Study of line spectra emitted by hydrogen isotopes in tokamaks through Deep-Learning algorithms

•A Deep-Learning model is applied to Balmer-alpha spectra emitted by a hydrogen–deuterium plasma in tokamaks.•The applied model is a One-dimensional Convolutional Neural Network.•The input data is a set of theoretical spectra generated for parameters varying in large domains covering conditions of t...

Full description

Saved in:
Bibliographic Details
Published inNuclear materials and energy Vol. 43; p. 101935
Main Authors Saura, N., Koubiti, M., Benkadda, S.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2025
Elsevier
Subjects
Online AccessGet full text
ISSN2352-1791
2352-1791
DOI10.1016/j.nme.2025.101935

Cover

Abstract •A Deep-Learning model is applied to Balmer-alpha spectra emitted by a hydrogen–deuterium plasma in tokamaks.•The applied model is a One-dimensional Convolutional Neural Network.•The input data is a set of theoretical spectra generated for parameters varying in large domains covering conditions of tokamak divertor plasmas.•The presented work is a proof-of-principle of the use of 1D-CNN to raw spectra for predictions (the isotopic ratio here). Artificial Intelligence (AI) is increasingly used in various plasma physics topics, including applications in spectroscopy and diagnostics in magnetically confined fusion plasmas. The paper focuses on the application of the convolutional neural network (CNN) algorithm to emission spectroscopy from the divertor regions of magnetic fusion devices. Specifically, we use a CNN to determine hydrogen isotopic ratios from the theoretical emission spectra of the Balmer-α line in hydrogen–deuterium (HD) plasmas. The motivation for coupling AI with spectroscopy is to develop novel frameworks that can outperform existing classical methods based on spectral line fitting, in terms of accuracy, speed, or adaptability. In a previous work, we have used a fully connected neural network algorithm for theoretical Hα/Dα line spectra emitted by HD plasmas which have been generated for conditions relevant to divertor plasmas in tokamaks (magnetic field, neutral temperatures and fractions and hydrogen concentration). The generated spectra were preprocessed to extract few spectroscopic features which were then used as input data by the neural network. In the present work, we apply for the first time a CNN model to raw synthetic Hα/Dα line spectra theoretically emitted by HD plasmas to predict the corresponding isotopic ratios. In this context, we show that the trained CNN predicts hydrogen isotopic ratios with deviations of up to 5% from the true values. Additionally, our model can generalize its predictions to spectra corresponding to any observation angle relative to the magnetic field, despite being trained solely on spectra from parallel observations. The prediction accuracy in these cases is comparable to the training accuracy.
AbstractList Artificial Intelligence (AI) is increasingly used in various plasma physics topics, including applications in spectroscopy and diagnostics in magnetically confined fusion plasmas. The paper focuses on the application of the convolutional neural network (CNN) algorithm to emission spectroscopy from the divertor regions of magnetic fusion devices. Specifically, we use a CNN to determine hydrogen isotopic ratios from the theoretical emission spectra of the Balmer-α line in hydrogen–deuterium (HD) plasmas. The motivation for coupling AI with spectroscopy is to develop novel frameworks that can outperform existing classical methods based on spectral line fitting, in terms of accuracy, speed, or adaptability. In a previous work, we have used a fully connected neural network algorithm for theoretical Hα/Dα line spectra emitted by HD plasmas which have been generated for conditions relevant to divertor plasmas in tokamaks (magnetic field, neutral temperatures and fractions and hydrogen concentration). The generated spectra were preprocessed to extract few spectroscopic features which were then used as input data by the neural network. In the present work, we apply for the first time a CNN model to raw synthetic Hα/Dα line spectra theoretically emitted by HD plasmas to predict the corresponding isotopic ratios. In this context, we show that the trained CNN predicts hydrogen isotopic ratios with deviations of up to 5% from the true values. Additionally, our model can generalize its predictions to spectra corresponding to any observation angle relative to the magnetic field, despite being trained solely on spectra from parallel observations. The prediction accuracy in these cases is comparable to the training accuracy.
