Multi-Image-Feature-Based Hierarchical Concrete Crack Identification Framework Using Optimized SVM Multi-Classifiers and D–S Fusion Algorithm for Bridge Structures
Cracks in concrete can cause the degradation of stiffness, bearing capacity and durability of civil infrastructure. Hence, crack diagnosis is of great importance in concrete research. On the basis of multiple image features, this work presents a novel approach for crack identification of concrete st...
        Saved in:
      
    
          | Published in | Remote sensing (Basel, Switzerland) Vol. 13; no. 2; p. 240 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.01.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2072-4292 2072-4292  | 
| DOI | 10.3390/rs13020240 | 
Cover
| Abstract | Cracks in concrete can cause the degradation of stiffness, bearing capacity and durability of civil infrastructure. Hence, crack diagnosis is of great importance in concrete research. On the basis of multiple image features, this work presents a novel approach for crack identification of concrete structures. Firstly, the non-local means method is adopted to process the original image, which can effectively diminish the noise influence. Then, to extract the effective features sensitive to the crack, different filters are employed for crack edge detection, which are subsequently tackled by integral projection and principal component analysis (PCA) for optimal feature selection. Moreover, support vector machine (SVM) is used to design the classifiers for initial diagnosis of concrete surface based on extracted features. To raise the classification accuracy, enhanced salp swarm algorithm (ESSA) is applied to the SVM for meta-parameter optimization. The Dempster–Shafer (D–S) fusion algorithm is utilized to fuse the diagnostic results corresponding to different filters for decision making. Finally, to demonstrate the effectiveness of the proposed framework, a total of 1200 images are collected from a real concrete bridge including intact (without crack), longitudinal crack, transverse crack and oblique crack cases. The results validate the performance of proposed method with promising results of diagnosis accuracy as high as 96.25%. | 
    
|---|---|
| AbstractList | Cracks in concrete can cause the degradation of stiffness, bearing capacity and durability of civil infrastructure. Hence, crack diagnosis is of great importance in concrete research. On the basis of multiple image features, this work presents a novel approach for crack identification of concrete structures. Firstly, the non-local means method is adopted to process the original image, which can effectively diminish the noise influence. Then, to extract the effective features sensitive to the crack, different filters are employed for crack edge detection, which are subsequently tackled by integral projection and principal component analysis (PCA) for optimal feature selection. Moreover, support vector machine (SVM) is used to design the classifiers for initial diagnosis of concrete surface based on extracted features. To raise the classification accuracy, enhanced salp swarm algorithm (ESSA) is applied to the SVM for meta-parameter optimization. The Dempster–Shafer (D–S) fusion algorithm is utilized to fuse the diagnostic results corresponding to different filters for decision making. Finally, to demonstrate the effectiveness of the proposed framework, a total of 1200 images are collected from a real concrete bridge including intact (without crack), longitudinal crack, transverse crack and oblique crack cases. The results validate the performance of proposed method with promising results of diagnosis accuracy as high as 96.25%. | 
    
| Author | Yu, Yang Wang, Weiqiang Samali, Bijan Rashidi, Maria Yousefi, Amir M.  | 
    
| Author_xml | – sequence: 1 givenname: Yang surname: Yu fullname: Yu, Yang – sequence: 2 givenname: Maria surname: Rashidi fullname: Rashidi, Maria – sequence: 3 givenname: Bijan surname: Samali fullname: Samali, Bijan – sequence: 4 givenname: Amir M. surname: Yousefi fullname: Yousefi, Amir M. – sequence: 5 givenname: Weiqiang surname: Wang fullname: Wang, Weiqiang  | 
    
| BookMark | eNp9kc9u1DAQhyNUJErphSewxAWBAv6XjXNsA0tXatXDUq7RrD3ZeuvEi-2oKifegWfgxXgSvF0EqEL4YsvzzfezPE-Lg9GPWBTPGX0jREPfhsgE5ZRL-qg45LTmpeQNP_jr_KQ4jnFD8xKCNVQeFt8vJpdsuRhgjeUcIU0By1OIaMiZxQBBX1sNjrR-1AETkjaAviELg2OyfS4l60cyDzDgrQ835CracU0ut8kO9kuWLD9dkH1E6yDG3IIhEhgNeffj67clmU9xJzhxax9suh5I7wM5DdaskSxTmPTuQfFZ8bgHF_H4135UXM3ff2zPyvPLD4v25LzUopGpVAY4VtqshEZGKyNlpdBUFatyWQDVlZpRxjnODO-1qZViklJjVsA4NaoSR8Vi7zUeNt022AHCXefBdvcXPqw7CMlqh13P-54b1axWfS21VGCYQKmbmYQcoOrser13TeMW7m7Bud9CRrvdwLo_A8v0yz29Df7zhDF1g40anYMR_RQ7XjHGatXQWUZfPEA3fgpj_peOy1plo6hFpl7tKR18jAH7_6fTB7C26X60KYB1_2r5CfMFxGc | 
    
