Study of line spectra emitted by hydrogen isotopes in tokamaks through Deep-Learning algorithms
•A Deep-Learning model is applied to Balmer-alpha spectra emitted by a hydrogen–deuterium plasma in tokamaks.•The applied model is a One-dimensional Convolutional Neural Network.•The input data is a set of theoretical spectra generated for parameters varying in large domains covering conditions of t...
Saved in:
| Published in | Nuclear materials and energy Vol. 43; p. 101935 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.06.2025
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2352-1791 2352-1791 |
| DOI | 10.1016/j.nme.2025.101935 |
Cover
| Abstract | •A Deep-Learning model is applied to Balmer-alpha spectra emitted by a hydrogen–deuterium plasma in tokamaks.•The applied model is a One-dimensional Convolutional Neural Network.•The input data is a set of theoretical spectra generated for parameters varying in large domains covering conditions of tokamak divertor plasmas.•The presented work is a proof-of-principle of the use of 1D-CNN to raw spectra for predictions (the isotopic ratio here).
Artificial Intelligence (AI) is increasingly used in various plasma physics topics, including applications in spectroscopy and diagnostics in magnetically confined fusion plasmas. The paper focuses on the application of the convolutional neural network (CNN) algorithm to emission spectroscopy from the divertor regions of magnetic fusion devices. Specifically, we use a CNN to determine hydrogen isotopic ratios from the theoretical emission spectra of the Balmer-α line in hydrogen–deuterium (HD) plasmas. The motivation for coupling AI with spectroscopy is to develop novel frameworks that can outperform existing classical methods based on spectral line fitting, in terms of accuracy, speed, or adaptability. In a previous work, we have used a fully connected neural network algorithm for theoretical Hα/Dα line spectra emitted by HD plasmas which have been generated for conditions relevant to divertor plasmas in tokamaks (magnetic field, neutral temperatures and fractions and hydrogen concentration). The generated spectra were preprocessed to extract few spectroscopic features which were then used as input data by the neural network. In the present work, we apply for the first time a CNN model to raw synthetic Hα/Dα line spectra theoretically emitted by HD plasmas to predict the corresponding isotopic ratios. In this context, we show that the trained CNN predicts hydrogen isotopic ratios with deviations of up to 5% from the true values. Additionally, our model can generalize its predictions to spectra corresponding to any observation angle relative to the magnetic field, despite being trained solely on spectra from parallel observations. The prediction accuracy in these cases is comparable to the training accuracy. |
|---|---|
| AbstractList | Artificial Intelligence (AI) is increasingly used in various plasma physics topics, including applications in spectroscopy and diagnostics in magnetically confined fusion plasmas. The paper focuses on the application of the convolutional neural network (CNN) algorithm to emission spectroscopy from the divertor regions of magnetic fusion devices. Specifically, we use a CNN to determine hydrogen isotopic ratios from the theoretical emission spectra of the Balmer-α line in hydrogen–deuterium (HD) plasmas. The motivation for coupling AI with spectroscopy is to develop novel frameworks that can outperform existing classical methods based on spectral line fitting, in terms of accuracy, speed, or adaptability. In a previous work, we have used a fully connected neural network algorithm for theoretical Hα/Dα line spectra emitted by HD plasmas which have been generated for conditions relevant to divertor plasmas in tokamaks (magnetic field, neutral temperatures and fractions and hydrogen concentration). The generated spectra were preprocessed to extract few spectroscopic features which were then used as input data by the neural network. In the present work, we apply for the first time a CNN model to raw synthetic Hα/Dα line spectra theoretically emitted by HD plasmas to predict the corresponding isotopic ratios. In this context, we show that the trained CNN predicts hydrogen isotopic ratios with deviations of up to 5% from the true values. Additionally, our model can generalize its predictions to spectra corresponding to any observation angle relative to the magnetic field, despite being trained solely on spectra from parallel observations. The prediction accuracy in these cases is comparable to the training accuracy. •A Deep-Learning model is applied to Balmer-alpha spectra emitted by a hydrogen–deuterium plasma in tokamaks.•The applied model is a One-dimensional Convolutional Neural Network.•The input data is a set of theoretical spectra generated for parameters varying in large domains covering conditions of tokamak divertor plasmas.•The presented work is a proof-of-principle of the use of 1D-CNN to raw spectra for predictions (the isotopic ratio here). Artificial Intelligence (AI) is increasingly used in various plasma physics topics, including applications in spectroscopy and diagnostics in magnetically confined fusion plasmas. The paper focuses on the application of the convolutional neural network (CNN) algorithm to emission spectroscopy from the divertor regions of magnetic fusion devices. Specifically, we use a CNN to determine hydrogen isotopic ratios from the theoretical emission spectra of the Balmer-α line in hydrogen–deuterium (HD) plasmas. The motivation for coupling AI with spectroscopy is to develop novel frameworks that can outperform existing classical methods based on spectral line fitting, in terms of accuracy, speed, or adaptability. In a previous work, we have used a fully connected neural network algorithm for theoretical Hα/Dα line spectra emitted by HD plasmas which have been generated for conditions relevant to divertor plasmas in tokamaks (magnetic field, neutral temperatures and fractions and hydrogen concentration). The generated spectra were preprocessed to extract few spectroscopic features which were then used as input data by the neural network. In the present work, we apply for the first time a CNN model to raw synthetic Hα/Dα line spectra theoretically emitted by HD plasmas to predict the corresponding isotopic ratios. In this context, we show that the trained CNN predicts hydrogen isotopic ratios with deviations of up to 5% from the true values. Additionally, our model can generalize its predictions to spectra corresponding to any observation angle relative to the magnetic field, despite being trained solely on spectra from parallel observations. The prediction accuracy in these cases is comparable to the training accuracy. |
| ArticleNumber | 101935 |
| Author | Saura, N. Koubiti, M. Benkadda, S. |
| Author_xml | – sequence: 1 givenname: N. surname: Saura fullname: Saura, N. – sequence: 2 givenname: M. surname: Koubiti fullname: Koubiti, M. email: mohammed.koubiti@univ-amu.fr – sequence: 3 givenname: S. surname: Benkadda fullname: Benkadda, S. |
| BackLink | https://hal.science/hal-05196293$$DView record in HAL |
| BookMark | eNqNkc1u1DAURiNUJErpA3TnLYtM_Zs4YlUVaCuNxAK6thznJvE0sSPbU5S3x0NQRTeIle2r7zuWj98XZ847KIorgncEk-r6sHMz7Cim4nRumHhTnFMmaEnqhpz9tX9XXMZ4wDiHqKScnRfqezp2K_I9mqwDFBcwKWgEs00JOtSuaFy74AdwyEaf_AIRWYeSf9KzfooojcEfhxF9BljKPejgrBuQngYfbBrn-KF42-spwuWf9aJ4_Prlx-19uf9293B7sy8Na3gqZWMErShQwNzUrNZcd0KS1uiaUMmhZVi2bdvgnvdSMs6AV6SjWOZCXQnBLoqHjdt5fVBLsLMOq_Laqt8DHwalQ7JmAiVqollPCeVVppm6ZdxkF7JuONBassyiG-voFr3-1NP0AiRYnYyrg8rG1cm42ozn0setNOrp1f33N3t1mmFBmoo27JnkLNmyJvgYA_T_xf-0dSBbfLYQVDQWnIHOhvxn-Zn2H-1fAPCneg |
| Cites_doi | 10.1029/2021WR029980 10.1088/0741-3335/43/12A/327 10.1186/s40537-021-00444-8 10.1007/s10462-023-10662-6 10.1063/1.1355025 10.1016/j.jqsrt.2024.108925 10.3390/app12199891 10.1088/1361-6463/acd261 10.1088/1741-4326/ab0000 10.1109/TPS.2023.3268170 10.1088/1742-6596/2439/1/012016 10.1016/j.fusengdes.2023.114012 10.1063/1.5143481 10.1002/ctpp.202390007 10.1063/5.0034552 10.1140/epjd/s10053-023-00719-0 10.1007/978-1-4899-7547-8_5 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s) Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2025 The Author(s) – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 6I. AAFTH AAYXX CITATION 1XC ADTOC UNPAY DOA |
| DOI | 10.1016/j.nme.2025.101935 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Hyper Article en Ligne (HAL) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics Computer Science |
| EISSN | 2352-1791 |
| ExternalDocumentID | oai_doaj_org_article_571a3f21246f4fc7b34c2438794e2783 10.1016/j.nme.2025.101935 oai:HAL:hal-05196293v1 10_1016_j_nme_2025_101935 S2352179125000778 |
| GroupedDBID | 0R~ 4.4 457 5VS 6I. AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEXQZ AFJKZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV EBS EJD FDB GROUPED_DOAJ IPNFZ KQ8 M41 M~E O9- OK1 RIG ROL SSZ AAYXX CITATION 1XC ADTOC UNPAY |
| ID | FETCH-LOGICAL-c394t-89c5262e2e04c737a4ad581bca71284eb308bbb90f4f88343e461d2082e076553 |
| IEDL.DBID | DOA |
| ISSN | 2352-1791 |
| IngestDate | Fri Oct 03 12:52:48 EDT 2025 Tue Aug 19 23:34:48 EDT 2025 Tue Oct 14 20:05:00 EDT 2025 Wed Oct 01 05:54:13 EDT 2025 Sat Jul 05 17:11:37 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open access article under the CC BY license. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c394t-89c5262e2e04c737a4ad581bca71284eb308bbb90f4f88343e461d2082e076553 |
| ORCID | 0000-0002-0717-9125 0000-0002-9704-7619 |
| OpenAccessLink | https://doaj.org/article/571a3f21246f4fc7b34c2438794e2783 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_571a3f21246f4fc7b34c2438794e2783 unpaywall_primary_10_1016_j_nme_2025_101935 hal_primary_oai_HAL_hal_05196293v1 crossref_primary_10_1016_j_nme_2025_101935 elsevier_sciencedirect_doi_10_1016_j_nme_2025_101935 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | June 2025 2025-06-00 2025-06 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: June 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Nuclear materials and energy |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Neverov (b0090) 2019; 59 B. Iooss, P. Lemaître, Uncertainty management in simulation-optimization of complex systems: algorithms and applications, 101-122 (2015). 4th IAEA Technical Meeting on Fusion Data Processing, Validation and analysis (2021). M. Koubiti EPJD Berahmand (b0140) 2024; 57 Vanden Boomen (b0110) 2021; 57 137 (2023). B L Welch (2023). Nishijima Pedregosa (b0035) 2021; 92 Koubiti, Kerebel (b0075) 2023; 2439 Krizhevsky (b0095) 2012; 25 Machine learning methods in plasma physics, Contrib. Plasma Phys. Ronchi (b0060) 2024; 318 Kajita (b0030) 2020; 10 K., Simonyan and A., Zisserman, Inter. Conf. on Learning Representations, 1–14 (2015). Phys. Plasmas 8, 1253–1262 (2001). Klambauer et al, Self-normalizing Neural Networks arXiv:1706.02515. Alzubaidi (b0105) 2021; 8 L. Malhotra Efron, Stein (b0135) 1981 Kajita (b0040) 2023; 196 Mertens (b0080) 2001; 43 Pedregosa (b0025) 2011; 12 Saura (b0055) 2023; 56 . Samuell (b0050) 2021; 92 Döpp (b0010) 2023 Datta (b0005) 2024 Koubiti, Kerebel (b0065) 2022; 12 Anirudh (b0015) 2023; 51 N. Saura, Doctoral dissertation (2021), Université de Lille 10.1016/j.nme.2025.101935_b0125 10.1016/j.nme.2025.101935_b0045 10.1016/j.nme.2025.101935_b0100 10.1016/j.nme.2025.101935_b0120 Berahmand (10.1016/j.nme.2025.101935_b0140) 2024; 57 Koubiti (10.1016/j.nme.2025.101935_b0065) 2022; 12 Samuell (10.1016/j.nme.2025.101935_b0050) 2021; 92 Mertens (10.1016/j.nme.2025.101935_b0080) 2001; 43 10.1016/j.nme.2025.101935_b0085 10.1016/j.nme.2025.101935_b0020 Datta (10.1016/j.nme.2025.101935_b0005) 2024 10.1016/j.nme.2025.101935_b0115 Efron (10.1016/j.nme.2025.101935_b0135) 1981 Saura (10.1016/j.nme.2025.101935_b0055) 2023; 56 Krizhevsky (10.1016/j.nme.2025.101935_b0095) 2012; 25 Kajita (10.1016/j.nme.2025.101935_b0030) 2020; 10 Ronchi (10.1016/j.nme.2025.101935_b0060) 2024; 318 Anirudh (10.1016/j.nme.2025.101935_b0015) 2023; 51 Nishijima Pedregosa (10.1016/j.nme.2025.101935_b0035) 2021; 92 Koubiti (10.1016/j.nme.2025.101935_b0075) 2023; 2439 Alzubaidi (10.1016/j.nme.2025.101935_b0105) 2021; 8 Kajita (10.1016/j.nme.2025.101935_b0040) 2023; 196 10.1016/j.nme.2025.101935_b0130 Pedregosa (10.1016/j.nme.2025.101935_b0025) 2011; 12 10.1016/j.nme.2025.101935_b0070 Döpp (10.1016/j.nme.2025.101935_b0010) 2023 Neverov (10.1016/j.nme.2025.101935_b0090) 2019; 59 Vanden Boomen (10.1016/j.nme.2025.101935_b0110) 2021; 57 |
| References_xml | – volume: 59 year: 2019 ident: b0090 publication-title: Nucl. Fusion – reference: , 137 (2023). – reference: Klambauer et al, Self-normalizing Neural Networks arXiv:1706.02515. – reference: B. Iooss, P. Lemaître, Uncertainty management in simulation-optimization of complex systems: algorithms and applications, 101-122 (2015). – volume: 51 start-page: 1750 year: 2023 end-page: 1838 ident: b0015 publication-title: IEEE Trans. Plasma Sci. – volume: 12 start-page: 2825 year: 2011 ident: b0025 publication-title: J. Mach. Learn. Res. – year: 2023 ident: b0010 publication-title: High Power Laser Sci. Eng. – reference: L. Malhotra – volume: 43 start-page: A349 year: 2001 ident: b0080 publication-title: Plasma Phys. Control. Fusion – volume: 12 start-page: 9891 year: 2022 ident: b0065 publication-title: Appl. Sci. – reference: Machine learning methods in plasma physics, Contrib. Plasma Phys. – reference: M. Koubiti EPJD – volume: 10 year: 2020 ident: b0030 publication-title: AIP Adv. – volume: 92 year: 2021 ident: b0050 publication-title: Rev. Sci. Instrum. – volume: 8 start-page: 1 year: 2021 end-page: 74 ident: b0105 publication-title: J. Big Data – reference: K., Simonyan and A., Zisserman, Inter. Conf. on Learning Representations, 1–14 (2015). – year: 2024 ident: b0005 publication-title: IEEE Trans. Plasma Sci. – reference: N. Saura, Doctoral dissertation (2021), Université de Lille – reference: B L Welch – volume: 25 year: 2012 ident: b0095 publication-title: Adv. Neural Inform. Process. Syst. – volume: 2439 year: 2023 ident: b0075 publication-title: J. Phys. Conf. Series – reference: Phys. Plasmas 8, 1253–1262 (2001). – volume: 318 year: 2024 ident: b0060 publication-title: JQSRT – volume: 56 year: 2023 ident: b0055 publication-title: J. Phys. D: – volume: 92 year: 2021 ident: b0035 publication-title: Rev. Sci. Instrum. – start-page: 586 year: 1981 end-page: 596 ident: b0135 publication-title: Ann. Stat. – reference: . – reference: (2023). – reference: , 4th IAEA Technical Meeting on Fusion Data Processing, Validation and analysis (2021). – volume: 57 start-page: 28 year: 2024 ident: b0140 publication-title: , – volume: 57 year: 2021 ident: b0110 publication-title: Water Resour. Res. – volume: 196 year: 2023 ident: b0040 publication-title: Fusion Eng. Des. – year: 2024 ident: 10.1016/j.nme.2025.101935_b0005 publication-title: IEEE Trans. Plasma Sci. – volume: 57 issue: 11 year: 2021 ident: 10.1016/j.nme.2025.101935_b0110 publication-title: Water Resour. Res. doi: 10.1029/2021WR029980 – volume: 43 start-page: A349 year: 2001 ident: 10.1016/j.nme.2025.101935_b0080 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/43/12A/327 – volume: 8 start-page: 1 year: 2021 ident: 10.1016/j.nme.2025.101935_b0105 publication-title: J. Big Data doi: 10.1186/s40537-021-00444-8 – volume: 57 start-page: 28 issue: 2 year: 2024 ident: 10.1016/j.nme.2025.101935_b0140 publication-title: Artificial Intelligence Rev., doi: 10.1007/s10462-023-10662-6 – volume: 92 year: 2021 ident: 10.1016/j.nme.2025.101935_b0035 publication-title: Rev. Sci. Instrum. – ident: 10.1016/j.nme.2025.101935_b0085 doi: 10.1063/1.1355025 – ident: 10.1016/j.nme.2025.101935_b0125 – ident: 10.1016/j.nme.2025.101935_b0100 – ident: 10.1016/j.nme.2025.101935_b0045 – volume: 318 year: 2024 ident: 10.1016/j.nme.2025.101935_b0060 publication-title: JQSRT doi: 10.1016/j.jqsrt.2024.108925 – volume: 12 start-page: 9891 year: 2022 ident: 10.1016/j.nme.2025.101935_b0065 publication-title: Appl. Sci. doi: 10.3390/app12199891 – volume: 56 year: 2023 ident: 10.1016/j.nme.2025.101935_b0055 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/acd261 – volume: 59 year: 2019 ident: 10.1016/j.nme.2025.101935_b0090 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ab0000 – start-page: 586 year: 1981 ident: 10.1016/j.nme.2025.101935_b0135 publication-title: Ann. Stat. – year: 2023 ident: 10.1016/j.nme.2025.101935_b0010 publication-title: High Power Laser Sci. Eng. – volume: 51 start-page: 1750 year: 2023 ident: 10.1016/j.nme.2025.101935_b0015 publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2023.3268170 – volume: 2439 year: 2023 ident: 10.1016/j.nme.2025.101935_b0075 publication-title: J. Phys. Conf. Series doi: 10.1088/1742-6596/2439/1/012016 – volume: 25 year: 2012 ident: 10.1016/j.nme.2025.101935_b0095 publication-title: Adv. Neural Inform. Process. Syst. – volume: 196 year: 2023 ident: 10.1016/j.nme.2025.101935_b0040 publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2023.114012 – ident: 10.1016/j.nme.2025.101935_b0120 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.nme.2025.101935_b0025 publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.nme.2025.101935_b0115 – volume: 10 year: 2020 ident: 10.1016/j.nme.2025.101935_b0030 publication-title: AIP Adv. doi: 10.1063/1.5143481 – ident: 10.1016/j.nme.2025.101935_b0020 doi: 10.1002/ctpp.202390007 – volume: 92 year: 2021 ident: 10.1016/j.nme.2025.101935_b0050 publication-title: Rev. Sci. Instrum. doi: 10.1063/5.0034552 – ident: 10.1016/j.nme.2025.101935_b0070 doi: 10.1140/epjd/s10053-023-00719-0 – ident: 10.1016/j.nme.2025.101935_b0130 doi: 10.1007/978-1-4899-7547-8_5 |
| SSID | ssj0001928243 |
| Score | 2.3046558 |
| Snippet | •A Deep-Learning model is applied to Balmer-alpha spectra emitted by a hydrogen–deuterium plasma in tokamaks.•The applied model is a One-dimensional... Artificial Intelligence (AI) is increasingly used in various plasma physics topics, including applications in spectroscopy and diagnostics in magnetically... |
| SourceID | doaj unpaywall hal crossref elsevier |
| SourceType | Open Website Open Access Repository Index Database Publisher |
| StartPage | 101935 |
| SubjectTerms | Computer Science Physics |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLZYd-DENgGiCCYL7QTK5PhXkmPHNlXTmDhQaZws27HX0DapmnSo--t5TtKJIsSPS6RYTuw8v_h9lj9_D6ETY7wmPs4imggTweynI00cXLwhmmQpYy15_NONHE_41a247cWiw1mYnf37lodVLoKaJRXhPmNiD-1LAbB7gPYnN59HX9vkcYK2MpvbXcvfPbcTd1p5_p3wszcNPMin63KpN9_1fP5TkLk86OhZdatNGLgls9N1Y07twy_Kjf_U_0P0rIeaeNT5xhF64srnSAXi4AZXHgd8iduDliuN3aJoAHtis8HTTb6qwK1wUVdNtXQ1LkrcVDO90LMa93l98Llzy6gXZ73Den5XrYpmuqhfoMnlxZeP46hPshBZlvEmSjMrqKSOOsJtwhLNdS4Ay1qdhNAFa22SGmMy4rlPU8aZ4zLOKSAHRxIpBHuJBmVVulcIS2piy7zxmbRcw1Ioh7WN19zHuWCapEP0fjsEatlpaagtyeybAjupYCfV2WmIzsIgPVYMMthtAVhX9X-VEuBbzEP05RK6ZxPDuKWcpTDJuJBCZIj4dohVjyg6pACvKv7U9jtwh52mx6NrFcoC4pUAke7jIfrw6C1__5zX_1X7DRo0q7V7C3inMce9p_8AFxb6Zw priority: 102 providerName: Unpaywall |
| Title | Study of line spectra emitted by hydrogen isotopes in tokamaks through Deep-Learning algorithms |
| URI | https://dx.doi.org/10.1016/j.nme.2025.101935 https://hal.science/hal-05196293 https://doi.org/10.1016/j.nme.2025.101935 https://doaj.org/article/571a3f21246f4fc7b34c2438794e2783 |
| UnpaywallVersion | publishedVersion |
| Volume | 43 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2352-1791 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001928243 issn: 2352-1791 databaseCode: KQ8 dateStart: 20150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2352-1791 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001928243 issn: 2352-1791 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2352-1791 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001928243 issn: 2352-1791 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2352-1791 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001928243 issn: 2352-1791 databaseCode: AKRWK dateStart: 20150101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT-MwELUW9gAXBNpFlC9ZaE-sIjmxkzjHLguqgEUrRAWcrHFi05Q2qdqwqP9-x0kK5QIXLpEcOXb8xvK8UV5mCPmhtQVm_cQL4lB7ePqBB8zgxWoGLJGc1-LxP1dRry_O78K7pVJfThPWpAdugMOA3Qdu8YAVkRU2jTUXaSC4xH1kXJUId_oymSwFU8OGt0jstfiMWQu6irFLixmErp3U5d1eHVGdr_-NP1oZOGHk2lMxgfkzjEZLXudsk2y0dJF2m9fcIl9M8Y0oJ_6b09JSxxFp_bPkFKgZ5xXyR6rndDDPpiVuDZrPyqqcmBnNC1qVjzCGxxlta_PQ38ZMvDbB6gOF0UM5zavBePad9M9Ob056XlsowUt5IipPJmkYRIEJDBNpzGMQkIXIR1OInfvBeJlJrXXCEEEpueBGRH6GsOEDcRSGfJusFmVhdgiNAu2n3GqbRKkADGcyjE8sCOtnIQcmO-R4gZqaNPkw1EIoNlQIsXIQqwbiDvnlcH3p6FJZ1zfQwKo1sPrIwB0iFlZRLStovD0Olb839xFa8M3Uve6lcvcca42Q5vzzO-Tni4E_Xs7uZyxnj6y7IRu12T5ZraZP5gB5TaUPydfuxfXtxWG9lbHVv_rbvf8PSBz1Mw |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLZYd-DENgGiCCYL7QTK5PhXkmPHNlXTmDhQaZws27HX0DapmnSo--t5TtKJIsSPS6RYTuw8v_h9lj9_D6ETY7wmPs4imggTweynI00cXLwhmmQpYy15_NONHE_41a247cWiw1mYnf37lodVLoKaJRXhPmNiD-1LAbB7gPYnN59HX9vkcYK2MpvbXcvfPbcTd1p5_p3wszcNPMin63KpN9_1fP5TkLk86OhZdatNGLgls9N1Y07twy_Kjf_U_0P0rIeaeNT5xhF64srnSAXi4AZXHgd8iduDliuN3aJoAHtis8HTTb6qwK1wUVdNtXQ1LkrcVDO90LMa93l98Llzy6gXZ73Den5XrYpmuqhfoMnlxZeP46hPshBZlvEmSjMrqKSOOsJtwhLNdS4Ay1qdhNAFa22SGmMy4rlPU8aZ4zLOKSAHRxIpBHuJBmVVulcIS2piy7zxmbRcw1Ioh7WN19zHuWCapEP0fjsEatlpaagtyeybAjupYCfV2WmIzsIgPVYMMthtAVhX9X-VEuBbzEP05RK6ZxPDuKWcpTDJuJBCZIj4dohVjyg6pACvKv7U9jtwh52mx6NrFcoC4pUAke7jIfrw6C1__5zX_1X7DRo0q7V7C3inMce9p_8AFxb6Zw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+of+line+spectra+emitted+by+hydrogen+isotopes+in+tokamaks+through+Deep-Learning+algorithms&rft.jtitle=Nuclear+materials+and+energy&rft.au=Saura%2C+N.&rft.au=Koubiti%2C+M.&rft.au=Benkadda%2C+S.&rft.date=2025-06-01&rft.issn=2352-1791&rft.eissn=2352-1791&rft.volume=43&rft.spage=101935&rft_id=info:doi/10.1016%2Fj.nme.2025.101935&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nme_2025_101935 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-1791&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-1791&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-1791&client=summon |