•A Deep-Learning model is applied to Balmer-alpha spectra emitted by a hydrogen–deuterium plasma in tokamaks.•The applied model is a One-dimensional Convolutional Neural Network.•The input data is a set of theoretical spectra generated for parameters varying in large domains covering conditions of tokamak divertor plasmas.•The presented work is a proof-of-principle of the use of 1D-CNN to raw spectra for predictions (the isotopic ratio here). Artificial Intelligence (AI) is increasingly used in various plasma physics topics, including applications in spectroscopy and diagnostics in magnetically confined fusion plasmas. The paper focuses on the application of the convolutional neural network (CNN) algorithm to emission spectroscopy from the divertor regions of magnetic fusion devices. Specifically, we use a CNN to determine hydrogen isotopic ratios from the theoretical emission spectra of the Balmer-α line in hydrogen–deuterium (HD) plasmas. The motivation for coupling AI with spectroscopy is to develop novel frameworks that can outperform existing classical methods based on spectral line fitting, in terms of accuracy, speed, or adaptability. In a previous work, we have used a fully connected neural network algorithm for theoretical Hα/Dα line spectra emitted by HD plasmas which have been generated for conditions relevant to divertor plasmas in tokamaks (magnetic field, neutral temperatures and fractions and hydrogen concentration). The generated spectra were preprocessed to extract few spectroscopic features which were then used as input data by the neural network. In the present work, we apply for the first time a CNN model to raw synthetic Hα/Dα line spectra theoretically emitted by HD plasmas to predict the corresponding isotopic ratios. In this context, we show that the trained CNN predicts hydrogen isotopic ratios with deviations of up to 5% from the true values. Additionally, our model can generalize its predictions to spectra corresponding to any observation angle relative to the magnetic field, despite being trained solely on spectra from parallel observations. The prediction accuracy in these cases is comparable to the training accuracy.
ArticleNumber 101935
Author Saura, N.
Koubiti, M.
Benkadda, S.
Author_xml – sequence: 1
  givenname: N.
  surname: Saura
  fullname: Saura, N.
– sequence: 2
  givenname: M.
  surname: Koubiti
  fullname: Koubiti, M.
  email: mohammed.koubiti@univ-amu.fr
– sequence: 3
  givenname: S.
  surname: Benkadda
  fullname: Benkadda, S.
BackLink https://hal.science/hal-05196293$$DView record in HAL
BookMark eNqNkc1u1DAURiNUJErpA3TnLYtM_Zs4YlUVaCuNxAK6thznJvE0sSPbU5S3x0NQRTeIle2r7zuWj98XZ847KIorgncEk-r6sHMz7Cim4nRumHhTnFMmaEnqhpz9tX9XXMZ4wDiHqKScnRfqezp2K_I9mqwDFBcwKWgEs00JOtSuaFy74AdwyEaf_AIRWYeSf9KzfooojcEfhxF9BljKPejgrBuQngYfbBrn-KF42-spwuWf9aJ4_Prlx-19uf9293B7sy8Na3gqZWMErShQwNzUrNZcd0KS1uiaUMmhZVi2bdvgnvdSMs6AV6SjWOZCXQnBLoqHjdt5fVBLsLMOq_Laqt8DHwalQ7JmAiVqollPCeVVppm6ZdxkF7JuONBassyiG-voFr3-1NP0AiRYnYyrg8rG1cm42ozn0setNOrp1f33N3t1mmFBmoo27JnkLNmyJvgYA_T_xf-0dSBbfLYQVDQWnIHOhvxn-Zn2H-1fAPCneg
Cites_doi 10.1029/2021WR029980
10.1088/0741-3335/43/12A/327
10.1186/s40537-021-00444-8
10.1007/s10462-023-10662-6
10.1063/1.1355025
10.1016/j.jqsrt.2024.108925
10.3390/app12199891
10.1088/1361-6463/acd261
10.1088/1741-4326/ab0000
10.1109/TPS.2023.3268170
10.1088/1742-6596/2439/1/012016
10.1016/j.fusengdes.2023.114012
10.1063/1.5143481
10.1002/ctpp.202390007
10.1063/5.0034552
10.1140/epjd/s10053-023-00719-0
10.1007/978-1-4899-7547-8_5
ContentType Journal Article
Copyright 2025 The Author(s)
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2025 The Author(s)
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
1XC
ADTOC
UNPAY
DOA
DOI 10.1016/j.nme.2025.101935
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Hyper Article en Ligne (HAL)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 2352-1791
ExternalDocumentID oai_doaj_org_article_571a3f21246f4fc7b34c2438794e2783
10.1016/j.nme.2025.101935
oai:HAL:hal-05196293v1
10_1016_j_nme_2025_101935
S2352179125000778
GroupedDBID 0R~
4.4
457
5VS
6I.
