Effective thermal parameters of chalcogenide thin films and simulation of phase-change memory
Thermal conductivity of Ge2Sb2Te5 (GST) and Ce-doped GST (Ce-GST) chalcogenide thin films and thermal boundary resistances (TBR) at the interface of chalcogenides and thin films such as ZnS:SiO2 and TiN were measured by the 3-omega (3ω) method in conjunction with the plywood-structure samples. The m...
Saved in:
Published in | International journal of thermal sciences Vol. 87; pp. 207 - 214 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Masson SAS
01.01.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1290-0729 1778-4166 |
DOI | 10.1016/j.ijthermalsci.2014.08.004 |
Cover
Abstract | Thermal conductivity of Ge2Sb2Te5 (GST) and Ce-doped GST (Ce-GST) chalcogenide thin films and thermal boundary resistances (TBR) at the interface of chalcogenides and thin films such as ZnS:SiO2 and TiN were measured by the 3-omega (3ω) method in conjunction with the plywood-structure samples. The measured results were then implanted in the finite-element simulation for analyzing the thermal conduction behaviors of phase-change memory (PCM) devices. The analysis utilizing a three-dimensional fully coupled electric and thermal model indicated that the TBR at the interface of chalcogenide and TiN contact layer is the key physical property affecting the temperature profile and heating efficiency of PCM cells subject to a pulse heating operation. It was found the TBR significantly alters the temperature uniformity and suppresses the programming current. For instance, the presence of TBRGST/TiN of 7.01 × 10−8 m2 K/W led to a 30% reduction of programming power of PCM cell while the TBRCe-GST/TiN of 8.82 × 10−8 m2 K/W led to a 27% power reduction in comparison with the case without considering the TBR property. As to the doping effect, higher resistivity of Ce-GST layer led to the decrease of programming current (up to 39% reduction in Ireset) and the low thermal conductivity feature of Ce-GST provided a better thermal confinement effect in PCM cells. The simulation results illustrated that the TBR property must be taken into consideration in optimizing the PCM device structure and this limitation could be remedied by the doping in chalcogenide programming layer.
•Thermal properties of thin films in PCM devices were measured by 3ω method.•PCM's thermal-electrical behaviors were analyzed by 3-D finite-element simulation.•Thermal boundary resistance at GST/TiN interface reduced heating efficiency of PCM.•Thermal boundary resistance reduced programming electrical power of PCM.•Doping in programming layer alleviated influence of thermal boundary resistance. |
---|---|
AbstractList | Thermal conductivity of Ge sub(2)Sb sub(2)Te sub(5) (GST) and Ce-doped GST (Ce-GST) chalcogenide thin films and thermal boundary resistances (TBR) at the interface of chalcogenides and thin films such as ZnS:SiO sub(2) and TiN were measured by the 3-omega (3 omega ) method in conjunction with the plywood-structure samples. The measured results were then implanted in the finite-element simulation for analyzing the thermal conduction behaviors of phase-change memory (PCM) devices. The analysis utilizing a three-dimensional fully coupled electric and thermal model indicated that the TBR at the interface of chalcogenide and TiN contact layer is the key physical property affecting the temperature profile and heating efficiency of PCM cells subject to a pulse heating operation. It was found the TBR significantly alters the temperature uniformity and suppresses the programming current. For instance, the presence of TBR sub(GST/TiN) of 7.01 10 super(-8) m super(2) K/W led to a 30% reduction of programming power of PCM cell while the TBR sub(Ce-GST/TiN) of 8.82 10 super(-8) m super(2) K/W led to a 27% power reduction in comparison with the case without considering the TBR property. As to the doping effect, higher resistivity of Ce-GST layer led to the decrease of programming current (up to 39% reduction in I sub(reset)) and the low thermal conductivity feature of Ce-GST provided a better thermal confinement effect in PCM cells. The simulation results illustrated that the TBR property must be taken into consideration in optimizing the PCM device structure and this limitation could be remedied by the doping in chalcogenide programming layer. Thermal conductivity of Ge2Sb2Te5 (GST) and Ce-doped GST (Ce-GST) chalcogenide thin films and thermal boundary resistances (TBR) at the interface of chalcogenides and thin films such as ZnS:SiO2 and TiN were measured by the 3-omega (3ω) method in conjunction with the plywood-structure samples. The measured results were then implanted in the finite-element simulation for analyzing the thermal conduction behaviors of phase-change memory (PCM) devices. The analysis utilizing a three-dimensional fully coupled electric and thermal model indicated that the TBR at the interface of chalcogenide and TiN contact layer is the key physical property affecting the temperature profile and heating efficiency of PCM cells subject to a pulse heating operation. It was found the TBR significantly alters the temperature uniformity and suppresses the programming current. For instance, the presence of TBRGST/TiN of 7.01 × 10−8 m2 K/W led to a 30% reduction of programming power of PCM cell while the TBRCe-GST/TiN of 8.82 × 10−8 m2 K/W led to a 27% power reduction in comparison with the case without considering the TBR property. As to the doping effect, higher resistivity of Ce-GST layer led to the decrease of programming current (up to 39% reduction in Ireset) and the low thermal conductivity feature of Ce-GST provided a better thermal confinement effect in PCM cells. The simulation results illustrated that the TBR property must be taken into consideration in optimizing the PCM device structure and this limitation could be remedied by the doping in chalcogenide programming layer. •Thermal properties of thin films in PCM devices were measured by 3ω method.•PCM's thermal-electrical behaviors were analyzed by 3-D finite-element simulation.•Thermal boundary resistance at GST/TiN interface reduced heating efficiency of PCM.•Thermal boundary resistance reduced programming electrical power of PCM.•Doping in programming layer alleviated influence of thermal boundary resistance. |
Author | Huang, Yin-Hsien Hsieh, Tsung-Eong |
Author_xml | – sequence: 1 givenname: Yin-Hsien surname: Huang fullname: Huang, Yin-Hsien – sequence: 2 givenname: Tsung-Eong surname: Hsieh fullname: Hsieh, Tsung-Eong email: tehsieh@mail.nctu.edu.tw |
BookMark | eNqNkbtOwzAUQC0EEuXxDxETS8K9ifNiAvGWKrHAiCzHuWkdJXaxU6T-PS7tgJiY7OHcI9_jE3ZorCHGLhASBCyu-kT305LcKAevdJIC8gSqBIAfsBmWZRVzLIrDcE9riKFM62N24n0PAGUN9Yx9PHQdqUl_UbT3RCvp5EgTOR_ZLlJLOSi7IKPbLaJN1Olh9JE0beT1uB7kpK3Zkqul9BQH3iwoGmm0bnPGjrrwMjrfn6fs_fHh7e45nr8-vdzdzmOV1XyKK-QVtlVRFggNcUDCjFClbZ63ZY4ypbRROXZcVjyHlpd5xhuApgs7YMrT7JRd7rwrZz_X5Ccxaq9oGKQhu_YCixyzEnmWBfRmhypnvXfUCaWnnx0mJ_UgEMS2rOjF77JiW1ZAJULZoLj-o1g5PUq3-d_w_W6YQo8vTU4EgoyiVrvwEaK1-j-ab2Etnyw |
CitedBy_id | crossref_primary_10_1088_1361_6463_ac1ec3 crossref_primary_10_1007_s10854_015_3204_z crossref_primary_10_1016_j_mssp_2021_106350 crossref_primary_10_3390_technologies11060166 crossref_primary_10_1088_1361_6463_ad5605 crossref_primary_10_1016_j_ijleo_2018_06_095 crossref_primary_10_1016_j_rinp_2019_102276 crossref_primary_10_1088_1361_6463_aa749b crossref_primary_10_3389_fnins_2021_635264 crossref_primary_10_1063_1_5028318 crossref_primary_10_1016_j_renene_2019_03_088 crossref_primary_10_1016_j_sysarc_2023_103008 |
Cites_doi | 10.1002/andp.18531650802 10.1109/TED.2007.911630 10.1063/1.2359354 10.1103/PhysRevLett.96.055507 10.1063/1.1598272 10.1103/PhysRevLett.21.1450 10.1063/1.2784169 10.1063/1.3573505 10.1038/nmat1215 10.1063/1.366220 10.1063/1.1884248 10.1063/1.3097353 10.1143/JJAP.48.064505 10.1016/j.tsf.2011.12.014 10.1364/AO.39.002347 10.1021/je800770s 10.1063/1.4729528 10.1063/1.2710440 10.1109/LED.2009.2035139 10.1063/1.1141498 10.1063/1.126852 10.1109/LED.2008.2003012 10.1063/1.1139434 10.1016/j.ijthermalsci.2011.08.020 10.1063/1.1633984 10.1016/j.ijthermalsci.2013.03.009 10.1063/1.1803612 10.1016/j.ijthermalsci.2009.01.014 10.1063/1.348620 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Masson SAS |
Copyright_xml | – notice: 2014 Elsevier Masson SAS |
DBID | AAYXX CITATION 7TB 7U5 8FD FR3 H8D KR7 L7M |
DOI | 10.1016/j.ijthermalsci.2014.08.004 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1778-4166 |
EndPage | 214 |
ExternalDocumentID | 10_1016_j_ijthermalsci_2014_08_004 S1290072914002294 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SSG SST SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7TB 7U5 8FD FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c394t-81481d867610be401e13e1c2d55d751a2e2bc51f4a8450d47534b00bf79012423 |
IEDL.DBID | .~1 |
ISSN | 1290-0729 |
IngestDate | Sun Sep 28 09:38:34 EDT 2025 Wed Oct 01 03:27:28 EDT 2025 Thu Apr 24 23:04:24 EDT 2025 Fri Feb 23 02:28:17 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Chalcogenides 3-Omega method Thermal conductivity Finite-element simulation Phase-change memory (PCM) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-81481d867610be401e13e1c2d55d751a2e2bc51f4a8450d47534b00bf79012423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1651371433 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1651371433 crossref_citationtrail_10_1016_j_ijthermalsci_2014_08_004 crossref_primary_10_1016_j_ijthermalsci_2014_08_004 elsevier_sciencedirect_doi_10_1016_j_ijthermalsci_2014_08_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2015 2015-01-00 20150101 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: January 2015 |
PublicationDecade | 2010 |
PublicationTitle | International journal of thermal sciences |
PublicationYear | 2015 |
Publisher | Elsevier Masson SAS |
Publisher_xml | – name: Elsevier Masson SAS |
References | ANSYS Inc (bib41) 2009 Pellizzer, Pirovano, Ottogalli, Magistretti, Scaravaggi, Zuliani, Tosi, Benvenuti, Besana, Cadeo, Marangon, Morandi, Piva, Spandre, Zonca, Modelli, Varesi, Lowrey, Lacaita, Casagrande, Cappelletti, Bez (bib36) 2004 Chen, Lee, Chao, Chen, Chen, Chen, Yen, Chen, Wang, Hsiao, Yeh, Chiou, Liu, Wang, Chein, Huang, Shih, Tu, Huang, Yu, Kao, Tsai (bib39) 2007 Lyeo, Lyeo, Cahill, Lee, Abelson (bib28) 2006; 54 Franz, Wiedemann (bib43) 1853; 165 Peng, Cheng, Mansuripur (bib27) 1997; 82 Birge, Nagel (bib33) 1987; 58 Sun, Zhou, Ahuja (bib4) 2006; 96 Wang, Wamwangi, Ziegler, Steimer, Wuttig (bib2) 2004; 96 Lee, Li, Reifenberg, Asheghi, Goodson (bib19) 2011; 109 Rajendran, Karidis, Lee, Breitwisch, Burr, Shih, Cheek, Schrott, Lung, Lam (bib12) 2008 Lai, Lowrey (bib1) 2001 Lee, Grayeli, Kim, Asheghi, Philip Wong, Goodson (bib29) 2013; 109 Senkader, Wright (bib6) 2004; 95 Happ, Breitwisch, Schrott, Philipp, Lee, Cheek, Nirschl, Lamorey, Ho, Chen, Chen, Joseph, Zaidi, Burr, Yee, Chen, Raoux, Lung, Bergmann, Lam (bib38) 2006 Chen, Pop (bib23) 2009; 56 Kencke, Karpov, Johnson, Lee, Kau, Hudgens, Reifenberg, Savransky, Zhang, Giles, Spadini (bib21) 2007 Russo, Redaelli, Lacaita (bib11) 2008; 55 Lacaita, Redaelli, Ielmini, Pellizzer, Pirovano, Benvenuti, Bez (bib9) 2004 Fallica, Battaglia, Cocco, Monguzzi, Teren, Wiemer, Varesi, Cecchini, Gotti, Fanciulli (bib17) 2009; 54 Huang, Huang, Hsieh (bib46) 2012; 111 Kolobov, Fons, Frenkel, Ankudinov, Tominaga, Uruga (bib3) 2004; 3 Gong, Ling, Song, Feng (bib13) 2009; 48 Ramadan, Al-Nimr (bib14) 2009; 48 Ohta (bib32) 2001; 3 Chen, Rettner, Raoux, Burr, Chen, Shelby, Salinga, Risk, Happ, McClelland, Breitwisch, Schrott, Philipp, Lee, Cheek, Nirschl, Lamorey, Chen, Joseph, Zaidi, Yee, Lung, Bergmann, Lam (bib35) 2006 Reifenberg, Kencke, Goodson (bib16) 2008; 29 Reifenberg, Pop, Gibby, Wong, Goodson (bib24) 2006 Breitwisch, Nirsch, Chen, Zhu, Lee, Lamorey, Burr, Joseph, Schrott, Philipp, Cheek, Happ, Chen, Zaidr, Flaitz, Bruley, Dasaka, Rajendran, Rossnage, Yang, Chen, Bergmann, Lung, Lam (bib40) 2007 Lee, Abelson, Bishop, Kang, Cheong, Kim (bib44) 2005; 97 Reifenberg, Panzer, Kim, Gibby, Zhang, Wong, Philip Wong, Pop, Goodson (bib25) 2007; 91 Ha, Yi, Horii, Park, Joo, Park, Chung, Moon (bib34) 2003 Ovshinsky (bib5) 1968; 21 Cahill (bib26) 1990; 61 Peng, Mansuripur (bib31) 2000; 39 Yamada, Ohno, Nishiuchi, Akahira, Takao (bib42) 1991; 69 Pokharel, Zhao, Ren, Opeil (bib45) 2013; 71 Huang, Tsai, Wang, Hsieh (bib30) 2012; 520 Cruz, Gurevich (bib15) 2012; 51 Risk, Rettner, Raoux (bib18) 2009; 94 Kim, Merget, Forst, Kurz (bib10) 2007; 101 Pirovano, Lacaita, Benvenuti, Pellizzer, Hudgens, Bez (bib8) 2003 Kang, Ahn, Kim, Webb, Yi (bib7) 2003; 94 Reifenberg, Chang, Panzer, Kim, Rowlette, Asheghi, Philip Wong, Goodson (bib22) 2010; 31 Kim, Kwun, Lee, Seo, Yoon (bib20) 2000; 76 Pellizzer, Benvenuti, Gleixner, Kim, Johnson, Magistretti, Marangon, Pirovano, Bez, Atwood (bib37) 2006 Pirovano (10.1016/j.ijthermalsci.2014.08.004_bib8) 2003 Ohta (10.1016/j.ijthermalsci.2014.08.004_bib32) 2001; 3 ANSYS Inc (10.1016/j.ijthermalsci.2014.08.004_bib41) 2009 Chen (10.1016/j.ijthermalsci.2014.08.004_bib35) 2006 Pellizzer (10.1016/j.ijthermalsci.2014.08.004_bib37) 2006 Rajendran (10.1016/j.ijthermalsci.2014.08.004_bib12) 2008 Lai (10.1016/j.ijthermalsci.2014.08.004_bib1) 2001 Senkader (10.1016/j.ijthermalsci.2014.08.004_bib6) 2004; 95 Sun (10.1016/j.ijthermalsci.2014.08.004_bib4) 2006; 96 Pokharel (10.1016/j.ijthermalsci.2014.08.004_bib45) 2013; 71 Franz (10.1016/j.ijthermalsci.2014.08.004_bib43) 1853; 165 Ha (10.1016/j.ijthermalsci.2014.08.004_bib34) 2003 Russo (10.1016/j.ijthermalsci.2014.08.004_bib11) 2008; 55 Kim (10.1016/j.ijthermalsci.2014.08.004_bib20) 2000; 76 Reifenberg (10.1016/j.ijthermalsci.2014.08.004_bib22) 2010; 31 Lyeo (10.1016/j.ijthermalsci.2014.08.004_bib28) 2006; 54 Chen (10.1016/j.ijthermalsci.2014.08.004_bib39) 2007 Breitwisch (10.1016/j.ijthermalsci.2014.08.004_bib40) 2007 Happ (10.1016/j.ijthermalsci.2014.08.004_bib38) 2006 Huang (10.1016/j.ijthermalsci.2014.08.004_bib46) 2012; 111 Gong (10.1016/j.ijthermalsci.2014.08.004_bib13) 2009; 48 Lee (10.1016/j.ijthermalsci.2014.08.004_bib19) 2011; 109 Peng (10.1016/j.ijthermalsci.2014.08.004_bib27) 1997; 82 Kim (10.1016/j.ijthermalsci.2014.08.004_bib10) 2007; 101 Ovshinsky (10.1016/j.ijthermalsci.2014.08.004_bib5) 1968; 21 Kang (10.1016/j.ijthermalsci.2014.08.004_bib7) 2003; 94 Cruz (10.1016/j.ijthermalsci.2014.08.004_bib15) 2012; 51 Fallica (10.1016/j.ijthermalsci.2014.08.004_bib17) 2009; 54 Huang (10.1016/j.ijthermalsci.2014.08.004_bib30) 2012; 520 Kolobov (10.1016/j.ijthermalsci.2014.08.004_bib3) 2004; 3 Risk (10.1016/j.ijthermalsci.2014.08.004_bib18) 2009; 94 Wang (10.1016/j.ijthermalsci.2014.08.004_bib2) 2004; 96 Reifenberg (10.1016/j.ijthermalsci.2014.08.004_bib25) 2007; 91 Birge (10.1016/j.ijthermalsci.2014.08.004_bib33) 1987; 58 Reifenberg (10.1016/j.ijthermalsci.2014.08.004_bib24) 2006 Ramadan (10.1016/j.ijthermalsci.2014.08.004_bib14) 2009; 48 Chen (10.1016/j.ijthermalsci.2014.08.004_bib23) 2009; 56 Yamada (10.1016/j.ijthermalsci.2014.08.004_bib42) 1991; 69 Lee (10.1016/j.ijthermalsci.2014.08.004_bib29) 2013; 109 Pellizzer (10.1016/j.ijthermalsci.2014.08.004_bib36) 2004 Reifenberg (10.1016/j.ijthermalsci.2014.08.004_bib16) 2008; 29 Kencke (10.1016/j.ijthermalsci.2014.08.004_bib21) 2007 Cahill (10.1016/j.ijthermalsci.2014.08.004_bib26) 1990; 61 Peng (10.1016/j.ijthermalsci.2014.08.004_bib31) 2000; 39 Lacaita (10.1016/j.ijthermalsci.2014.08.004_bib9) 2004 Lee (10.1016/j.ijthermalsci.2014.08.004_bib44) 2005; 97 |
References_xml | – start-page: 803 year: 2001 end-page: 806 ident: bib1 article-title: OUM – a 180 nm Nonvolatile memory cell element technology for stand alone and embedded applications publication-title: Proc. IEDM Tech. Dig – volume: 48 start-page: 064505 year: 2009 ident: bib13 article-title: Simulation of phase change random access memory for low reset current and high thermal efficiency by finite element modeling publication-title: Jpn. J. Appl. Phys. – volume: 111 start-page: 123706 year: 2012 ident: bib46 article-title: A study of phase transition behaviors of chalcogenide layers using in situ alternative-current impedance spectroscopy publication-title: J. Appl. Phys. – volume: 76 start-page: 3864 year: 2000 end-page: 3866 ident: bib20 article-title: Thermal boundary resistance at Ge publication-title: Appl. Phys. Lett. – volume: 51 start-page: 1 year: 2012 end-page: 6 ident: bib15 article-title: Heat transfer in two-layered systems excited by a pulsed laser publication-title: Int. J. Therm. Sci. – volume: 55 start-page: 506 year: 2008 end-page: 514 ident: bib11 article-title: Modeling of programming and read performance in phase-change memories—part I: cell optimization and scaling publication-title: IEEE Trans. Electron Devices – start-page: 699 year: 2003 end-page: 702 ident: bib8 article-title: Scaling analysis of phase-change memory technology publication-title: Proc. IEDM Tech. Dig – volume: 91 start-page: 111904 year: 2007 ident: bib25 article-title: Thickness and stoichiometry dependence of the thermal conductivity of GeSbTe films publication-title: Appl. Phys. Lett. – volume: 48 start-page: 1718 year: 2009 end-page: 1727 ident: bib14 article-title: Analysis of transient heat transfer in multilayer thin films with nonlinear thermal boundary resistance publication-title: Int. J. Therm. Sci. – start-page: 122 year: 2006 end-page: 123 ident: bib37 article-title: A 90 nm phase change memory technology for stand-alone non-volatile memory applications publication-title: Proc. Symp. VLSI Technol – start-page: 106 year: 2006 end-page: 113 ident: bib24 article-title: Multiphysics modeling and impact of thermal boundary resistance in phase change memory publication-title: Proc. ITHERM – start-page: 777 year: 2006 end-page: 780 ident: bib35 article-title: Ultra-thin phase-change bridge memory device using GeSb publication-title: Proc. IEEE IEDM Tech. Dig – start-page: 18 year: 2004 end-page: 19 ident: bib36 article-title: Novel μTrench phase-change memory cell for embedded and stand-alone non-volatile memory applications publication-title: Proc. Symp. VLSI Technol – volume: 56 start-page: 1523 year: 2009 end-page: 1528 ident: bib23 article-title: Compact thermal model for vertical nanowire phase-change memory cells publication-title: IEEE Trans. Electron Devices – volume: 94 start-page: 3536 year: 2003 end-page: 3542 ident: bib7 article-title: One-dimensional heat conduction model for an electrical phase change random access memory device with an 8F publication-title: J. Appl. Phys. – start-page: 1 year: 2008 end-page: 4 ident: bib12 article-title: Analytical model for reset operation of phase change memory publication-title: Proc. IEDM Tech. Dig – volume: 165 start-page: 497 year: 1853 end-page: 531 ident: bib43 article-title: Über die wärme-leitungsfähigkeit der metalle publication-title: Ann. Phys. – start-page: 911 year: 2004 end-page: 914 ident: bib9 article-title: Electrothermal and phase-change dynamics in chalcogenide-based memories publication-title: Proc. IEDM Tech. Dig – start-page: 120 year: 2006 end-page: 121 ident: bib38 article-title: Novel one-mask self-heating pillar phase change memory publication-title: Proc. Symp. VLSI Technol – volume: 3 start-page: 703 year: 2004 end-page: 708 ident: bib3 article-title: Understanding the phase-change mechanism of rewritable optical media publication-title: Nat. Mater. – volume: 69 start-page: 2849 year: 1991 end-page: 2856 ident: bib42 article-title: Rapid-phase transitions of GeTe-Sb publication-title: J. Appl. Phys. – year: 2009 ident: bib41 article-title: Element Reference – volume: 101 start-page: 064512 year: 2007 ident: bib10 article-title: Three-dimensional simulation model of switching dynamics in phase change random access memory cells publication-title: J. Appl. Phys. – volume: 109 start-page: 084902 year: 2011 ident: bib19 article-title: Thermal conductivity anisotropy and grain structure in Ge publication-title: J. Appl. Phys. – volume: 54 start-page: 1698 year: 2009 end-page: 1701 ident: bib17 article-title: Thermal and electrical characterization of materials for phase-change memory cells publication-title: J. Chem. Eng. Data – volume: 58 start-page: 1464 year: 1987 end-page: 1470 ident: bib33 article-title: Wide-frequency specific heat Spectrometer publication-title: Rev. Sci. Instrum. – volume: 97 start-page: 093509 year: 2005 ident: bib44 article-title: Investigation of the optical and electronic properties of Ge publication-title: J. Appl. Phys. – volume: 39 start-page: 2347 year: 2000 end-page: 2352 ident: bib31 article-title: Measurement of the thermal conductivity of erasable phase-change optical recording media publication-title: Appl. Opt. – start-page: 319 year: 2007 end-page: 322 ident: bib39 article-title: A novel cross-spacer phase change memory with ultra-small lithography independent contact area publication-title: Proc. IEEE IEDM Tech. Dig – volume: 94 start-page: 101906 year: 2009 ident: bib18 article-title: Thermal conductivities and phase transition temperatures of various phase-change materials measured by the 3ω method publication-title: Appl. Phys. Lett. – volume: 109 start-page: 084902 year: 2013 ident: bib29 article-title: Phonon and electron transport through Ge publication-title: J. Appl. Phys. – volume: 3 start-page: 609 year: 2001 end-page: 626 ident: bib32 article-title: Phase-change optical memory promotes the DVD optical disk publication-title: J. Optoelectron. Adv. Mater. – volume: 31 start-page: 56 year: 2010 end-page: 58 ident: bib22 article-title: Thermal boundary resistance measurements for phase-change memory devices publication-title: IEEE Electron Device Lett. – volume: 95 start-page: 504 year: 2004 end-page: 511 ident: bib6 article-title: Models for phase-change of Ge publication-title: J. Appl. Phys. – volume: 96 start-page: 5557 year: 2004 end-page: 5562 ident: bib2 article-title: Influence of Bi doping upon the phase change characteristics of Ge publication-title: J. Appl. Phys. – start-page: 100 year: 2007 end-page: 101 ident: bib40 article-title: Novel lithography-independent Pore phase change memory publication-title: Proc. Symp. VLSI Technol – volume: 82 start-page: 4183 year: 1997 end-page: 4191 ident: bib27 article-title: Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media publication-title: J. Appl. Phys. – start-page: 323 year: 2007 end-page: 326 ident: bib21 article-title: The role of interfaces in damascene phase-change memory publication-title: Proc. IEEE IEDM Tech. Dig – volume: 520 start-page: 3692 year: 2012 end-page: 3696 ident: bib30 article-title: Characterizations and thermal stability improvement of phase-change memory device containing Ce-doped GeSbTe films publication-title: Thin Solid Films – volume: 21 start-page: 1450 year: 1968 end-page: 1453 ident: bib5 article-title: Reversible electrical switching phenomena in disordered structures publication-title: Phys. Rev. Lett. – volume: 61 start-page: 802 year: 1990 end-page: 808 ident: bib26 article-title: Thermal conductivity measurement from 30 to 750 K: the 3ω method publication-title: Rev. Sci. Instrum. – volume: 71 start-page: 32 year: 2013 end-page: 35 ident: bib45 article-title: Grain boundary Kapitza resistance analysis of nanostructured FeSb publication-title: Int. J. Therm. Sci. – volume: 29 start-page: 1112 year: 2008 end-page: 1114 ident: bib16 article-title: The impact of thermal boundary resistance in phase-change memory devices publication-title: IEEE Electron Device Lett. – volume: 54 start-page: 151904 year: 2006 ident: bib28 article-title: Thermal conductivity of phase-change material Ge publication-title: Appl. Phys. Lett. – volume: 96 start-page: 055507 year: 2006 ident: bib4 article-title: Structure of phase change materials for data storage publication-title: Phys. Rev. Lett. – start-page: 175 year: 2003 end-page: 176 ident: bib34 article-title: An edge contact type cell for phase change RAM featuring very low power consumption publication-title: Proc. Symp. VLSI Technol – start-page: 699 year: 2003 ident: 10.1016/j.ijthermalsci.2014.08.004_bib8 article-title: Scaling analysis of phase-change memory technology – volume: 165 start-page: 497 year: 1853 ident: 10.1016/j.ijthermalsci.2014.08.004_bib43 article-title: Über die wärme-leitungsfähigkeit der metalle publication-title: Ann. Phys. doi: 10.1002/andp.18531650802 – volume: 55 start-page: 506 year: 2008 ident: 10.1016/j.ijthermalsci.2014.08.004_bib11 article-title: Modeling of programming and read performance in phase-change memories—part I: cell optimization and scaling publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2007.911630 – start-page: 100 year: 2007 ident: 10.1016/j.ijthermalsci.2014.08.004_bib40 article-title: Novel lithography-independent Pore phase change memory – start-page: 777 year: 2006 ident: 10.1016/j.ijthermalsci.2014.08.004_bib35 article-title: Ultra-thin phase-change bridge memory device using GeSb – volume: 54 start-page: 151904 year: 2006 ident: 10.1016/j.ijthermalsci.2014.08.004_bib28 article-title: Thermal conductivity of phase-change material Ge2Sb2Te5 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2359354 – volume: 96 start-page: 055507 year: 2006 ident: 10.1016/j.ijthermalsci.2014.08.004_bib4 article-title: Structure of phase change materials for data storage publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.055507 – volume: 94 start-page: 3536 year: 2003 ident: 10.1016/j.ijthermalsci.2014.08.004_bib7 article-title: One-dimensional heat conduction model for an electrical phase change random access memory device with an 8F2 memory cell (F = 0.15 μm) publication-title: J. Appl. Phys. doi: 10.1063/1.1598272 – start-page: 175 year: 2003 ident: 10.1016/j.ijthermalsci.2014.08.004_bib34 article-title: An edge contact type cell for phase change RAM featuring very low power consumption – start-page: 18 year: 2004 ident: 10.1016/j.ijthermalsci.2014.08.004_bib36 article-title: Novel μTrench phase-change memory cell for embedded and stand-alone non-volatile memory applications – volume: 21 start-page: 1450 year: 1968 ident: 10.1016/j.ijthermalsci.2014.08.004_bib5 article-title: Reversible electrical switching phenomena in disordered structures publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.21.1450 – volume: 91 start-page: 111904 year: 2007 ident: 10.1016/j.ijthermalsci.2014.08.004_bib25 article-title: Thickness and stoichiometry dependence of the thermal conductivity of GeSbTe films publication-title: Appl. Phys. Lett. doi: 10.1063/1.2784169 – volume: 109 start-page: 084902 year: 2013 ident: 10.1016/j.ijthermalsci.2014.08.004_bib29 article-title: Phonon and electron transport through Ge2Sb2Te5 films and interfaces bounded by metals publication-title: J. Appl. Phys. doi: 10.1063/1.3573505 – volume: 3 start-page: 703 year: 2004 ident: 10.1016/j.ijthermalsci.2014.08.004_bib3 article-title: Understanding the phase-change mechanism of rewritable optical media publication-title: Nat. Mater. doi: 10.1038/nmat1215 – start-page: 106 year: 2006 ident: 10.1016/j.ijthermalsci.2014.08.004_bib24 article-title: Multiphysics modeling and impact of thermal boundary resistance in phase change memory – volume: 82 start-page: 4183 year: 1997 ident: 10.1016/j.ijthermalsci.2014.08.004_bib27 article-title: Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media publication-title: J. Appl. Phys. doi: 10.1063/1.366220 – volume: 97 start-page: 093509 year: 2005 ident: 10.1016/j.ijthermalsci.2014.08.004_bib44 article-title: Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases publication-title: J. Appl. Phys. doi: 10.1063/1.1884248 – volume: 94 start-page: 101906 year: 2009 ident: 10.1016/j.ijthermalsci.2014.08.004_bib18 article-title: Thermal conductivities and phase transition temperatures of various phase-change materials measured by the 3ω method publication-title: Appl. Phys. Lett. doi: 10.1063/1.3097353 – start-page: 323 year: 2007 ident: 10.1016/j.ijthermalsci.2014.08.004_bib21 article-title: The role of interfaces in damascene phase-change memory – volume: 48 start-page: 064505 year: 2009 ident: 10.1016/j.ijthermalsci.2014.08.004_bib13 article-title: Simulation of phase change random access memory for low reset current and high thermal efficiency by finite element modeling publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.48.064505 – start-page: 122 year: 2006 ident: 10.1016/j.ijthermalsci.2014.08.004_bib37 article-title: A 90 nm phase change memory technology for stand-alone non-volatile memory applications – start-page: 120 year: 2006 ident: 10.1016/j.ijthermalsci.2014.08.004_bib38 article-title: Novel one-mask self-heating pillar phase change memory – volume: 3 start-page: 609 year: 2001 ident: 10.1016/j.ijthermalsci.2014.08.004_bib32 article-title: Phase-change optical memory promotes the DVD optical disk publication-title: J. Optoelectron. Adv. Mater. – volume: 520 start-page: 3692 year: 2012 ident: 10.1016/j.ijthermalsci.2014.08.004_bib30 article-title: Characterizations and thermal stability improvement of phase-change memory device containing Ce-doped GeSbTe films publication-title: Thin Solid Films doi: 10.1016/j.tsf.2011.12.014 – volume: 39 start-page: 2347 year: 2000 ident: 10.1016/j.ijthermalsci.2014.08.004_bib31 article-title: Measurement of the thermal conductivity of erasable phase-change optical recording media publication-title: Appl. Opt. doi: 10.1364/AO.39.002347 – volume: 54 start-page: 1698 year: 2009 ident: 10.1016/j.ijthermalsci.2014.08.004_bib17 article-title: Thermal and electrical characterization of materials for phase-change memory cells publication-title: J. Chem. Eng. Data doi: 10.1021/je800770s – volume: 56 start-page: 1523 year: 2009 ident: 10.1016/j.ijthermalsci.2014.08.004_bib23 article-title: Compact thermal model for vertical nanowire phase-change memory cells publication-title: IEEE Trans. Electron Devices – volume: 111 start-page: 123706 year: 2012 ident: 10.1016/j.ijthermalsci.2014.08.004_bib46 article-title: A study of phase transition behaviors of chalcogenide layers using in situ alternative-current impedance spectroscopy publication-title: J. Appl. Phys. doi: 10.1063/1.4729528 – volume: 101 start-page: 064512 year: 2007 ident: 10.1016/j.ijthermalsci.2014.08.004_bib10 article-title: Three-dimensional simulation model of switching dynamics in phase change random access memory cells publication-title: J. Appl. Phys. doi: 10.1063/1.2710440 – volume: 31 start-page: 56 year: 2010 ident: 10.1016/j.ijthermalsci.2014.08.004_bib22 article-title: Thermal boundary resistance measurements for phase-change memory devices publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2009.2035139 – year: 2009 ident: 10.1016/j.ijthermalsci.2014.08.004_bib41 – volume: 61 start-page: 802 year: 1990 ident: 10.1016/j.ijthermalsci.2014.08.004_bib26 article-title: Thermal conductivity measurement from 30 to 750 K: the 3ω method publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1141498 – volume: 76 start-page: 3864 year: 2000 ident: 10.1016/j.ijthermalsci.2014.08.004_bib20 article-title: Thermal boundary resistance at Ge2Sb2Te5/ZnS: SiO2 interface publication-title: Appl. Phys. Lett. doi: 10.1063/1.126852 – volume: 29 start-page: 1112 year: 2008 ident: 10.1016/j.ijthermalsci.2014.08.004_bib16 article-title: The impact of thermal boundary resistance in phase-change memory devices publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2008.2003012 – volume: 58 start-page: 1464 year: 1987 ident: 10.1016/j.ijthermalsci.2014.08.004_bib33 article-title: Wide-frequency specific heat Spectrometer publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1139434 – start-page: 911 year: 2004 ident: 10.1016/j.ijthermalsci.2014.08.004_bib9 article-title: Electrothermal and phase-change dynamics in chalcogenide-based memories – volume: 51 start-page: 1 year: 2012 ident: 10.1016/j.ijthermalsci.2014.08.004_bib15 article-title: Heat transfer in two-layered systems excited by a pulsed laser publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2011.08.020 – start-page: 803 year: 2001 ident: 10.1016/j.ijthermalsci.2014.08.004_bib1 article-title: OUM – a 180 nm Nonvolatile memory cell element technology for stand alone and embedded applications – volume: 95 start-page: 504 year: 2004 ident: 10.1016/j.ijthermalsci.2014.08.004_bib6 article-title: Models for phase-change of Ge2Sb2Te5 in optical and electrical memory devices publication-title: J. Appl. Phys. doi: 10.1063/1.1633984 – volume: 71 start-page: 32 year: 2013 ident: 10.1016/j.ijthermalsci.2014.08.004_bib45 article-title: Grain boundary Kapitza resistance analysis of nanostructured FeSb2 publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2013.03.009 – start-page: 319 year: 2007 ident: 10.1016/j.ijthermalsci.2014.08.004_bib39 article-title: A novel cross-spacer phase change memory with ultra-small lithography independent contact area – volume: 96 start-page: 5557 year: 2004 ident: 10.1016/j.ijthermalsci.2014.08.004_bib2 article-title: Influence of Bi doping upon the phase change characteristics of Ge2Sb2Te5 publication-title: J. Appl. Phys. doi: 10.1063/1.1803612 – volume: 48 start-page: 1718 year: 2009 ident: 10.1016/j.ijthermalsci.2014.08.004_bib14 article-title: Analysis of transient heat transfer in multilayer thin films with nonlinear thermal boundary resistance publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2009.01.014 – start-page: 1 year: 2008 ident: 10.1016/j.ijthermalsci.2014.08.004_bib12 article-title: Analytical model for reset operation of phase change memory – volume: 109 start-page: 084902 year: 2011 ident: 10.1016/j.ijthermalsci.2014.08.004_bib19 article-title: Thermal conductivity anisotropy and grain structure in Ge2Sb2Te5 films publication-title: J. Appl. Phys. doi: 10.1063/1.3573505 – volume: 69 start-page: 2849 year: 1991 ident: 10.1016/j.ijthermalsci.2014.08.004_bib42 article-title: Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory publication-title: J. Appl. Phys. doi: 10.1063/1.348620 |
SSID | ssj0007909 |
Score | 2.1616592 |
Snippet | Thermal conductivity of Ge2Sb2Te5 (GST) and Ce-doped GST (Ce-GST) chalcogenide thin films and thermal boundary resistances (TBR) at the interface of... Thermal conductivity of Ge sub(2)Sb sub(2)Te sub(5) (GST) and Ce-doped GST (Ce-GST) chalcogenide thin films and thermal boundary resistances (TBR) at the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 207 |
SubjectTerms | 3-Omega method Chalcogenides Devices Doping Finite-element simulation Phase-change memory (PCM) Programming Reduction Thermal conductivity Thin films Titanium nitride |
Title | Effective thermal parameters of chalcogenide thin films and simulation of phase-change memory |
URI | https://dx.doi.org/10.1016/j.ijthermalsci.2014.08.004 https://www.proquest.com/docview/1651371433 |
Volume | 87 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1778-4166 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007909 issn: 1290-0729 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1778-4166 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007909 issn: 1290-0729 databaseCode: ACRLP dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1778-4166 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007909 issn: 1290-0729 databaseCode: .~1 dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1778-4166 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007909 issn: 1290-0729 databaseCode: AIKHN dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1778-4166 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007909 issn: 1290-0729 databaseCode: AKRWK dateStart: 19990101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIpnZSTW0Cax8xgYqoqqgOgClbogy3YSNVWTVqQdWPjt3CUOFMRQiTHRWY7O53s4n78j5NpVkgVShVYCrs5ivowsybBYCYKQ-w5SpOHd4aehNxixhzEfN0ivvguDsErj-yufXnpr86ZttNlepGn7GU9QkPcaSgQIRCFygiL7F9j0zcc3zMMPS5gHClsoXROPlhivdIpZVgYLrVOEebGSztM0bfsjSP1y12UM6u-RXZM80m71ffukEecHZGeNUvCQvFZ0xODDqJmUIrt3hqiXgs4TqidypudgNmmEImlOk3SWFVTmES3SzHTzQsnFBCKcVd0Mphkict-PyKh_99IbWKaFgqXdkC3xgA8S0sDzIUtSMdRSse3GtnYiziOf29KJHaW5nTAZMN6JGBQvDDaiSkBtNqZax6SZz_P4hFCoLaRiWikkdJeI50x44rmOHSkXdKxPSVjrTGjDL45tLmaiBpJNxbq-BepbYA_MDjsl7tfYRcWysdGo23ppxA-bERAONhp_Va-ngE2Ff0pkHs9XhbA9biOVoeue_XOOc7INT7w6tLkgzeXbKr6ENGapWqWdtshW9_5xMPwEfpHzwg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BGYAB8RRvjMQalSR2kwwMqKIqry60Uhdk2U4igpq0omXg33OXOFVBDJVYE1uOzvZ3d87n7wCufK14qHTkpAh1Dg9U7ChOyUoYRiLwSCKN7g4_91rdAX8YiuEKtOu7MESrtNhfYXqJ1vZJ01qzOcmy5gudoJDuNaYI6IgivgprXCAmN2Dt9v6x25sDchCVTA9q71CHWnu0pHll7xRo5TjXJiOmFy8VPW3dtj_81C_ELt1QZxu2bPzIbqtP3IGVpNiFzQVVwT14rRSJEcaYHZSRwHdOxJcpG6fMvKmRGePKyWJqkhUszUb5lKkiZtMstwW9qOXkDZ2cU10OZjmRcr_2YdC567e7jq2i4Bg_4jM648OYNGwFGCjpBNOpxPUT13ixEHEgXOUlnjbCTbkKubiOOeYvHPeiTtFsLkVbB9AoxkVyCAzTC6W50Zo03RVROlORtnzPjbWPNjZHENU2k8ZKjFOli5GsuWTvctHekuwtqQzmNT8Cf953UgltLNXrpp4a-WPZSPQIS_W_rOdT4r6inyWqSMafU-m2hEtqhr5__M8xLmC9239-kk_3vccT2MA3ojrDOYXG7OMzOcOoZqbP7ar9BsMX9m0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+thermal+parameters+of+chalcogenide+thin+films+and+simulation+of+phase-change+memory&rft.jtitle=International+journal+of+thermal+sciences&rft.au=Huang%2C+Yin-Hsien&rft.au=Hsieh%2C+Tsung-Eong&rft.date=2015-01-01&rft.issn=1290-0729&rft.volume=87&rft.spage=207&rft.epage=214&rft_id=info:doi/10.1016%2Fj.ijthermalsci.2014.08.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijthermalsci_2014_08_004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1290-0729&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1290-0729&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1290-0729&client=summon |