Effective thermal parameters of chalcogenide thin films and simulation of phase-change memory

Thermal conductivity of Ge2Sb2Te5 (GST) and Ce-doped GST (Ce-GST) chalcogenide thin films and thermal boundary resistances (TBR) at the interface of chalcogenides and thin films such as ZnS:SiO2 and TiN were measured by the 3-omega (3ω) method in conjunction with the plywood-structure samples. The m...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of thermal sciences Vol. 87; pp. 207 - 214
Main Authors Huang, Yin-Hsien, Hsieh, Tsung-Eong
Format Journal Article
LanguageEnglish
Published Elsevier Masson SAS 01.01.2015
Subjects
Online AccessGet full text
ISSN1290-0729
1778-4166
DOI10.1016/j.ijthermalsci.2014.08.004

Cover

Abstract Thermal conductivity of Ge2Sb2Te5 (GST) and Ce-doped GST (Ce-GST) chalcogenide thin films and thermal boundary resistances (TBR) at the interface of chalcogenides and thin films such as ZnS:SiO2 and TiN were measured by the 3-omega (3ω) method in conjunction with the plywood-structure samples. The measured results were then implanted in the finite-element simulation for analyzing the thermal conduction behaviors of phase-change memory (PCM) devices. The analysis utilizing a three-dimensional fully coupled electric and thermal model indicated that the TBR at the interface of chalcogenide and TiN contact layer is the key physical property affecting the temperature profile and heating efficiency of PCM cells subject to a pulse heating operation. It was found the TBR significantly alters the temperature uniformity and suppresses the programming current. For instance, the presence of TBRGST/TiN of 7.01 × 10−8 m2 K/W led to a 30% reduction of programming power of PCM cell while the TBRCe-GST/TiN of 8.82 × 10−8 m2 K/W led to a 27% power reduction in comparison with the case without considering the TBR property. As to the doping effect, higher resistivity of Ce-GST layer led to the decrease of programming current (up to 39% reduction in Ireset) and the low thermal conductivity feature of Ce-GST provided a better thermal confinement effect in PCM cells. The simulation results illustrated that the TBR property must be taken into consideration in optimizing the PCM device structure and this limitation could be remedied by the doping in chalcogenide programming layer. •Thermal properties of thin films in PCM devices were measured by 3ω method.•PCM's thermal-electrical behaviors were analyzed by 3-D finite-element simulation.•Thermal boundary resistance at GST/TiN interface reduced heating efficiency of PCM.•Thermal boundary resistance reduced programming electrical power of PCM.•Doping in programming layer alleviated influence of thermal boundary resistance.
AbstractList Thermal conductivity of Ge sub(2)Sb sub(2)Te sub(5) (GST) and Ce-doped GST (Ce-GST) chalcogenide thin films and thermal boundary resistances (TBR) at the interface of chalcogenides and thin films such as ZnS:SiO sub(2) and TiN were measured by the 3-omega (3 omega ) method in conjunction with the plywood-structure samples. The measured results were then implanted in the finite-element simulation for analyzing the thermal conduction behaviors of phase-change memory (PCM) devices. The analysis utilizing a three-dimensional fully coupled electric and thermal model indicated that the TBR at the interface of chalcogenide and TiN contact layer is the key physical property affecting the temperature profile and heating efficiency of PCM cells subject to a pulse heating operation. It was found the TBR significantly alters the temperature uniformity and suppresses the programming current. For instance, the presence of TBR sub(GST/TiN) of 7.01 10 super(-8) m super(2) K/W led to a 30% reduction of programming power of PCM cell while the TBR sub(Ce-GST/TiN) of 8.82 10 super(-8) m super(2) K/W led to a 27% power reduction in comparison with the case without considering the TBR property. As to the doping effect, higher resistivity of Ce-GST layer led to the decrease of programming current (up to 39% reduction in I sub(reset)) and the low thermal conductivity feature of Ce-GST provided a better thermal confinement effect in PCM cells. The simulation results illustrated that the TBR property must be taken into consideration in optimizing the PCM device structure and this limitation could be remedied by the doping in chalcogenide programming layer.
Thermal conductivity of Ge2Sb2Te5 (GST) and Ce-doped GST (Ce-GST) chalcogenide thin films and thermal boundary resistances (TBR) at the interface of chalcogenides and thin films such as ZnS:SiO2 and TiN were measured by the 3-omega (3ω) method in conjunction with the plywood-structure samples. The measured results were then implanted in the finite-element simulation for analyzing the thermal conduction behaviors of phase-change memory (PCM) devices. The analysis utilizing a three-dimensional fully coupled electric and thermal model indicated that the TBR at the interface of chalcogenide and TiN contact layer is the key physical property affecting the temperature profile and heating efficiency of PCM cells subject to a pulse heating operation. It was found the TBR significantly alters the temperature uniformity and suppresses the programming current. For instance, the presence of TBRGST/TiN of 7.01 × 10−8 m2 K/W led to a 30% reduction of programming power of PCM cell while the TBRCe-GST/TiN of 8.82 × 10−8 m2 K/W led to a 27% power reduction in comparison with the case without considering the TBR property. As to the doping effect, higher resistivity of Ce-GST layer led to the decrease of programming current (up to 39% reduction in Ireset) and the low thermal conductivity feature of Ce-GST provided a better thermal confinement effect in PCM cells. The simulation results illustrated that the TBR property must be taken into consideration in optimizing the PCM device structure and this limitation could be remedied by the doping in chalcogenide programming layer. •Thermal properties of thin films in PCM devices were measured by 3ω method.•PCM's thermal-electrical behaviors were analyzed by 3-D finite-element simulation.•Thermal boundary resistance at GST/TiN interface reduced heating efficiency of PCM.•Thermal boundary resistance reduced programming electrical power of PCM.•Doping in programming layer alleviated influence of thermal boundary resistance.
Author Huang, Yin-Hsien
Hsieh, Tsung-Eong
Author_xml – sequence: 1
  givenname: Yin-Hsien
  surname: Huang
  fullname: Huang, Yin-Hsien
– sequence: 2
  givenname: Tsung-Eong
  surname: Hsieh
  fullname: Hsieh, Tsung-Eong
  email: tehsieh@mail.nctu.edu.tw
BookMark eNqNkbtOwzAUQC0EEuXxDxETS8K9ifNiAvGWKrHAiCzHuWkdJXaxU6T-PS7tgJiY7OHcI9_jE3ZorCHGLhASBCyu-kT305LcKAevdJIC8gSqBIAfsBmWZRVzLIrDcE9riKFM62N24n0PAGUN9Yx9PHQdqUl_UbT3RCvp5EgTOR_ZLlJLOSi7IKPbLaJN1Olh9JE0beT1uB7kpK3Zkqul9BQH3iwoGmm0bnPGjrrwMjrfn6fs_fHh7e45nr8-vdzdzmOV1XyKK-QVtlVRFggNcUDCjFClbZ63ZY4ypbRROXZcVjyHlpd5xhuApgs7YMrT7JRd7rwrZz_X5Ccxaq9oGKQhu_YCixyzEnmWBfRmhypnvXfUCaWnnx0mJ_UgEMS2rOjF77JiW1ZAJULZoLj-o1g5PUq3-d_w_W6YQo8vTU4EgoyiVrvwEaK1-j-ab2Etnyw
CitedBy_id crossref_primary_10_1088_1361_6463_ac1ec3
crossref_primary_10_1007_s10854_015_3204_z
crossref_primary_10_1016_j_mssp_2021_106350
crossref_primary_10_3390_technologies11060166
crossref_primary_10_1088_1361_6463_ad5605
crossref_primary_10_1016_j_ijleo_2018_06_095
crossref_primary_10_1016_j_rinp_2019_102276
crossref_primary_10_1088_1361_6463_aa749b
crossref_primary_10_3389_fnins_2021_635264
crossref_primary_10_1063_1_5028318
crossref_primary_10_1016_j_renene_2019_03_088
crossref_primary_10_1016_j_sysarc_2023_103008
Cites_doi 10.1002/andp.18531650802
10.1109/TED.2007.911630
10.1063/1.2359354
10.1103/PhysRevLett.96.055507
10.1063/1.1598272
10.1103/PhysRevLett.21.1450
10.1063/1.2784169
10.1063/1.3573505
10.1038/nmat1215
10.1063/1.366220
10.1063/1.1884248
10.1063/1.3097353
10.1143/JJAP.48.064505
10.1016/j.tsf.2011.12.014
10.1364/AO.39.002347
10.1021/je800770s
10.1063/1.4729528
10.1063/1.2710440
10.1109/LED.2009.2035139
10.1063/1.1141498
10.1063/1.126852
10.1109/LED.2008.2003012
10.1063/1.1139434
10.1016/j.ijthermalsci.2011.08.020
10.1063/1.1633984
10.1016/j.ijthermalsci.2013.03.009
10.1063/1.1803612
10.1016/j.ijthermalsci.2009.01.014
10.1063/1.348620
ContentType Journal Article
Copyright 2014 Elsevier Masson SAS
Copyright_xml – notice: 2014 Elsevier Masson SAS
DBID AAYXX
CITATION
7TB
7U5
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijthermalsci.2014.08.004
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1778-4166
EndPage 214
ExternalDocumentID 10_1016_j_ijthermalsci_2014_08_004
S1290072914002294
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TB
7U5
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c394t-81481d867610be401e13e1c2d55d751a2e2bc51f4a8450d47534b00bf79012423
IEDL.DBID .~1
ISSN 1290-0729
IngestDate Sun Sep 28 09:38:34 EDT 2025
Wed Oct 01 03:27:28 EDT 2025
Thu Apr 24 23:04:24 EDT 2025
Fri Feb 23 02:28:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Chalcogenides
3-Omega method
Thermal conductivity
Finite-element simulation
Phase-change memory (PCM)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-81481d867610be401e13e1c2d55d751a2e2bc51f4a8450d47534b00bf79012423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1651371433
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1651371433
crossref_citationtrail_10_1016_j_ijthermalsci_2014_08_004
crossref_primary_10_1016_j_ijthermalsci_2014_08_004
elsevier_sciencedirect_doi_10_1016_j_ijthermalsci_2014_08_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2015
2015-01-00
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: January 2015
PublicationDecade 2010
PublicationTitle International journal of thermal sciences
PublicationYear 2015
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References ANSYS Inc (bib41) 2009
Pellizzer, Pirovano, Ottogalli, Magistretti, Scaravaggi, Zuliani, Tosi, Benvenuti, Besana, Cadeo, Marangon, Morandi, Piva, Spandre, Zonca, Modelli, Varesi, Lowrey, Lacaita, Casagrande, Cappelletti, Bez (bib36) 2004
Chen, Lee, Chao, Chen, Chen, Chen, Yen, Chen, Wang, Hsiao, Yeh, Chiou, Liu, Wang, Chein, Huang, Shih, Tu, Huang, Yu, Kao, Tsai (bib39) 2007
Lyeo, Lyeo, Cahill, Lee, Abelson (bib28) 2006; 54
Franz, Wiedemann (bib43) 1853; 165
Peng, Cheng, Mansuripur (bib27) 1997; 82
Birge, Nagel (bib33) 1987; 58
Sun, Zhou, Ahuja (bib4) 2006; 96
Wang, Wamwangi, Ziegler, Steimer, Wuttig (bib2) 2004; 96
Lee, Li, Reifenberg, Asheghi, Goodson (bib19) 2011; 109
Rajendran, Karidis, Lee, Breitwisch, Burr, Shih, Cheek, Schrott, Lung, Lam (bib12) 2008
Lai, Lowrey (bib1) 2001
Lee, Grayeli, Kim, Asheghi, Philip Wong, Goodson (bib29) 2013; 109
Senkader, Wright (bib6) 2004; 95
Happ, Breitwisch, Schrott, Philipp, Lee, Cheek, Nirschl, Lamorey, Ho, Chen, Chen, Joseph, Zaidi, Burr, Yee, Chen, Raoux, Lung, Bergmann, Lam (bib38) 2006
Chen, Pop (bib23) 2009; 56
Kencke, Karpov, Johnson, Lee, Kau, Hudgens, Reifenberg, Savransky, Zhang, Giles, Spadini (bib21) 2007
Russo, Redaelli, Lacaita (bib11) 2008; 55
Lacaita, Redaelli, Ielmini, Pellizzer, Pirovano, Benvenuti, Bez (bib9) 2004
Fallica, Battaglia, Cocco, Monguzzi, Teren, Wiemer, Varesi, Cecchini, Gotti, Fanciulli (bib17) 2009; 54
Huang, Huang, Hsieh (bib46) 2012; 111
Kolobov, Fons, Frenkel, Ankudinov, Tominaga, Uruga (bib3) 2004; 3
Gong, Ling, Song, Feng (bib13) 2009; 48
Ramadan, Al-Nimr (bib14) 2009; 48
Ohta (bib32) 2001; 3
Chen, Rettner, Raoux, Burr, Chen, Shelby, Salinga, Risk, Happ, McClelland, Breitwisch, Schrott, Philipp, Lee, Cheek, Nirschl, Lamorey, Chen, Joseph, Zaidi, Yee, Lung, Bergmann, Lam (bib35) 2006
Reifenberg, Kencke, Goodson (bib16) 2008; 29
Reifenberg, Pop, Gibby, Wong, Goodson (bib24) 2006
Breitwisch, Nirsch, Chen, Zhu, Lee, Lamorey, Burr, Joseph, Schrott, Philipp, Cheek, Happ, Chen, Zaidr, Flaitz, Bruley, Dasaka, Rajendran, Rossnage, Yang, Chen, Bergmann, Lung, Lam (bib40) 2007
Lee, Abelson, Bishop, Kang, Cheong, Kim (bib44) 2005; 97
Reifenberg, Panzer, Kim, Gibby, Zhang, Wong, Philip Wong, Pop, Goodson (bib25) 2007; 91
Ha, Yi, Horii, Park, Joo, Park, Chung, Moon (bib34) 2003
Ovshinsky (bib5) 1968; 21
Cahill (bib26) 1990; 61
Peng, Mansuripur (bib31) 2000; 39
Yamada, Ohno, Nishiuchi, Akahira, Takao (bib42) 1991; 69
Pokharel, Zhao, Ren, Opeil (bib45) 2013; 71
Huang, Tsai, Wang, Hsieh (bib30) 2012; 520
Cruz, Gurevich (bib15) 2012; 51
Risk, Rettner, Raoux (bib18) 2009; 94
Kim, Merget, Forst, Kurz (bib10) 2007; 101
Pirovano, Lacaita, Benvenuti, Pellizzer, Hudgens, Bez (bib8) 2003
Kang, Ahn, Kim, Webb, Yi (bib7) 2003; 94
Reifenberg, Chang, Panzer, Kim, Rowlette, Asheghi, Philip Wong, Goodson (bib22) 2010; 31
Kim, Kwun, Lee, Seo, Yoon (bib20) 2000; 76
Pellizzer, Benvenuti, Gleixner, Kim, Johnson, Magistretti, Marangon, Pirovano, Bez, Atwood (bib37) 2006
Pirovano (10.1016/j.ijthermalsci.2014.08.004_bib8) 2003
Ohta (10.1016/j.ijthermalsci.2014.08.004_bib32) 2001; 3
ANSYS Inc (10.1016/j.ijthermalsci.2014.08.004_bib41) 2009
Chen (10.1016/j.ijthermalsci.2014.08.004_bib35) 2006
Pellizzer (10.1016/j.ijthermalsci.2014.08.004_bib37) 2006
Rajendran (10.1016/j.ijthermalsci.2014.08.004_bib12) 2008
Lai (10.1016/j.ijthermalsci.2014.08.004_bib1) 2001
Senkader (10.1016/j.ijthermalsci.2014.08.004_bib6) 2004; 95
Sun (10.1016/j.ijthermalsci.2014.08.004_bib4) 2006; 96
Pokharel (10.1016/j.ijthermalsci.2014.08.004_bib45) 2013; 71
Franz (10.1016/j.ijthermalsci.2014.08.004_bib43) 1853; 165
Ha (10.1016/j.ijthermalsci.2014.08.004_bib34) 2003
Russo (10.1016/j.ijthermalsci.2014.08.004_bib11) 2008; 55
Kim (10.1016/j.ijthermalsci.2014.08.004_bib20) 2000; 76
Reifenberg (10.1016/j.ijthermalsci.2014.08.004_bib22) 2010; 31
Lyeo (10.1016/j.ijthermalsci.2014.08.004_bib28) 2006; 54
Chen (10.1016/j.ijthermalsci.2014.08.004_bib39) 2007
Breitwisch (10.1016/j.ijthermalsci.2014.08.004_bib40) 2007
Happ (10.1016/j.ijthermalsci.2014.08.004_bib38) 2006
Huang (10.1016/j.ijthermalsci.2014.08.004_bib46) 2012; 111
Gong (10.1016/j.ijthermalsci.2014.08.004_bib13) 2009; 48
Lee (10.1016/j.ijthermalsci.2014.08.004_bib19) 2011; 109
Peng (10.1016/j.ijthermalsci.2014.08.004_bib27) 1997; 82
Kim (10.1016/j.ijthermalsci.2014.08.004_bib10) 2007; 101
Ovshinsky (10.1016/j.ijthermalsci.2014.08.004_bib5) 1968; 21
Kang (10.1016/j.ijthermalsci.2014.08.004_bib7) 2003; 94
Cruz (10.1016/j.ijthermalsci.2014.08.004_bib15) 2012; 51
Fallica (10.1016/j.ijthermalsci.2014.08.004_bib17) 2009; 54
Huang (10.1016/j.ijthermalsci.2014.08.004_bib30) 2012; 520
Kolobov (10.1016/j.ijthermalsci.2014.08.004_bib3) 2004; 3
Risk (10.1016/j.ijthermalsci.2014.08.004_bib18) 2009; 94
Wang (10.1016/j.ijthermalsci.2014.08.004_bib2) 2004; 96
Reifenberg (10.1016/j.ijthermalsci.2014.08.004_bib25) 2007; 91
Birge (10.1016/j.ijthermalsci.2014.08.004_bib33) 1987; 58
Reifenberg (10.1016/j.ijthermalsci.2014.08.004_bib24) 2006
Ramadan (10.1016/j.ijthermalsci.2014.08.004_bib14) 2009; 48
Chen (10.1016/j.ijthermalsci.2014.08.004_bib23) 2009; 56
Yamada (10.1016/j.ijthermalsci.2014.08.004_bib42) 1991; 69
Lee (10.1016/j.ijthermalsci.2014.08.004_bib29) 2013; 109
Pellizzer (10.1016/j.ijthermalsci.2014.08.004_bib36) 2004
Reifenberg (10.1016/j.ijthermalsci.2014.08.004_bib16) 2008; 29
Kencke (10.1016/j.ijthermalsci.2014.08.004_bib21) 2007
Cahill (10.1016/j.ijthermalsci.2014.08.004_bib26) 1990; 61
Peng (10.1016/j.ijthermalsci.2014.08.004_bib31) 2000; 39
Lacaita (10.1016/j.ijthermalsci.2014.08.004_bib9) 2004
Lee (10.1016/j.ijthermalsci.2014.08.004_bib44) 2005; 97
References_xml – start-page: 803
  year: 2001
  end-page: 806
  ident: bib1
  article-title: OUM – a 180 nm Nonvolatile memory cell element technology for stand alone and embedded applications
  publication-title: Proc. IEDM Tech. Dig
– volume: 48
  start-page: 064505
  year: 2009
  ident: bib13
  article-title: Simulation of phase change random access memory for low reset current and high thermal efficiency by finite element modeling
  publication-title: Jpn. J. Appl. Phys.
– volume: 111
  start-page: 123706
  year: 2012
  ident: bib46
  article-title: A study of phase transition behaviors of chalcogenide layers using in situ alternative-current impedance spectroscopy
  publication-title: J. Appl. Phys.
– volume: 76
  start-page: 3864
  year: 2000
  end-page: 3866
  ident: bib20
  article-title: Thermal boundary resistance at Ge
  publication-title: Appl. Phys. Lett.
– volume: 51
  start-page: 1
  year: 2012
  end-page: 6
  ident: bib15
  article-title: Heat transfer in two-layered systems excited by a pulsed laser
  publication-title: Int. J. Therm. Sci.
– volume: 55
  start-page: 506
  year: 2008
  end-page: 514
  ident: bib11
  article-title: Modeling of programming and read performance in phase-change memories—part I: cell optimization and scaling
  publication-title: IEEE Trans. Electron Devices
– start-page: 699
  year: 2003
  end-page: 702
  ident: bib8
  article-title: Scaling analysis of phase-change memory technology
  publication-title: Proc. IEDM Tech. Dig
– volume: 91
  start-page: 111904
  year: 2007
  ident: bib25
  article-title: Thickness and stoichiometry dependence of the thermal conductivity of GeSbTe films
  publication-title: Appl. Phys. Lett.
– volume: 48
  start-page: 1718
  year: 2009
  end-page: 1727
  ident: bib14
  article-title: Analysis of transient heat transfer in multilayer thin films with nonlinear thermal boundary resistance
  publication-title: Int. J. Therm. Sci.
– start-page: 122
  year: 2006
  end-page: 123
  ident: bib37
  article-title: A 90 nm phase change memory technology for stand-alone non-volatile memory applications
  publication-title: Proc. Symp. VLSI Technol
– start-page: 106
  year: 2006
  end-page: 113
  ident: bib24
  article-title: Multiphysics modeling and impact of thermal boundary resistance in phase change memory
  publication-title: Proc. ITHERM
– start-page: 777
  year: 2006
  end-page: 780
  ident: bib35
  article-title: Ultra-thin phase-change bridge memory device using GeSb
  publication-title: Proc. IEEE IEDM Tech. Dig
– start-page: 18
  year: 2004
  end-page: 19
  ident: bib36
  article-title: Novel μTrench phase-change memory cell for embedded and stand-alone non-volatile memory applications
  publication-title: Proc. Symp. VLSI Technol
– volume: 56
  start-page: 1523
  year: 2009
  end-page: 1528
  ident: bib23
  article-title: Compact thermal model for vertical nanowire phase-change memory cells
  publication-title: IEEE Trans. Electron Devices
– volume: 94
  start-page: 3536
  year: 2003
  end-page: 3542
  ident: bib7
  article-title: One-dimensional heat conduction model for an electrical phase change random access memory device with an 8F
  publication-title: J. Appl. Phys.
– start-page: 1
  year: 2008
  end-page: 4
  ident: bib12
  article-title: Analytical model for reset operation of phase change memory
  publication-title: Proc. IEDM Tech. Dig
– volume: 165
  start-page: 497
  year: 1853
  end-page: 531
  ident: bib43
  article-title: Über die wärme-leitungsfähigkeit der metalle
  publication-title: Ann. Phys.
– start-page: 911
  year: 2004
  end-page: 914
  ident: bib9
  article-title: Electrothermal and phase-change dynamics in chalcogenide-based memories
  publication-title: Proc. IEDM Tech. Dig
– start-page: 120
  year: 2006
  end-page: 121
  ident: bib38
  article-title: Novel one-mask self-heating pillar phase change memory
  publication-title: Proc. Symp. VLSI Technol
– volume: 3
  start-page: 703
  year: 2004
  end-page: 708
  ident: bib3
  article-title: Understanding the phase-change mechanism of rewritable optical media
  publication-title: Nat. Mater.
– volume: 69
  start-page: 2849
  year: 1991
  end-page: 2856
  ident: bib42
  article-title: Rapid-phase transitions of GeTe-Sb
  publication-title: J. Appl. Phys.
– year: 2009
  ident: bib41
  article-title: Element Reference
– volume: 101
  start-page: 064512
  year: 2007
  ident: bib10
  article-title: Three-dimensional simulation model of switching dynamics in phase change random access memory cells
  publication-title: J. Appl. Phys.
– volume: 109
  start-page: 084902
  year: 2011
  ident: bib19
  article-title: Thermal conductivity anisotropy and grain structure in Ge
  publication-title: J. Appl. Phys.
– volume: 54
  start-page: 1698
  year: 2009
  end-page: 1701
  ident: bib17
  article-title: Thermal and electrical characterization of materials for phase-change memory cells
  publication-title: J. Chem. Eng. Data
– volume: 58
  start-page: 1464
  year: 1987
  end-page: 1470
  ident: bib33
  article-title: Wide-frequency specific heat Spectrometer
  publication-title: Rev. Sci. Instrum.
– volume: 97
  start-page: 093509
  year: 2005
  ident: bib44
  article-title: Investigation of the optical and electronic properties of Ge
  publication-title: J. Appl. Phys.
– volume: 39
  start-page: 2347
  year: 2000
  end-page: 2352
  ident: bib31
  article-title: Measurement of the thermal conductivity of erasable phase-change optical recording media
  publication-title: Appl. Opt.
– start-page: 319
  year: 2007
  end-page: 322
  ident: bib39
  article-title: A novel cross-spacer phase change memory with ultra-small lithography independent contact area
  publication-title: Proc. IEEE IEDM Tech. Dig
– volume: 94
  start-page: 101906
  year: 2009
  ident: bib18
  article-title: Thermal conductivities and phase transition temperatures of various phase-change materials measured by the 3ω method
  publication-title: Appl. Phys. Lett.
– volume: 109
  start-page: 084902
  year: 2013
  ident: bib29
  article-title: Phonon and electron transport through Ge
  publication-title: J. Appl. Phys.
– volume: 3
  start-page: 609
  year: 2001
  end-page: 626
  ident: bib32
  article-title: Phase-change optical memory promotes the DVD optical disk
  publication-title: J. Optoelectron. Adv. Mater.
– volume: 31
  start-page: 56
  year: 2010
  end-page: 58
  ident: bib22
  article-title: Thermal boundary resistance measurements for phase-change memory devices
  publication-title: IEEE Electron Device Lett.
– volume: 95
  start-page: 504
  year: 2004
  end-page: 511
  ident: bib6
  article-title: Models for phase-change of Ge
  publication-title: J. Appl. Phys.
– volume: 96
  start-page: 5557
  year: 2004
  end-page: 5562
  ident: bib2
  article-title: Influence of Bi doping upon the phase change characteristics of Ge
  publication-title: J. Appl. Phys.
– start-page: 100
  year: 2007
  end-page: 101
  ident: bib40
  article-title: Novel lithography-independent Pore phase change memory
  publication-title: Proc. Symp. VLSI Technol
– volume: 82
  start-page: 4183
  year: 1997
  end-page: 4191
  ident: bib27
  article-title: Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media
  publication-title: J. Appl. Phys.
– start-page: 323
  year: 2007
  end-page: 326
  ident: bib21
  article-title: The role of interfaces in damascene phase-change memory
  publication-title: Proc. IEEE IEDM Tech. Dig
– volume: 520
  start-page: 3692
  year: 2012
  end-page: 3696
  ident: bib30
  article-title: Characterizations and thermal stability improvement of phase-change memory device containing Ce-doped GeSbTe films
  publication-title: Thin Solid Films
– volume: 21
  start-page: 1450
  year: 1968
  end-page: 1453
  ident: bib5
  article-title: Reversible electrical switching phenomena in disordered structures
  publication-title: Phys. Rev. Lett.
– volume: 61
  start-page: 802
  year: 1990
  end-page: 808
  ident: bib26
  article-title: Thermal conductivity measurement from 30 to 750 K: the 3ω method
  publication-title: Rev. Sci. Instrum.
– volume: 71
  start-page: 32
  year: 2013
  end-page: 35
  ident: bib45
  article-title: Grain boundary Kapitza resistance analysis of nanostructured FeSb
  publication-title: Int. J. Therm. Sci.
– volume: 29
  start-page: 1112
  year: 2008
  end-page: 1114
  ident: bib16
  article-title: The impact of thermal boundary resistance in phase-change memory devices
  publication-title: IEEE Electron Device Lett.
– volume: 54
  start-page: 151904
  year: 2006
  ident: bib28
  article-title: Thermal conductivity of phase-change material Ge
  publication-title: Appl. Phys. Lett.
– volume: 96
  start-page: 055507
  year: 2006
  ident: bib4
  article-title: Structure of phase change materials for data storage
  publication-title: Phys. Rev. Lett.
– start-page: 175
  year: 2003
  end-page: 176
  ident: bib34
  article-title: An edge contact type cell for phase change RAM featuring very low power consumption
  publication-title: Proc. Symp. VLSI Technol
– start-page: 699
  year: 2003
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib8
  article-title: Scaling analysis of phase-change memory technology
– volume: 165
  start-page: 497
  year: 1853
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib43
  article-title: Über die wärme-leitungsfähigkeit der metalle
  publication-title: Ann. Phys.
  doi: 10.1002/andp.18531650802
– volume: 55
  start-page: 506
  year: 2008
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib11
  article-title: Modeling of programming and read performance in phase-change memories—part I: cell optimization and scaling
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2007.911630
– start-page: 100
  year: 2007
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib40
  article-title: Novel lithography-independent Pore phase change memory
– start-page: 777
  year: 2006
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib35
  article-title: Ultra-thin phase-change bridge memory device using GeSb
– volume: 54
  start-page: 151904
  year: 2006
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib28
  article-title: Thermal conductivity of phase-change material Ge2Sb2Te5
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2359354
– volume: 96
  start-page: 055507
  year: 2006
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib4
  article-title: Structure of phase change materials for data storage
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.055507
– volume: 94
  start-page: 3536
  year: 2003
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib7
  article-title: One-dimensional heat conduction model for an electrical phase change random access memory device with an 8F2 memory cell (F = 0.15 μm)
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1598272
– start-page: 175
  year: 2003
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib34
  article-title: An edge contact type cell for phase change RAM featuring very low power consumption
– start-page: 18
  year: 2004
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib36
  article-title: Novel μTrench phase-change memory cell for embedded and stand-alone non-volatile memory applications
– volume: 21
  start-page: 1450
  year: 1968
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib5
  article-title: Reversible electrical switching phenomena in disordered structures
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.21.1450
– volume: 91
  start-page: 111904
  year: 2007
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib25
  article-title: Thickness and stoichiometry dependence of the thermal conductivity of GeSbTe films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2784169
– volume: 109
  start-page: 084902
  year: 2013
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib29
  article-title: Phonon and electron transport through Ge2Sb2Te5 films and interfaces bounded by metals
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3573505
– volume: 3
  start-page: 703
  year: 2004
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib3
  article-title: Understanding the phase-change mechanism of rewritable optical media
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1215
– start-page: 106
  year: 2006
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib24
  article-title: Multiphysics modeling and impact of thermal boundary resistance in phase change memory
– volume: 82
  start-page: 4183
  year: 1997
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib27
  article-title: Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.366220
– volume: 97
  start-page: 093509
  year: 2005
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib44
  article-title: Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1884248
– volume: 94
  start-page: 101906
  year: 2009
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib18
  article-title: Thermal conductivities and phase transition temperatures of various phase-change materials measured by the 3ω method
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3097353
– start-page: 323
  year: 2007
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib21
  article-title: The role of interfaces in damascene phase-change memory
– volume: 48
  start-page: 064505
  year: 2009
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib13
  article-title: Simulation of phase change random access memory for low reset current and high thermal efficiency by finite element modeling
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.48.064505
– start-page: 122
  year: 2006
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib37
  article-title: A 90 nm phase change memory technology for stand-alone non-volatile memory applications
– start-page: 120
  year: 2006
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib38
  article-title: Novel one-mask self-heating pillar phase change memory
– volume: 3
  start-page: 609
  year: 2001
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib32
  article-title: Phase-change optical memory promotes the DVD optical disk
  publication-title: J. Optoelectron. Adv. Mater.
– volume: 520
  start-page: 3692
  year: 2012
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib30
  article-title: Characterizations and thermal stability improvement of phase-change memory device containing Ce-doped GeSbTe films
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2011.12.014
– volume: 39
  start-page: 2347
  year: 2000
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib31
  article-title: Measurement of the thermal conductivity of erasable phase-change optical recording media
  publication-title: Appl. Opt.
  doi: 10.1364/AO.39.002347
– volume: 54
  start-page: 1698
  year: 2009
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib17
  article-title: Thermal and electrical characterization of materials for phase-change memory cells
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je800770s
– volume: 56
  start-page: 1523
  year: 2009
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib23
  article-title: Compact thermal model for vertical nanowire phase-change memory cells
  publication-title: IEEE Trans. Electron Devices
– volume: 111
  start-page: 123706
  year: 2012
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib46
  article-title: A study of phase transition behaviors of chalcogenide layers using in situ alternative-current impedance spectroscopy
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4729528
– volume: 101
  start-page: 064512
  year: 2007
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib10
  article-title: Three-dimensional simulation model of switching dynamics in phase change random access memory cells
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2710440
– volume: 31
  start-page: 56
  year: 2010
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib22
  article-title: Thermal boundary resistance measurements for phase-change memory devices
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2009.2035139
– year: 2009
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib41
– volume: 61
  start-page: 802
  year: 1990
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib26
  article-title: Thermal conductivity measurement from 30 to 750 K: the 3ω method
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1141498
– volume: 76
  start-page: 3864
  year: 2000
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib20
  article-title: Thermal boundary resistance at Ge2Sb2Te5/ZnS: SiO2 interface
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.126852
– volume: 29
  start-page: 1112
  year: 2008
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib16
  article-title: The impact of thermal boundary resistance in phase-change memory devices
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2008.2003012
– volume: 58
  start-page: 1464
  year: 1987
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib33
  article-title: Wide-frequency specific heat Spectrometer
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1139434
– start-page: 911
  year: 2004
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib9
  article-title: Electrothermal and phase-change dynamics in chalcogenide-based memories
– volume: 51
  start-page: 1
  year: 2012
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib15
  article-title: Heat transfer in two-layered systems excited by a pulsed laser
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2011.08.020
– start-page: 803
  year: 2001
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib1
  article-title: OUM – a 180 nm Nonvolatile memory cell element technology for stand alone and embedded applications
– volume: 95
  start-page: 504
  year: 2004
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib6
  article-title: Models for phase-change of Ge2Sb2Te5 in optical and electrical memory devices
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1633984
– volume: 71
  start-page: 32
  year: 2013
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib45
  article-title: Grain boundary Kapitza resistance analysis of nanostructured FeSb2
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2013.03.009
– start-page: 319
  year: 2007
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib39
  article-title: A novel cross-spacer phase change memory with ultra-small lithography independent contact area
– volume: 96
  start-page: 5557
  year: 2004
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib2
  article-title: Influence of Bi doping upon the phase change characteristics of Ge2Sb2Te5
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1803612
– volume: 48
  start-page: 1718
  year: 2009
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib14
  article-title: Analysis of transient heat transfer in multilayer thin films with nonlinear thermal boundary resistance
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2009.01.014
– start-page: 1
  year: 2008
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib12
  article-title: Analytical model for reset operation of phase change memory
– volume: 109
  start-page: 084902
  year: 2011
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib19
  article-title: Thermal conductivity anisotropy and grain structure in Ge2Sb2Te5 films
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3573505
– volume: 69
  start-page: 2849
  year: 1991
  ident: 10.1016/j.ijthermalsci.2014.08.004_bib42
  article-title: Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.348620
SSID ssj0007909
Score 2.1616592
Snippet Thermal conductivity of Ge2Sb2Te5 (GST) and Ce-doped GST (Ce-GST) chalcogenide thin films and thermal boundary resistances (TBR) at the interface of...
Thermal conductivity of Ge sub(2)Sb sub(2)Te sub(5) (GST) and Ce-doped GST (Ce-GST) chalcogenide thin films and thermal boundary resistances (TBR) at the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 207
SubjectTerms 3-Omega method
Chalcogenides
Devices
Doping
Finite-element simulation
Phase-change memory (PCM)
Programming
Reduction
Thermal conductivity
Thin films
Titanium nitride
Title Effective thermal parameters of chalcogenide thin films and simulation of phase-change memory
URI https://dx.doi.org/10.1016/j.ijthermalsci.2014.08.004
https://www.proquest.com/docview/1651371433
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1778-4166
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007909
  issn: 1290-0729
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1778-4166
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007909
  issn: 1290-0729
  databaseCode: ACRLP
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1778-4166
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007909
  issn: 1290-0729
  databaseCode: .~1
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1778-4166
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007909
  issn: 1290-0729
  databaseCode: AIKHN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1778-4166
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007909
  issn: 1290-0729
  databaseCode: AKRWK
  dateStart: 19990101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIpnZSTW0Cax8xgYqoqqgOgClbogy3YSNVWTVqQdWPjt3CUOFMRQiTHRWY7O53s4n78j5NpVkgVShVYCrs5ivowsybBYCYKQ-w5SpOHd4aehNxixhzEfN0ivvguDsErj-yufXnpr86ZttNlepGn7GU9QkPcaSgQIRCFygiL7F9j0zcc3zMMPS5gHClsoXROPlhivdIpZVgYLrVOEebGSztM0bfsjSP1y12UM6u-RXZM80m71ffukEecHZGeNUvCQvFZ0xODDqJmUIrt3hqiXgs4TqidypudgNmmEImlOk3SWFVTmES3SzHTzQsnFBCKcVd0Mphkict-PyKh_99IbWKaFgqXdkC3xgA8S0sDzIUtSMdRSse3GtnYiziOf29KJHaW5nTAZMN6JGBQvDDaiSkBtNqZax6SZz_P4hFCoLaRiWikkdJeI50x44rmOHSkXdKxPSVjrTGjDL45tLmaiBpJNxbq-BepbYA_MDjsl7tfYRcWysdGo23ppxA-bERAONhp_Va-ngE2Ff0pkHs9XhbA9biOVoeue_XOOc7INT7w6tLkgzeXbKr6ENGapWqWdtshW9_5xMPwEfpHzwg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BGYAB8RRvjMQalSR2kwwMqKIqry60Uhdk2U4igpq0omXg33OXOFVBDJVYE1uOzvZ3d87n7wCufK14qHTkpAh1Dg9U7ChOyUoYRiLwSCKN7g4_91rdAX8YiuEKtOu7MESrtNhfYXqJ1vZJ01qzOcmy5gudoJDuNaYI6IgivgprXCAmN2Dt9v6x25sDchCVTA9q71CHWnu0pHll7xRo5TjXJiOmFy8VPW3dtj_81C_ELt1QZxu2bPzIbqtP3IGVpNiFzQVVwT14rRSJEcaYHZSRwHdOxJcpG6fMvKmRGePKyWJqkhUszUb5lKkiZtMstwW9qOXkDZ2cU10OZjmRcr_2YdC567e7jq2i4Bg_4jM648OYNGwFGCjpBNOpxPUT13ixEHEgXOUlnjbCTbkKubiOOeYvHPeiTtFsLkVbB9AoxkVyCAzTC6W50Zo03RVROlORtnzPjbWPNjZHENU2k8ZKjFOli5GsuWTvctHekuwtqQzmNT8Cf953UgltLNXrpp4a-WPZSPQIS_W_rOdT4r6inyWqSMafU-m2hEtqhr5__M8xLmC9239-kk_3vccT2MA3ojrDOYXG7OMzOcOoZqbP7ar9BsMX9m0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+thermal+parameters+of+chalcogenide+thin+films+and+simulation+of+phase-change+memory&rft.jtitle=International+journal+of+thermal+sciences&rft.au=Huang%2C+Yin-Hsien&rft.au=Hsieh%2C+Tsung-Eong&rft.date=2015-01-01&rft.issn=1290-0729&rft.volume=87&rft.spage=207&rft.epage=214&rft_id=info:doi/10.1016%2Fj.ijthermalsci.2014.08.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijthermalsci_2014_08_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1290-0729&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1290-0729&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1290-0729&client=summon