| CitedBy_id | crossref_primary_10_1007_s11831_022_09845_1 crossref_primary_10_1007_s11356_022_20953_0 crossref_primary_10_1139_cjce_2022_0128 crossref_primary_10_1016_j_engstruct_2024_118343 crossref_primary_10_3390_rs13183652 crossref_primary_10_1016_j_aej_2024_10_035 crossref_primary_10_3390_s22093182 crossref_primary_10_1080_08839514_2021_2014188 crossref_primary_10_1088_1361_6501_ac06ff crossref_primary_10_1016_j_cemconres_2022_106926 crossref_primary_10_1088_1361_6501_ac8e22 crossref_primary_10_3390_app14156403 crossref_primary_10_3390_buildings13030800 crossref_primary_10_1155_2022_1790678 crossref_primary_10_1155_2022_9505764 crossref_primary_10_3390_buildings14072054 crossref_primary_10_3390_e24101487 crossref_primary_10_3390_ma14174885 crossref_primary_10_3390_su14106306 crossref_primary_10_1016_j_cscm_2023_e02744 crossref_primary_10_3390_bioengineering10101123 crossref_primary_10_1109_TIM_2023_3244211 crossref_primary_10_1007_s40996_024_01668_3 crossref_primary_10_3390_drones7060386 crossref_primary_10_3390_s21217405 crossref_primary_10_1109_JSEN_2022_3173924 crossref_primary_10_1016_j_cemconres_2022_107066 crossref_primary_10_1016_j_measurement_2024_115769 crossref_primary_10_1155_2022_8456677 crossref_primary_10_1155_2022_1415659 crossref_primary_10_1002_cepa_2515 crossref_primary_10_1109_TITS_2023_3236247 crossref_primary_10_1680_jadcr_22_00070 crossref_primary_10_1088_1361_6501_ad6baf crossref_primary_10_3390_drones6110355 crossref_primary_10_3390_app11052236 crossref_primary_10_1016_j_oceaneng_2021_110515 crossref_primary_10_1049_ipr2_12512  | 
    
| Cites_doi | 10.1007/978-3-642-02568-6_8 10.1016/j.conbuildmat.2020.120080 10.12700/APH.17.1.2020.1.4 10.1016/j.compstruc.2007.04.001 10.1016/j.ymssp.2020.107077 10.1007/s00366-018-0611-9 10.3390/rs11101204 10.1016/j.measurement.2020.108533 10.1061/(ASCE)0887-3801(2003)17:4(255) 10.3141/2595-13 10.1142/S0219455418400114 10.1080/15732479.2019.1655068 10.3390/rs12223796 10.1007/s00371-017-1363-z 10.1109/ACCESS.2018.2844100 10.3390/s17071670 10.1111/j.1467-8667.2010.00674.x 10.3390/rs12183084 10.1109/ACCESS.2018.2856806 10.1080/14488353.2015.1092642 10.1016/j.conbuildmat.2011.08.082 10.1177/1475921719898862 10.1080/15732479.2011.593891 10.1016/j.isprsjprs.2020.06.014 10.3390/s17092052 10.5721/EuJRS20164928 10.1117/1.JEI.21.4.043008 10.1016/j.eng.2020.07.026 10.1214/aoms/1177698950 10.1080/14488353.2015.1092641 10.1061/(ASCE)CP.1943-5487.0000781 10.1007/BF00994018 10.1109/LGRS.2020.3017414 10.1007/s11042-020-08936-0 10.1016/j.ins.2019.11.022 10.1109/TITS.2016.2552248 10.3390/a13070165 10.1016/j.foodchem.2020.128125 10.1088/1361-6501/ab79c8 10.1016/j.advengsoft.2017.07.002 10.1109/MGRS.2020.2979764 10.1016/j.conbuildmat.2019.117367 10.1111/mice.12564 10.3390/s120100189 10.1155/2019/8157205  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| Copyright_xml | – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/rs13020240 | 
    
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Database Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library ProQuest SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (ProQuest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography | 
    
| EISSN | 2072-4292 | 
    
| ExternalDocumentID | oai_doaj_org_article_f2ff2d89bbf74c48ad13e4c964a22e87 10.3390/rs13020240 10_3390_rs13020240  | 
    
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO ADTOC C1A IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c394t-8da2e5cdb3ce105d4458ed55153943a0c5860122e6d2fcd7881400ddba120d853 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 2072-4292 | 
    
| IngestDate | Tue Oct 14 18:42:14 EDT 2025 Sun Oct 26 04:16:03 EDT 2025 Thu Oct 02 11:12:00 EDT 2025 Mon Oct 20 01:43:25 EDT 2025 Thu Apr 24 23:09:59 EDT 2025 Thu Oct 16 04:46:03 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c394t-8da2e5cdb3ce105d4458ed55153943a0c5860122e6d2fcd7881400ddba120d853 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| OpenAccessLink | https://doaj.org/article/f2ff2d89bbf74c48ad13e4c964a22e87 | 
    
| PQID | 2478302373 | 
    
| PQPubID | 2032338 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f2ff2d89bbf74c48ad13e4c964a22e87 unpaywall_primary_10_3390_rs13020240 proquest_miscellaneous_2511178906 proquest_journals_2478302373 crossref_primary_10_3390_rs13020240 crossref_citationtrail_10_3390_rs13020240  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-01-01 | 
    
| PublicationDateYYYYMMDD | 2021-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Remote sensing (Basel, Switzerland) | 
    
| PublicationYear | 2021 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Fujita (ref_13) 2009; 22 Liang (ref_24) 2018; 6 Kim (ref_10) 2007; 85 Das (ref_3) 2020; 169 Ren (ref_6) 2020; 234 Mirjalili (ref_48) 2017; 114 ref_18 ref_17 Su (ref_43) 2016; 49 Avci (ref_1) 2021; 147 Ying (ref_14) 2010; 25 Shi (ref_22) 2016; 17 Liu (ref_38) 2017; 34 ref_20 Hoang (ref_44) 2018; 32 ref_28 Hong (ref_33) 2020; 167 Dirchwolf (ref_45) 2021; 339 Abudayyeh (ref_12) 2003; 17 Rashidi (ref_4) 2018; 18 Bal (ref_37) 2020; 79 Lettsome (ref_15) 2012; 21 (ref_16) 2012; 28 ref_35 ref_34 ref_32 ref_31 Li (ref_29) 2020; 31 Nnolim (ref_11) 2019; 2019 Wan (ref_52) 2011; 12 Rasti (ref_36) 2020; 8 Rashidi (ref_8) 2015; 14 Liang (ref_23) 2018; 6 Mokhtari (ref_27) 2016; 2595 Guermoui (ref_47) 2020; 143 Dempster (ref_50) 1967; 38 Lee (ref_19) 2013; 9 Hoang (ref_42) 2018; 2018 Lei (ref_25) 2020; 19 Tadic (ref_41) 2020; 17 Hoang (ref_26) 2019; 35 Hegazy (ref_49) 2020; 32 Xiao (ref_51) 2020; 514 ref_40 Cortes (ref_46) 1995; 20 Jo (ref_30) 2020; 16 ref_2 Rashidi (ref_9) 2015; 14 Basha (ref_39) 2019; 29 ref_5 ref_7 Peng (ref_21) 2020; 263  | 
    
| References_xml | – ident: ref_32 – volume: 22 start-page: 76 year: 2009 ident: ref_13 article-title: A Robust Method for Automatically Detecting Cracks on Noisy Concrete Surfaces publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-642-02568-6_8 – volume: 263 start-page: 120080 year: 2020 ident: ref_21 article-title: A triple-thresholds pavement crack detection method leveraging random structured forest publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.120080 – volume: 17 start-page: 61 year: 2020 ident: ref_41 article-title: University of Novi Sad Comparison of Gabor Filter Bank and Fuzzified Gabor Filter for License Plate Detection publication-title: Acta Polytech. Hung. doi: 10.12700/APH.17.1.2020.1.4 – volume: 85 start-page: 1828 year: 2007 ident: ref_10 article-title: Fuzzy set based crack diagnosis system for reinforced concrete structures publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2007.04.001 – volume: 147 start-page: 107077 year: 2021 ident: ref_1 article-title: A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2020.107077 – volume: 35 start-page: 487 year: 2019 ident: ref_26 article-title: A novel method for asphalt pavement crack classification based on image processing and machine learning publication-title: Eng. Comput. doi: 10.1007/s00366-018-0611-9 – ident: ref_7 doi: 10.3390/rs11101204 – volume: 29 start-page: 1480 year: 2019 ident: ref_39 article-title: Linear Regression Supporting Vector Machine and Hybrid LOG Filter-Based Image Restoration publication-title: J. Intell. Syst. – ident: ref_35 – volume: 169 start-page: 108533 year: 2020 ident: ref_3 article-title: Performance of Swarm Intelligence based Chaotic Meta-Heuristic algorithms in Civil Structural Health Monitoring publication-title: Measurement doi: 10.1016/j.measurement.2020.108533 – volume: 17 start-page: 255 year: 2003 ident: ref_12 article-title: Analysis of Edge-Detection Techniques for Crack Identification in Bridges publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)0887-3801(2003)17:4(255) – volume: 2595 start-page: 119 year: 2016 ident: ref_27 article-title: Comparison of Supervised Classification Techniques for Vision-Based Pavement Crack Detection publication-title: Transp. Res. Rec. J. Transp. Res. Board doi: 10.3141/2595-13 – volume: 18 start-page: 1840011 year: 2018 ident: ref_4 article-title: Bridge Abutment Movement and Approach Settlement—A Case Study and Scenario Analysis publication-title: Int. J. Struct. Stab. Dyn. doi: 10.1142/S0219455418400114 – volume: 32 start-page: 335 year: 2020 ident: ref_49 article-title: Improved salp swarm algorithm for feature selection publication-title: J. King Saud Univ.—Comput. Inf. Sci. – volume: 16 start-page: 297 year: 2020 ident: ref_30 article-title: A high precision crack classification system using multi-layered image processing and deep belief learning publication-title: Struct. Infrastruct. Eng. doi: 10.1080/15732479.2019.1655068 – ident: ref_2 doi: 10.3390/rs12223796 – volume: 34 start-page: 589 year: 2017 ident: ref_38 article-title: Removing Monte Carlo noise using a Sobel operator and a guided image filter publication-title: Vis. Comput. doi: 10.1007/s00371-017-1363-z – volume: 6 start-page: 28993 year: 2018 ident: ref_24 article-title: An Algorithm for Concrete Crack Extraction and Identification Based on Machine Vision publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2844100 – ident: ref_18 doi: 10.3390/s17071670 – volume: 25 start-page: 572 year: 2010 ident: ref_14 article-title: Beamlet Transform-Based Technique for Pavement Crack Detection and Classification publication-title: Comput. Civ. Infrastruct. Eng. doi: 10.1111/j.1467-8667.2010.00674.x – ident: ref_5 doi: 10.3390/rs12183084 – volume: 6 start-page: 45051 year: 2018 ident: ref_23 article-title: An Extraction and Classification Algorithm for Concrete Cracks Based on Machine Vision publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2856806 – ident: ref_28 – volume: 14 start-page: 46 year: 2015 ident: ref_9 article-title: A new model for bridge management: Part B: Decision support system for remediation planning publication-title: Aust. J. Civ. Eng. doi: 10.1080/14488353.2015.1092642 – volume: 28 start-page: 607 year: 2012 ident: ref_16 article-title: Characterisation of concrete cracking during laboratorial tests using image processing publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2011.08.082 – volume: 19 start-page: 1871 year: 2020 ident: ref_25 article-title: Design of a new low-cost unmanned aerial vehicle and vision-based concrete crack inspection method publication-title: Struct. Heal. Monit. doi: 10.1177/1475921719898862 – volume: 9 start-page: 567 year: 2013 ident: ref_19 article-title: Automated image processing technique for detecting and analysing concrete surface cracks publication-title: Struct. Infrastruct. Eng. doi: 10.1080/15732479.2011.593891 – volume: 167 start-page: 12 year: 2020 ident: ref_33 article-title: X-ModalNet: A semi-supervised deep cross-modal network for classification of remote sensing data publication-title: ISPRS J. Photogramm. doi: 10.1016/j.isprsjprs.2020.06.014 – ident: ref_17 doi: 10.3390/s17092052 – volume: 49 start-page: 531 year: 2016 ident: ref_43 article-title: A filter-based post-processing technique for improving homogeneity of pixel-wise classification data publication-title: Eur. J. Remote. Sens. doi: 10.5721/EuJRS20164928 – volume: 2018 start-page: 1 year: 2018 ident: ref_42 article-title: An Artificial Intelligence Method for Asphalt Pavement Pothole Detection Using Least Squares Support Vector Machine and Neural Network with Steerable Filter-Based Feature Extraction publication-title: Adv. Civ. Eng. – volume: 143 start-page: 4047852 year: 2020 ident: ref_47 article-title: A Novel Hybrid Model for Solar Radiation Forecasting Using Support Vector Machine and Bee Colony Optimization Algorithm: Review and Case Study publication-title: J. Sol. Energy Eng. – volume: 21 start-page: 043008 year: 2012 ident: ref_15 article-title: Enhanced adaptive filter-bank-based automated pavement crack detection and segmentation system publication-title: J. Electron. Imaging doi: 10.1117/1.JEI.21.4.043008 – ident: ref_31 doi: 10.1016/j.eng.2020.07.026 – volume: 38 start-page: 325 year: 1967 ident: ref_50 article-title: Upper and Lower Probabilities Induced by a Multivalued Mapping publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177698950 – volume: 14 start-page: 35 year: 2015 ident: ref_8 article-title: A new model for bridge management: Part A: Condition assessment and priority ranking of bridges publication-title: Aust. J. Civ. Eng. doi: 10.1080/14488353.2015.1092641 – volume: 32 start-page: 04018037 year: 2018 ident: ref_44 article-title: Image Processing–Based Classification of Asphalt Pavement Cracks Using Support Vector Machine Optimized by Artificial Bee Colony publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000781 – volume: 20 start-page: 273 year: 1995 ident: ref_46 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – ident: ref_34 doi: 10.1109/LGRS.2020.3017414 – volume: 79 start-page: 29087 year: 2020 ident: ref_37 article-title: An efficient method for PET image denoising by combining multi-scale transform and non-local means publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-020-08936-0 – volume: 514 start-page: 462 year: 2020 ident: ref_51 article-title: A new divergence measure for belief functions in D–S evidence theory for multisensor data fusion publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.11.022 – volume: 17 start-page: 3434 year: 2016 ident: ref_22 article-title: Automatic Road Crack Detection Using Random Structured Forests publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2016.2552248 – ident: ref_40 doi: 10.3390/a13070165 – volume: 339 start-page: 128125 year: 2021 ident: ref_45 article-title: Assessing mineral profiles for rice flour fraud detection by principal component analysis based data fusion publication-title: Food Chem. doi: 10.1016/j.foodchem.2020.128125 – volume: 31 start-page: 075403 year: 2020 ident: ref_29 article-title: Automatic crack recognition for concrete bridges using a fully convolutional neural network and naive Bayes data fusion based on a visual detection system publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ab79c8 – volume: 114 start-page: 163 year: 2017 ident: ref_48 article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.07.002 – volume: 8 start-page: 60 year: 2020 ident: ref_36 article-title: Feature Extraction for Hyperspectral Imagery: The Evolution From Shallow to Deep: Overview and Toolbox publication-title: IEEE Geosci. Remote. Sens. Mag. doi: 10.1109/MGRS.2020.2979764 – volume: 234 start-page: 117367 year: 2020 ident: ref_6 article-title: Image-based concrete crack detection in tunnels using deep fully convolutional networks publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.117367 – ident: ref_20 doi: 10.1111/mice.12564 – volume: 12 start-page: 189 year: 2011 ident: ref_52 article-title: Hierarchical Leak Detection and Localization Method in Natural Gas Pipeline Monitoring Sensor Networks publication-title: Sensors doi: 10.3390/s120100189 – volume: 2019 start-page: 1 year: 2019 ident: ref_11 article-title: Partial Differential Equation-Based Enhancement and Crack Detection publication-title: Math. Probl. Eng. doi: 10.1155/2019/8157205  | 
    
| SSID | ssj0000331904 | 
    
| Score | 2.4828618 | 
    
| Snippet | Cracks in concrete can cause the degradation of stiffness, bearing capacity and durability of civil infrastructure. Hence, crack diagnosis is of great... | 
    
| SourceID | doaj unpaywall proquest crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 240 | 
    
| SubjectTerms | Accuracy Algorithms Automation Bearing capacity Bridges Classification Classifiers Concrete Concrete bridges concrete crack diagnosis Concrete structures Cracks data fusion Decision making degradation design detection Diagnosis Diagnostic systems durability Edge detection Feature extraction Filters Fuzzy sets image processing Infrastructure machine learning Medical imaging Methods Neural networks Optimization Partial differential equations Pattern recognition principal component analysis Principal components analysis Reinforced concrete Remote sensing sounds Stiffness Support vector machines swarms  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LbtQwFLXKdFE2iKcIFGRENyysZmIn4ywq1Bk6GpA6IIai7iK_0lZkkuk8hMqKf-Ab-DG-hHudR6mEuk2c572-Pr72PYeQvf5AuyhUhmnlNBPKSIY0Yyw2cSxzAyOu11g6niaTE_HhND7dItO2Fga3VbYx0QdqWxnMke9HYoBUVXzA3y4uGapG4epqK6GhGmkFe-Apxu6Q7QiZsXpke3g0_fS5y7qEHFwuFDVPKYf5_v5yhUt3yPR1Y2TyBP43UOfOplyoq--qKP4ZgMb3yb0GOdLD2tQPyJYrH5KdRsT8_OoR-e2Ladn7OYQIhtBus3RsCKOUpZMLrDP2sicFHVUlQMW1o6OlMt9oXaqbN7k7Om53a1G_m4B-hJgyv_gBN5l9Pab1I7ySJlwC0JGq0tJ3f37-mtHxBjNv9LA4g_-2Pp9TwMN06AvC6MzT1MILrR6Tk_HRl9GENSoMzPBUrJm0KnKxsZobB2DMChFLZ-Evx3Caq9DEMsH1OZfYKDcW6ekhLlirVT8KLaCBJ6RXVqV7SmiamzBSJkXRdpFqqblT2qQ6dlwql6YBedNaIDMNRTkqZRQZTFXQWtm1tQLyumu7qIk5_ttqiIbsWiCZtj9QLc-ypm9meZTnkZWp1vlAGCGV7XMnTJoIBZ8lBwHZbd0ga3r4Krv2x4C86k5D38QFF1W6agNtAM32sdI4Cche5z63vO6z25_0nNyNcEuNzwDtkh6Yzr0ATLTWLxtH_wsmBw8g priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELage1gu_KMNLMiIvXDwpnGcxDmhtlAVpF2QStFyivyX3WrTpOoPaPfEO_AMvBhPwthxC4sQQlyTSTJWxjOf7ZlvEDqIMmloVygihZGECcWJpRkjiUoSXiqIuK7H0tFxOpqwNyfJid9wW_q0SliKT52Tpt2MEttPKYzikIYQfMK5Ll988jtJAFZcgGb8OtpJE8DiHbQzOX7X-2g7ym2ebTlJY1jbh4ulPaazrF5XopAj67-CMHfX9VxcfBZV9UuwGd5CxUbNNsfk_HC9kofq8jcGx_8fx2100-NQ3GsN5w66Zuq7aNe3RD-7uIe-udJc8noGDodYoLheGNKHmKfxaGqrll0TlQoPmhqA58rgwUKoc9wW_pZ-JxAPN7lf2OUm4LfgoWbTS3jJ-MMRbj_h-nLCI6AnFrXGL79_-TrGw7XVGveq02YxXZ3NMKBr3HflZXjsSG9BoeV9NBm-ej8YEd_Tgag4ZyvCtaAmUVrGygC004wl3GiAbQncjkVXJTy1p30m1bRU2pLdg5fRWoqIdjVgiweoUze12UM4L1WXCpXbFvAsl1zGRkiVy8TEXJg8D9DzzT8ulCc8t303qgIWPtYeip_2EKBnW9l5S_PxR6m-NZWthKXmdheaxWnhZ3pR0rKkmudSlhlTjAsdxYapPGUChsWzAO1vDK3w_mJZUJZZIrY4iwP0dHsbZro9vhG1adYgA9g4snXLaYAOtgb6F3Uf_pvYI3SD2kQdt6-0jzrwC81jQFor-cRPpx_qVyWk priority: 102 providerName: Unpaywall  | 
    
| Title | Multi-Image-Feature-Based Hierarchical Concrete Crack Identification Framework Using Optimized SVM Multi-Classifiers and D–S Fusion Algorithm for Bridge Structures | 
    
| URI | https://www.proquest.com/docview/2478302373 https://www.proquest.com/docview/2511178906 https://www.mdpi.com/2072-4292/13/2/240/pdf?version=1610612548 https://doaj.org/article/f2ff2d89bbf74c48ad13e4c964a22e87  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 13 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: 8FG dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELZgOSwXxK8ILJURe-FgbWo7qX1suxsKomVFKVpOkf-yW5Gmq_4ILSfegWfgxXgSxk5auhKCC6coiZNYmRnPZ3vmG4QO2x3taKwM0cppwpURxNOMkcQkiSgMeNxQY2k4SgcT_uYsOdsp9eVjwmp64PrHHRW0KKgVUuuiww0XyraZ40amXFHqRMgjj4XcmUyFMZiBasW85iNlMK8_Wiz9Fp1n9LrmgQJR_zV0ub-uLtXVF1WWO44mu4vuNAgRd-ue3UM3XHUf7TfFyi-uHqAfIWmWvJ7BUEA8hFsvHOmBN7J4MPX5xKG8SYn78wog4crh_kKZz7hOyS2aNTqcbaKycIgawO9g7JhNv8JLxh-HuP5EqJgJjwBExKqy-Pjnt-9jnK39ChvulufzxXR1McOAe3EvJH7hcaCjhQ4tH6JJdvKhPyBNtQVimOQrIqyiLjFWM-MAdFnOE-EsAKoEbjMVm0Skfh_OpZYWxnoaerB_a7Vq09iC13-E9qp55R4jLAsTU2WkL87OpRaaOaWN1IljQjkpI_RyI4HcNFTkviJGmcOUxEsr_y2tCL3Ytr2sCTj-2KrnBblt4UmzwwVQpbxRpfxfqhShg40a5I0lL3PKO54ijXVYhJ5vb4MN-o0VVbn5GtoAam37jOI0Qodb9flLd5_8j-4-RbepD7AJ60EHaA8E7J4BQlrpFropslctdKt7PHw7hmPvZHT6vhVMBM4mo9Pup19eyBfd | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELaq9hAuiF8RKGBEOXBYdWN7E_tQoSZtlNAmINqi3hb_bVuRbEJ-VIUT78Az8Bo8DE_CjLObUgn11uuu908zO_N57Pk-QrZqDeNZrG1ktDeR0FZGSDMWJTZJZGYh4waNpV6_3jkR70-T0zXyu-yFwW2VZUwMgdqNLNbIt5loIFUVb_B3428Rqkbh6mopoaELaQW3EyjGisaOA7-4hCncdKe7B_Z-w1h7_7jViQqVgchyJWaRdJr5xDrDrQew4YRIpHdwlwROcx3bRNZx_cnXHcusQ_p18HvnjK6x2ElUjYAUsCG4UDD522ju9z9-WlV5Yg4uHoslLyrnKt6eTHGpEJnFrmXCIBhwDeVW5vlYLy71YPBPwmvfI3cLpEp3l651n6z5_AGpFKLp54uH5Fdo3o26QwhJEULJ-cRHTciKjnYusK85yKwMaGuUAzSdedqaaPuVLluDs6JWSNvl7jAadi_QDxDDhhff4SZHn3t0-Yig3AmXAFSlOnd078-Pn0e0PcdKH90dnIGdZudDCvibNkMDGj0KtLjwQtNH5ORW7PGYrOej3D8hVGU2ZtoqFIkXykjDvTZWmcRzqb1SVfK2tEBqC0p0VOYYpDA1QmulV9aqkterseMlEch_RzXRkKsRSN4dDowmZ2kRC9KMZRlzUhmTNYQVUrsa98KqutDwWbJRJZulG6RFRJmmV_5fJa9WpyEW4AKPzv1oDmMAPdews7leJVsr97nhdZ_e_KSXpNI57h2mh93-wTNyh-F2nlB92iTrYEb_HPDYzLwonJ6SL7f9n_0FWJVLVg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF5VRaJcEL8iUGAR5cBhFWd3HdsHhJoEk1BakEJRb2b_3FYkTsiPqnDiHXgGXoLH4UmYWdsplVBvvdrrP83s7OfZme8jZKcVaccDZZhWTjOpTMyQZoyFJgzj3MCK6zWW9g_a_UP57ig82iC_614YLKusY6IP1HZiMEfe5DJCqioRiWZelUV87KWvp98YKkjhTmstp1G6yJ5bncHv2_zVoAe2fsF5-uZTt88qhQFmRCIXLLaKu9BYLYwDoGGlDGNnAUSEcFqowIRxG_eeXNvy3FikXgeft1arFg9sjIoREP6vRcjijl3q6dt1ficQ4NyBLBlRhUiC5myOm4TIKXZhDfRSARfw7daymKrVmRqN_lnq0lvkZoVR6W7pVLfJhivukK1KLv1kdZf88m27bDCGYMQQRC5njnVgPbS0f4odzV5gZUS7kwJA6cLR7kyZr7RsCs6rLCFN67ow6usW6AeIXuPT73CT4ed9Wj7Ca3bCJQBSqSos7f358XNI0yXm-Oju6BissjgZU0DetONbz-jQE-LCC83vkcMrscZ9sllMCveA0CQ3AVcmQXl4mehYC6e0SXToRKxckjTIy9oCmanI0FGTY5TBTxFaKzu3VoM8X4-dlhQg_x3VQUOuRyBttz8wmR1nVRTIcp7n3MaJ1nkkjYyVbQknTdKWCj4rjhpku3aDrIol8-zc8xvk2fo0RAHc2lGFmyxhDODmFvY0txtkZ-0-l7zuw8uf9JRch9mVvR8c7D0iNzjW8fi00zbZBCu6xwDEFvqJ93hKvlz1FPsLVY1I8A | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELage1gu_KMNLMiIvXDwpnGcxDmhtlAVpF2QStFyivyX3WrTpOoPaPfEO_AMvBhPwthxC4sQQlyTSTJWxjOf7ZlvEDqIMmloVygihZGECcWJpRkjiUoSXiqIuK7H0tFxOpqwNyfJid9wW_q0SliKT52Tpt2MEttPKYzikIYQfMK5Ll988jtJAFZcgGb8OtpJE8DiHbQzOX7X-2g7ym2ebTlJY1jbh4ulPaazrF5XopAj67-CMHfX9VxcfBZV9UuwGd5CxUbNNsfk_HC9kofq8jcGx_8fx2100-NQ3GsN5w66Zuq7aNe3RD-7uIe-udJc8noGDodYoLheGNKHmKfxaGqrll0TlQoPmhqA58rgwUKoc9wW_pZ-JxAPN7lf2OUm4LfgoWbTS3jJ-MMRbj_h-nLCI6AnFrXGL79_-TrGw7XVGveq02YxXZ3NMKBr3HflZXjsSG9BoeV9NBm-ej8YEd_Tgag4ZyvCtaAmUVrGygC004wl3GiAbQncjkVXJTy1p30m1bRU2pLdg5fRWoqIdjVgiweoUze12UM4L1WXCpXbFvAsl1zGRkiVy8TEXJg8D9DzzT8ulCc8t303qgIWPtYeip_2EKBnW9l5S_PxR6m-NZWthKXmdheaxWnhZ3pR0rKkmudSlhlTjAsdxYapPGUChsWzAO1vDK3w_mJZUJZZIrY4iwP0dHsbZro9vhG1adYgA9g4snXLaYAOtgb6F3Uf_pvYI3SD2kQdt6-0jzrwC81jQFor-cRPpx_qVyWk | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Image-Feature-Based+Hierarchical+Concrete+Crack+Identification+Framework+Using+Optimized+SVM+Multi-Classifiers+and+D%E2%80%93S+Fusion+Algorithm+for+Bridge+Structures&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Yang+Yu&rft.au=Maria+Rashidi&rft.au=Bijan+Samali&rft.au=Amir+M.+Yousefi&rft.date=2021-01-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=13&rft.issue=2&rft.spage=240&rft_id=info:doi/10.3390%2Frs13020240&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f2ff2d89bbf74c48ad13e4c964a22e87 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |