Cohesion Intensive Deep Hashing for Remote Sensing Image Retrieval
Recently, the demand for remote sensing image retrieval is growing and attracting the interest of many researchers because of the increasing number of remote sensing images. Hashing, as a method of retrieving images, has been widely applied to remote sensing image retrieval. In order to improve hash...
Saved in:
| Published in | Remote sensing (Basel, Switzerland) Vol. 12; no. 1; p. 101 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.01.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2072-4292 2072-4292 |
| DOI | 10.3390/rs12010101 |
Cover
| Abstract | Recently, the demand for remote sensing image retrieval is growing and attracting the interest of many researchers because of the increasing number of remote sensing images. Hashing, as a method of retrieving images, has been widely applied to remote sensing image retrieval. In order to improve hashing performance, we develop a cohesion intensive deep hashing model for remote sensing image retrieval. The underlying architecture of our deep model is motivated by the state-of-the-art residual net. Residual nets aim at avoiding gradient vanishing and gradient explosion when the net reaches a certain depth. However, different from the residual net which outputs multiple class-labels, we present a residual hash net that is terminated by a Heaviside-like function for binarizing remote sensing images. In this scenario, the representational power of the residual net architecture is exploited to establish an end-to-end deep hashing model. The residual hash net is trained subject to a weighted loss strategy that intensifies the cohesiveness of image hash codes within one class. This effectively addresses the data imbalance problem normally arising in remote sensing image retrieval tasks. Furthermore, we adopted a gradualness optimization method for obtaining optimal model parameters in order to favor accurate binary codes with little quantization error. We conduct comparative experiments on large-scale remote sensing data sets such as UCMerced and AID. The experimental results validate the hypothesis that our method improves the performance of current remote sensing image retrieval. |
|---|---|
| AbstractList | Recently, the demand for remote sensing image retrieval is growing and attracting the interest of many researchers because of the increasing number of remote sensing images. Hashing, as a method of retrieving images, has been widely applied to remote sensing image retrieval. In order to improve hashing performance, we develop a cohesion intensive deep hashing model for remote sensing image retrieval. The underlying architecture of our deep model is motivated by the state-of-the-art residual net. Residual nets aim at avoiding gradient vanishing and gradient explosion when the net reaches a certain depth. However, different from the residual net which outputs multiple class-labels, we present a residual hash net that is terminated by a Heaviside-like function for binarizing remote sensing images. In this scenario, the representational power of the residual net architecture is exploited to establish an end-to-end deep hashing model. The residual hash net is trained subject to a weighted loss strategy that intensifies the cohesiveness of image hash codes within one class. This effectively addresses the data imbalance problem normally arising in remote sensing image retrieval tasks. Furthermore, we adopted a gradualness optimization method for obtaining optimal model parameters in order to favor accurate binary codes with little quantization error. We conduct comparative experiments on large-scale remote sensing data sets such as UCMerced and AID. The experimental results validate the hypothesis that our method improves the performance of current remote sensing image retrieval. |
| Author | Ren, Peng Grecos, Christos Han, Lirong Li, Peng Bai, Xiao Zhang, Xiaoyu |
| Author_xml | – sequence: 1 givenname: Lirong surname: Han fullname: Han, Lirong – sequence: 2 givenname: Peng surname: Li fullname: Li, Peng – sequence: 3 givenname: Xiao surname: Bai fullname: Bai, Xiao – sequence: 4 givenname: Christos surname: Grecos fullname: Grecos, Christos – sequence: 5 givenname: Xiaoyu surname: Zhang fullname: Zhang, Xiaoyu – sequence: 6 givenname: Peng surname: Ren fullname: Ren, Peng |
| BookMark | eNp9kUFPGzEQhS0UpNLApb9gJS6IKsX22rv2EUILkSIh0fZsze7OBkcbO9gOKP--DqkKQqieg63nz08zz5_JyHmHhHxh9FtZanoRIuOU7eqAHHFa84ngmo_enD-RkxiXNK-yZJqKI3I19Q8YrXfFzCV00T5hcY24Lm4hPli3KHofintc-YTFz919lmYrWGAWU7D4BMMxOexhiHjydx-T3z--_5reTuZ3N7Pp5XzSllqkCdSyrpViTaV7xlTFe6p7EFXVq15yioCdFLXQIKFjAitVZarTskXZ1LwryzGZ7X07D0uzDnYFYWs8WPMi-LAwEJJtBzQdZShaVTVMKsGkVo0A1lHRAJOgRZe9vu69Nm4N22cYhn-GjJpdmuY1zUyf7el18I8bjMmsbGxxGMCh30TDdR6H1znhjJ6-Q5d-E1zOxXApackqpkSm6J5qg48xYG9amyDlb0gB7PBxD-fvnvyn4T82Tp4I |
| CitedBy_id | crossref_primary_10_1109_TGRS_2023_3323495 crossref_primary_10_1007_s11227_021_04157_w crossref_primary_10_1109_TGRS_2021_3132296 crossref_primary_10_1109_JSTARS_2022_3162251 crossref_primary_10_1016_j_inffus_2020_10_008 crossref_primary_10_1109_ACCESS_2020_3024720 crossref_primary_10_1049_cit2_12151 crossref_primary_10_1007_s12145_021_00593_7 crossref_primary_10_1016_j_ins_2020_05_114 crossref_primary_10_1080_01431161_2023_2169595 crossref_primary_10_1109_TGRS_2020_2981997 crossref_primary_10_1080_01431161_2021_1996655 crossref_primary_10_1109_TGRS_2022_3143571 crossref_primary_10_1109_JSTARS_2023_3298942 crossref_primary_10_1109_JSTARS_2023_3271303 crossref_primary_10_1109_JSTARS_2023_3344628 crossref_primary_10_3390_rs14153643 crossref_primary_10_1109_TGRS_2024_3429350 crossref_primary_10_1109_TGRS_2022_3231215 crossref_primary_10_1109_JSTARS_2023_3240414 crossref_primary_10_1109_TGRS_2021_3136641 crossref_primary_10_1109_TGRS_2024_3368194 crossref_primary_10_1109_JSTARS_2025_3538701 crossref_primary_10_3390_rs16010090 crossref_primary_10_1109_JSTARS_2023_3236662 crossref_primary_10_3390_app122312221 crossref_primary_10_1016_j_knosys_2021_107807 crossref_primary_10_1109_TGRS_2024_3360621 crossref_primary_10_1109_ACCESS_2020_2973472 crossref_primary_10_3390_rs13234786 |
| Cites_doi | 10.1109/TITS.2017.2749964 10.1109/ICCV.2017.598 10.1109/TGRS.2017.2685945 10.1109/CVPR.2015.7298598 10.1609/aaai.v30i1.10235 10.1609/aaai.v30i1.10176 10.1007/s11263-018-1117-z 10.1109/TGRS.2015.2469138 10.1109/IGARSS.2015.7326056 10.1023/B:VISI.0000029664.99615.94 10.1145/1869790.1869829 10.1109/CVPR.2016.227 10.1109/LGRS.2015.2503142 10.1109/TGRS.2017.2756911 10.1109/TGRS.2018.2839705 10.1109/TGRS.2015.2441954 10.1007/s12517-014-1718-y 10.1109/TPAMI.2012.193 10.1609/aaai.v30i1.9906 10.3390/rs10050709 10.1109/CVPR.2010.5539994 10.1109/LGRS.2017.2651056 10.1080/15481603.2017.1323377 10.1023/A:1011139631724 10.1016/j.isprsjprs.2018.09.014 |
| ContentType | Journal Article |
| Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 ADTOC UNPAY DOA |
| DOI | 10.3390/rs12010101 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection (Proquest) Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_d01e4c86b15841598b4a1d04ba15a94d 10.3390/rs12010101 10_3390_rs12010101 |
| Genre | Correspondence |
| GroupedDBID | 29P 2WC 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 2XV 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G IAO ITC JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c394t-a7577881b69f11862f09fa466f8f520eaed54749a5ad14e686118d95ce5b72d33 |
| IEDL.DBID | DOA |
| ISSN | 2072-4292 |
| IngestDate | Fri Oct 03 12:43:21 EDT 2025 Sun Oct 26 04:01:55 EDT 2025 Wed Oct 01 14:58:09 EDT 2025 Fri Jul 25 09:29:30 EDT 2025 Thu Apr 24 22:57:24 EDT 2025 Thu Oct 16 04:28:28 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c394t-a7577881b69f11862f09fa466f8f520eaed54749a5ad14e686118d95ce5b72d33 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Correspondence-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/d01e4c86b15841598b4a1d04ba15a94d |
| PQID | 2550316184 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d01e4c86b15841598b4a1d04ba15a94d unpaywall_primary_10_3390_rs12010101 proquest_miscellaneous_2986227429 proquest_journals_2550316184 crossref_citationtrail_10_3390_rs12010101 crossref_primary_10_3390_rs12010101 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2020 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Li (ref_4) 2016; 13 Datar (ref_8) 2004; 8–11 ref_14 ref_11 Ma (ref_2) 2015; 53 ref_18 Lowe (ref_15) 2004; 60 Li (ref_5) 2018; 146 Li (ref_20) 2018; 56 Demir (ref_12) 2016; 54 ref_25 Patil (ref_6) 2015; 8 Li (ref_13) 2017; 14 ref_23 Xia (ref_24) 2017; 55 ref_22 Gong (ref_10) 2012; 35 ref_21 Li (ref_19) 2018; 56 Yu (ref_17) 2017; 54 ref_29 ref_28 ref_27 ref_26 Oliva (ref_16) 2001; 42 Ma (ref_3) 2019; 127 Weiss (ref_9) 2008; 8–11 Wang (ref_1) 2018; 19 ref_7 |
| References_xml | – volume: 19 start-page: 230 year: 2018 ident: ref_1 article-title: Embedding Structured Contour and Location Prior in Siamesed Fully Convolutional Networks for Road Detection publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2017.2749964 – ident: ref_22 doi: 10.1109/ICCV.2017.598 – volume: 8–11 start-page: 1753 year: 2008 ident: ref_9 article-title: Spectral Hashing publication-title: Neural Inf. Process. Syst. – volume: 55 start-page: 3965 year: 2017 ident: ref_24 article-title: AID: A Benchmark Dataset for Performance Evaluation of Aerial Scene Classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2685945 – ident: ref_26 doi: 10.1109/CVPR.2015.7298598 – ident: ref_28 doi: 10.1609/aaai.v30i1.10235 – ident: ref_27 doi: 10.1609/aaai.v30i1.10176 – volume: 8–11 start-page: 253 year: 2004 ident: ref_8 article-title: Locality-sensitive hashing scheme based on p-stable distributions publication-title: Symp. Comput. Geom. – volume: 127 start-page: 512 year: 2019 ident: ref_3 article-title: Locality preserving matching publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-018-1117-z – volume: 54 start-page: 892 year: 2016 ident: ref_12 article-title: Hashing-Based Scalable Remote Sensing Image Search and Retrieval in Large Archives publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2015.2469138 – ident: ref_11 doi: 10.1109/IGARSS.2015.7326056 – ident: ref_21 – volume: 60 start-page: 91 year: 2004 ident: ref_15 article-title: Distinctive Image Features from Scale-Invariant Keypoints publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000029664.99615.94 – ident: ref_23 doi: 10.1145/1869790.1869829 – ident: ref_25 – ident: ref_29 doi: 10.1109/CVPR.2016.227 – volume: 13 start-page: 157 year: 2016 ident: ref_4 article-title: Unsupervised Multilayer Feature Learning for Satellite Image Scene Classification publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2015.2503142 – volume: 56 start-page: 950 year: 2018 ident: ref_19 article-title: Large-Scale Remote Sensing Image Retrieval by Deep Hashing Neural Networks publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2756911 – volume: 56 start-page: 6521 year: 2018 ident: ref_20 article-title: Learning Source-Invariant Deep Hashing Convolutional Neural Networks for Cross-Source Remote Sensing Image Retrieval publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2839705 – volume: 53 start-page: 6469 year: 2015 ident: ref_2 article-title: Robust feature matching for remote sensing image registration via locally linear transforming publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2015.2441954 – volume: 8 start-page: 6967 year: 2015 ident: ref_6 article-title: Remote Sensing and GIS based soil erosion assessment from an agricultural watershed publication-title: Arab. J. Geosci. doi: 10.1007/s12517-014-1718-y – volume: 35 start-page: 2916 year: 2012 ident: ref_10 article-title: Iterative quantization: A procrustean approach to learning binary codes publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.193 – ident: ref_18 doi: 10.1609/aaai.v30i1.9906 – ident: ref_14 doi: 10.3390/rs10050709 – ident: ref_7 doi: 10.1109/CVPR.2010.5539994 – volume: 14 start-page: 464 year: 2017 ident: ref_13 article-title: Partial Randomness Hashing for Large-Scale Remote Sensing Image Retrieval publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2651056 – volume: 54 start-page: 741 year: 2017 ident: ref_17 article-title: Deep learning in remote sensing scene classification: A data augmentation enhanced convolutional neural network framework publication-title: Gisci. Remote Sens. doi: 10.1080/15481603.2017.1323377 – volume: 42 start-page: 145 year: 2001 ident: ref_16 article-title: Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope publication-title: Int. J. Comput. Vis. doi: 10.1023/A:1011139631724 – volume: 146 start-page: 182 year: 2018 ident: ref_5 article-title: Deep networks under scene-level supervision for multi-class geospatial object detection from remote sensing images publication-title: Isprs J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.09.014 |
| SSID | ssj0000331904 |
| Score | 2.4138098 |
| Snippet | Recently, the demand for remote sensing image retrieval is growing and attracting the interest of many researchers because of the increasing number of remote... |
| SourceID | doaj unpaywall proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 101 |
| SubjectTerms | Approximation Binary codes Codes Cohesion cohesion intensive data collection Datasets deep hashing Deep learning gradualness optimization Image management Image retrieval Neural networks Optimization Performance enhancement Remote sensing remote sensing image retrieval residual net spatial data system optimization |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9tAEB4S-5BcStskRG1aVJJLDyJ67Eq7h1LqNsYNxJQ8IDexz_Tgyq5jU_LvOyOvlBRKrquBFfPYnZnd_T6AE-U9N1qLhDkhsUDRRSIMBp6xnB6EC8MtFYoX03Jyw85v-e0WTLu3MHStslsT24Xazg31yE8x9UX_I3qSz4vfCbFG0elqR6GhArWC_dRCjG3DMCdkrAEMR2fTH5d91yUt0OVStsEpLbDeP13eZ3QgnAVWmG5nagH8_8k6d9bNQj38UbPZkw1o_BJehMwx_rIx9SvYcs1r2Akk5j8f9mBETy2o-RX399Ljb84t4smGMCnG_DS-dGgbF1_Rdxz6_gvXExwkWi30uX24GZ9df50kgSIhMYVkq0RVvCJAeF1Kj6VCmftUesXK0gvP89QpZzmrmFRc2Yy5UpQoZSU3jusqt0VxAINm3rhDiL33ygonMi8qrJnRftLwzFSpdRwnMRF87NRTm4AfTjQWsxrrCFJl_ajKCI572cUGNeO_UiPSci9BSNftwHx5V4fAqW2aOWZEqdFx0Hmk0ExlNmVaZVxJZiM46mxUh_C7rx-dJYIP_WcMHDoNUY2br1FGorrooFpGcNLb9pnfffP8TG9hN6davG3PHMFgtVy7d5iwrPT74IV_AZ6d6Ms priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9lAu5S0CBQXRC4d048RO7BNqgWpBokLASuUU-QmoS3a1D1D59cxsnPAQQggpJ3usOJkZez4_5gM40CEIa4zMuJcKAYopM2nR8awTdCFcWuEIKL46rSZT_vJMnMUFt1U8VolQ_NN2kC7yusiIT2nM8EEHZ-OFC0--xJUkRqnYVc5rcRl2KoGx-Ah2pqevj94To1zftstJWiK2Hy9XjDZ_WWSA6WehbbL-XyLM3U270Bdf9Wz202RzchWavpvdGZPzw83aHNpvv2Vw_P_vuAZ7MQ5NjzrDuQ6XfHsDdiMl-seLm3BMFzeoYTqcck-feb9IJx39UorRbvrGo6Z9-pbqsejFZxydsJBIutCCb8H05Pm7p5MsEi5ktlR8nela1JRe3lQqIPCoipCroHlVBRlEkXvtneA1V1pox7ivZIVSTgnrhakLV5a3YdTOW38H0hCCdtJLFmSNCBytQVnBbJ07L_AlNoHHvQIaG7OREynGrEFUQspqfigrgUeD7KLLwfFHqWPS4yBBebO3BfPlhya6YeNy5rmVlUEzRFNU0nDNXM6NZkIr7hLY762gic68ahB14dBHzDgJPByq0Q1pb0W3fr5BGYW_i7a9VQIHg_X8pbt3_03sHlwpCOFvF332YbRebvx9DIPW5kG09e-cbf9h priority: 102 providerName: Unpaywall |
| Title | Cohesion Intensive Deep Hashing for Remote Sensing Image Retrieval |
| URI | https://www.proquest.com/docview/2550316184 https://www.proquest.com/docview/2986227429 https://www.mdpi.com/2072-4292/12/1/101/pdf?version=1578290475 https://doaj.org/article/d01e4c86b15841598b4a1d04ba15a94d |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: 8FG dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB5RONALgrYIF4hclQsHCzvetXePCRBSBBGCRqIna5_ikJoIEiH-PTO2Y4KEyqUny7uz8mpmdzzfPuYDOFDec6O1iJgTEgGKTiNhcOIZy-lCuDDcElC8HGXDMTu_5bdLVF90JqxOD1wr7sjGiWNGZBobYmMpNFOJjZlWCVeSWfK-sZBLYKrywSkOrZjV-UhTxPVHD48JbfwmDfvL4g9UJep_E12uz8upen5Sk8nSj2awCRtNhBj26p5twYorv8B6Q1Z-9_wV-nSlgha5wvb8eXji3DQc1sRIIcah4bVDG7jwhuqx6Ndf9BtYSPRZOLa-wXhw-vt4GDVUCJFJJZtFKuc5JX7XmfQICbKuj6VXLMu88LwbO-UsZzmTiiubMJeJDKWs5MZxnXdtmm7Danlfuh0IvffKCicSL3LExmgnaXhi8tg6jh8xARwu1FOYJk840VVMCsQLpMriVZUB_Gxlp3V2jHel-qTlVoIyWlcFaOeisXPxkZ0D2FvYqGim2WOBeAidEnHWBPCjrcYJQrseqnT3c5SRqC7akJYBHLS2_Ud3v_-P7u7C5y4h82qxZg9WZw9zt4_hy0x34JMYnHVgrXdyeXGDz_7p6Oq6U41ffBuPrnp_XgCiwPA6 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V7WG5IMpDBAoEUQ4couZhJ_ahQl3aape2K1Raqbfg-AGHJbvsQ9X-uf62zmSdFCTUW6_OSI7G39gzY898ALvKOa6rSkTMCokBSpVFQqPhacOpIFxobihQPBvlg0v29YpfbcBNWwtDzyrbPbHZqM1EU458D11fxB_Rk3ye_omINYpuV1sKDeWpFcx-02LMF3ac2NU1hnDz_eEhrvfHND0-uvgyiDzLQKQzyRaRKnhBPdWrXDr0tvPUxdIpludOOJ7GVlnDWcGk4sokzOYiRykjuba8KlJDCVE8ArZYxiQGf1v9o9G38y7LE2cI8Zit-6JmmYz3ZvOELqATz0LTnoQNYcA_Xm5vWU_V6lqNx38deMdP4LH3VMODNbS2YcPWT6HnSdN_rZ5Bn0o7KNkWdu_gw0Nrp-FgTdAUoj8cnlvEgg2_03ccGv7G_QsHicYLMf4cLh9EWS9gs57U9iWEzjllhBWJEwXG6IgXqXmii9hYjpPoAD616im171dOtBnjEuMWUmV5p8oAPnSy03WXjv9K9UnLnQR11m4GJrOfpTfU0sSJZVrkFQIVwSpFxVRiYlaphCvJTAA77RqV3tzn5R04A3jffUZDpdsXVdvJEmUkqosuxmUAu93a3vO7r-6f6R30Bhdnp-XpcHTyGh6llAdoUkM7sLmYLe0bdJYW1VuPyBB-PLQR3AJGQiTC |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRaJcUHmJQClBlAOHaPOwE_uAUMuy7FKoEFCpt9RPOCzZ7T5U7V_j1zGTV0FCvfXqjORo_Hk8D3s-gAPlPTdai4g5ITFA0VkkDG48Yzk9CBeGWwoUP5_k41P28YyfbcHv7i0MXavsbGJtqO3MUI58gK4v4o_oSQa-vRbxZTh6O7-IiEGKKq0dnUYDkWO3ucTwbflmMsS1fpWmo_ff342jlmEgMplkq0gVvKB-6jqXHj3tPPWx9IrluReep7FTznJWMKm4sglzuchRykpuHNdFaikZiub_VkFd3OmV-uhDn9-JMwR3zJqOqFkm48FimVDpOWn5Z7ozsKYK-Me_3VlXc7W5VNPpX0fdaBfutj5qeNiA6h5sueo-7LR06T83D-CIHnVQmi3sb8CHQ-fm4bihZgrREw6_OkSBC7_Rdxya_ELLhYNE4IXofginN6KqR7BdzSr3GELvvbLCicSLAqNzRIo0PDFFbB3HSUwArzv1lKbtVE6EGdMSIxZSZXmlygBe9rLzpj_Hf6WOSMu9BPXUrgdmix9lu0VLGyeOGZFrhCjCVArNVGJjplXClWQ2gL1ujcp2oy_LK1gG8KL_jFuU6i6qcrM1ykhUF5XEZQAH_dpe87tPrp_pOdxG6JefJifHT-FOSgmAOie0B9urxdo9Qy9ppfdrOIZwftP4_wM7EyJc |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9lAu5S0CBQXRC4d048RO7BNqgWpBokLASuUU-QmoS3a1D1D59cxsnPAQQggpJ3usOJkZez4_5gM40CEIa4zMuJcKAYopM2nR8awTdCFcWuEIKL46rSZT_vJMnMUFt1U8VolQ_NN2kC7yusiIT2nM8EEHZ-OFC0--xJUkRqnYVc5rcRl2KoGx-Ah2pqevj94To1zftstJWiK2Hy9XjDZ_WWSA6WehbbL-XyLM3U270Bdf9Wz202RzchWavpvdGZPzw83aHNpvv2Vw_P_vuAZ7MQ5NjzrDuQ6XfHsDdiMl-seLm3BMFzeoYTqcck-feb9IJx39UorRbvrGo6Z9-pbqsejFZxydsJBIutCCb8H05Pm7p5MsEi5ktlR8nela1JRe3lQqIPCoipCroHlVBRlEkXvtneA1V1pox7ivZIVSTgnrhakLV5a3YdTOW38H0hCCdtJLFmSNCBytQVnBbJ07L_AlNoHHvQIaG7OREynGrEFUQspqfigrgUeD7KLLwfFHqWPS4yBBebO3BfPlhya6YeNy5rmVlUEzRFNU0nDNXM6NZkIr7hLY762gic68ahB14dBHzDgJPByq0Q1pb0W3fr5BGYW_i7a9VQIHg_X8pbt3_03sHlwpCOFvF332YbRebvx9DIPW5kG09e-cbf9h |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cohesion+Intensive+Deep+Hashing+for+Remote+Sensing+Image+Retrieval&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Lirong+Han&rft.au=Peng+Li&rft.au=Xiao+Bai&rft.au=Christos+Grecos&rft.date=2020-01-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=12&rft.issue=1&rft.spage=101&rft_id=info:doi/10.3390%2Frs12010101&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d01e4c86b15841598b4a1d04ba15a94d |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |