVuFl-TJaVugnazQrx7xk7aVReF67JWLZmbM_DM98AvFQ1nyCLTlZKBYl55qWjHGVBB5SFWEabCmlPz8r5BR5_UVfZhJshrTLQYr390fUIqdPQ-m0MlI1YA6yBp3yNy9j4W0a4mOnXbnV5E3bLqkT2v3Zn8_efP42BFjaBc55zwNf8Y_Av-ijB9u_B_vf0VD2u45rGOboD-4OpKGa9bO_CDWruwd41AMH7cDwTPDwhR3ckVstFL0_pU2Flug1E6nUjlo0I7coum41oa2HXbpnq7UWI6P4xYvYALo7enb-dy6E7gvSFxk5a5wrUgV1bReiwrmuqLdoSLWqbaVsqn9vA_gDr6NJhRhYpq1xOZXHoAtttD2GnaRt6BEJXdXouo5zFk5Fjl8ORPqiyAivlbDGB11c8Mn6ADo8dLC5NdCGYpYZZaiJLTWTpBF6N5N96zIx_Eb6JDB-JItR1-tCuF2Y4OYZ3Elp1GEJhNS9OVZ4qX5TaY-2sctkE8DdxmeEYbv4-a84Wos4f_9-wF3Brfn56Yk4-nH18Arf5L_bJu09hp1tv6RmbKJ17PmzCn282464
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BKyF6qHiKpTx8QJywNk3GbnxcHstSoCBBpd4sP1cr0aTaZoX67xk7IVpeF67JjGzN2J6HPd8APBORdpBBy2shPMeycNyGEnkVDkPhUxltLqT9eCIXp3h8Js62qvjTs0ofluvNVdcjpE596zYpUTZiDZAFntIxzlPjb57gYqYXPl6HXSlrSSt9d7Z4--XTmGchD7ikIQd4zT94fzFHGbV_D_a_55vqcRpbBmd-C_YHT5HNetXehmuhuQN7W_iBd-F4xog9A0d3gZ2vlr06uct1lfkwYLnVDVs1zLfnZtVcsjYys7arXG7PfAL3Twmze3A6f_P11YIPzRG4qxR23FhbofIU2YqAFmOMIRo0Eg0qUygjhSuNp3CATLS0WASDoahtGWR1ZD25bfdhp2mb8ACYqmO-LQslaacIliIOG9RhXVRYC2uqCbz4KSPtBuTw1MDim04RBIlUk0h1EqlOIp3A85H8oofM-BfhyyTwkSghXecP7Xqph42jaSGhEUfeV0bR5ETtQu0qqRxGa4QtJoC_qUsPu_Dy76OW5CCq8uH_sT2FG59fz_WHdyfvD-Am_cT-6e4j2OnWm_CYHJTOPhnW4A8fC-LU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+degenerate+migration-consumption+model+in+domains+of+arbitrary+dimension&rft.jtitle=Advanced+nonlinear+studies&rft.au=Winkler%2C+Michael&rft.date=2024-07-01&rft.issn=2169-0375&rft.eissn=2169-0375&rft.volume=24&rft.issue=3&rft.spage=592&rft.epage=615&rft_id=info:doi/10.1515%2Fans-2023-0131&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_ans_2023_0131
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-0375&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-0375&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-0375&client=summon