An ADMM-based algorithm with minimum dispersion regularization for on-line blind unmixing of hyperspectral images

Pushbroom imaging systems are emerging techniques for real-time acquisition of hyperspectral images. These systems are frequently used in industrial applications to control and sort products on-the-fly. In this paper, the on-line hyperspectral image blind unmixing is addressed. We propose a new on-l...

Full description

Saved in:
Bibliographic Details
Published inChemometrics and intelligent laboratory systems Vol. 204; p. 104090
Main Authors Nus, Ludivine, Miron, Sebastian, Brie, David
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.09.2020
Elsevier
Subjects
Online AccessGet full text
ISSN0169-7439
1873-3239
1873-3239
DOI10.1016/j.chemolab.2020.104090

Cover

Abstract Pushbroom imaging systems are emerging techniques for real-time acquisition of hyperspectral images. These systems are frequently used in industrial applications to control and sort products on-the-fly. In this paper, the on-line hyperspectral image blind unmixing is addressed. We propose a new on-line method based on Alternating Direction Method of Multipliers (ADMM) approach, adapted to pushbroom imaging systems. Because of the generally ill-posed nature of the unmixing problem, we impose a minimum endmembers dispersion regularization to stabilize the solution; this regularization can be interpreted as a convex relaxation of the minimum volume regularization and therefore, presents interesting optimization properties. The proposed algorithm presents faster convergence rate and lower computational complexity compared to the algorithms based on multiplicative update rules. Experimental results on synthetic and real datasets, and comparison to state-of-the-art algorithms, demonstrate the effectiveness of our method in terms of rapidity and accuracy. •OMDC-ADMM algorithm is specially designed for the on-line unmixing of pushbroom hyperspectral images.•OMDC-ADMM algorithm tracks the spectral variability of the endmembers over time.•OMDC-ADMM algorithm is compliant with real time industrial processing constraints.•The convex minimum dispersion constraint has the capacity to regularize the problem and to stabilize the solution.
AbstractList Pushbroom imaging systems are emerging techniques for real-time acquisition of hyperspectral images. These systems are frequently used in industrial applications to control and sort products on-the-fly. In this paper, the on-line hyperspectral image blind unmixing is addressed. We propose a new on-line method based on Alternating Direction Method of Multipliers (ADMM) approach, adapted to pushbroom imaging systems. Because of the generally ill-posed nature of the unmixing problem, we impose a minimum endmembers dispersion regularization to stabilize the solution; this regularization can be interpreted as a convex relaxation of the minimum volume regularization and therefore, presents interesting optimization properties. The proposed algorithm presents faster convergence rate and lower computational complexity compared to the algorithms based on multiplicative update rules. Experimental results on synthetic and real datasets, and comparison to state-of-the-art algorithms, demonstrate the effectiveness of our method in terms of rapidity and accuracy. •OMDC-ADMM algorithm is specially designed for the on-line unmixing of pushbroom hyperspectral images.•OMDC-ADMM algorithm tracks the spectral variability of the endmembers over time.•OMDC-ADMM algorithm is compliant with real time industrial processing constraints.•The convex minimum dispersion constraint has the capacity to regularize the problem and to stabilize the solution.
Pushbroom imaging systems are emerging techniques for real-time acquisition of hyperspectral images. These systems are frequently used in industrial applications to control and sort products on-the-fly. In this paper, the on-line hyperspectral image blind unmixing is addressed. We propose a new on-line method based on Alternating Direction Method of Multipli-ers (ADMM) approach, adapted to pushbroom imaging systems. Because of the generally ill-posed nature of the unmixing problem, we impose a minimum endmembers dispersion regularization to stabilize the solution; this regularization can be interpreted as a convex relaxation of the minimum volume regularization and therefore, presents interesting optimization properties. The proposed algorithm presents faster convergence rate and lower computational complexity compared to the algorithms based on multiplica-tive update rules. Experimental results on synthetic and real datasets, and comparison to state-of-the-art algorithms, demonstrate the effectiveness of our method in terms of rapidity and accuracy.
ArticleNumber 104090
Author Nus, Ludivine
Brie, David
Miron, Sebastian
Author_xml – sequence: 1
  givenname: Ludivine
  surname: Nus
  fullname: Nus, Ludivine
  email: ludivine.nus@univ-lorraine.fr
– sequence: 2
  givenname: Sebastian
  surname: Miron
  fullname: Miron, Sebastian
  email: sebastian.miron@univ-lorraine.fr, david.brie@univ-lorraine.fr
– sequence: 3
  givenname: David
  surname: Brie
  fullname: Brie, David
BackLink https://hal.science/hal-02887303$$DView record in HAL
BookMark eNqNkE9P3DAQxa2KSl1ov0LlK4csduz8k3pgRUtBWtRLe7Ym8WTXK8fe2lno8ulxmiIkLvQy1ozem3n-nZIT5x0S8pmzJWe8vNgtuy0O3kK7zFk-DSVr2Duy4HUlMpGL5oQskrDJKimaD-Q0xh2beskX5PfK0dXXu7ushYiagt34YMbtQB9SpYNxZjgMVJu4xxCNdzTg5mAhmEcYp7b3gXqXWeOQtqlqenCD-WPchvqebo-TbY_dGMBSM8AG40fyvgcb8dO_94z8uv728-omW__4fnu1WmedaOSY1XXFpK66nBVlxTQUFQgoW60lF8BlmUMNPQotW451LmXey4ojyKYs2kIUWpyRat57cHs4PoC1ah9ShHBUnKmJnNqpZ3JqIqdmcsl5Pju38OLxYNTNaq2mGctTOsHEPU_aL7O2Cz7GgL3qzPgXTfqysW-fKl_Z_zvj5WzEhPDeYFCxM-g61CYk3Ep789aKJzk_sgk
CitedBy_id crossref_primary_10_1007_s11760_022_02349_2
crossref_primary_10_1016_j_chemolab_2024_105252
Cites_doi 10.1109/JSTARS.2019.2925098
10.1016/j.patcog.2008.09.002
10.1109/TGRS.2006.888466
10.1109/TNN.2011.2164621
10.1155/2008/764206
10.1109/TGRS.2005.844293
10.1109/TSP.2016.2576427
10.1109/TGRS.2004.835299
10.1109/TCSVT.2013.2278199
10.1109/ACCESS.2018.2812999
10.1162/neco.2007.19.10.2756
10.1109/36.297973
10.1561/2200000016
10.1109/JSTARS.2012.2194696
10.1038/44565
10.1007/s11464-012-0194-5
10.1109/TGRS.2009.2038483
10.1109/TSP.2013.2285514
10.1109/TGRS.2015.2424719
10.1109/79.974727
10.1109/TNNLS.2012.2197827
10.1109/TSP.2009.2025802
10.1016/j.sigpro.2012.07.015
10.1109/TSP.2016.2620967
10.1109/TSP.2015.2404577
10.1109/TSP.2016.2602800
10.1109/TNN.2011.2109396
10.3390/app7020125
10.1109/MSP.2018.2877582
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
ADTOC
UNPAY
DOI 10.1016/j.chemolab.2020.104090
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3239
ExternalDocumentID oai:HAL:hal-02887303v1
10_1016_j_chemolab_2020_104090
S0169743920300800
GroupedDBID ---
--K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABAOU
ABFRF
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCH
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSW
SSZ
T5K
UNMZH
YK3
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
SCB
SEW
WUQ
XPP
~HD
1XC
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c394t-88704d7c205670da57a3a6bdd413a1462a8afe3d4b1e82442f471ea4965b535d3
IEDL.DBID UNPAY
ISSN 0169-7439
1873-3239
IngestDate Sun Oct 26 04:04:05 EDT 2025
Tue Oct 14 20:33:41 EDT 2025
Thu Apr 24 23:01:55 EDT 2025
Thu Oct 02 04:32:35 EDT 2025
Fri Feb 23 02:47:35 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Alternating direction method of multipliers
On-line unmixing
Pushbroom acquisition system
Minimum dispersion regularization
Hyperspectral imaging
Alternating Direction Method of Multipliers
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-88704d7c205670da57a3a6bdd413a1462a8afe3d4b1e82442f471ea4965b535d3
ORCID 0000-0002-2373-3480
0000-0003-4733-6698
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hal.science/hal-02887303
ParticipantIDs unpaywall_primary_10_1016_j_chemolab_2020_104090
hal_primary_oai_HAL_hal_02887303v1
crossref_citationtrail_10_1016_j_chemolab_2020_104090
crossref_primary_10_1016_j_chemolab_2020_104090
elsevier_sciencedirect_doi_10_1016_j_chemolab_2020_104090
PublicationCentury 2000
PublicationDate 2020-09-15
PublicationDateYYYYMMDD 2020-09-15
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-15
  day: 15
PublicationDecade 2020
PublicationTitle Chemometrics and intelligent laboratory systems
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Nascimento, Dias (bib8) 2005; 43
Keshava, Mustard (bib6) 2002; 19
Zhou, Yang, Xie, Yang (bib28) 2011; 22
Fu, Ma, Huang, Sidiropoulos (bib43) 2015; 63
Guan, Tao, Luo, Yuan (bib24) 2012; 23
Strang (bib37) 2006
Sun, Fevotte (bib35) 2014
Laurberg, Christensen, Plumbley, Hansen, Jensen (bib40) 2008
Boyd, Vandenberghe (bib47) 2004
Berman, Kiiveri, Lagerstrom, Ernst, Dunne, Huntington (bib10) 2004; 42
Fu, Ma, Huang, Sidiropoulos (bib19) 2016
Boyd, Parikh, Chu, Peleato, Eckstein (bib46) 2011; 3
Miao, Qi (bib13) 2007; 45
Donoho, Stodden (bib39) 2004
Yu, Sun (bib14) 2007; vol. 6790
Winter, Findr (bib7) 1999; vol. 3753
Lee, Seung (bib12) 1999; 401
Lin, Ma, Li, Chi, Ambikapathi (bib42) 2015; 53
Nus, Miron, Brie (bib31) 2018
Bioucas-Dias, Plaza, Dobigeon, Parente, Du, Gader, Chanussot (bib5) 2012; 5
Lin (bib32) 2007; 19
Schachtner, Pöppel, Tomé, Lang (bib15) 2009
Mairal, Bach, Ponce, Sapiro (bib22) 2010; 11
Lefèvre, Bach, Févotte (bib27) 2011
Fu, Huang, Yang, Ma, Sidiropoulos (bib18) 2016; 64
Huck, Guillaume, Blanc-Talon (bib16) 2010; 48
Khan, Khan, Yousaf, Khurshid, Abbas (bib3) 2018; 6
Leplat, Ang, Gillis (bib21) 2019
Bucak, Gunsel (bib26) 2009; 42
Chan, Chi, Huang, Ma (bib38) 2009; 57
Bioucas-Dias (bib44) 2009
Zhu (bib48) 2017
Wu, Shen, Ling (bib30) 2014; 24
Craig (bib9) 1994; 32
Zhao, Tan (bib25) 2016; 65
Wang, Li, König (bib23) 2011; vol. 11
Lu, Fei (bib4) 2014; 19
Fazel, Hindi, Boyd (bib45) 2003; vol. 3
Van der Meer, Van der Werff, Van Ruitenbeek, Hecker, Bakker, Noomen, Van Der Meijde, Carranza, De Smeth, Woldai (bib1) 2012; 14
Qin, Kim, Chao, Chan, Delwiche, Cho (bib2) 2017; 7
Huang, Sidiropoulos, Liavas (bib36) 2016; 64
Fu, Huang, Sidiropoulos, Ma (bib33) 2019; 36
Huang, Sidiropoulos, Swami (bib41) 2014; 62
Li, Bioucas-Dias (bib11) 2008; vol. 3
Wang, Lu (bib29) 2013; 93
Zhou, Xie, Yang, Yang, He (bib17) 2011; 22
Ang, Gillis (bib20) 2019
Xu, Yin, Wen, Zhang (bib34) 2012; 7
Huck (10.1016/j.chemolab.2020.104090_bib16) 2010; 48
Lin (10.1016/j.chemolab.2020.104090_bib32) 2007; 19
Li (10.1016/j.chemolab.2020.104090_bib11) 2008; vol. 3
Nus (10.1016/j.chemolab.2020.104090_bib31) 2018
Yu (10.1016/j.chemolab.2020.104090_bib14) 2007; vol. 6790
Boyd (10.1016/j.chemolab.2020.104090_bib46) 2011; 3
Qin (10.1016/j.chemolab.2020.104090_bib2) 2017; 7
Donoho (10.1016/j.chemolab.2020.104090_bib39) 2004
Fu (10.1016/j.chemolab.2020.104090_bib19) 2016
Lefèvre (10.1016/j.chemolab.2020.104090_bib27) 2011
Winter (10.1016/j.chemolab.2020.104090_bib7) 1999; vol. 3753
Zhu (10.1016/j.chemolab.2020.104090_bib48) 2017
Bioucas-Dias (10.1016/j.chemolab.2020.104090_bib44) 2009
Schachtner (10.1016/j.chemolab.2020.104090_bib15) 2009
Guan (10.1016/j.chemolab.2020.104090_bib24) 2012; 23
Bioucas-Dias (10.1016/j.chemolab.2020.104090_bib5) 2012; 5
Chan (10.1016/j.chemolab.2020.104090_bib38) 2009; 57
Lu (10.1016/j.chemolab.2020.104090_bib4) 2014; 19
Xu (10.1016/j.chemolab.2020.104090_bib34) 2012; 7
Nascimento (10.1016/j.chemolab.2020.104090_bib8) 2005; 43
Berman (10.1016/j.chemolab.2020.104090_bib10) 2004; 42
Leplat (10.1016/j.chemolab.2020.104090_bib21) 2019
Keshava (10.1016/j.chemolab.2020.104090_bib6) 2002; 19
Zhao (10.1016/j.chemolab.2020.104090_bib25) 2016; 65
Boyd (10.1016/j.chemolab.2020.104090_bib47) 2004
Lee (10.1016/j.chemolab.2020.104090_bib12) 1999; 401
Fu (10.1016/j.chemolab.2020.104090_bib18) 2016; 64
Fu (10.1016/j.chemolab.2020.104090_bib33) 2019; 36
Strang (10.1016/j.chemolab.2020.104090_bib37) 2006
Huang (10.1016/j.chemolab.2020.104090_bib41) 2014; 62
Sun (10.1016/j.chemolab.2020.104090_bib35) 2014
Wang (10.1016/j.chemolab.2020.104090_bib23) 2011; vol. 11
Van der Meer (10.1016/j.chemolab.2020.104090_bib1) 2012; 14
Zhou (10.1016/j.chemolab.2020.104090_bib17) 2011; 22
Bucak (10.1016/j.chemolab.2020.104090_bib26) 2009; 42
Miao (10.1016/j.chemolab.2020.104090_bib13) 2007; 45
Wu (10.1016/j.chemolab.2020.104090_bib30) 2014; 24
Fazel (10.1016/j.chemolab.2020.104090_bib45) 2003; vol. 3
Mairal (10.1016/j.chemolab.2020.104090_bib22) 2010; 11
Lin (10.1016/j.chemolab.2020.104090_bib42) 2015; 53
Wang (10.1016/j.chemolab.2020.104090_bib29) 2013; 93
Zhou (10.1016/j.chemolab.2020.104090_bib28) 2011; 22
Ang (10.1016/j.chemolab.2020.104090_bib20) 2019
Huang (10.1016/j.chemolab.2020.104090_bib36) 2016; 64
Laurberg (10.1016/j.chemolab.2020.104090_bib40) 2008
Khan (10.1016/j.chemolab.2020.104090_bib3) 2018; 6
Craig (10.1016/j.chemolab.2020.104090_bib9) 1994; 32
Fu (10.1016/j.chemolab.2020.104090_bib43) 2015; 63
References_xml – volume: 19
  year: 2014
  ident: bib4
  article-title: Medical hyperspectral imaging: a review
  publication-title: J. Biomed. Optic.
– volume: 401
  start-page: 788
  year: 1999
  end-page: 791
  ident: bib12
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
– volume: vol. 3
  start-page: 250
  year: 2008
  end-page: 253
  ident: bib11
  article-title: Minimum volume simplex analysis: a fast algorithm to unmix hyperspectral data
  publication-title: IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
– start-page: 418
  year: 2018
  end-page: 422
  ident: bib31
  article-title: On-line blind unmixing for hyperspectral pushbroom imaging systems
  publication-title: IEEE Statistical Signal Processing Workshop (SSP)
– start-page: 1141
  year: 2004
  end-page: 1148
  ident: bib39
  article-title: When does Non-negative Matrix Factorization give a correct decomposition into parts?
  publication-title: Advances in Neural Information Processing Systems
– volume: 62
  start-page: 211
  year: 2014
  end-page: 224
  ident: bib41
  article-title: Non-negative Matrix Factorization revisited: uniqueness and algorithm for symmetric decomposition
  publication-title: IEEE Trans. Signal Process.
– volume: 64
  start-page: 6254
  year: 2016
  end-page: 6268
  ident: bib18
  article-title: Robust volume minimization-based matrix factorization for remote sensing and document clustering
  publication-title: IEEE Trans. Signal Process.
– volume: 93
  start-page: 1608
  year: 2013
  end-page: 1623
  ident: bib29
  article-title: On-line learning parts-based representation via incremental orthogonal projective Non-negative Matrix Factorization
  publication-title: Signal Process.
– volume: 36
  start-page: 59
  year: 2019
  end-page: 80
  ident: bib33
  article-title: Non-negative matrix factorization for signal and data analytics: identifiability, algorithms, and applications
  publication-title: IEEE Signal Process. Mag.
– volume: vol. 3
  start-page: 2156
  year: 2003
  end-page: 2162
  ident: bib45
  article-title: Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices
  publication-title: IEEE Proceedings of the 2003 American Control Conference (ACC)
– volume: 42
  start-page: 2085
  year: 2004
  end-page: 2095
  ident: bib10
  article-title: ICE: a statistical approach to identifying endmembers in hyperspectral images
  publication-title: IEEE Trans. Geosci. Rem. Sens.
– start-page: 3402
  year: 2019
  end-page: 3406
  ident: bib21
  article-title: Minimum-volume rank-deficient non-negative matrix factorizations
  publication-title: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 22
  start-page: 1626
  year: 2011
  end-page: 1637
  ident: bib17
  article-title: Minimum-volume-constrained Non-negative Matrix Factorization: enhanced ability of learning parts
  publication-title: IEEE Trans. Neural Network.
– volume: 43
  start-page: 898
  year: 2005
  end-page: 910
  ident: bib8
  article-title: Vertex Component Analysis: a fast algorithm to unmix hyperspectral data
  publication-title: IEEE Trans. Geosci. Rem. Sens.
– volume: 24
  start-page: 374
  year: 2014
  end-page: 383
  ident: bib30
  article-title: Visual tracking via on-line non-negative matrix factorization
  publication-title: IEEE Trans. Circ. Syst. Video Technol.
– volume: 11
  start-page: 19
  year: 2010
  end-page: 60
  ident: bib22
  article-title: On-line learning for matrix factorization and sparse coding
  publication-title: J. Mach. Learn. Res.
– volume: 19
  start-page: 2756
  year: 2007
  end-page: 2779
  ident: bib32
  article-title: Projected gradient methods for non-negative matrix factorization
  publication-title: Neural Comput.
– volume: 57
  start-page: 4418
  year: 2009
  end-page: 4432
  ident: bib38
  article-title: A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing
  publication-title: IEEE Trans. Signal Process.
– volume: 19
  start-page: 44
  year: 2002
  end-page: 57
  ident: bib6
  article-title: Spectral unmixing
  publication-title: IEEE Signal Process. Mag.
– volume: vol. 11
  start-page: 908
  year: 2011
  end-page: 919
  ident: bib23
  article-title: Efficient document clustering via on-line non-negative matrix factorizations
  publication-title: Society for Industrial and Applied Mathematics (SIAM)
– volume: 63
  start-page: 2306
  year: 2015
  end-page: 2320
  ident: bib43
  article-title: Blind separation of quasi-stationary sources: exploiting convex geometry in covariance domain
  publication-title: IEEE Trans. Signal Process.
– year: 2004
  ident: bib47
  article-title: Convex Optimization
– volume: 42
  start-page: 788
  year: 2009
  end-page: 797
  ident: bib26
  article-title: Incremental subspace learning via non-negative matrix factorization
  publication-title: Pattern Recogn.
– volume: 48
  start-page: 2590
  year: 2010
  end-page: 2602
  ident: bib16
  article-title: Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data
  publication-title: IEEE Trans. Geosci. Rem. Sens.
– volume: 64
  start-page: 5052
  year: 2016
  end-page: 5065
  ident: bib36
  article-title: A flexible and efficient algorithmic framework for constrained matrix and tensor factorization
  publication-title: IEEE Trans. Signal Process.
– volume: 53
  start-page: 5530
  year: 2015
  end-page: 5546
  ident: bib42
  article-title: Identifiability of the simplex volume minimization criterion for blind hyperspectral unmixing: the no-pure-pixel case
  publication-title: IEEE Trans. Geosci. Rem. Sens.
– volume: 45
  start-page: 765
  year: 2007
  end-page: 777
  ident: bib13
  article-title: Endmember extraction from highly mixed data using minimum volume constrained Non-negative Matrix Factorization
  publication-title: IEEE Trans. Geosci. Rem. Sens.
– start-page: 106
  year: 2009
  end-page: 113
  ident: bib15
  article-title: Minimum determinant constraint for non-negative matrix factorization
  publication-title: International Conference on Independent Component Analysis and Signal Separation (ICA)
– start-page: 313
  year: 2011
  end-page: 316
  ident: bib27
  article-title: On-line algorithms for non-negative matrix factorization with the Itakura-Saito divergence
  publication-title: IEEE Workshop on Applications of Signal Processing to Audio and Acoustics
– volume: 5
  start-page: 354
  year: 2012
  end-page: 379
  ident: bib5
  article-title: Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 6
  start-page: 14118
  year: 2018
  end-page: 14129
  ident: bib3
  article-title: Modern trends in hyperspectral image analysis: a review
  publication-title: IEEE Access
– year: 2019
  ident: bib20
  article-title: Algorithms and comparisons of nonnegative matrix factorizations with volume regularization for hyperspectral unmixing
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 7
  start-page: 125
  year: 2017
  ident: bib2
  article-title: Line-scan hyperspectral imaging techniques for food safety and quality applications
  publication-title: Appl. Sci.
– volume: 7
  start-page: 365
  year: 2012
  end-page: 384
  ident: bib34
  article-title: An alternating direction algorithm for matrix completion with non-negative factors
  publication-title: Front. Math. China
– volume: 3
  start-page: 1
  year: 2011
  end-page: 122
  ident: bib46
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found. Trends Mach. Learn.
– volume: 23
  start-page: 1087
  year: 2012
  end-page: 1099
  ident: bib24
  article-title: On-line Non-negative Matrix Factorization with robust stochastic approximation
  publication-title: IEEE Trans. Neur. Net. Learn. Sys.
– volume: 22
  start-page: 550
  year: 2011
  end-page: 560
  ident: bib28
  article-title: On-line blind source separation using Incremental Non-negative Matrix Factorization with volume constraint
  publication-title: IEEE Trans. Neural Network.
– start-page: 6201
  year: 2014
  end-page: 6205
  ident: bib35
  article-title: Alternating direction method of multipliers for Non-negative Matrix Factorization with the beta-divergence
  publication-title: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– year: 2006
  ident: bib37
  article-title: Linear Algebra and its Applications, Thomson
– year: 2008
  ident: bib40
  article-title: Theorems on positive data: on the uniqueness of NMF
  publication-title: Comput. Intell. Neurosci.
– volume: vol. 3753
  start-page: 266
  year: 1999
  end-page: 276
  ident: bib7
  article-title: An algorithm for fast autonomous spectral endmember determination in hyperspectral data
  publication-title: Imaging Spectrometry V
– start-page: 1
  year: 2009
  end-page: 4
  ident: bib44
  article-title: A variable splitting augmented Lagrangian approach to linear spectral unmixing
  publication-title: IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)
– start-page: 2534
  year: 2016
  end-page: 2538
  ident: bib19
  article-title: Robust volume minimization-based matrix factorization via alternating optimization
  publication-title: IEEE International Conference on Acoustics, Speech and Signal Processing
– volume: 65
  start-page: 555
  year: 2016
  end-page: 570
  ident: bib25
  article-title: On-line non-negative matrix factorization with outliers
  publication-title: IEEE Trans. Signal Process.
– volume: 32
  start-page: 542
  year: 1994
  end-page: 552
  ident: bib9
  article-title: Minimum-volume transforms for remotely sensed data
  publication-title: IEEE Trans. Geosci. Rem. Sens.
– volume: vol. 6790
  start-page: 151
  year: 2007
  end-page: 159
  ident: bib14
  article-title: Minimum distance constrained Non-negative Matrix Factorization for the endmember extraction of hyperspectral images
  publication-title: Remote Sensing and GIS Data Processing and Applications; and Innovative Multispectral Technology and Applications
– volume: 14
  start-page: 112
  year: 2012
  end-page: 128
  ident: bib1
  article-title: Multi-and hyperspectral geologic remote sensing: a review
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– year: 2017
  ident: bib48
  article-title: Hyperspectral Unmixing: Ground Truth Labeling, Datasets, Benchmark Performances and Survey
– year: 2019
  ident: 10.1016/j.chemolab.2020.104090_bib20
  article-title: Algorithms and comparisons of nonnegative matrix factorizations with volume regularization for hyperspectral unmixing
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2019.2925098
– volume: vol. 3
  start-page: 250
  year: 2008
  ident: 10.1016/j.chemolab.2020.104090_bib11
  article-title: Minimum volume simplex analysis: a fast algorithm to unmix hyperspectral data
– start-page: 418
  year: 2018
  ident: 10.1016/j.chemolab.2020.104090_bib31
  article-title: On-line blind unmixing for hyperspectral pushbroom imaging systems
– volume: 42
  start-page: 788
  year: 2009
  ident: 10.1016/j.chemolab.2020.104090_bib26
  article-title: Incremental subspace learning via non-negative matrix factorization
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2008.09.002
– volume: 45
  start-page: 765
  year: 2007
  ident: 10.1016/j.chemolab.2020.104090_bib13
  article-title: Endmember extraction from highly mixed data using minimum volume constrained Non-negative Matrix Factorization
  publication-title: IEEE Trans. Geosci. Rem. Sens.
  doi: 10.1109/TGRS.2006.888466
– volume: 22
  start-page: 1626
  year: 2011
  ident: 10.1016/j.chemolab.2020.104090_bib17
  article-title: Minimum-volume-constrained Non-negative Matrix Factorization: enhanced ability of learning parts
  publication-title: IEEE Trans. Neural Network.
  doi: 10.1109/TNN.2011.2164621
– year: 2008
  ident: 10.1016/j.chemolab.2020.104090_bib40
  article-title: Theorems on positive data: on the uniqueness of NMF
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2008/764206
– volume: 43
  start-page: 898
  year: 2005
  ident: 10.1016/j.chemolab.2020.104090_bib8
  article-title: Vertex Component Analysis: a fast algorithm to unmix hyperspectral data
  publication-title: IEEE Trans. Geosci. Rem. Sens.
  doi: 10.1109/TGRS.2005.844293
– start-page: 3402
  year: 2019
  ident: 10.1016/j.chemolab.2020.104090_bib21
  article-title: Minimum-volume rank-deficient non-negative matrix factorizations
– volume: 64
  start-page: 5052
  year: 2016
  ident: 10.1016/j.chemolab.2020.104090_bib36
  article-title: A flexible and efficient algorithmic framework for constrained matrix and tensor factorization
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2576427
– volume: 42
  start-page: 2085
  year: 2004
  ident: 10.1016/j.chemolab.2020.104090_bib10
  article-title: ICE: a statistical approach to identifying endmembers in hyperspectral images
  publication-title: IEEE Trans. Geosci. Rem. Sens.
  doi: 10.1109/TGRS.2004.835299
– volume: 24
  start-page: 374
  year: 2014
  ident: 10.1016/j.chemolab.2020.104090_bib30
  article-title: Visual tracking via on-line non-negative matrix factorization
  publication-title: IEEE Trans. Circ. Syst. Video Technol.
  doi: 10.1109/TCSVT.2013.2278199
– volume: 19
  year: 2014
  ident: 10.1016/j.chemolab.2020.104090_bib4
  article-title: Medical hyperspectral imaging: a review
  publication-title: J. Biomed. Optic.
– start-page: 1141
  year: 2004
  ident: 10.1016/j.chemolab.2020.104090_bib39
  article-title: When does Non-negative Matrix Factorization give a correct decomposition into parts?
– volume: 14
  start-page: 112
  year: 2012
  ident: 10.1016/j.chemolab.2020.104090_bib1
  article-title: Multi-and hyperspectral geologic remote sensing: a review
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– start-page: 1
  year: 2009
  ident: 10.1016/j.chemolab.2020.104090_bib44
  article-title: A variable splitting augmented Lagrangian approach to linear spectral unmixing
– volume: 6
  start-page: 14118
  year: 2018
  ident: 10.1016/j.chemolab.2020.104090_bib3
  article-title: Modern trends in hyperspectral image analysis: a review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2812999
– volume: 19
  start-page: 2756
  year: 2007
  ident: 10.1016/j.chemolab.2020.104090_bib32
  article-title: Projected gradient methods for non-negative matrix factorization
  publication-title: Neural Comput.
  doi: 10.1162/neco.2007.19.10.2756
– start-page: 6201
  year: 2014
  ident: 10.1016/j.chemolab.2020.104090_bib35
  article-title: Alternating direction method of multipliers for Non-negative Matrix Factorization with the beta-divergence
– volume: 32
  start-page: 542
  year: 1994
  ident: 10.1016/j.chemolab.2020.104090_bib9
  article-title: Minimum-volume transforms for remotely sensed data
  publication-title: IEEE Trans. Geosci. Rem. Sens.
  doi: 10.1109/36.297973
– year: 2006
  ident: 10.1016/j.chemolab.2020.104090_bib37
– volume: 3
  start-page: 1
  year: 2011
  ident: 10.1016/j.chemolab.2020.104090_bib46
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000016
– volume: 11
  start-page: 19
  year: 2010
  ident: 10.1016/j.chemolab.2020.104090_bib22
  article-title: On-line learning for matrix factorization and sparse coding
  publication-title: J. Mach. Learn. Res.
– volume: vol. 3
  start-page: 2156
  year: 2003
  ident: 10.1016/j.chemolab.2020.104090_bib45
  article-title: Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices
– volume: vol. 6790
  start-page: 151
  year: 2007
  ident: 10.1016/j.chemolab.2020.104090_bib14
  article-title: Minimum distance constrained Non-negative Matrix Factorization for the endmember extraction of hyperspectral images
– volume: vol. 11
  start-page: 908
  year: 2011
  ident: 10.1016/j.chemolab.2020.104090_bib23
  article-title: Efficient document clustering via on-line non-negative matrix factorizations
– year: 2004
  ident: 10.1016/j.chemolab.2020.104090_bib47
– volume: 5
  start-page: 354
  year: 2012
  ident: 10.1016/j.chemolab.2020.104090_bib5
  article-title: Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2012.2194696
– volume: 401
  start-page: 788
  year: 1999
  ident: 10.1016/j.chemolab.2020.104090_bib12
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– volume: 7
  start-page: 365
  year: 2012
  ident: 10.1016/j.chemolab.2020.104090_bib34
  article-title: An alternating direction algorithm for matrix completion with non-negative factors
  publication-title: Front. Math. China
  doi: 10.1007/s11464-012-0194-5
– volume: 48
  start-page: 2590
  year: 2010
  ident: 10.1016/j.chemolab.2020.104090_bib16
  article-title: Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data
  publication-title: IEEE Trans. Geosci. Rem. Sens.
  doi: 10.1109/TGRS.2009.2038483
– volume: 62
  start-page: 211
  year: 2014
  ident: 10.1016/j.chemolab.2020.104090_bib41
  article-title: Non-negative Matrix Factorization revisited: uniqueness and algorithm for symmetric decomposition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2285514
– volume: 53
  start-page: 5530
  year: 2015
  ident: 10.1016/j.chemolab.2020.104090_bib42
  article-title: Identifiability of the simplex volume minimization criterion for blind hyperspectral unmixing: the no-pure-pixel case
  publication-title: IEEE Trans. Geosci. Rem. Sens.
  doi: 10.1109/TGRS.2015.2424719
– volume: 19
  start-page: 44
  year: 2002
  ident: 10.1016/j.chemolab.2020.104090_bib6
  article-title: Spectral unmixing
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.974727
– volume: 23
  start-page: 1087
  year: 2012
  ident: 10.1016/j.chemolab.2020.104090_bib24
  article-title: On-line Non-negative Matrix Factorization with robust stochastic approximation
  publication-title: IEEE Trans. Neur. Net. Learn. Sys.
  doi: 10.1109/TNNLS.2012.2197827
– volume: 57
  start-page: 4418
  year: 2009
  ident: 10.1016/j.chemolab.2020.104090_bib38
  article-title: A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2009.2025802
– volume: 93
  start-page: 1608
  year: 2013
  ident: 10.1016/j.chemolab.2020.104090_bib29
  article-title: On-line learning parts-based representation via incremental orthogonal projective Non-negative Matrix Factorization
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2012.07.015
– year: 2017
  ident: 10.1016/j.chemolab.2020.104090_bib48
– volume: 65
  start-page: 555
  year: 2016
  ident: 10.1016/j.chemolab.2020.104090_bib25
  article-title: On-line non-negative matrix factorization with outliers
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2620967
– start-page: 106
  year: 2009
  ident: 10.1016/j.chemolab.2020.104090_bib15
  article-title: Minimum determinant constraint for non-negative matrix factorization
– volume: 63
  start-page: 2306
  year: 2015
  ident: 10.1016/j.chemolab.2020.104090_bib43
  article-title: Blind separation of quasi-stationary sources: exploiting convex geometry in covariance domain
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2015.2404577
– start-page: 313
  year: 2011
  ident: 10.1016/j.chemolab.2020.104090_bib27
  article-title: On-line algorithms for non-negative matrix factorization with the Itakura-Saito divergence
– volume: 64
  start-page: 6254
  year: 2016
  ident: 10.1016/j.chemolab.2020.104090_bib18
  article-title: Robust volume minimization-based matrix factorization for remote sensing and document clustering
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2602800
– volume: 22
  start-page: 550
  year: 2011
  ident: 10.1016/j.chemolab.2020.104090_bib28
  article-title: On-line blind source separation using Incremental Non-negative Matrix Factorization with volume constraint
  publication-title: IEEE Trans. Neural Network.
  doi: 10.1109/TNN.2011.2109396
– volume: 7
  start-page: 125
  year: 2017
  ident: 10.1016/j.chemolab.2020.104090_bib2
  article-title: Line-scan hyperspectral imaging techniques for food safety and quality applications
  publication-title: Appl. Sci.
  doi: 10.3390/app7020125
– start-page: 2534
  year: 2016
  ident: 10.1016/j.chemolab.2020.104090_bib19
  article-title: Robust volume minimization-based matrix factorization via alternating optimization
– volume: vol. 3753
  start-page: 266
  year: 1999
  ident: 10.1016/j.chemolab.2020.104090_bib7
  article-title: An algorithm for fast autonomous spectral endmember determination in hyperspectral data
– volume: 36
  start-page: 59
  year: 2019
  ident: 10.1016/j.chemolab.2020.104090_bib33
  article-title: Non-negative matrix factorization for signal and data analytics: identifiability, algorithms, and applications
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2018.2877582
SSID ssj0016941
Score 2.3245237
Snippet Pushbroom imaging systems are emerging techniques for real-time acquisition of hyperspectral images. These systems are frequently used in industrial...
SourceID unpaywall
hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 104090
SubjectTerms Alternating direction method of multipliers
Engineering Sciences
Hyperspectral imaging
Minimum dispersion regularization
On-line unmixing
Pushbroom acquisition system
Signal and Image processing
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9zl3kRP3F-EcRrtrZp1vY4pmOI86KD3UqytK5jbefc1F38232vH2OCMMFLoaGhIS-83y_Je79HyI0IADRVKJl2QsVQsIsp7VjMdGSrZajQNjIFvv5jqzew74diWCGdMhcGwyoL35_79MxbFy3NYjabsyhqPqGOCNJpC9Yp8h7MYLcdrGLQ-FqHeZiYqJnre3sMv97IEp40YF5i2EEq2Cda2XWngb75d4DaGWOkZG2ZzOTqQ06nGzDU3Sd7BX-k7XyIB6QSJIek1inLth2R13ZC27f9PkN80lROX1LY_49jiieuFJVE4mVMdYQK4XhSRudZNfp5kY9JgcTSNGHIPqmCp6bLJI4-AeFoGtLxalZkZ85hFFEM3ujtmAy6d8-dHivqKrAR9-wFA79i2NoZWUB-HENL4UguW0prADQJntOSrgwDrm1lBi7AvxUCggUSleWV4ELzE1JN0iQ4JVRwW2kz4MAzJRArT_LsYtZ1Q-GZo9CpE1FOpj8qRMex9sXUL6PLJn5pBB-N4OdGqJPmut8sl93Y2sMrbeX_WEA-YMPWvtdg3PWPUHG7137wsQ3olwtOkL-bdWKsbf_HMZ39Y0znZBffMDTFFBekupgvg0vgPwt1lS3wb79-AlY
  priority: 102
  providerName: Elsevier
Title An ADMM-based algorithm with minimum dispersion regularization for on-line blind unmixing of hyperspectral images
URI https://dx.doi.org/10.1016/j.chemolab.2020.104090
https://hal.science/hal-02887303
UnpaywallVersion submittedVersion
Volume 204
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-3239
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016941
  issn: 1873-3239
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-3239
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016941
  issn: 1873-3239
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-3239
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016941
  issn: 1873-3239
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-3239
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016941
  issn: 1873-3239
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-3239
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016941
  issn: 1873-3239
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB41yaFcoLxEgEYrxHWD7fX6cbQKVXgk4kCkcrJ2vTZJiZ3g2kA58NuZ8SOqUNXCxbItj7zWrOf7dnfmW4CXMkXQ1Jnixs80J8Euro3vcNtXnmfpzLUaBb75wpst3Xdn8uwAWF8Ls0LG2cV-OucIfwF2QjGAkSeRbQ9htFx8jD63kt0hJz5NYyp8iAtHhFeKgM-n-Nk5DhA1DgOdZjXTotB7Pf4MVpQIeVgXO3X5Q202V1Dm9F6b7XjRiBNScsnXaV3pafLrL-nGmz7gCO52FJNFbZ-4Dwdp8QAOT_qd3R7Ct6hg0ev5nBOEGaY2X7blulrljCZlGYmN5HXOzJpExGkyjZXNhvVlV7LJkOeybcGJoDKNR8PqIl__RBBk24ytLnddAWeJrVjnGLAuHsHy9M2nkxnvtl7giQjdimObLdf4iYP8yLeMkr4SytPGIOYpDK6OClSWCuNqOw2QITgZglyqSHxeSyGNeAzDYlukT4BJ4WpjpwKpqELuFSrRrN0GQSZDO8n8McjeIXHS6ZLT9hibuE9AO497R8bkyLh15Bhe7e12rTLHrRZh7--4c1HLG2KEj1ttX6A39y8iUe5Z9CGme72Hv9tjsPb95x_b9PT_TZ7BHbqipBVbPodhVdbpMTKjSk9gMP1tT2AUvX0_W0y6X-UP6zUMoQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH7ix6FcJgabKLBhTVxNkzhukmPVDXWs5TKQuFl2ndBUTVqylo0Lfzvv5UcFEhJIu-TgxIrlZ73vs_3e9wBOZYygaRLNbZAYToJd3NjA426gu13HJL5TKvCNLruDa__iRt5sQL_JhaGwytr3Vz699NZ1S6eezc4iTTu_SUeE6LSH65R4zyZs-9ILaAd29riO83ApU7MS-I44ff4sTXh6hhOT4RbS4EbRK-87HXLOryPU5oRCJVurfKEf_urZ7BkOne_Ch5pAsl41xo-wEed70Oo3ddv24a6Xs9730YgTQFmmZ7fzIl1OMkZHroykRLJVxmxKEuF0VMaKshx9USdkMmSxbJ5zop_M4NOyVZ6l_xDi2Dxhk4dFnZ5Z4CjSDN3Rn09wff7jqj_gdWEFPhaRv-ToWBzfBmMP2U_gWC0DLXTXWIuIptF1ejrUSSysb9w4RPz3EoSwWJO0vJFCWvEZtvJ5Hh8Ak8I31o0FEk2NzCrSoryZDcNERu44Cdogm8lU41p1nIpfzFQTXjZVjREUGUFVRmhDZ91vUeluvNkjamylXqwgheDwZt9vaNz1j0hye9AbKmpD_hWiFxT3bhucte3fOabD_xjTCbQGV6OhGv68_HUEO_SG4lRceQxby2IVf0EytDRfy8X-BMh9BXk
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb5wwEB4lm0NyadNH1E2byKp69RYw5nFEaaJV1I166ErpCdkYurtd2C2BvH59ZnisoqpK2gsCxAijMfN9tmc-A3ySKYKmzhQ3fqY5CXZxbXyH277yPEtnrtUo8E0uvPHUPb-Ul1vA-lqYGTLOLvbTOUf4C7ATim3Y8SSy7QHsTC--RT9aye6QE5-mMRU-xIUjwkdFwIsRfnaOA0SNw0CnWc20KPT-HX-2Z5QIuVsXa3V3o5bLRyhz9rLNdrxqxAkpueTXqK70KLn_Q7rxqQ_YhxcdxWRR2ydewVZavIbdk35ntzfwOypY9GUy4QRhhqnlz1U5r2Y5o0lZRmIjeZ0zMycRcZpMY2WzYX3ZlWwy5LlsVXAiqEzj0bC6yOe3CIJslbHZ3bor4CyxFfMcA9bVW5ienX4_GfNu6wWeiNCtOLbZco2fOMiPfMso6SuhPG0MYp7C4OqoQGWpMK620wAZgpMhyKWKxOe1FNKIAxgUqyJ9B0wKVxs7FUhFFXKvUIlm7TYIMhnaSeYPQfYOiZNOl5y2x1jGfQLaIu4dGZMj49aRQ_i8sVu3yhzPWoS9v-PORS1viBE-nrX9iN7cvIhEucfR15ju9R6-todgbfrPP7bp8P9N3sMeXVHSii0_wKAq6_QImVGlj7uf4wFRsgoV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ADMM-based+algorithm+with+minimum+dispersion+regularization+for+on-line+blind+unmixing+of+hyperspectral+images&rft.jtitle=Chemometrics+and+intelligent+laboratory+systems&rft.au=Nus%2C+Ludivine&rft.au=Miron%2C+Sebastian&rft.au=Brie%2C+David&rft.date=2020-09-15&rft.issn=0169-7439&rft.volume=204&rft.spage=104090&rft_id=info:doi/10.1016%2Fj.chemolab.2020.104090&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chemolab_2020_104090
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-7439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-7439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-7439&client=summon