TVR-DART: A More Robust Algorithm for Discrete Tomography From Limited Projection Data With Automated Gray Value Estimation
In this paper, we present a novel iterative reconstruction algorithm for discrete tomography (DT) named total variation regularized discrete algebraic reconstruction technique (TVR-DART) with automated gray value estimation. This algorithm is more robust and automated than the original DART algorith...
        Saved in:
      
    
          | Published in | IEEE transactions on image processing Vol. 25; no. 1; pp. 455 - 468 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          IEEE
    
        01.01.2016
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1057-7149 1941-0042 1941-0042  | 
| DOI | 10.1109/TIP.2015.2504869 | 
Cover
| Abstract | In this paper, we present a novel iterative reconstruction algorithm for discrete tomography (DT) named total variation regularized discrete algebraic reconstruction technique (TVR-DART) with automated gray value estimation. This algorithm is more robust and automated than the original DART algorithm, and is aimed at imaging of objects consisting of only a few different material compositions, each corresponding to a different gray value in the reconstruction. By exploiting two types of prior knowledge of the scanned object simultaneously, TVR-DART solves the discrete reconstruction problem within an optimization framework inspired by compressive sensing to steer the current reconstruction toward a solution with the specified number of discrete gray values. The gray values and the thresholds are estimated as the reconstruction improves through iterations. Extensive experiments from simulated data, experimental μCT, and electron tomography data sets show that TVR-DART is capable of providing more accurate reconstruction than existing algorithms under noisy conditions from a small number of projection images and/or from a small angular range. Furthermore, the new algorithm requires less effort on parameter tuning compared with the original DART algorithm. With TVR-DART, we aim to provide the tomography society with an easy-to-use and robust algorithm for DT. | 
    
|---|---|
| AbstractList | In this paper, we present a novel iterative reconstruction algorithm for discrete tomography (DT) named total variation regularized discrete algebraic reconstruction technique (TVR-DART) with automated gray value estimation. This algorithm is more robust and automated than the original DART algorithm, and is aimed at imaging of objects consisting of only a few different material compositions, each corresponding to a different gray value in the reconstruction. By exploiting two types of prior knowledge of the scanned object simultaneously, TVR-DART solves the discrete reconstruction problem within an optimization framework inspired by compressive sensing to steer the current reconstruction toward a solution with the specified number of discrete gray values. The gray values and the thresholds are estimated as the reconstruction improves through iterations. Extensive experiments from simulated data, experimental μCT, and electron tomography data sets show that TVR-DART is capable of providing more accurate reconstruction than existing algorithms under noisy conditions from a small number of projection images and/or from a small angular range. Furthermore, the new algorithm requires less effort on parameter tuning compared with the original DART algorithm. With TVR-DART, we aim to provide the tomography society with an easy-to-use and robust algorithm for DT. In this paper, we present a novel iterative reconstruction algorithm for discrete tomography (DT) named total variation regularized discrete algebraic reconstruction technique (TVR-DART) with automated gray value estimation. This algorithm is more robust and automated than the original DART algorithm, and is aimed at imaging of objects consisting of only a few different material compositions, each corresponding to a different gray value in the reconstruction. By exploiting two types of prior knowledge of the scanned object simultaneously, TVR-DART solves the discrete reconstruction problem within an optimization framework inspired by compressive sensing to steer the current reconstruction toward a solution with the specified number of discrete gray values. The gray values and the thresholds are estimated as the reconstruction improves through iterations. Extensive experiments from simulated data, experimental μCT, and electron tomography data sets show that TVR-DART is capable of providing more accurate reconstruction than existing algorithms under noisy conditions from a small number of projection images and/or from a small angular range. Furthermore, the new algorithm requires less effort on parameter tuning compared with the original DART algorithm. With TVR-DART, we aim to provide the tomography society with an easy-to-use and robust algorithm for DT.In this paper, we present a novel iterative reconstruction algorithm for discrete tomography (DT) named total variation regularized discrete algebraic reconstruction technique (TVR-DART) with automated gray value estimation. This algorithm is more robust and automated than the original DART algorithm, and is aimed at imaging of objects consisting of only a few different material compositions, each corresponding to a different gray value in the reconstruction. By exploiting two types of prior knowledge of the scanned object simultaneously, TVR-DART solves the discrete reconstruction problem within an optimization framework inspired by compressive sensing to steer the current reconstruction toward a solution with the specified number of discrete gray values. The gray values and the thresholds are estimated as the reconstruction improves through iterations. Extensive experiments from simulated data, experimental μCT, and electron tomography data sets show that TVR-DART is capable of providing more accurate reconstruction than existing algorithms under noisy conditions from a small number of projection images and/or from a small angular range. Furthermore, the new algorithm requires less effort on parameter tuning compared with the original DART algorithm. With TVR-DART, we aim to provide the tomography society with an easy-to-use and robust algorithm for DT. In this paper, we present a novel iterative reconstruction algorithm for discrete tomography (DT) named total variation regularized discrete algebraic reconstruction technique (TVR-DART) with automated gray value estimation. This algorithm is more robust and automated than the original DART algorithm, and is aimed at imaging of objects consisting of only a few different material compositions, each corresponding to a different gray value in the reconstruction. By exploiting two types of prior knowledge of the scanned object simultaneously, TVR-DART solves the discrete reconstruction problem within an optimization framework inspired by compressive sensing to steer the current reconstruction toward a solution with the specified number of discrete gray values. The gray values and the thresholds are estimated as the reconstruction improves through iterations. Extensive experiments from simulated data, experimental $\mu $ CT, and electron tomography data sets show that TVR-DART is capable of providing more accurate reconstruction than existing algorithms under noisy conditions from a small number of projection images and/or from a small angular range. Furthermore, the new algorithm requires less effort on parameter tuning compared with the original DART algorithm. With TVR-DART, we aim to provide the tomography society with an easy-to-use and robust algorithm for DT.  | 
    
| Author | Palenstijn, Willem Jan Batenburg, Kees Joost Xiaodong Zhuge  | 
    
| Author_xml | – sequence: 1 surname: Xiaodong Zhuge fullname: Xiaodong Zhuge email: zhuge@cwi.nl organization: Centrum Wiskunde & Inf., Amsterdam, Netherlands – sequence: 2 givenname: Willem Jan surname: Palenstijn fullname: Palenstijn, Willem Jan email: wjp@cwi.nl organization: Centrum Wiskunde & Inf., Amsterdam, Netherlands – sequence: 3 givenname: Kees Joost surname: Batenburg fullname: Batenburg, Kees Joost email: joost.batenburg@cwi.nl organization: Centrum Wiskunde & Inf., Amsterdam, Netherlands  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26642453$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkc1v0zAYhyM0xD7gjoSEfOSSYjv-iLlF6zYmFTFVYRwjx3mzeUri4DhCFf_83LX0UHHgZMt-Huvn33uenAxugCR5T_CCEKw-l7d3C4oJX1COWS7Uq-SMKEZSjBk9iXvMZSoJU6fJ-TQ9YUwYJ-JNckqFYJTx7Cz5U96v02WxLr-gAn1zHtDa1fMUUNE9OG_DY49a59HSTsZDAFS63j14PT5u0LV3PVrZ3gZo0J13T2CCdQNa6qDRz6iiYg6u19vrG6836F53M6CrKdh4GMm3yetWdxO8268XyY_rq_Lya7r6fnN7WaxSkykWUiEamjc5rlVOWNPU0FKhdJ3XEhtt2jojDZaKa2Og1ZgLaTgoEIZrkCqy2UVCdu_Ow6g3v3XXVaOPGfymIrjaFlkFO1bbIqt9kdH5tHNG737NMIWqjxVA1-kB3DxVRKqMCkko-w9U0jwjmdy--nGPznUPzSHG33lEQOwA4900eWgrY8NLWcFr2x3yxsEf58VH4vEX_6F82CkWAA64zBjngmfPPI-2xw | 
    
| CODEN | IIPRE4 | 
    
| CitedBy_id | crossref_primary_10_1107_S1600577518013681 crossref_primary_10_1038_s41428_018_0103_1 crossref_primary_10_1109_ACCESS_2018_2800719 crossref_primary_10_1007_s00371_022_02616_w crossref_primary_10_1021_acs_accounts_7b00103 crossref_primary_10_1109_TIP_2018_2845098 crossref_primary_10_1007_s10851_024_01207_9 crossref_primary_10_1007_s10921_022_00916_8 crossref_primary_10_1088_1361_6560_ab7105 crossref_primary_10_3233_XST_221302 crossref_primary_10_1088_1361_6420_ab08f9 crossref_primary_10_1016_j_ultramic_2016_12_020 crossref_primary_10_1002_mp_15205 crossref_primary_10_1007_s10586_018_2677_y crossref_primary_10_1088_1361_6501_aa9a07 crossref_primary_10_1017_S1431927618013089 crossref_primary_10_1109_TCI_2024_3414320 crossref_primary_10_1016_j_ultramic_2017_10_013 crossref_primary_10_1088_1361_6501_aa950e crossref_primary_10_1155_2017_6482567 crossref_primary_10_1364_OE_27_033670 crossref_primary_10_1093_jmicro_dfac071 crossref_primary_10_1016_j_media_2021_102030 crossref_primary_10_1109_TIP_2019_2907461 crossref_primary_10_1007_s11340_018_0390_7 crossref_primary_10_1073_pnas_1810203115 crossref_primary_10_1364_OE_430950 crossref_primary_10_1016_j_advwatres_2018_03_007 crossref_primary_10_1016_j_ultramic_2017_01_009 crossref_primary_10_1109_TCI_2018_2885432 crossref_primary_10_3390_min9030183 crossref_primary_10_1109_TIM_2024_3413129 crossref_primary_10_1002_mp_17533 crossref_primary_10_1088_1361_6420_ac1776 crossref_primary_10_1109_TGRS_2019_2957315 crossref_primary_10_1016_j_bspc_2017_03_015 crossref_primary_10_1029_2023WR036514 crossref_primary_10_1109_TCI_2016_2563321 crossref_primary_10_1109_TCI_2021_3052034 crossref_primary_10_1016_j_media_2025_103454 crossref_primary_10_1360_TB_2022_0405 crossref_primary_10_1038_s41598_021_91776_1 crossref_primary_10_1109_TIP_2022_3152632 crossref_primary_10_1039_D3NA01089A  | 
    
| Cites_doi | 10.1098/rsta.2014.0393 10.1109/TIP.2012.2206042 10.1007/978-1-84628-723-7 10.1016/j.ultramic.2009.01.009 10.1038/nmat2406 10.1016/j.ultramic.2015.05.002 10.1109/TIT.2005.862083 10.1109/TIP.2011.2131661 10.1118/1.2836423 10.1088/0031-9155/56/18/011 10.1137/1.9780898719277 10.1109/TIP.2013.2297025 10.1109/NSSMIC.2007.4436889 10.1137/1.9780898719284 10.1038/nature09741 10.1088/0031-9155/57/7/2039 10.1214/aos/1176342503 10.1088/0031-9155/53/17/021 10.1109/TIT.2006.871582 10.1016/j.ultramic.2011.11.004 10.1111/jmi.12162 10.1016/j.ultramic.2012.07.003 10.1016/j.dam.2005.02.028 10.1007/978-0-8176-4543-4 10.1007/s10851-010-0251-1 10.1016/j.cviu.2014.06.002  | 
    
| ContentType | Journal Article | 
    
| DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 7SC 7SP 8FD F28 FR3 JQ2 L7M L~C L~D ADTOC UNPAY  | 
    
| DOI | 10.1109/TIP.2015.2504869 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library (LUT) CrossRef PubMed MEDLINE - Academic Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | PubMed MEDLINE - Academic Technology Research Database  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore Digital Library (LUT) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences Engineering  | 
    
| EISSN | 1941-0042 | 
    
| EndPage | 468 | 
    
| ExternalDocumentID | cwi:oai:cwi.nl:23689 26642453 10_1109_TIP_2015_2504869 7345565  | 
    
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article  | 
    
| GrantInformation_xml | – fundername: Stichting voor de Technische Wetenschappen through the Veni Project grantid: 13610 funderid: 10.13039/501100003958 – fundername: Netherlands Organization for Scientific Research through the Vidi Project grantid: 639-072-005 – fundername: ExxonMobil Chemical Europe Inc.  | 
    
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION AAYOK NPM PKN RIG Z5M 7X8 7SC 7SP 8FD F28 FR3 JQ2 L7M L~C L~D ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c394t-66d28d80b9814ddbef269ab8b70cacfb31d0795accefa0567c5e9e6c5ae79f263 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1057-7149 1941-0042  | 
    
| IngestDate | Sun Oct 26 04:10:51 EDT 2025 Wed Oct 01 14:48:11 EDT 2025 Sat Sep 27 16:23:58 EDT 2025 Wed Feb 19 01:59:22 EST 2025 Wed Oct 01 02:44:50 EDT 2025 Thu Apr 24 22:53:19 EDT 2025 Tue Aug 26 16:43:03 EDT 2025  | 
    
| IsDoiOpenAccess | false | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Discrete tomography total variation image reconstruction sparse reconstruction prior knowledge compressive sensing  | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html other-oa  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c394t-66d28d80b9814ddbef269ab8b70cacfb31d0795accefa0567c5e9e6c5ae79f263 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0003-3510-8508 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ir.cwi.nl/pub/23689 | 
    
| PMID | 26642453 | 
    
| PQID | 1772831379 | 
    
| PQPubID | 23479 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | unpaywall_primary_10_1109_tip_2015_2504869 proquest_miscellaneous_1793267124 crossref_citationtrail_10_1109_TIP_2015_2504869 pubmed_primary_26642453 crossref_primary_10_1109_TIP_2015_2504869 proquest_miscellaneous_1772831379 ieee_primary_7345565  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2016-Jan. 2016-1-00 2016-Jan 20160101  | 
    
| PublicationDateYYYYMMDD | 2016-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2016 text: 2016-Jan.  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | IEEE transactions on image processing | 
    
| PublicationTitleAbbrev | TIP | 
    
| PublicationTitleAlternate | IEEE Trans Image Process | 
    
| PublicationYear | 2016 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref17 ref16 ref19 ref18 ref23 giraldo (ref24) 2010; 7622 ref26 ref25 ref20 ref22 ref21 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 herman (ref1) 2009  | 
    
| References_xml | – ident: ref23 doi: 10.1098/rsta.2014.0393 – ident: ref17 doi: 10.1109/TIP.2012.2206042 – year: 2009 ident: ref1 publication-title: Fundamentals of Computerized Tomography Image Reconstruction from Projections doi: 10.1007/978-1-84628-723-7 – ident: ref16 doi: 10.1016/j.ultramic.2009.01.009 – ident: ref2 doi: 10.1038/nmat2406 – ident: ref26 doi: 10.1016/j.ultramic.2015.05.002 – ident: ref7 doi: 10.1109/TIT.2005.862083 – volume: 7622 start-page: 76222c year: 2010 ident: ref24 article-title: Non-convex prior image constrained compressed sensing (NC-PICCS) publication-title: Phys Med Imaging SPIE Med Imag – ident: ref13 doi: 10.1109/TIP.2011.2131661 – ident: ref6 doi: 10.1118/1.2836423 – ident: ref9 doi: 10.1088/0031-9155/56/18/011 – ident: ref4 doi: 10.1137/1.9780898719277 – ident: ref14 doi: 10.1109/TIP.2013.2297025 – ident: ref22 doi: 10.1109/NSSMIC.2007.4436889 – ident: ref3 doi: 10.1137/1.9780898719284 – ident: ref15 doi: 10.1038/nature09741 – ident: ref20 doi: 10.1088/0031-9155/57/7/2039 – ident: ref19 doi: 10.1214/aos/1176342503 – ident: ref8 doi: 10.1088/0031-9155/53/17/021 – ident: ref5 doi: 10.1109/TIT.2006.871582 – ident: ref10 doi: 10.1016/j.ultramic.2011.11.004 – ident: ref11 doi: 10.1111/jmi.12162 – ident: ref25 doi: 10.1016/j.ultramic.2012.07.003 – ident: ref21 doi: 10.1016/j.dam.2005.02.028 – ident: ref12 doi: 10.1007/978-0-8176-4543-4 – ident: ref27 doi: 10.1007/s10851-010-0251-1 – ident: ref18 doi: 10.1016/j.cviu.2014.06.002  | 
    
| SSID | ssj0014516 | 
    
| Score | 2.4309752 | 
    
| Snippet | In this paper, we present a novel iterative reconstruction algorithm for discrete tomography (DT) named total variation regularized discrete algebraic... | 
    
| SourceID | unpaywall proquest pubmed crossref ieee  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 455 | 
    
| SubjectTerms | Algebra Algorithms Automation compressive sensing Computed tomography Discrete tomography Image processing Image reconstruction Image segmentation Imaging Linear programming Optimization prior knowledge Reconstruction Reconstruction algorithms sparse reconstruction Tomography Total variation Tuning  | 
    
| SummonAdditionalLinks | – databaseName: IEEE Xplore Digital Library (LUT) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61vUAPLbQ8wktG4gIiu0mcxDG3FdulIC2qqm3pLfIrsOpustpNhAp_nnFeaqGquEXKWJ7In-0vHs83AG9YZmLPUO3i4s_dUBvtilBGrqdlwLXI_MyzycnTr_HxWfjlIrrYgvd9Lowxpr58Zgb2sY7l60JV9qhsyGgYIQHZhm2WxE2uVh8xsAVn68hmxFyGtL8LSXp8OPt8Yu9wRQMr15XEVigUPbMhP3pjN6rLq9zGNHfhXpWvxNVPsVhc230m-zDt_G4unVwOqlIO1K-_JB3_98MewF5LQ8mowc1D2DL5Aey3lJS0E35zALvX9AoP4ffs_NQdIwX-QEZkip2Q00JWm5KMFt-L9bz8sSTIgcl4jmsRknEyK5atIjaZrIslabOpyElz_IOQIGNRCvINm5JRVRZIn_H1p7W4IudiURlyhCtQk1z5CM4mR7OPx25bvcFVlIelG8c6SHTiSZ74odbSZEHMhUwk85RQmaS-9hiPhFImE0jDmIoMN7GKhGEcbelj2MmL3DwFogOmTOhnGfKZUHuKU25lBikNNI91lDkw7EYxVa20ua2wsUjrXxyPpwiB1EIgbSHgwNu-xaqR9bjD9tCOWG_XDpYDrzugpDglbZxF5KaoNqmPfywJ9Snjd9lY4syQXTnwpEFZ30EHTgfe9bD7x8tyvrrh5bPbvXwO99GqPTR6ATvlujIvkUaV8lU9f_4AWRwWfw priority: 102 providerName: IEEE  | 
    
| Title | TVR-DART: A More Robust Algorithm for Discrete Tomography From Limited Projection Data With Automated Gray Value Estimation | 
    
| URI | https://ieeexplore.ieee.org/document/7345565 https://www.ncbi.nlm.nih.gov/pubmed/26642453 https://www.proquest.com/docview/1772831379 https://www.proquest.com/docview/1793267124 https://ir.cwi.nl/pub/23689  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 25 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore Digital Library (LUT) customDbUrl: eissn: 1941-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014516 issn: 1057-7149 databaseCode: RIE dateStart: 19920101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6N7gHtgcEGIwwmI_ECUtokTuIY8RLRlYG0qZraMZ4ix3agIk2mNNG08c9zbtKq_JrEc87KSfed_V0u9xngFct06GiqbNz8ue0rrWzhp4HtqNTjSmRu5pjh5NOz8GTqf7oMLrfgcD0LU_Xl9axf5AN0Z-DRMOL3YDsMkGj3YHt6No6_LPuXAbOZuyS3WIVjQYzYWzUhHT6oZ0aK0g36RqArMj8zbxw6y1tU_kYod-B-U1yJm2uR5xuHzGgX3q3ca_8t-d5v6rQvb39TbvyH_w_hQUcuSdyi4RFs6WIPdjuiSbo0XuzBzoYK4T78mFyc20Mktm9JTE7LSpPzMm0WNYnzr2U1q7_NCTJbMpzhDoMUm0zKeadzTUZVOSfdjBQZtx91MNBkKGpBPuNSEjd1iaQYH3-oxA25EHmjyTHuK-3I5GOYjo4n70_s7k4GW1Lu13YYKi9SkZPyyPWVSnXmhVykUcocKWSWUlc5jAdCSp0JJFdMBprrUAZCM4629An0irLQT4Eoj0ntu1mGLMVXjuSUG_FASj3FQxVkFgxWQUtkJ1hu7s3Ik2Xh4vBk8nGcmDAnXZgteL1ecdWKddxhu29wsLZj1A-Q3FrwcoWLBBPNdE9EoctmkbhYh0TUpYzfZWPoMEPOZMFBC6r1CzAZTJeZWvBmjbI_vETg_uLls_8xfg69umr0C2RJdXq0HGU86nLmJ7_-Dr0 | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4a42HsgcHGpVyNxAuItEltxzFvFV3pYJ2mqbu8RY7tQEXbVG0iNPjzHCdptME08RYpx_KJ_Nn-4uPzHYC3IrWhb6nxcPGXHjPWeIol3PNN0pVGpUHqu-Tk0VE4PGVfLvjFBnxocmGsteXlM9t2j2Us32S6cEdlHUEZRwJyB-5yxhivsrWamIErOVvGNrnwBBL_dVDSl53xwbG7xcXbTrArCp1UKPrmgn702n5UFli5iWtuw1YxX6jLn2o6vbL_DHZgtPa8unbyo13kSVv_-kvU8X8_7QHcr4ko6VXIeQgbdr4LOzUpJfWUX-3C9hXFwj34PT478fpIgj-SHhlhJ-QkS4pVTnrTb9lykn-fEWTBpD_B1QjpOBlns1oTmwyW2YzU-VTkuDoAQlCQvsoVOcempFfkGRJofP15qS7JmZoWluzjGlSlVz6C08H--NPQq-s3eJpKlnthaLqRifxERgEzJrFpN5QqiRLha6XThAbGF5IrrW2qkIgJza20oebKCom29DFszrO5fQrEdIW2LEhTZDTM-FpS6YQGKe0aGRqetqCzHsVY1-LmrsbGNC5_cnwZIwRiB4G4hkAL3jUtFpWwxy22e27EGrt6sFrwZg2UGCeli7Souc2KVRzgP0tEAyrkbTaOOgvkVy14UqGs6WANzha8b2D3j5f5ZHHNy2c3e_katobj0WF8eHD09Tncwxb1EdIL2MyXhX2JpCpPXpVz6Q8MRBnM | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6V9IB6oNDyMC8tEheQnNhe2-tFXCzSUJBaRVVSysla764hwrErx1ZV-PPMxo4VXpU4e1Yeab7Z_cbj-RbgJct06GiqbNz8ue0rrWzhp4HtqNTjSmRu5pjh5JPT8Hjuf7wILnbgST8LUw3l1WJY5CN0Z-TRMOK3YDcMkGgPYHd-Oo0_r_uXAbOZuya3WIVjQYzY2zQhHT6qF0aK0g2GRqArMj8zbx0661tU_kYo9-B2U1yK6yuR51uHzGQf3m7ca_8t-TZs6nQov_-m3PgP_-_CnY5ckrhFwz3Y0cUB7HdEk3RpvDqAvS0VwkP4MTs_s8dIbN-QmJyUlSZnZdqsahLnX8pqUX9dEmS2ZLzAHQYpNpmVy07nmkyqckm6GSkybT_qYKDJWNSCfMKlJG7qEkkxPn5fiWtyLvJGkyPcV9qRyfswnxzN3h3b3Z0MtqTcr-0wVF6kIiflkesrlerMC7lIo5Q5Usgspa5yGA-ElDoTSK6YDDTXoQyEZhxt6QMYFGWhHwFRHpPad7MMWYqvHMkpN-KBlHqKhyrILBhtgpbITrDc3JuRJ-vCxeHJ7MM0MWFOujBb8KpfcdmKddxge2hw0Nsx6gdIbi14scFFgolmuiei0GWzSlysQyLqUsZvsjF0mCFnsuBhC6r-BZgMpstMLXjdo-wPLxG4v3j5-H-Mn8Kgrhr9DFlSnT7vsuUnbSENvA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TVR-DART%3A+A+More+Robust+Algorithm+for+Discrete+Tomography+From+Limited+Projection+Data+With+Automated+Gray+Value+Estimation&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Palenstijn%2C+Willem+Jan&rft.au=Batenburg%2C+Kees+Joost&rft.date=2016-01-01&rft.issn=1941-0042&rft.eissn=1941-0042&rft.volume=25&rft.issue=1&rft.spage=455&rft_id=info:doi/10.1109%2FTIP.2015.2504869&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |