An ADMM-based algorithm with minimum dispersion regularization for on-line blind unmixing of hyperspectral images
Pushbroom imaging systems are emerging techniques for real-time acquisition of hyperspectral images. These systems are frequently used in industrial applications to control and sort products on-the-fly. In this paper, the on-line hyperspectral image blind unmixing is addressed. We propose a new on-l...
        Saved in:
      
    
          | Published in | Chemometrics and intelligent laboratory systems Vol. 204; p. 104090 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        15.09.2020
     Elsevier  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0169-7439 1873-3239 1873-3239  | 
| DOI | 10.1016/j.chemolab.2020.104090 | 
Cover
| Abstract | Pushbroom imaging systems are emerging techniques for real-time acquisition of hyperspectral images. These systems are frequently used in industrial applications to control and sort products on-the-fly. In this paper, the on-line hyperspectral image blind unmixing is addressed. We propose a new on-line method based on Alternating Direction Method of Multipliers (ADMM) approach, adapted to pushbroom imaging systems. Because of the generally ill-posed nature of the unmixing problem, we impose a minimum endmembers dispersion regularization to stabilize the solution; this regularization can be interpreted as a convex relaxation of the minimum volume regularization and therefore, presents interesting optimization properties. The proposed algorithm presents faster convergence rate and lower computational complexity compared to the algorithms based on multiplicative update rules. Experimental results on synthetic and real datasets, and comparison to state-of-the-art algorithms, demonstrate the effectiveness of our method in terms of rapidity and accuracy.
•OMDC-ADMM algorithm is specially designed for the on-line unmixing of pushbroom hyperspectral images.•OMDC-ADMM algorithm tracks the spectral variability of the endmembers over time.•OMDC-ADMM algorithm is compliant with real time industrial processing constraints.•The convex minimum dispersion constraint has the capacity to regularize the problem and to stabilize the solution. | 
    
|---|---|
| AbstractList | Pushbroom imaging systems are emerging techniques for real-time acquisition of hyperspectral images. These systems are frequently used in industrial applications to control and sort products on-the-fly. In this paper, the on-line hyperspectral image blind unmixing is addressed. We propose a new on-line method based on Alternating Direction Method of Multipliers (ADMM) approach, adapted to pushbroom imaging systems. Because of the generally ill-posed nature of the unmixing problem, we impose a minimum endmembers dispersion regularization to stabilize the solution; this regularization can be interpreted as a convex relaxation of the minimum volume regularization and therefore, presents interesting optimization properties. The proposed algorithm presents faster convergence rate and lower computational complexity compared to the algorithms based on multiplicative update rules. Experimental results on synthetic and real datasets, and comparison to state-of-the-art algorithms, demonstrate the effectiveness of our method in terms of rapidity and accuracy.
•OMDC-ADMM algorithm is specially designed for the on-line unmixing of pushbroom hyperspectral images.•OMDC-ADMM algorithm tracks the spectral variability of the endmembers over time.•OMDC-ADMM algorithm is compliant with real time industrial processing constraints.•The convex minimum dispersion constraint has the capacity to regularize the problem and to stabilize the solution. Pushbroom imaging systems are emerging techniques for real-time acquisition of hyperspectral images. These systems are frequently used in industrial applications to control and sort products on-the-fly. In this paper, the on-line hyperspectral image blind unmixing is addressed. We propose a new on-line method based on Alternating Direction Method of Multipli-ers (ADMM) approach, adapted to pushbroom imaging systems. Because of the generally ill-posed nature of the unmixing problem, we impose a minimum endmembers dispersion regularization to stabilize the solution; this regularization can be interpreted as a convex relaxation of the minimum volume regularization and therefore, presents interesting optimization properties. The proposed algorithm presents faster convergence rate and lower computational complexity compared to the algorithms based on multiplica-tive update rules. Experimental results on synthetic and real datasets, and comparison to state-of-the-art algorithms, demonstrate the effectiveness of our method in terms of rapidity and accuracy.  | 
    
| ArticleNumber | 104090 | 
    
| Author | Nus, Ludivine Brie, David Miron, Sebastian  | 
    
| Author_xml | – sequence: 1 givenname: Ludivine surname: Nus fullname: Nus, Ludivine email: ludivine.nus@univ-lorraine.fr – sequence: 2 givenname: Sebastian surname: Miron fullname: Miron, Sebastian email: sebastian.miron@univ-lorraine.fr, david.brie@univ-lorraine.fr – sequence: 3 givenname: David surname: Brie fullname: Brie, David  | 
    
| BackLink | https://hal.science/hal-02887303$$DView record in HAL | 
    
| BookMark | eNqNkE9P3DAQxa2KSl1ov0LlK4csduz8k3pgRUtBWtRLe7Ym8WTXK8fe2lno8ulxmiIkLvQy1ozem3n-nZIT5x0S8pmzJWe8vNgtuy0O3kK7zFk-DSVr2Duy4HUlMpGL5oQskrDJKimaD-Q0xh2beskX5PfK0dXXu7ushYiagt34YMbtQB9SpYNxZjgMVJu4xxCNdzTg5mAhmEcYp7b3gXqXWeOQtqlqenCD-WPchvqebo-TbY_dGMBSM8AG40fyvgcb8dO_94z8uv728-omW__4fnu1WmedaOSY1XXFpK66nBVlxTQUFQgoW60lF8BlmUMNPQotW451LmXey4ojyKYs2kIUWpyRat57cHs4PoC1ah9ShHBUnKmJnNqpZ3JqIqdmcsl5Pju38OLxYNTNaq2mGctTOsHEPU_aL7O2Cz7GgL3qzPgXTfqysW-fKl_Z_zvj5WzEhPDeYFCxM-g61CYk3Ep789aKJzk_sgk | 
    
| CitedBy_id | crossref_primary_10_1007_s11760_022_02349_2 crossref_primary_10_1016_j_chemolab_2024_105252  | 
    
| Cites_doi | 10.1109/JSTARS.2019.2925098 10.1016/j.patcog.2008.09.002 10.1109/TGRS.2006.888466 10.1109/TNN.2011.2164621 10.1155/2008/764206 10.1109/TGRS.2005.844293 10.1109/TSP.2016.2576427 10.1109/TGRS.2004.835299 10.1109/TCSVT.2013.2278199 10.1109/ACCESS.2018.2812999 10.1162/neco.2007.19.10.2756 10.1109/36.297973 10.1561/2200000016 10.1109/JSTARS.2012.2194696 10.1038/44565 10.1007/s11464-012-0194-5 10.1109/TGRS.2009.2038483 10.1109/TSP.2013.2285514 10.1109/TGRS.2015.2424719 10.1109/79.974727 10.1109/TNNLS.2012.2197827 10.1109/TSP.2009.2025802 10.1016/j.sigpro.2012.07.015 10.1109/TSP.2016.2620967 10.1109/TSP.2015.2404577 10.1109/TSP.2016.2602800 10.1109/TNN.2011.2109396 10.3390/app7020125 10.1109/MSP.2018.2877582  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020 Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| DBID | AAYXX CITATION 1XC VOOES ADTOC UNPAY  | 
    
| DOI | 10.1016/j.chemolab.2020.104090 | 
    
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Chemistry | 
    
| EISSN | 1873-3239 | 
    
| ExternalDocumentID | oai:HAL:hal-02887303v1 10_1016_j_chemolab_2020_104090 S0169743920300800  | 
    
| GroupedDBID | --- --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABAOU ABFRF ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADECG ADEZE ADGUI AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCH SDF SDG SDP SES SPC SPCBC SSK SSW SSZ T5K UNMZH YK3 ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HMU HVGLF HZ~ R2- SCB SEW WUQ XPP ~HD 1XC VOOES ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c394t-88704d7c205670da57a3a6bdd413a1462a8afe3d4b1e82442f471ea4965b535d3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0169-7439 1873-3239  | 
    
| IngestDate | Sun Oct 26 04:04:05 EDT 2025 Tue Oct 14 20:33:41 EDT 2025 Thu Apr 24 23:01:55 EDT 2025 Thu Oct 02 04:32:35 EDT 2025 Fri Feb 23 02:47:35 EST 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Alternating direction method of multipliers On-line unmixing Pushbroom acquisition system Minimum dispersion regularization Hyperspectral imaging Alternating Direction Method of Multipliers  | 
    
| Language | English | 
    
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 other-oa  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c394t-88704d7c205670da57a3a6bdd413a1462a8afe3d4b1e82442f471ea4965b535d3 | 
    
| ORCID | 0000-0002-2373-3480 0000-0003-4733-6698  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://hal.science/hal-02887303 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_chemolab_2020_104090 hal_primary_oai_HAL_hal_02887303v1 crossref_citationtrail_10_1016_j_chemolab_2020_104090 crossref_primary_10_1016_j_chemolab_2020_104090 elsevier_sciencedirect_doi_10_1016_j_chemolab_2020_104090  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020-09-15 | 
    
| PublicationDateYYYYMMDD | 2020-09-15 | 
    
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-15 day: 15  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Chemometrics and intelligent laboratory systems | 
    
| PublicationYear | 2020 | 
    
| Publisher | Elsevier B.V Elsevier  | 
    
| Publisher_xml | – name: Elsevier B.V – name: Elsevier  | 
    
| References | Nascimento, Dias (bib8) 2005; 43 Keshava, Mustard (bib6) 2002; 19 Zhou, Yang, Xie, Yang (bib28) 2011; 22 Fu, Ma, Huang, Sidiropoulos (bib43) 2015; 63 Guan, Tao, Luo, Yuan (bib24) 2012; 23 Strang (bib37) 2006 Sun, Fevotte (bib35) 2014 Laurberg, Christensen, Plumbley, Hansen, Jensen (bib40) 2008 Boyd, Vandenberghe (bib47) 2004 Berman, Kiiveri, Lagerstrom, Ernst, Dunne, Huntington (bib10) 2004; 42 Fu, Ma, Huang, Sidiropoulos (bib19) 2016 Boyd, Parikh, Chu, Peleato, Eckstein (bib46) 2011; 3 Miao, Qi (bib13) 2007; 45 Donoho, Stodden (bib39) 2004 Yu, Sun (bib14) 2007; vol. 6790 Winter, Findr (bib7) 1999; vol. 3753 Lee, Seung (bib12) 1999; 401 Lin, Ma, Li, Chi, Ambikapathi (bib42) 2015; 53 Nus, Miron, Brie (bib31) 2018 Bioucas-Dias, Plaza, Dobigeon, Parente, Du, Gader, Chanussot (bib5) 2012; 5 Lin (bib32) 2007; 19 Schachtner, Pöppel, Tomé, Lang (bib15) 2009 Mairal, Bach, Ponce, Sapiro (bib22) 2010; 11 Lefèvre, Bach, Févotte (bib27) 2011 Fu, Huang, Yang, Ma, Sidiropoulos (bib18) 2016; 64 Huck, Guillaume, Blanc-Talon (bib16) 2010; 48 Khan, Khan, Yousaf, Khurshid, Abbas (bib3) 2018; 6 Leplat, Ang, Gillis (bib21) 2019 Bucak, Gunsel (bib26) 2009; 42 Chan, Chi, Huang, Ma (bib38) 2009; 57 Bioucas-Dias (bib44) 2009 Zhu (bib48) 2017 Wu, Shen, Ling (bib30) 2014; 24 Craig (bib9) 1994; 32 Zhao, Tan (bib25) 2016; 65 Wang, Li, König (bib23) 2011; vol. 11 Lu, Fei (bib4) 2014; 19 Fazel, Hindi, Boyd (bib45) 2003; vol. 3 Van der Meer, Van der Werff, Van Ruitenbeek, Hecker, Bakker, Noomen, Van Der Meijde, Carranza, De Smeth, Woldai (bib1) 2012; 14 Qin, Kim, Chao, Chan, Delwiche, Cho (bib2) 2017; 7 Huang, Sidiropoulos, Liavas (bib36) 2016; 64 Fu, Huang, Sidiropoulos, Ma (bib33) 2019; 36 Huang, Sidiropoulos, Swami (bib41) 2014; 62 Li, Bioucas-Dias (bib11) 2008; vol. 3 Wang, Lu (bib29) 2013; 93 Zhou, Xie, Yang, Yang, He (bib17) 2011; 22 Ang, Gillis (bib20) 2019 Xu, Yin, Wen, Zhang (bib34) 2012; 7 Huck (10.1016/j.chemolab.2020.104090_bib16) 2010; 48 Lin (10.1016/j.chemolab.2020.104090_bib32) 2007; 19 Li (10.1016/j.chemolab.2020.104090_bib11) 2008; vol. 3 Nus (10.1016/j.chemolab.2020.104090_bib31) 2018 Yu (10.1016/j.chemolab.2020.104090_bib14) 2007; vol. 6790 Boyd (10.1016/j.chemolab.2020.104090_bib46) 2011; 3 Qin (10.1016/j.chemolab.2020.104090_bib2) 2017; 7 Donoho (10.1016/j.chemolab.2020.104090_bib39) 2004 Fu (10.1016/j.chemolab.2020.104090_bib19) 2016 Lefèvre (10.1016/j.chemolab.2020.104090_bib27) 2011 Winter (10.1016/j.chemolab.2020.104090_bib7) 1999; vol. 3753 Zhu (10.1016/j.chemolab.2020.104090_bib48) 2017 Bioucas-Dias (10.1016/j.chemolab.2020.104090_bib44) 2009 Schachtner (10.1016/j.chemolab.2020.104090_bib15) 2009 Guan (10.1016/j.chemolab.2020.104090_bib24) 2012; 23 Bioucas-Dias (10.1016/j.chemolab.2020.104090_bib5) 2012; 5 Chan (10.1016/j.chemolab.2020.104090_bib38) 2009; 57 Lu (10.1016/j.chemolab.2020.104090_bib4) 2014; 19 Xu (10.1016/j.chemolab.2020.104090_bib34) 2012; 7 Nascimento (10.1016/j.chemolab.2020.104090_bib8) 2005; 43 Berman (10.1016/j.chemolab.2020.104090_bib10) 2004; 42 Leplat (10.1016/j.chemolab.2020.104090_bib21) 2019 Keshava (10.1016/j.chemolab.2020.104090_bib6) 2002; 19 Zhao (10.1016/j.chemolab.2020.104090_bib25) 2016; 65 Boyd (10.1016/j.chemolab.2020.104090_bib47) 2004 Lee (10.1016/j.chemolab.2020.104090_bib12) 1999; 401 Fu (10.1016/j.chemolab.2020.104090_bib18) 2016; 64 Fu (10.1016/j.chemolab.2020.104090_bib33) 2019; 36 Strang (10.1016/j.chemolab.2020.104090_bib37) 2006 Huang (10.1016/j.chemolab.2020.104090_bib41) 2014; 62 Sun (10.1016/j.chemolab.2020.104090_bib35) 2014 Wang (10.1016/j.chemolab.2020.104090_bib23) 2011; vol. 11 Van der Meer (10.1016/j.chemolab.2020.104090_bib1) 2012; 14 Zhou (10.1016/j.chemolab.2020.104090_bib17) 2011; 22 Bucak (10.1016/j.chemolab.2020.104090_bib26) 2009; 42 Miao (10.1016/j.chemolab.2020.104090_bib13) 2007; 45 Wu (10.1016/j.chemolab.2020.104090_bib30) 2014; 24 Fazel (10.1016/j.chemolab.2020.104090_bib45) 2003; vol. 3 Mairal (10.1016/j.chemolab.2020.104090_bib22) 2010; 11 Lin (10.1016/j.chemolab.2020.104090_bib42) 2015; 53 Wang (10.1016/j.chemolab.2020.104090_bib29) 2013; 93 Zhou (10.1016/j.chemolab.2020.104090_bib28) 2011; 22 Ang (10.1016/j.chemolab.2020.104090_bib20) 2019 Huang (10.1016/j.chemolab.2020.104090_bib36) 2016; 64 Laurberg (10.1016/j.chemolab.2020.104090_bib40) 2008 Khan (10.1016/j.chemolab.2020.104090_bib3) 2018; 6 Craig (10.1016/j.chemolab.2020.104090_bib9) 1994; 32 Fu (10.1016/j.chemolab.2020.104090_bib43) 2015; 63  | 
    
| References_xml | – volume: 19 year: 2014 ident: bib4 article-title: Medical hyperspectral imaging: a review publication-title: J. Biomed. Optic. – volume: 401 start-page: 788 year: 1999 end-page: 791 ident: bib12 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature – volume: vol. 3 start-page: 250 year: 2008 end-page: 253 ident: bib11 article-title: Minimum volume simplex analysis: a fast algorithm to unmix hyperspectral data publication-title: IEEE International Geoscience and Remote Sensing Symposium (IGARSS) – start-page: 418 year: 2018 end-page: 422 ident: bib31 article-title: On-line blind unmixing for hyperspectral pushbroom imaging systems publication-title: IEEE Statistical Signal Processing Workshop (SSP) – start-page: 1141 year: 2004 end-page: 1148 ident: bib39 article-title: When does Non-negative Matrix Factorization give a correct decomposition into parts? publication-title: Advances in Neural Information Processing Systems – volume: 62 start-page: 211 year: 2014 end-page: 224 ident: bib41 article-title: Non-negative Matrix Factorization revisited: uniqueness and algorithm for symmetric decomposition publication-title: IEEE Trans. Signal Process. – volume: 64 start-page: 6254 year: 2016 end-page: 6268 ident: bib18 article-title: Robust volume minimization-based matrix factorization for remote sensing and document clustering publication-title: IEEE Trans. Signal Process. – volume: 93 start-page: 1608 year: 2013 end-page: 1623 ident: bib29 article-title: On-line learning parts-based representation via incremental orthogonal projective Non-negative Matrix Factorization publication-title: Signal Process. – volume: 36 start-page: 59 year: 2019 end-page: 80 ident: bib33 article-title: Non-negative matrix factorization for signal and data analytics: identifiability, algorithms, and applications publication-title: IEEE Signal Process. Mag. – volume: vol. 3 start-page: 2156 year: 2003 end-page: 2162 ident: bib45 article-title: Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices publication-title: IEEE Proceedings of the 2003 American Control Conference (ACC) – volume: 42 start-page: 2085 year: 2004 end-page: 2095 ident: bib10 article-title: ICE: a statistical approach to identifying endmembers in hyperspectral images publication-title: IEEE Trans. Geosci. Rem. Sens. – start-page: 3402 year: 2019 end-page: 3406 ident: bib21 article-title: Minimum-volume rank-deficient non-negative matrix factorizations publication-title: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – volume: 22 start-page: 1626 year: 2011 end-page: 1637 ident: bib17 article-title: Minimum-volume-constrained Non-negative Matrix Factorization: enhanced ability of learning parts publication-title: IEEE Trans. Neural Network. – volume: 43 start-page: 898 year: 2005 end-page: 910 ident: bib8 article-title: Vertex Component Analysis: a fast algorithm to unmix hyperspectral data publication-title: IEEE Trans. Geosci. Rem. Sens. – volume: 24 start-page: 374 year: 2014 end-page: 383 ident: bib30 article-title: Visual tracking via on-line non-negative matrix factorization publication-title: IEEE Trans. Circ. Syst. Video Technol. – volume: 11 start-page: 19 year: 2010 end-page: 60 ident: bib22 article-title: On-line learning for matrix factorization and sparse coding publication-title: J. Mach. Learn. Res. – volume: 19 start-page: 2756 year: 2007 end-page: 2779 ident: bib32 article-title: Projected gradient methods for non-negative matrix factorization publication-title: Neural Comput. – volume: 57 start-page: 4418 year: 2009 end-page: 4432 ident: bib38 article-title: A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing publication-title: IEEE Trans. Signal Process. – volume: 19 start-page: 44 year: 2002 end-page: 57 ident: bib6 article-title: Spectral unmixing publication-title: IEEE Signal Process. Mag. – volume: vol. 11 start-page: 908 year: 2011 end-page: 919 ident: bib23 article-title: Efficient document clustering via on-line non-negative matrix factorizations publication-title: Society for Industrial and Applied Mathematics (SIAM) – volume: 63 start-page: 2306 year: 2015 end-page: 2320 ident: bib43 article-title: Blind separation of quasi-stationary sources: exploiting convex geometry in covariance domain publication-title: IEEE Trans. Signal Process. – year: 2004 ident: bib47 article-title: Convex Optimization – volume: 42 start-page: 788 year: 2009 end-page: 797 ident: bib26 article-title: Incremental subspace learning via non-negative matrix factorization publication-title: Pattern Recogn. – volume: 48 start-page: 2590 year: 2010 end-page: 2602 ident: bib16 article-title: Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data publication-title: IEEE Trans. Geosci. Rem. Sens. – volume: 64 start-page: 5052 year: 2016 end-page: 5065 ident: bib36 article-title: A flexible and efficient algorithmic framework for constrained matrix and tensor factorization publication-title: IEEE Trans. Signal Process. – volume: 53 start-page: 5530 year: 2015 end-page: 5546 ident: bib42 article-title: Identifiability of the simplex volume minimization criterion for blind hyperspectral unmixing: the no-pure-pixel case publication-title: IEEE Trans. Geosci. Rem. Sens. – volume: 45 start-page: 765 year: 2007 end-page: 777 ident: bib13 article-title: Endmember extraction from highly mixed data using minimum volume constrained Non-negative Matrix Factorization publication-title: IEEE Trans. Geosci. Rem. Sens. – start-page: 106 year: 2009 end-page: 113 ident: bib15 article-title: Minimum determinant constraint for non-negative matrix factorization publication-title: International Conference on Independent Component Analysis and Signal Separation (ICA) – start-page: 313 year: 2011 end-page: 316 ident: bib27 article-title: On-line algorithms for non-negative matrix factorization with the Itakura-Saito divergence publication-title: IEEE Workshop on Applications of Signal Processing to Audio and Acoustics – volume: 5 start-page: 354 year: 2012 end-page: 379 ident: bib5 article-title: Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 6 start-page: 14118 year: 2018 end-page: 14129 ident: bib3 article-title: Modern trends in hyperspectral image analysis: a review publication-title: IEEE Access – year: 2019 ident: bib20 article-title: Algorithms and comparisons of nonnegative matrix factorizations with volume regularization for hyperspectral unmixing publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 7 start-page: 125 year: 2017 ident: bib2 article-title: Line-scan hyperspectral imaging techniques for food safety and quality applications publication-title: Appl. Sci. – volume: 7 start-page: 365 year: 2012 end-page: 384 ident: bib34 article-title: An alternating direction algorithm for matrix completion with non-negative factors publication-title: Front. Math. China – volume: 3 start-page: 1 year: 2011 end-page: 122 ident: bib46 article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers publication-title: Found. Trends Mach. Learn. – volume: 23 start-page: 1087 year: 2012 end-page: 1099 ident: bib24 article-title: On-line Non-negative Matrix Factorization with robust stochastic approximation publication-title: IEEE Trans. Neur. Net. Learn. Sys. – volume: 22 start-page: 550 year: 2011 end-page: 560 ident: bib28 article-title: On-line blind source separation using Incremental Non-negative Matrix Factorization with volume constraint publication-title: IEEE Trans. Neural Network. – start-page: 6201 year: 2014 end-page: 6205 ident: bib35 article-title: Alternating direction method of multipliers for Non-negative Matrix Factorization with the beta-divergence publication-title: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – year: 2006 ident: bib37 article-title: Linear Algebra and its Applications, Thomson – year: 2008 ident: bib40 article-title: Theorems on positive data: on the uniqueness of NMF publication-title: Comput. Intell. Neurosci. – volume: vol. 3753 start-page: 266 year: 1999 end-page: 276 ident: bib7 article-title: An algorithm for fast autonomous spectral endmember determination in hyperspectral data publication-title: Imaging Spectrometry V – start-page: 1 year: 2009 end-page: 4 ident: bib44 article-title: A variable splitting augmented Lagrangian approach to linear spectral unmixing publication-title: IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS) – start-page: 2534 year: 2016 end-page: 2538 ident: bib19 article-title: Robust volume minimization-based matrix factorization via alternating optimization publication-title: IEEE International Conference on Acoustics, Speech and Signal Processing – volume: 65 start-page: 555 year: 2016 end-page: 570 ident: bib25 article-title: On-line non-negative matrix factorization with outliers publication-title: IEEE Trans. Signal Process. – volume: 32 start-page: 542 year: 1994 end-page: 552 ident: bib9 article-title: Minimum-volume transforms for remotely sensed data publication-title: IEEE Trans. Geosci. Rem. Sens. – volume: vol. 6790 start-page: 151 year: 2007 end-page: 159 ident: bib14 article-title: Minimum distance constrained Non-negative Matrix Factorization for the endmember extraction of hyperspectral images publication-title: Remote Sensing and GIS Data Processing and Applications; and Innovative Multispectral Technology and Applications – volume: 14 start-page: 112 year: 2012 end-page: 128 ident: bib1 article-title: Multi-and hyperspectral geologic remote sensing: a review publication-title: Int. J. Appl. Earth Obs. Geoinf. – year: 2017 ident: bib48 article-title: Hyperspectral Unmixing: Ground Truth Labeling, Datasets, Benchmark Performances and Survey – year: 2019 ident: 10.1016/j.chemolab.2020.104090_bib20 article-title: Algorithms and comparisons of nonnegative matrix factorizations with volume regularization for hyperspectral unmixing publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2019.2925098 – volume: vol. 3 start-page: 250 year: 2008 ident: 10.1016/j.chemolab.2020.104090_bib11 article-title: Minimum volume simplex analysis: a fast algorithm to unmix hyperspectral data – start-page: 418 year: 2018 ident: 10.1016/j.chemolab.2020.104090_bib31 article-title: On-line blind unmixing for hyperspectral pushbroom imaging systems – volume: 42 start-page: 788 year: 2009 ident: 10.1016/j.chemolab.2020.104090_bib26 article-title: Incremental subspace learning via non-negative matrix factorization publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2008.09.002 – volume: 45 start-page: 765 year: 2007 ident: 10.1016/j.chemolab.2020.104090_bib13 article-title: Endmember extraction from highly mixed data using minimum volume constrained Non-negative Matrix Factorization publication-title: IEEE Trans. Geosci. Rem. Sens. doi: 10.1109/TGRS.2006.888466 – volume: 22 start-page: 1626 year: 2011 ident: 10.1016/j.chemolab.2020.104090_bib17 article-title: Minimum-volume-constrained Non-negative Matrix Factorization: enhanced ability of learning parts publication-title: IEEE Trans. Neural Network. doi: 10.1109/TNN.2011.2164621 – year: 2008 ident: 10.1016/j.chemolab.2020.104090_bib40 article-title: Theorems on positive data: on the uniqueness of NMF publication-title: Comput. Intell. Neurosci. doi: 10.1155/2008/764206 – volume: 43 start-page: 898 year: 2005 ident: 10.1016/j.chemolab.2020.104090_bib8 article-title: Vertex Component Analysis: a fast algorithm to unmix hyperspectral data publication-title: IEEE Trans. Geosci. Rem. Sens. doi: 10.1109/TGRS.2005.844293 – start-page: 3402 year: 2019 ident: 10.1016/j.chemolab.2020.104090_bib21 article-title: Minimum-volume rank-deficient non-negative matrix factorizations – volume: 64 start-page: 5052 year: 2016 ident: 10.1016/j.chemolab.2020.104090_bib36 article-title: A flexible and efficient algorithmic framework for constrained matrix and tensor factorization publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2016.2576427 – volume: 42 start-page: 2085 year: 2004 ident: 10.1016/j.chemolab.2020.104090_bib10 article-title: ICE: a statistical approach to identifying endmembers in hyperspectral images publication-title: IEEE Trans. Geosci. Rem. Sens. doi: 10.1109/TGRS.2004.835299 – volume: 24 start-page: 374 year: 2014 ident: 10.1016/j.chemolab.2020.104090_bib30 article-title: Visual tracking via on-line non-negative matrix factorization publication-title: IEEE Trans. Circ. Syst. Video Technol. doi: 10.1109/TCSVT.2013.2278199 – volume: 19 year: 2014 ident: 10.1016/j.chemolab.2020.104090_bib4 article-title: Medical hyperspectral imaging: a review publication-title: J. Biomed. Optic. – start-page: 1141 year: 2004 ident: 10.1016/j.chemolab.2020.104090_bib39 article-title: When does Non-negative Matrix Factorization give a correct decomposition into parts? – volume: 14 start-page: 112 year: 2012 ident: 10.1016/j.chemolab.2020.104090_bib1 article-title: Multi-and hyperspectral geologic remote sensing: a review publication-title: Int. J. Appl. Earth Obs. Geoinf. – start-page: 1 year: 2009 ident: 10.1016/j.chemolab.2020.104090_bib44 article-title: A variable splitting augmented Lagrangian approach to linear spectral unmixing – volume: 6 start-page: 14118 year: 2018 ident: 10.1016/j.chemolab.2020.104090_bib3 article-title: Modern trends in hyperspectral image analysis: a review publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2812999 – volume: 19 start-page: 2756 year: 2007 ident: 10.1016/j.chemolab.2020.104090_bib32 article-title: Projected gradient methods for non-negative matrix factorization publication-title: Neural Comput. doi: 10.1162/neco.2007.19.10.2756 – start-page: 6201 year: 2014 ident: 10.1016/j.chemolab.2020.104090_bib35 article-title: Alternating direction method of multipliers for Non-negative Matrix Factorization with the beta-divergence – volume: 32 start-page: 542 year: 1994 ident: 10.1016/j.chemolab.2020.104090_bib9 article-title: Minimum-volume transforms for remotely sensed data publication-title: IEEE Trans. Geosci. Rem. Sens. doi: 10.1109/36.297973 – year: 2006 ident: 10.1016/j.chemolab.2020.104090_bib37 – volume: 3 start-page: 1 year: 2011 ident: 10.1016/j.chemolab.2020.104090_bib46 article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000016 – volume: 11 start-page: 19 year: 2010 ident: 10.1016/j.chemolab.2020.104090_bib22 article-title: On-line learning for matrix factorization and sparse coding publication-title: J. Mach. Learn. Res. – volume: vol. 3 start-page: 2156 year: 2003 ident: 10.1016/j.chemolab.2020.104090_bib45 article-title: Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices – volume: vol. 6790 start-page: 151 year: 2007 ident: 10.1016/j.chemolab.2020.104090_bib14 article-title: Minimum distance constrained Non-negative Matrix Factorization for the endmember extraction of hyperspectral images – volume: vol. 11 start-page: 908 year: 2011 ident: 10.1016/j.chemolab.2020.104090_bib23 article-title: Efficient document clustering via on-line non-negative matrix factorizations – year: 2004 ident: 10.1016/j.chemolab.2020.104090_bib47 – volume: 5 start-page: 354 year: 2012 ident: 10.1016/j.chemolab.2020.104090_bib5 article-title: Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2012.2194696 – volume: 401 start-page: 788 year: 1999 ident: 10.1016/j.chemolab.2020.104090_bib12 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature doi: 10.1038/44565 – volume: 7 start-page: 365 year: 2012 ident: 10.1016/j.chemolab.2020.104090_bib34 article-title: An alternating direction algorithm for matrix completion with non-negative factors publication-title: Front. Math. China doi: 10.1007/s11464-012-0194-5 – volume: 48 start-page: 2590 year: 2010 ident: 10.1016/j.chemolab.2020.104090_bib16 article-title: Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data publication-title: IEEE Trans. Geosci. Rem. Sens. doi: 10.1109/TGRS.2009.2038483 – volume: 62 start-page: 211 year: 2014 ident: 10.1016/j.chemolab.2020.104090_bib41 article-title: Non-negative Matrix Factorization revisited: uniqueness and algorithm for symmetric decomposition publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2285514 – volume: 53 start-page: 5530 year: 2015 ident: 10.1016/j.chemolab.2020.104090_bib42 article-title: Identifiability of the simplex volume minimization criterion for blind hyperspectral unmixing: the no-pure-pixel case publication-title: IEEE Trans. Geosci. Rem. Sens. doi: 10.1109/TGRS.2015.2424719 – volume: 19 start-page: 44 year: 2002 ident: 10.1016/j.chemolab.2020.104090_bib6 article-title: Spectral unmixing publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.974727 – volume: 23 start-page: 1087 year: 2012 ident: 10.1016/j.chemolab.2020.104090_bib24 article-title: On-line Non-negative Matrix Factorization with robust stochastic approximation publication-title: IEEE Trans. Neur. Net. Learn. Sys. doi: 10.1109/TNNLS.2012.2197827 – volume: 57 start-page: 4418 year: 2009 ident: 10.1016/j.chemolab.2020.104090_bib38 article-title: A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2009.2025802 – volume: 93 start-page: 1608 year: 2013 ident: 10.1016/j.chemolab.2020.104090_bib29 article-title: On-line learning parts-based representation via incremental orthogonal projective Non-negative Matrix Factorization publication-title: Signal Process. doi: 10.1016/j.sigpro.2012.07.015 – year: 2017 ident: 10.1016/j.chemolab.2020.104090_bib48 – volume: 65 start-page: 555 year: 2016 ident: 10.1016/j.chemolab.2020.104090_bib25 article-title: On-line non-negative matrix factorization with outliers publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2016.2620967 – start-page: 106 year: 2009 ident: 10.1016/j.chemolab.2020.104090_bib15 article-title: Minimum determinant constraint for non-negative matrix factorization – volume: 63 start-page: 2306 year: 2015 ident: 10.1016/j.chemolab.2020.104090_bib43 article-title: Blind separation of quasi-stationary sources: exploiting convex geometry in covariance domain publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2015.2404577 – start-page: 313 year: 2011 ident: 10.1016/j.chemolab.2020.104090_bib27 article-title: On-line algorithms for non-negative matrix factorization with the Itakura-Saito divergence – volume: 64 start-page: 6254 year: 2016 ident: 10.1016/j.chemolab.2020.104090_bib18 article-title: Robust volume minimization-based matrix factorization for remote sensing and document clustering publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2016.2602800 – volume: 22 start-page: 550 year: 2011 ident: 10.1016/j.chemolab.2020.104090_bib28 article-title: On-line blind source separation using Incremental Non-negative Matrix Factorization with volume constraint publication-title: IEEE Trans. Neural Network. doi: 10.1109/TNN.2011.2109396 – volume: 7 start-page: 125 year: 2017 ident: 10.1016/j.chemolab.2020.104090_bib2 article-title: Line-scan hyperspectral imaging techniques for food safety and quality applications publication-title: Appl. Sci. doi: 10.3390/app7020125 – start-page: 2534 year: 2016 ident: 10.1016/j.chemolab.2020.104090_bib19 article-title: Robust volume minimization-based matrix factorization via alternating optimization – volume: vol. 3753 start-page: 266 year: 1999 ident: 10.1016/j.chemolab.2020.104090_bib7 article-title: An algorithm for fast autonomous spectral endmember determination in hyperspectral data – volume: 36 start-page: 59 year: 2019 ident: 10.1016/j.chemolab.2020.104090_bib33 article-title: Non-negative matrix factorization for signal and data analytics: identifiability, algorithms, and applications publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2018.2877582  | 
    
| SSID | ssj0016941 | 
    
| Score | 2.3245237 | 
    
| Snippet | Pushbroom imaging systems are emerging techniques for real-time acquisition of hyperspectral images. These systems are frequently used in industrial... | 
    
| SourceID | unpaywall hal crossref elsevier  | 
    
| SourceType | Open Access Repository Enrichment Source Index Database Publisher  | 
    
| StartPage | 104090 | 
    
| SubjectTerms | Alternating direction method of multipliers Engineering Sciences Hyperspectral imaging Minimum dispersion regularization On-line unmixing Pushbroom acquisition system Signal and Image processing  | 
    
| SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9zl3kRP3F-EcRrtrZp1vY4pmOI86KD3UqytK5jbefc1F38232vH2OCMMFLoaGhIS-83y_Je79HyI0IADRVKJl2QsVQsIsp7VjMdGSrZajQNjIFvv5jqzew74diWCGdMhcGwyoL35_79MxbFy3NYjabsyhqPqGOCNJpC9Yp8h7MYLcdrGLQ-FqHeZiYqJnre3sMv97IEp40YF5i2EEq2Cda2XWngb75d4DaGWOkZG2ZzOTqQ06nGzDU3Sd7BX-k7XyIB6QSJIek1inLth2R13ZC27f9PkN80lROX1LY_49jiieuFJVE4mVMdYQK4XhSRudZNfp5kY9JgcTSNGHIPqmCp6bLJI4-AeFoGtLxalZkZ85hFFEM3ujtmAy6d8-dHivqKrAR9-wFA79i2NoZWUB-HENL4UguW0prADQJntOSrgwDrm1lBi7AvxUCggUSleWV4ELzE1JN0iQ4JVRwW2kz4MAzJRArT_LsYtZ1Q-GZo9CpE1FOpj8qRMex9sXUL6PLJn5pBB-N4OdGqJPmut8sl93Y2sMrbeX_WEA-YMPWvtdg3PWPUHG7137wsQ3olwtOkL-bdWKsbf_HMZ39Y0znZBffMDTFFBekupgvg0vgPwt1lS3wb79-AlY priority: 102 providerName: Elsevier  | 
    
| Title | An ADMM-based algorithm with minimum dispersion regularization for on-line blind unmixing of hyperspectral images | 
    
| URI | https://dx.doi.org/10.1016/j.chemolab.2020.104090 https://hal.science/hal-02887303  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 204 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-3239 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016941 issn: 1873-3239 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-3239 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016941 issn: 1873-3239 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-3239 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016941 issn: 1873-3239 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-3239 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016941 issn: 1873-3239 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-3239 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016941 issn: 1873-3239 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB41yaFcoLxEgEYrxHWD7fX6cbQKVXgk4kCkcrJ2vTZJiZ3g2kA58NuZ8SOqUNXCxbItj7zWrOf7dnfmW4CXMkXQ1Jnixs80J8Euro3vcNtXnmfpzLUaBb75wpst3Xdn8uwAWF8Ls0LG2cV-OucIfwF2QjGAkSeRbQ9htFx8jD63kt0hJz5NYyp8iAtHhFeKgM-n-Nk5DhA1DgOdZjXTotB7Pf4MVpQIeVgXO3X5Q202V1Dm9F6b7XjRiBNScsnXaV3pafLrL-nGmz7gCO52FJNFbZ-4Dwdp8QAOT_qd3R7Ct6hg0ev5nBOEGaY2X7blulrljCZlGYmN5HXOzJpExGkyjZXNhvVlV7LJkOeybcGJoDKNR8PqIl__RBBk24ytLnddAWeJrVjnGLAuHsHy9M2nkxnvtl7giQjdimObLdf4iYP8yLeMkr4SytPGIOYpDK6OClSWCuNqOw2QITgZglyqSHxeSyGNeAzDYlukT4BJ4WpjpwKpqELuFSrRrN0GQSZDO8n8McjeIXHS6ZLT9hibuE9AO497R8bkyLh15Bhe7e12rTLHrRZh7--4c1HLG2KEj1ttX6A39y8iUe5Z9CGme72Hv9tjsPb95x_b9PT_TZ7BHbqipBVbPodhVdbpMTKjSk9gMP1tT2AUvX0_W0y6X-UP6zUMoQ | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH7ix6FcJgabKLBhTVxNkzhukmPVDXWs5TKQuFl2ndBUTVqylo0Lfzvv5UcFEhJIu-TgxIrlZ73vs_3e9wBOZYygaRLNbZAYToJd3NjA426gu13HJL5TKvCNLruDa__iRt5sQL_JhaGwytr3Vz699NZ1S6eezc4iTTu_SUeE6LSH65R4zyZs-9ILaAd29riO83ApU7MS-I44ff4sTXh6hhOT4RbS4EbRK-87HXLOryPU5oRCJVurfKEf_urZ7BkOne_Ch5pAsl41xo-wEed70Oo3ddv24a6Xs9730YgTQFmmZ7fzIl1OMkZHroykRLJVxmxKEuF0VMaKshx9USdkMmSxbJ5zop_M4NOyVZ6l_xDi2Dxhk4dFnZ5Z4CjSDN3Rn09wff7jqj_gdWEFPhaRv-ToWBzfBmMP2U_gWC0DLXTXWIuIptF1ejrUSSysb9w4RPz3EoSwWJO0vJFCWvEZtvJ5Hh8Ak8I31o0FEk2NzCrSoryZDcNERu44Cdogm8lU41p1nIpfzFQTXjZVjREUGUFVRmhDZ91vUeluvNkjamylXqwgheDwZt9vaNz1j0hye9AbKmpD_hWiFxT3bhucte3fOabD_xjTCbQGV6OhGv68_HUEO_SG4lRceQxby2IVf0EytDRfy8X-BMh9BXk | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb5wwEB4lm0NyadNH1E2byKp69RYw5nFEaaJV1I166ErpCdkYurtd2C2BvH59ZnisoqpK2gsCxAijMfN9tmc-A3ySKYKmzhQ3fqY5CXZxbXyH277yPEtnrtUo8E0uvPHUPb-Ul1vA-lqYGTLOLvbTOUf4C7ATim3Y8SSy7QHsTC--RT9aye6QE5-mMRU-xIUjwkdFwIsRfnaOA0SNw0CnWc20KPT-HX-2Z5QIuVsXa3V3o5bLRyhz9rLNdrxqxAkpueTXqK70KLn_Q7rxqQ_YhxcdxWRR2ydewVZavIbdk35ntzfwOypY9GUy4QRhhqnlz1U5r2Y5o0lZRmIjeZ0zMycRcZpMY2WzYX3ZlWwy5LlsVXAiqEzj0bC6yOe3CIJslbHZ3bor4CyxFfMcA9bVW5ienX4_GfNu6wWeiNCtOLbZco2fOMiPfMso6SuhPG0MYp7C4OqoQGWpMK620wAZgpMhyKWKxOe1FNKIAxgUqyJ9B0wKVxs7FUhFFXKvUIlm7TYIMhnaSeYPQfYOiZNOl5y2x1jGfQLaIu4dGZMj49aRQ_i8sVu3yhzPWoS9v-PORS1viBE-nrX9iN7cvIhEucfR15ju9R6-todgbfrPP7bp8P9N3sMeXVHSii0_wKAq6_QImVGlj7uf4wFRsgoV | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ADMM-based+algorithm+with+minimum+dispersion+regularization+for+on-line+blind+unmixing+of+hyperspectral+images&rft.jtitle=Chemometrics+and+intelligent+laboratory+systems&rft.au=Nus%2C+Ludivine&rft.au=Miron%2C+Sebastian&rft.au=Brie%2C+David&rft.date=2020-09-15&rft.issn=0169-7439&rft.volume=204&rft.spage=104090&rft_id=info:doi/10.1016%2Fj.chemolab.2020.104090&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chemolab_2020_104090 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-7439&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-7439&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-7439&client=summon |