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
KQ8
M41
M~E
O9-
OK1
RIG
ROL
SSZ
AAYXX
CITATION
1XC
ADTOC
UNPAY
ID FETCH-LOGICAL-c394t-89c5262e2e04c737a4ad581bca71284eb308bbb90f4f88343e461d2082e076553
IEDL.DBID DOA
ISSN 2352-1791
IngestDate Fri Oct 03 12:52:48 EDT 2025
Tue Aug 19 23:34:48 EDT 2025
Tue Oct 14 20:05:00 EDT 2025
Wed Oct 01 05:54:13 EDT 2025
Sat Jul 05 17:11:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article under the CC BY license.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-89c5262e2e04c737a4ad581bca71284eb308bbb90f4f88343e461d2082e076553
ORCID 0000-0002-0717-9125
0000-0002-9704-7619
OpenAccessLink https://doaj.org/article/571a3f21246f4fc7b34c2438794e2783
ParticipantIDs doaj_primary_oai_doaj_org_article_571a3f21246f4fc7b34c2438794e2783
unpaywall_primary_10_1016_j_nme_2025_101935
hal_primary_oai_HAL_hal_05196293v1
crossref_primary_10_1016_j_nme_2025_101935
elsevier_sciencedirect_doi_10_1016_j_nme_2025_101935
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2025
2025-06-00
2025-06
2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: June 2025
PublicationDecade 2020
PublicationTitle Nuclear materials and energy
PublicationYear 2025
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Neverov (b0090) 2019; 59
B. Iooss, P. Lemaître, Uncertainty management in simulation-optimization of complex systems: algorithms and applications, 101-122 (2015).
4th IAEA Technical Meeting on Fusion Data Processing, Validation and analysis (2021).
M. Koubiti EPJD
Berahmand (b0140) 2024; 57
Vanden Boomen (b0110) 2021; 57
137 (2023).
B L Welch
(2023).
Nishijima Pedregosa (b0035) 2021; 92
Koubiti, Kerebel (b0075) 2023; 2439
Krizhevsky (b0095) 2012; 25
Machine learning methods in plasma physics, Contrib. Plasma Phys.
Ronchi (b0060) 2024; 318
Kajita (b0030) 2020; 10
K., Simonyan and A., Zisserman, Inter. Conf. on Learning Representations, 1–14 (2015).
Phys. Plasmas 8, 1253–1262 (2001).
Klambauer et al, Self-normalizing Neural Networks arXiv:1706.02515.
Alzubaidi (b0105) 2021; 8
L. Malhotra
Efron, Stein (b0135) 1981
Kajita (b0040) 2023; 196
Mertens (b0080) 2001; 43
Pedregosa (b0025) 2011; 12
Saura (b0055) 2023; 56
.
Samuell (b0050) 2021; 92
Döpp (b0010) 2023
Datta (b0005) 2024
Koubiti, Kerebel (b0065) 2022; 12
Anirudh (b0015) 2023; 51
N. Saura, Doctoral dissertation (2021), Université de Lille
10.1016/j.nme.2025.101935_b0125
10.1016/j.nme.2025.101935_b0045
10.1016/j.nme.2025.101935_b0100
10.1016/j.nme.2025.101935_b0120
Berahmand (10.1016/j.nme.2025.101935_b0140) 2024; 57
Koubiti (10.1016/j.nme.2025.101935_b0065) 2022; 12
Samuell (10.1016/j.nme.2025.101935_b0050) 2021; 92
Mertens (10.1016/j.nme.2025.101935_b0080) 2001; 43
10.1016/j.nme.2025.101935_b0085
10.1016/j.nme.2025.101935_b0020
Datta (10.1016/j.nme.2025.101935_b0005) 2024
10.1016/j.nme.2025.101935_b0115
Efron (10.1016/j.nme.2025.101935_b0135) 1981
Saura (10.1016/j.nme.2025.101935_b0055) 2023; 56
Krizhevsky (10.1016/j.nme.2025.101935_b0095) 2012; 25
Kajita (10.1016/j.nme.2025.101935_b0030) 2020; 10
Ronchi (10.1016/j.nme.2025.101935_b0060) 2024; 318
Anirudh (10.1016/j.nme.2025.101935_b0015) 2023; 51
Nishijima Pedregosa (10.1016/j.nme.2025.101935_b0035) 2021; 92
Koubiti (10.1016/j.nme.2025.101935_b0075) 2023; 2439
Alzubaidi (10.1016/j.nme.2025.101935_b0105) 2021; 8
Kajita (10.1016/j.nme.2025.101935_b0040) 2023; 196
10.1016/j.nme.2025.101935_b0130
Pedregosa (10.1016/j.nme.2025.101935_b0025) 2011; 12
10.1016/j.nme.2025.101935_b0070
Döpp (10.1016/j.nme.2025.101935_b0010) 2023
Neverov (10.1016/j.nme.2025.101935_b0090) 2019; 59
Vanden Boomen (10.1016/j.nme.2025.101935_b0110) 2021; 57
References_xml – volume: 59
  year: 2019
  ident: b0090
  publication-title: Nucl. Fusion
– reference: , 137 (2023).
– reference: Klambauer et al, Self-normalizing Neural Networks arXiv:1706.02515.
– reference: B. Iooss, P. Lemaître, Uncertainty management in simulation-optimization of complex systems: algorithms and applications, 101-122 (2015).
– volume: 51
  start-page: 1750
  year: 2023
  end-page: 1838
  ident: b0015
  publication-title: IEEE Trans. Plasma Sci.
– volume: 12
  start-page: 2825
  year: 2011
  ident: b0025
  publication-title: J. Mach. Learn. Res.
– year: 2023
  ident: b0010
  publication-title: High Power Laser Sci. Eng.
– reference: L. Malhotra
– volume: 43
  start-page: A349
  year: 2001
  ident: b0080
  publication-title: Plasma Phys. Control. Fusion
– volume: 12
  start-page: 9891
  year: 2022
  ident: b0065
  publication-title: Appl. Sci.
– reference: Machine learning methods in plasma physics, Contrib. Plasma Phys.
– reference: M. Koubiti EPJD
– volume: 10
  year: 2020
  ident: b0030
  publication-title: AIP Adv.
– volume: 92
  year: 2021
  ident: b0050
  publication-title: Rev. Sci. Instrum.
– volume: 8
  start-page: 1
  year: 2021
  end-page: 74
  ident: b0105
  publication-title: J. Big Data
– reference: K., Simonyan and A., Zisserman, Inter. Conf. on Learning Representations, 1–14 (2015).
– year: 2024
  ident: b0005
  publication-title: IEEE Trans. Plasma Sci.
– reference: N. Saura, Doctoral dissertation (2021), Université de Lille
– reference: B L Welch
– volume: 25
  year: 2012
  ident: b0095
  publication-title: Adv. Neural Inform. Process. Syst.
– volume: 2439
  year: 2023
  ident: b0075
  publication-title: J. Phys. Conf. Series
– reference: Phys. Plasmas 8, 1253–1262 (2001).
– volume: 318
  year: 2024
  ident: b0060
  publication-title: JQSRT
– volume: 56
  year: 2023
  ident: b0055
  publication-title: J. Phys. D:
– volume: 92
  year: 2021
  ident: b0035
  publication-title: Rev. Sci. Instrum.
– start-page: 586
  year: 1981
  end-page: 596
  ident: b0135
  publication-title: Ann. Stat.
– reference: .
– reference: (2023).
– reference: , 4th IAEA Technical Meeting on Fusion Data Processing, Validation and analysis (2021).
– volume: 57
  start-page: 28
  year: 2024
  ident: b0140
  publication-title: ,
– volume: 57
  year: 2021
  ident: b0110
  publication-title: Water Resour. Res.
– volume: 196
  year: 2023
  ident: b0040
  publication-title: Fusion Eng. Des.
– year: 2024
  ident: 10.1016/j.nme.2025.101935_b0005
  publication-title: IEEE Trans. Plasma Sci.
– volume: 57
  issue: 11
  year: 2021
  ident: 10.1016/j.nme.2025.101935_b0110
  publication-title: Water Resour. Res.
  doi: 10.1029/2021WR029980
– volume: 43
  start-page: A349
  year: 2001
  ident: 10.1016/j.nme.2025.101935_b0080
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/43/12A/327
– volume: 8
  start-page: 1
  year: 2021
  ident: 10.1016/j.nme.2025.101935_b0105
  publication-title: J. Big Data
  doi: 10.1186/s40537-021-00444-8
– volume: 57
  start-page: 28
  issue: 2
  year: 2024
  ident: 10.1016/j.nme.2025.101935_b0140
  publication-title: Artificial Intelligence Rev.,
  doi: 10.1007/s10462-023-10662-6
– volume: 92
  year: 2021
  ident: 10.1016/j.nme.2025.101935_b0035
  publication-title: Rev. Sci. Instrum.
– ident: 10.1016/j.nme.2025.101935_b0085
  doi: 10.1063/1.1355025
– ident: 10.1016/j.nme.2025.101935_b0125
– ident: 10.1016/j.nme.2025.101935_b0100
– ident: 10.1016/j.nme.2025.101935_b0045
– volume: 318
  year: 2024
  ident: 10.1016/j.nme.2025.101935_b0060
  publication-title: JQSRT
  doi: 10.1016/j.jqsrt.2024.108925
– volume: 12
  start-page: 9891
  year: 2022
  ident: 10.1016/j.nme.2025.101935_b0065
  publication-title: Appl. Sci.
  doi: 10.3390/app12199891
– volume: 56
  year: 2023
  ident: 10.1016/j.nme.2025.101935_b0055
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/acd261
– volume: 59
  year: 2019
  ident: 10.1016/j.nme.2025.101935_b0090
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ab0000
– start-page: 586
  year: 1981
  ident: 10.1016/j.nme.2025.101935_b0135
  publication-title: Ann. Stat.
– year: 2023
  ident: 10.1016/j.nme.2025.101935_b0010
  publication-title: High Power Laser Sci. Eng.
– volume: 51
  start-page: 1750
  year: 2023
  ident: 10.1016/j.nme.2025.101935_b0015
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2023.3268170
– volume: 2439
  year: 2023
  ident: 10.1016/j.nme.2025.101935_b0075
  publication-title: J. Phys. Conf. Series
  doi: 10.1088/1742-6596/2439/1/012016
– volume: 25
  year: 2012
  ident: 10.1016/j.nme.2025.101935_b0095
  publication-title: Adv. Neural Inform. Process. Syst.
– volume: 196
  year: 2023
  ident: 10.1016/j.nme.2025.101935_b0040
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2023.114012
– ident: 10.1016/j.nme.2025.101935_b0120
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.nme.2025.101935_b0025
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.nme.2025.101935_b0115
– volume: 10
  year: 2020
  ident: 10.1016/j.nme.2025.101935_b0030
  publication-title: AIP Adv.
  doi: 10.1063/1.5143481
– ident: 10.1016/j.nme.2025.101935_b0020
  doi: 10.1002/ctpp.202390007
– volume: 92
  year: 2021
  ident: 10.1016/j.nme.2025.101935_b0050
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/5.0034552
– ident: 10.1016/j.nme.2025.101935_b0070
  doi: 10.1140/epjd/s10053-023-00719-0
– ident: 10.1016/j.nme.2025.101935_b0130
  doi: 10.1007/978-1-4899-7547-8_5
SSID ssj0001928243
Score 2.3046558
Snippet •A Deep-Learning model is applied to Balmer-alpha spectra emitted by a hydrogen–deuterium plasma in tokamaks.•The applied model is a One-dimensional...
Artificial Intelligence (AI) is increasingly used in various plasma physics topics, including applications in spectroscopy and diagnostics in magnetically...
SourceID doaj
unpaywall
hal
crossref
elsevier
SourceType Open Website
Open Access Repository
Index Database
Publisher
StartPage 101935
SubjectTerms Computer Science
Physics
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLZYd-DENgGiCCYL7QTK5PhXkmPHNlXTmDhQaZws27HX0DapmnSo--t5TtKJIsSPS6RYTuw8v_h9lj9_D6ETY7wmPs4imggTweynI00cXLwhmmQpYy15_NONHE_41a247cWiw1mYnf37lodVLoKaJRXhPmNiD-1LAbB7gPYnN59HX9vkcYK2MpvbXcvfPbcTd1p5_p3wszcNPMin63KpN9_1fP5TkLk86OhZdatNGLgls9N1Y07twy_Kjf_U_0P0rIeaeNT5xhF64srnSAXi4AZXHgd8iduDliuN3aJoAHtis8HTTb6qwK1wUVdNtXQ1LkrcVDO90LMa93l98Llzy6gXZ73Den5XrYpmuqhfoMnlxZeP46hPshBZlvEmSjMrqKSOOsJtwhLNdS4Ay1qdhNAFa22SGmMy4rlPU8aZ4zLOKSAHRxIpBHuJBmVVulcIS2piy7zxmbRcw1Ioh7WN19zHuWCapEP0fjsEatlpaagtyeybAjupYCfV2WmIzsIgPVYMMthtAVhX9X-VEuBbzEP05RK6ZxPDuKWcpTDJuJBCZIj4dohVjyg6pACvKv7U9jtwh52mx6NrFcoC4pUAke7jIfrw6C1__5zX_1X7DRo0q7V7C3inMce9p_8AFxb6Zw
  priority: 102
  providerName: Unpaywall
Title Study of line spectra emitted by hydrogen isotopes in tokamaks through Deep-Learning algorithms
URI https://dx.doi.org/10.1016/j.nme.2025.101935
https://hal.science/hal-05196293
https://doi.org/10.1016/j.nme.2025.101935
https://doaj.org/article/571a3f21246f4fc7b34c2438794e2783
UnpaywallVersion publishedVersion
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2352-1791
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001928243
  issn: 2352-1791
  databaseCode: KQ8
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2352-1791
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001928243
  issn: 2352-1791
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2352-1791
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001928243
  issn: 2352-1791
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2352-1791
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001928243
  issn: 2352-1791
  databaseCode: AKRWK
  dateStart: 20150101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT-MwELUW9gAXBNpFlC9ZaE-sIjmxkzjHLguqgEUrRAWcrHFi05Q2qdqwqP9-x0kK5QIXLpEcOXb8xvK8UV5mCPmhtQVm_cQL4lB7ePqBB8zgxWoGLJGc1-LxP1dRry_O78K7pVJfThPWpAdugMOA3Qdu8YAVkRU2jTUXaSC4xH1kXJUId_oymSwFU8OGt0jstfiMWQu6irFLixmErp3U5d1eHVGdr_-NP1oZOGHk2lMxgfkzjEZLXudsk2y0dJF2m9fcIl9M8Y0oJ_6b09JSxxFp_bPkFKgZ5xXyR6rndDDPpiVuDZrPyqqcmBnNC1qVjzCGxxlta_PQ38ZMvDbB6gOF0UM5zavBePad9M9Ob056XlsowUt5IipPJmkYRIEJDBNpzGMQkIXIR1OInfvBeJlJrXXCEEEpueBGRH6GsOEDcRSGfJusFmVhdgiNAu2n3GqbRKkADGcyjE8sCOtnIQcmO-R4gZqaNPkw1EIoNlQIsXIQqwbiDvnlcH3p6FJZ1zfQwKo1sPrIwB0iFlZRLStovD0Olb839xFa8M3Uve6lcvcca42Q5vzzO-Tni4E_Xs7uZyxnj6y7IRu12T5ZraZP5gB5TaUPydfuxfXtxWG9lbHVv_rbvf8PSBz1Mw
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLZYd-DENgGiCCYL7QTK5PhXkmPHNlXTmDhQaZws27HX0DapmnSo--t5TtKJIsSPS6RYTuw8v_h9lj9_D6ETY7wmPs4imggTweynI00cXLwhmmQpYy15_NONHE_41a247cWiw1mYnf37lodVLoKaJRXhPmNiD-1LAbB7gPYnN59HX9vkcYK2MpvbXcvfPbcTd1p5_p3wszcNPMin63KpN9_1fP5TkLk86OhZdatNGLgls9N1Y07twy_Kjf_U_0P0rIeaeNT5xhF64srnSAXi4AZXHgd8iduDliuN3aJoAHtis8HTTb6qwK1wUVdNtXQ1LkrcVDO90LMa93l98Llzy6gXZ73Den5XrYpmuqhfoMnlxZeP46hPshBZlvEmSjMrqKSOOsJtwhLNdS4Ay1qdhNAFa22SGmMy4rlPU8aZ4zLOKSAHRxIpBHuJBmVVulcIS2piy7zxmbRcw1Ioh7WN19zHuWCapEP0fjsEatlpaagtyeybAjupYCfV2WmIzsIgPVYMMthtAVhX9X-VEuBbzEP05RK6ZxPDuKWcpTDJuJBCZIj4dohVjyg6pACvKv7U9jtwh52mx6NrFcoC4pUAke7jIfrw6C1__5zX_1X7DRo0q7V7C3inMce9p_8AFxb6Zw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+of+line+spectra+emitted+by+hydrogen+isotopes+in+tokamaks+through+Deep-Learning+algorithms&rft.jtitle=Nuclear+materials+and+energy&rft.au=Saura%2C+N.&rft.au=Koubiti%2C+M.&rft.au=Benkadda%2C+S.&rft.date=2025-06-01&rft.issn=2352-1791&rft.eissn=2352-1791&rft.volume=43&rft.spage=101935&rft_id=info:doi/10.1016%2Fj.nme.2025.101935&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nme_2025_101935
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-1791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-1791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-1791&client=summon