Examining the Role of UAV Lidar Data in Improving Tree Volume Calculation Accuracy

Traditional forest inventories are based on field surveys of established sample plots, which involve field measurements of individual trees within a sample plot and the selection of proper allometric equations for tree volume calculation. Thus, accurate field measurements and properly selected allom...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 14; no. 17; p. 4410
Main Authors Liao, Kuo, Li, Yunhe, Zou, Bingzhang, Li, Dengqiu, Lu, Dengsheng
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2022
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs14174410

Cover

Abstract Traditional forest inventories are based on field surveys of established sample plots, which involve field measurements of individual trees within a sample plot and the selection of proper allometric equations for tree volume calculation. Thus, accurate field measurements and properly selected allometric equations are two crucial factors for providing high-quality tree volumes. One key problem is the difficulty in accurately acquiring tree height data, resulting in high uncertainty in tree volume calculation when the diameter at breast height (DBH) alone is used. This study examined the uncertainty of tree height measurements using different means and the impact of allometric models on tree volume estimation accuracy. Masson pine and eucalyptus plantations in Fujian Province, China, were selected as examples; their tree heights were measured three ways: using an 18-m telescopic pole, UAV Lidar (unmanned aerial vehicle, light detection and ranging) data, and direct measurement of felled trees, with the latest one as a reference. The DBH-based and DBH–height-based allometric equations corresponding to specific tree species were used for the calculations of tree volumes. The results show that (1) tree volumes calculated from the DBH-based models were lower than those from the DBH–height-based models. On average, tree volumes were underestimated by 0.018 m3 and 0.117 m3 for Masson pine and eucalyptus, respectively, while the relative root-mean-squared errors (RMSEr) were 24.04% and 33.90%, respectively, when using the DBH-based model; (2) the tree height extracted from UAV Lidar data was more accurate than that measured using a telescopic pole, because the pole measurement method generally underestimated the tree height, especially when the trees were taller than the length of the pole (18 m in our study); (3) the tree heights measured using different methods greatly impacted the accuracies of tree volumes calculated using the DBH–height model. The telescopic-pole-measured tree heights resulted in a relative error of 9.1–11.8% in tree volume calculations. This research implies that incorporation of UAV Lidar data with DBH field measurements can effectively improve tree volume estimation and could be a new direction for sample plot data collection in the future.
AbstractList Traditional forest inventories are based on field surveys of established sample plots, which involve field measurements of individual trees within a sample plot and the selection of proper allometric equations for tree volume calculation. Thus, accurate field measurements and properly selected allometric equations are two crucial factors for providing high-quality tree volumes. One key problem is the difficulty in accurately acquiring tree height data, resulting in high uncertainty in tree volume calculation when the diameter at breast height (DBH) alone is used. This study examined the uncertainty of tree height measurements using different means and the impact of allometric models on tree volume estimation accuracy. Masson pine and eucalyptus plantations in Fujian Province, China, were selected as examples; their tree heights were measured three ways: using an 18-m telescopic pole, UAV Lidar (unmanned aerial vehicle, light detection and ranging) data, and direct measurement of felled trees, with the latest one as a reference. The DBH-based and DBH–height-based allometric equations corresponding to specific tree species were used for the calculations of tree volumes. The results show that (1) tree volumes calculated from the DBH-based models were lower than those from the DBH–height-based models. On average, tree volumes were underestimated by 0.018 m3 and 0.117 m3 for Masson pine and eucalyptus, respectively, while the relative root-mean-squared errors (RMSEr) were 24.04% and 33.90%, respectively, when using the DBH-based model; (2) the tree height extracted from UAV Lidar data was more accurate than that measured using a telescopic pole, because the pole measurement method generally underestimated the tree height, especially when the trees were taller than the length of the pole (18 m in our study); (3) the tree heights measured using different methods greatly impacted the accuracies of tree volumes calculated using the DBH–height model. The telescopic-pole-measured tree heights resulted in a relative error of 9.1–11.8% in tree volume calculations. This research implies that incorporation of UAV Lidar data with DBH field measurements can effectively improve tree volume estimation and could be a new direction for sample plot data collection in the future.
Traditional forest inventories are based on field surveys of established sample plots, which involve field measurements of individual trees within a sample plot and the selection of proper allometric equations for tree volume calculation. Thus, accurate field measurements and properly selected allometric equations are two crucial factors for providing high-quality tree volumes. One key problem is the difficulty in accurately acquiring tree height data, resulting in high uncertainty in tree volume calculation when the diameter at breast height (DBH) alone is used. This study examined the uncertainty of tree height measurements using different means and the impact of allometric models on tree volume estimation accuracy. Masson pine and eucalyptus plantations in Fujian Province, China, were selected as examples; their tree heights were measured three ways: using an 18-m telescopic pole, UAV Lidar (unmanned aerial vehicle, light detection and ranging) data, and direct measurement of felled trees, with the latest one as a reference. The DBH-based and DBH–height-based allometric equations corresponding to specific tree species were used for the calculations of tree volumes. The results show that (1) tree volumes calculated from the DBH-based models were lower than those from the DBH–height-based models. On average, tree volumes were underestimated by 0.018 m³ and 0.117 m³ for Masson pine and eucalyptus, respectively, while the relative root-mean-squared errors (RMSEr) were 24.04% and 33.90%, respectively, when using the DBH-based model; (2) the tree height extracted from UAV Lidar data was more accurate than that measured using a telescopic pole, because the pole measurement method generally underestimated the tree height, especially when the trees were taller than the length of the pole (18 m in our study); (3) the tree heights measured using different methods greatly impacted the accuracies of tree volumes calculated using the DBH–height model. The telescopic-pole-measured tree heights resulted in a relative error of 9.1–11.8% in tree volume calculations. This research implies that incorporation of UAV Lidar data with DBH field measurements can effectively improve tree volume estimation and could be a new direction for sample plot data collection in the future.
Author Liao, Kuo
Li, Yunhe
Zou, Bingzhang
Li, Dengqiu
Lu, Dengsheng
Author_xml – sequence: 1
  givenname: Kuo
  surname: Liao
  fullname: Liao, Kuo
– sequence: 2
  givenname: Yunhe
  surname: Li
  fullname: Li, Yunhe
– sequence: 3
  givenname: Bingzhang
  surname: Zou
  fullname: Zou, Bingzhang
– sequence: 4
  givenname: Dengqiu
  surname: Li
  fullname: Li, Dengqiu
– sequence: 5
  givenname: Dengsheng
  orcidid: 0000-0003-4767-5710
  surname: Lu
  fullname: Lu, Dengsheng
BookMark eNptkU1LJDEQhoMoqKMXf0FgLyLMbj473cdh1N2BAUHUa6hOV2uGdMdNupf139vjuLiIdUkRnnrgrTom-33skZAzzr5LWbEfKXPFjVKc7ZEjwYyYK1GJ_f_6Q3Ka84ZNJSWvmDoit1d_ofO97x_p8IT0NgaksaX3iwe69g0kegkDUN_TVfec4p8td5cQ6UMMY4d0CcGNAQYfe7pwbkzgXk7IQQsh4-n7OyP311d3y1_z9c3P1XKxnjtZqWFuKpCCV6YUpUJW6oZjwVssa63RaFEAFsCEckWBHE2paqPbmnHhFMNGoJMzstp5mwgb-5x8B-nFRvD27SOmRwtp8C6ghbpipq0N00yp0ulKmUaZVk5eIXhtJtf5zjWF_D1iHmzns8MQoMc4ZiuMkJxpPu1tRr59QjdxTP2UdKI4V0ZquRWyHeVSzDlha50f3vY0JPDBcma3N7MfN5tGLj6N_Mv0BfwKjkqVDQ
CitedBy_id crossref_primary_10_3390_rs16193650
crossref_primary_10_1016_j_cogr_2022_12_002
crossref_primary_10_3390_s23063286
crossref_primary_10_1080_19479832_2024_2309615
crossref_primary_10_1080_10095020_2023_2249042
crossref_primary_10_3390_f16020214
crossref_primary_10_1080_10095020_2024_2439399
crossref_primary_10_3390_rs15061694
crossref_primary_10_3390_rs15164108
crossref_primary_10_1109_JSTARS_2023_3313251
crossref_primary_10_3390_rs15184407
crossref_primary_10_3390_s22228858
crossref_primary_10_1016_j_tfp_2023_100436
crossref_primary_10_1016_j_compag_2024_109359
crossref_primary_10_3390_f15111993
crossref_primary_10_1016_j_ufug_2025_128755
Cites_doi 10.1080/10106049.2020.1864029
10.3390/f12050550
10.1139/cjfr-2013-0520
10.3390/f12030328
10.1109/JSTARS.2018.2830410
10.1016/j.isprsjprs.2020.09.014
10.3390/f12040397
10.1016/j.isprsjprs.2018.11.008
10.3390/rs10050660
10.1080/15481603.2022.2044139
10.3390/rs12050863
10.3390/f10080694
10.3390/f12030327
10.3390/rs12172725
10.1515/geo-2020-0266
10.1016/j.ufug.2021.127197
10.3390/rs12010186
10.14358/PERS.72.8.923
10.3390/rs12071101
10.1109/JSTARS.2018.2859050
10.3390/rs6064741
10.1080/2150704X.2019.1658237
10.1093/wjaf/3.3.86
10.3390/rs12244039
10.3390/f8010007
10.1093/sjaf/4.3.136
10.1016/j.rse.2021.112382
10.1186/s13021-020-00143-6
10.1016/j.isprsjprs.2018.08.010
10.1016/j.jenvman.2018.09.100
10.3390/rs11070856
10.3390/f10020092
10.1038/s41597-019-0196-1
10.3390/f8050154
10.3390/rs10071151
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs14174410
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_ab907fb7050448c5947d47f3e78221b7
10_3390_rs14174410
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c394t-79a321978284e085d1e61fe8b55e7526ae6a024c66e1e784b75fb012c40ed2ec3
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 00:38:17 EDT 2025
Thu Sep 04 22:03:22 EDT 2025
Fri Jul 25 09:33:32 EDT 2025
Tue Jul 01 01:59:47 EDT 2025
Thu Apr 24 23:04:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-79a321978284e085d1e61fe8b55e7526ae6a024c66e1e784b75fb012c40ed2ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4767-5710
OpenAccessLink https://doaj.org/article/ab907fb7050448c5947d47f3e78221b7
PQID 2711473537
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_ab907fb7050448c5947d47f3e78221b7
proquest_miscellaneous_2723105103
proquest_journals_2711473537
crossref_citationtrail_10_3390_rs14174410
crossref_primary_10_3390_rs14174410
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Liao (ref_41) 2005; 2
Vorster (ref_50) 2020; 15
ref_14
ref_12
ref_11
Mielcarek (ref_21) 2018; 71
Liang (ref_16) 2020; 169
Holmgren (ref_33) 2019; 10
ref_19
ref_17
Tello (ref_4) 2018; 11
Chen (ref_30) 2021; 13
Hu (ref_31) 2014; 26
Queinnec (ref_18) 2022; 95
ref_25
Wang (ref_47) 2019; 147
ref_23
Lin (ref_6) 2022; 59
Chang (ref_9) 1977; 1
ref_28
ref_27
Chen (ref_37) 2006; 72
ref_26
Guo (ref_38) 2016; 18
Latifi (ref_20) 2016; 89
ref_36
ref_35
Phalla (ref_15) 2017; 40
Liu (ref_34) 2021; 258
Dai (ref_32) 2018; 144
Zeng (ref_10) 2007; 2
Chianucci (ref_24) 2016; 47
Mayamanikandan (ref_1) 2020; 37
Mielcarek (ref_43) 2019; 231
Ngomanda (ref_49) 2014; 44
Rex (ref_29) 2021; 63
Howe (ref_44) 1988; 3
ref_46
ref_42
ref_40
ref_3
ref_2
Huang (ref_39) 2018; 11
Dupuy (ref_22) 2014; 6
ref_48
Zeng (ref_13) 2017; 36
Bell (ref_45) 1980; 4
ref_8
ref_5
Schepaschenko (ref_7) 2019; 6
References_xml – volume: 37
  start-page: 3489
  year: 2020
  ident: ref_1
  article-title: Quantifying the Influence of Plot-Level Uncertainty in Above Ground Biomass Up Scaling Using Remote Sensing Data in Central Indian Dry Deciduous Forest
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2020.1864029
– ident: ref_48
  doi: 10.3390/f12050550
– volume: 44
  start-page: 685
  year: 2014
  ident: ref_49
  article-title: How to Improve Allometric Equations to Estimate Forest Biomass Stocks? Some Hints from A Central African Forest
  publication-title: Can. J. For. Res
  doi: 10.1139/cjfr-2013-0520
– ident: ref_36
  doi: 10.3390/f12030328
– volume: 89
  start-page: 69
  year: 2016
  ident: ref_20
  article-title: Estimating Over- and Understorey Canopy Density of Temperate Mixed Stands by Airborne LiDAR Data
  publication-title: For. Int. J. For. Res.
– volume: 11
  start-page: 2253
  year: 2018
  ident: ref_39
  article-title: Individual Tree Crown Detection and Delineation from Very-High-Resolution UAV Images Based on Bias Field and Marker-Controlled Watershed Segmentation Algorithms
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2830410
– volume: 169
  start-page: 227
  year: 2020
  ident: ref_16
  article-title: Is Field-Measured Tree Height as Reliable as Believed–Part II, A Comparison Study of Tree Height Estimates from Conventional Field Measurement and Low-Cost Close-Range Remote Sensing in A Deciduous Forest
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.09.014
– ident: ref_26
  doi: 10.3390/f12040397
– volume: 147
  start-page: 132
  year: 2019
  ident: ref_47
  article-title: Is Field-Measured Tree Height as Reliable as Believed—A Comparison Study of Tree Height Estimates from Field Measurement, Airborne Laser Scanning and Terrestrial Laser Scanning in a Boreal Forest
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.11.008
– ident: ref_42
– ident: ref_2
  doi: 10.3390/rs10050660
– volume: 47
  start-page: 60
  year: 2016
  ident: ref_24
  article-title: Estimation of Canopy Attributes in Beech Forests Using True Colour Digital Images from a Small Fixed-Wing UAV
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 59
  start-page: 568
  year: 2022
  ident: ref_6
  article-title: A Comparative Analysis of Modeling Approaches and Canopy Height-Based Data Sources for Mapping Forest Growing Stock Volume in A Northern Subtropical Ecosystem of China
  publication-title: GIsci. Remote Sens.
  doi: 10.1080/15481603.2022.2044139
– ident: ref_27
  doi: 10.3390/rs12050863
– ident: ref_46
  doi: 10.3390/f10080694
– ident: ref_25
  doi: 10.3390/f12030327
– volume: 2
  start-page: 17
  year: 2005
  ident: ref_41
  article-title: Studies of the Volume Table and Stocking Table Compilations of Eucalyptus Plantations
  publication-title: J. Fujian For. Sci. Tech.
– ident: ref_35
  doi: 10.3390/rs12172725
– volume: 13
  start-page: 705
  year: 2021
  ident: ref_30
  article-title: Research on the Improvement of Single Tree Segmentation Algorithm Based on Airborne Lidar Point Cloud
  publication-title: Open Geosci.
  doi: 10.1515/geo-2020-0266
– volume: 63
  start-page: 127197
  year: 2021
  ident: ref_29
  article-title: Using high-density UAV-LiDAR for deriving tree height of Araucaria Angustifolia in an Urban Atlantic Rain Forest
  publication-title: Urban For. Urban Green.
  doi: 10.1016/j.ufug.2021.127197
– volume: 18
  start-page: 1259
  year: 2016
  ident: ref_38
  article-title: Individual Tree Crown Extraction of High Resolution Image Based on Marker-Controlled Watershed Segmentation Method
  publication-title: J. Geogr. Inf. Sci.
– volume: 95
  start-page: 347
  year: 2022
  ident: ref_18
  article-title: Developing A Forest Inventory Approach Using Airborne Single Photon Lidar Data: From Ground Plot Selection to Forest Attribute Prediction
  publication-title: For. Int. J. For. Res.
– ident: ref_8
  doi: 10.3390/rs12010186
– volume: 72
  start-page: 923
  year: 2006
  ident: ref_37
  article-title: Isolating Individual Trees in a Savanna Woodland Using Small Footprint Lidar Data
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.72.8.923
– ident: ref_23
  doi: 10.3390/rs12071101
– volume: 11
  start-page: 3402
  year: 2018
  ident: ref_4
  article-title: Forest Structure Characterization from SAR Tomography at L-Band
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2859050
– volume: 6
  start-page: 4741
  year: 2014
  ident: ref_22
  article-title: Improving Species Diversity and Biomass Estimates of Tropical Dry Forests Using Airborne LiDAR
  publication-title: Remote Sens.
  doi: 10.3390/rs6064741
– volume: 1
  start-page: 1
  year: 1977
  ident: ref_9
  article-title: Conversion of Double-Entry Tree Volume Table to Single-Entry Volume Table
  publication-title: Forest Resour. Manag.
– volume: 10
  start-page: 1143
  year: 2019
  ident: ref_33
  article-title: Tree Crown Segmentation Based on A Tree Crown Density Model Derived from Airborne Laser Scanning
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2019.1658237
– volume: 3
  start-page: 86
  year: 1988
  ident: ref_44
  article-title: Clinometer Versus Pole Measurement of Tree Heights in Young Douglas-fir Progeny Tests
  publication-title: West J. Appl. For.
  doi: 10.1093/wjaf/3.3.86
– ident: ref_28
  doi: 10.3390/rs12244039
– ident: ref_17
  doi: 10.3390/f8010007
– volume: 71
  start-page: 132
  year: 2018
  ident: ref_21
  article-title: Testing and Evaluating Different Lidar-Derived Canopy Height Model Generation Methods for Tree Height Estimation
  publication-title: Int. J. Appl. Earth Obs.
– ident: ref_11
– volume: 4
  start-page: 136
  year: 1980
  ident: ref_45
  article-title: Assessing the Accuracy of a Sectional Pole, Haga Altimeter, and Alti-Level for Determining Total Height of Young Coniferous Stands
  publication-title: South J. Appl. For.
  doi: 10.1093/sjaf/4.3.136
– ident: ref_14
– volume: 258
  start-page: 112382
  year: 2021
  ident: ref_34
  article-title: Individual Tree Identification Using A New Cluster-Based Approach with Discrete-Return Airborne Lidar Data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112382
– volume: 15
  start-page: 1
  year: 2020
  ident: ref_50
  article-title: Variability and Uncertainty in Forest Biomass Estimates from the Tree to Landscape Scale: The Role of Allometric Equations
  publication-title: Carbon Balance Manag.
  doi: 10.1186/s13021-020-00143-6
– volume: 2
  start-page: 1
  year: 2007
  ident: ref_10
  article-title: Discussion on Volume Estimation in Continuous Forest Inventory in China
  publication-title: Cent. South For. Invent. Plan.
– volume: 144
  start-page: 400
  year: 2018
  ident: ref_32
  article-title: A New Method for 3D Individual Tree Extraction Using Multispectral Airborne Lidar Point Clouds
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.08.010
– volume: 40
  start-page: 131
  year: 2017
  ident: ref_15
  article-title: The Importance of Tree Height in Estimating Individual Tree Biomass While Considering Errors in Measurements and Allometric Models
  publication-title: AGRIVITA, J. Agric. Sci.
– volume: 231
  start-page: 1284
  year: 2019
  ident: ref_43
  article-title: Factors Influencing the Accuracy of Ground-Based Tree-Height Measurements for Major European Tree Species
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2018.09.100
– ident: ref_5
  doi: 10.3390/rs11070856
– volume: 26
  start-page: 145
  year: 2014
  ident: ref_31
  article-title: Improving the Efficiency and Accuracy of Individual Tree Crown Delineation from High-Density Lidar Data
  publication-title: Int. J. Appl. Earth. Obs.
– ident: ref_12
  doi: 10.3390/f10020092
– volume: 6
  start-page: 198
  year: 2019
  ident: ref_7
  article-title: The Forest Observation System, Building A Global Reference Dataset for Remote Sensing of Forest Biomass
  publication-title: Sci. Data
  doi: 10.1038/s41597-019-0196-1
– ident: ref_40
  doi: 10.3390/f8050154
– ident: ref_19
– volume: 36
  start-page: 1
  year: 2017
  ident: ref_13
  article-title: Comparison on prediction precision of one-variable and two-variable volume models on tree-level and stand-level
  publication-title: Cent. South For. Invent. Plann.
– ident: ref_3
  doi: 10.3390/rs10071151
SSID ssj0000331904
Score 2.4612885
Snippet Traditional forest inventories are based on field surveys of established sample plots, which involve field measurements of individual trees within a sample...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4410
SubjectTerms Accuracy
allometric equation
allometry
China
Data acquisition
Data collection
Diameters
Estimates
Eucalyptus
field measurement
Forests
Global positioning systems
GPS
Height
Lasers
Lidar
Mathematical models
Measurement methods
Pine
Pinus massoniana
Plant species
Remote sensing
tree and stand measurements
tree height
tree volume
Trees
UAV Lidar
Uncertainty
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB2V7QEuiE-xUJARXDhEdWI7Tg4IbctWFYIVWnWr3iJ_TKDSkpR0V6L_nnHWSZFA3KJklMPYnnlje94DeJtm3HHvMAmyA4mU3CQWS5vIgpsiMwLLNHQjf1nkpyv56UJd7MFi6IUJ1yqHmNgHat-6sEd-mGlC7loooT9c_UyCalQ4XR0kNEyUVvDve4qxO7BPIVnxCewfzRdfl-OuCxc05bjc8ZQKqvcPu-tUEiqXoYX2j8zUE_j_FZ_7pHPyAO5HtMhmu-F9CHvYPIK7Ubj8-81jWM5_mR-9xgMjJMeW7RpZW7PV7Jx9vvSmYx_NxrDLho2bB-ysQ2TnfVBix2bton4Xmzm37Yy7eQKrk_nZ8WkSZRISJ0q5SXRpBMUdSvWFREJQPsU8rbGwSqFWWW4wN5SJXZ5jirqQVqvaUl5ykqPP0ImnMGnaBp8By4T3VhTWpdJIoemZKopCWZnVpam5ncK7wUWVixziQcpiXVEtEdxZ3bpzCm9G26sdc8Y_rY6Cp0eLwHbdv2i7b1VcPJWxVMLXVnPFqZp0qpTaS10LDPAmtXoKB8M4VXEJXle3E2YKr8fPtHjCiYhpsN0GmwBvA6ng8___4gXcy0LfQ3-57AAmm26LLwmNbOyrOMV-AxPC3UU
  priority: 102
  providerName: ProQuest
Title Examining the Role of UAV Lidar Data in Improving Tree Volume Calculation Accuracy
URI https://www.proquest.com/docview/2711473537
https://www.proquest.com/docview/2723105103
https://doaj.org/article/ab907fb7050448c5947d47f3e78221b7
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RT9swELZYedhe0GBM6-gqI_bCQ4QT23HyWGhLhQChQhFvke1cNKQundJWov-esxNKJZD2wlOi-B6cO_vuvsT3HSG_w4hZllsIXNuBQAimAwOpCUTCdBJpDmnoqpGvruPRRFw8yIeNVl_uTFhND1wr7kQbhG-FUUwyRBJWpkLlQhUcXGgLja8jZynbAFPeB3NcWkzUfKQccf1JNQ8FZt_ClcpuRCBP1P_GD_vgMvxKdpqskPbq2eySLSj3yOemQfmf1TcyHjzpv76XA8WMjY5nU6Czgk569_TyMdcV7euFpo8lXX8koHcVAL33zoee6alt-nTRnrXLStvVPpkMB3dno6BphxBYnopFoFLN0b_geycCMFPKQ4jDAhIjJSgZxRpijRHXxjGEqB1hlCwMxh8rGOQRWP6dtMpZCT8IjXieG54YGwotuMJ7RA6JNCIqUl0w0ybHLyrKbMMV7lpWTDPEDE6d2as62-RoLfuvZsh4V-rUaXot4Vit_QO0ddbYOvufrduk82KnrNlq8yxSCOkUlxyHD9fDuEncnw9dwmzpZFwa68gDf37EPA7Il8hVQfijZh3SWlRL-IW5ycJ0yadkeN4l273-1eUtXk8H1zfjrl-cz3Qc4l4
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8a3WFc0PgShQFGwIFDNMd24uQwoW7r1LGuQlU77RZs5wUmlWZLW0H_Of427NTJkEDcdoucJx-e37f93g_gXcioobnBwMEOBEJQFWhMdSASqhKmOKah60Y-H8WDqfh0GV1uwa-mF8Y9q2xsYm2o89K4Gvk-kzZylzzi8uP1TeBQo9ztagOhoTy0Qn5QjxjzjR1nuP5hU7jFwemxPe_3jJ30J0eDwKMMBIanYhnIVHGrttZTJgJtAJKHGIcFJjqKUEYsVhgr68hMHGOIMhFaRoW2Zt0IijlDw-2-92BbuAJKB7YP-6PP47bKQ7kVcSo2c1E5T-l-tQiFzQKEa9n9wxPWgAF_-YPayZ3swgMfnZLeRpwewhbOH8GOB0r_tn4M4_5P9b3GlCA2ciTjcoakLMi0d0GGV7mqyLFaKnI1J22xgkwqRHJRG0FypGbG44WRnjGrSpn1E5jeCcOeQmdezvEZEMbzXPNEm1AowaX9thlMEmnBilQVVHfhQ8OizPiZ5Q46Y5bZ3MWxM7tlZxfetrTXm0kd_6Q6dJxuKdx07XqhrL5mXlkzpVMqCy1pRG32aqJUyFzIgqMLp0Itu7DXnFPmVX6R3QpoF960v62yuhsYNcdy5WhcOO2GGD7__xavYWcwOR9mw9PR2Qu4z1zPRf2wbQ86y2qFL20ktNSvvLgR-HLXEv4bYcEZVw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGJgEXxKcoDDACDhyiOrYTJ4cJdWurjY1qqtZpt2A7LzCpJCNtBf0X-at4Tp0MCcRttyh58uHlffye7fd-hLwNObMstxA42oFASqYDA6kJZMJ0wrWANHTdyJ8m8eFMfryILrbIr7YXxl2rbGNiE6jzyro98j5XiNyViITqF_5axOlw_OHqe-AYpNxJa0unoT3NQr7XjBvzTR7HsP6B5dxi72iI__4d5-PR2cFh4BkHAitSuQxUqgW6MGbNRAKCkTyEOCwgMVEEKuKxhlhjUrNxDCGoRBoVFQZDvJUMcg5W4Lq3yI7CrI-F4M7-aHI67XZ8mEBzZ3IzI1WIlPXrRSixIpCuffePrNiQB_yVG5qEN75P7nmkSgcb03pAtqB8SO540vSv60dkOvqpvzX8EhRRJJ1Wc6BVQWeDc3pymeuaDvVS08uSdhsX9KwGoOdNQKQHem49dxgdWLuqtV0_JrMbUdgTsl1WJTwllIs8NyIxNpRaCoXPWM0kkZG8SHXBTI-8b1WUWT-_3NFozDOsY5w6s2t19sibTvZqM7Xjn1L7TtOdhJu03byo6i-Zd9xMm5SpwigWMaxkbZRKlUtVCHDQKjSqR3bb_5R5919k18baI6-7z-i47jRGl1CtnIyD1m6g4bP_L_GK3EZLz06OJsfPyV3u2i-aO267ZHtZr-AFgqKleemtjZLPN23gvwGWhx2b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Examining+the+Role+of+UAV+Lidar+Data+in+Improving+Tree+Volume+Calculation+Accuracy&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Kuo+Liao&rft.au=Yunhe+Li&rft.au=Bingzhang+Zou&rft.au=Dengqiu+Li&rft.date=2022-09-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=17&rft.spage=4410&rft_id=info:doi/10.3390%2Frs14174410&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ab907fb7050448c5947d47f3e78221b7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon