TVR-DART: A More Robust Algorithm for Discrete Tomography From Limited Projection Data With Automated Gray Value Estimation

In this paper, we present a novel iterative reconstruction algorithm for discrete tomography (DT) named total variation regularized discrete algebraic reconstruction technique (TVR-DART) with automated gray value estimation. This algorithm is more robust and automated than the original DART algorith...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 25; no. 1; pp. 455 - 468
Main Authors Xiaodong Zhuge, Palenstijn, Willem Jan, Batenburg, Kees Joost
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2016
Subjects
Online AccessGet full text
ISSN1057-7149
1941-0042
1941-0042
DOI10.1109/TIP.2015.2504869

Cover

Abstract In this paper, we present a novel iterative reconstruction algorithm for discrete tomography (DT) named total variation regularized discrete algebraic reconstruction technique (TVR-DART) with automated gray value estimation. This algorithm is more robust and automated than the original DART algorithm, and is aimed at imaging of objects consisting of only a few different material compositions, each corresponding to a different gray value in the reconstruction. By exploiting two types of prior knowledge of the scanned object simultaneously, TVR-DART solves the discrete reconstruction problem within an optimization framework inspired by compressive sensing to steer the current reconstruction toward a solution with the specified number of discrete gray values. The gray values and the thresholds are estimated as the reconstruction improves through iterations. Extensive experiments from simulated data, experimental μCT, and electron tomography data sets show that TVR-DART is capable of providing more accurate reconstruction than existing algorithms under noisy conditions from a small number of projection images and/or from a small angular range. Furthermore, the new algorithm requires less effort on parameter tuning compared with the original DART algorithm. With TVR-DART, we aim to provide the tomography society with an easy-to-use and robust algorithm for DT.
AbstractList In this paper, we present a novel iterative reconstruction algorithm for discrete tomography (DT) named total variation regularized discrete algebraic reconstruction technique (TVR-DART) with automated gray value estimation. This algorithm is more robust and automated than the original DART algorithm, and is aimed at imaging of objects consisting of only a few different material compositions, each corresponding to a different gray value in the reconstruction. By exploiting two types of prior knowledge of the scanned object simultaneously, TVR-DART solves the discrete reconstruction problem within an optimization framework inspired by compressive sensing to steer the current reconstruction toward a solution with the specified number of discrete gray values. The gray values and the thresholds are estimated as the reconstruction improves through iterations. Extensive experiments from simulated data, experimental μCT, and electron tomography data sets show that TVR-DART is capable of providing more accurate reconstruction than existing algorithms under noisy conditions from a small number of projection images and/or from a small angular range. Furthermore, the new algorithm requires less effort on parameter tuning compared with the original DART algorithm. With TVR-DART, we aim to provide the tomography society with an easy-to-use and robust algorithm for DT.
In this paper, we present a novel iterative reconstruction algorithm for discrete tomography (DT) named total variation regularized discrete algebraic reconstruction technique (TVR-DART) with automated gray value estimation. This algorithm is more robust and automated than the original DART algorithm, and is aimed at imaging of objects consisting of only a few different material compositions, each corresponding to a different gray value in the reconstruction. By exploiting two types of prior knowledge of the scanned object simultaneously, TVR-DART solves the discrete reconstruction problem within an optimization framework inspired by compressive sensing to steer the current reconstruction toward a solution with the specified number of discrete gray values. The gray values and the thresholds are estimated as the reconstruction improves through iterations. Extensive experiments from simulated data, experimental μCT, and electron tomography data sets show that TVR-DART is capable of providing more accurate reconstruction than existing algorithms under noisy conditions from a small number of projection images and/or from a small angular range. Furthermore, the new algorithm requires less effort on parameter tuning compared with the original DART algorithm. With TVR-DART, we aim to provide the tomography society with an easy-to-use and robust algorithm for DT.In this paper, we present a novel iterative reconstruction algorithm for discrete tomography (DT) named total variation regularized discrete algebraic reconstruction technique (TVR-DART) with automated gray value estimation. This algorithm is more robust and automated than the original DART algorithm, and is aimed at imaging of objects consisting of only a few different material compositions, each corresponding to a different gray value in the reconstruction. By exploiting two types of prior knowledge of the scanned object simultaneously, TVR-DART solves the discrete reconstruction problem within an optimization framework inspired by compressive sensing to steer the current reconstruction toward a solution with the specified number of discrete gray values. The gray values and the thresholds are estimated as the reconstruction improves through iterations. Extensive experiments from simulated data, experimental μCT, and electron tomography data sets show that TVR-DART is capable of providing more accurate reconstruction than existing algorithms under noisy conditions from a small number of projection images and/or from a small angular range. Furthermore, the new algorithm requires less effort on parameter tuning compared with the original DART algorithm. With TVR-DART, we aim to provide the tomography society with an easy-to-use and robust algorithm for DT.
In this paper, we present a novel iterative reconstruction algorithm for discrete tomography (DT) named total variation regularized discrete algebraic reconstruction technique (TVR-DART) with automated gray value estimation. This algorithm is more robust and automated than the original DART algorithm, and is aimed at imaging of objects consisting of only a few different material compositions, each corresponding to a different gray value in the reconstruction. By exploiting two types of prior knowledge of the scanned object simultaneously, TVR-DART solves the discrete reconstruction problem within an optimization framework inspired by compressive sensing to steer the current reconstruction toward a solution with the specified number of discrete gray values. The gray values and the thresholds are estimated as the reconstruction improves through iterations. Extensive experiments from simulated data, experimental $\mu $ CT, and electron tomography data sets show that TVR-DART is capable of providing more accurate reconstruction than existing algorithms under noisy conditions from a small number of projection images and/or from a small angular range. Furthermore, the new algorithm requires less effort on parameter tuning compared with the original DART algorithm. With TVR-DART, we aim to provide the tomography society with an easy-to-use and robust algorithm for DT.
Author Palenstijn, Willem Jan
Batenburg, Kees Joost
Xiaodong Zhuge
Author_xml – sequence: 1
  surname: Xiaodong Zhuge
  fullname: Xiaodong Zhuge
  email: zhuge@cwi.nl
  organization: Centrum Wiskunde & Inf., Amsterdam, Netherlands
– sequence: 2
  givenname: Willem Jan
  surname: Palenstijn
  fullname: Palenstijn, Willem Jan
  email: wjp@cwi.nl
  organization: Centrum Wiskunde & Inf., Amsterdam, Netherlands
– sequence: 3
  givenname: Kees Joost
  surname: Batenburg
  fullname: Batenburg, Kees Joost
  email: joost.batenburg@cwi.nl
  organization: Centrum Wiskunde & Inf., Amsterdam, Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26642453$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1v0zAYhyM0xD7gjoSEfOSSYjv-iLlF6zYmFTFVYRwjx3mzeUri4DhCFf_83LX0UHHgZMt-Huvn33uenAxugCR5T_CCEKw-l7d3C4oJX1COWS7Uq-SMKEZSjBk9iXvMZSoJU6fJ-TQ9YUwYJ-JNckqFYJTx7Cz5U96v02WxLr-gAn1zHtDa1fMUUNE9OG_DY49a59HSTsZDAFS63j14PT5u0LV3PVrZ3gZo0J13T2CCdQNa6qDRz6iiYg6u19vrG6836F53M6CrKdh4GMm3yetWdxO8268XyY_rq_Lya7r6fnN7WaxSkykWUiEamjc5rlVOWNPU0FKhdJ3XEhtt2jojDZaKa2Og1ZgLaTgoEIZrkCqy2UVCdu_Ow6g3v3XXVaOPGfymIrjaFlkFO1bbIqt9kdH5tHNG737NMIWqjxVA1-kB3DxVRKqMCkko-w9U0jwjmdy--nGPznUPzSHG33lEQOwA4900eWgrY8NLWcFr2x3yxsEf58VH4vEX_6F82CkWAA64zBjngmfPPI-2xw
CODEN IIPRE4
CitedBy_id crossref_primary_10_1107_S1600577518013681
crossref_primary_10_1038_s41428_018_0103_1
crossref_primary_10_1109_ACCESS_2018_2800719
crossref_primary_10_1007_s00371_022_02616_w
crossref_primary_10_1021_acs_accounts_7b00103
crossref_primary_10_1109_TIP_2018_2845098
crossref_primary_10_1007_s10851_024_01207_9
crossref_primary_10_1007_s10921_022_00916_8
crossref_primary_10_1088_1361_6560_ab7105
crossref_primary_10_3233_XST_221302
crossref_primary_10_1088_1361_6420_ab08f9
crossref_primary_10_1016_j_ultramic_2016_12_020
crossref_primary_10_1002_mp_15205
crossref_primary_10_1007_s10586_018_2677_y
crossref_primary_10_1088_1361_6501_aa9a07
crossref_primary_10_1017_S1431927618013089
crossref_primary_10_1109_TCI_2024_3414320
crossref_primary_10_1016_j_ultramic_2017_10_013
crossref_primary_10_1088_1361_6501_aa950e
crossref_primary_10_1155_2017_6482567
crossref_primary_10_1364_OE_27_033670
crossref_primary_10_1093_jmicro_dfac071
crossref_primary_10_1016_j_media_2021_102030
crossref_primary_10_1109_TIP_2019_2907461
crossref_primary_10_1007_s11340_018_0390_7
crossref_primary_10_1073_pnas_1810203115
crossref_primary_10_1364_OE_430950
crossref_primary_10_1016_j_advwatres_2018_03_007
crossref_primary_10_1016_j_ultramic_2017_01_009
crossref_primary_10_1109_TCI_2018_2885432
crossref_primary_10_3390_min9030183
crossref_primary_10_1109_TIM_2024_3413129
crossref_primary_10_1002_mp_17533
crossref_primary_10_1088_1361_6420_ac1776
crossref_primary_10_1109_TGRS_2019_2957315
crossref_primary_10_1016_j_bspc_2017_03_015
crossref_primary_10_1029_2023WR036514
crossref_primary_10_1109_TCI_2016_2563321
crossref_primary_10_1109_TCI_2021_3052034
crossref_primary_10_1016_j_media_2025_103454
crossref_primary_10_1360_TB_2022_0405
crossref_primary_10_1038_s41598_021_91776_1
crossref_primary_10_1109_TIP_2022_3152632
crossref_primary_10_1039_D3NA01089A
Cites_doi 10.1098/rsta.2014.0393
10.1109/TIP.2012.2206042
10.1007/978-1-84628-723-7
10.1016/j.ultramic.2009.01.009
10.1038/nmat2406
10.1016/j.ultramic.2015.05.002
10.1109/TIT.2005.862083
10.1109/TIP.2011.2131661
10.1118/1.2836423
10.1088/0031-9155/56/18/011
10.1137/1.9780898719277
10.1109/TIP.2013.2297025
10.1109/NSSMIC.2007.4436889
10.1137/1.9780898719284
10.1038/nature09741
10.1088/0031-9155/57/7/2039
10.1214/aos/1176342503
10.1088/0031-9155/53/17/021
10.1109/TIT.2006.871582
10.1016/j.ultramic.2011.11.004
10.1111/jmi.12162
10.1016/j.ultramic.2012.07.003
10.1016/j.dam.2005.02.028
10.1007/978-0-8176-4543-4
10.1007/s10851-010-0251-1
10.1016/j.cviu.2014.06.002
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1109/TIP.2015.2504869
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library (LUT)
CrossRef
PubMed
MEDLINE - Academic
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList PubMed
MEDLINE - Academic
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore Digital Library (LUT)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 468
ExternalDocumentID cwi:oai:cwi.nl:23689
26642453
10_1109_TIP_2015_2504869
7345565
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Stichting voor de Technische Wetenschappen through the Veni Project
  grantid: 13610
  funderid: 10.13039/501100003958
– fundername: Netherlands Organization for Scientific Research through the Vidi Project
  grantid: 639-072-005
– fundername: ExxonMobil Chemical Europe Inc.
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
NPM
PKN
RIG
Z5M
7X8
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c394t-66d28d80b9814ddbef269ab8b70cacfb31d0795accefa0567c5e9e6c5ae79f263
IEDL.DBID UNPAY
ISSN 1057-7149
1941-0042
IngestDate Sun Oct 26 04:10:51 EDT 2025
Wed Oct 01 14:48:11 EDT 2025
Sat Sep 27 16:23:58 EDT 2025
Wed Feb 19 01:59:22 EST 2025
Wed Oct 01 02:44:50 EDT 2025
Thu Apr 24 22:53:19 EDT 2025
Tue Aug 26 16:43:03 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Discrete tomography
total variation
image reconstruction
sparse reconstruction
prior knowledge
compressive sensing
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-66d28d80b9814ddbef269ab8b70cacfb31d0795accefa0567c5e9e6c5ae79f263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3510-8508
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ir.cwi.nl/pub/23689
PMID 26642453
PQID 1772831379
PQPubID 23479
PageCount 14
ParticipantIDs unpaywall_primary_10_1109_tip_2015_2504869
proquest_miscellaneous_1793267124
crossref_citationtrail_10_1109_TIP_2015_2504869
pubmed_primary_26642453
crossref_primary_10_1109_TIP_2015_2504869
proquest_miscellaneous_1772831379
ieee_primary_7345565
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-Jan.
2016-1-00
2016-Jan
20160101
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-Jan.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref17
ref16
ref19
ref18
ref23
giraldo (ref24) 2010; 7622
ref26
ref25
ref20
ref22
ref21
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
herman (ref1) 2009
References_xml – ident: ref23
  doi: 10.1098/rsta.2014.0393
– ident: ref17
  doi: 10.1109/TIP.2012.2206042
– year: 2009
  ident: ref1
  publication-title: Fundamentals of Computerized Tomography Image Reconstruction from Projections
  doi: 10.1007/978-1-84628-723-7
– ident: ref16
  doi: 10.1016/j.ultramic.2009.01.009
– ident: ref2
  doi: 10.1038/nmat2406
– ident: ref26
  doi: 10.1016/j.ultramic.2015.05.002
– ident: ref7
  doi: 10.1109/TIT.2005.862083
– volume: 7622
  start-page: 76222c
  year: 2010
  ident: ref24
  article-title: Non-convex prior image constrained compressed sensing (NC-PICCS)
  publication-title: Phys Med Imaging SPIE Med Imag
– ident: ref13
  doi: 10.1109/TIP.2011.2131661
– ident: ref6
  doi: 10.1118/1.2836423
– ident: ref9
  doi: 10.1088/0031-9155/56/18/011
– ident: ref4
  doi: 10.1137/1.9780898719277
– ident: ref14
  doi: 10.1109/TIP.2013.2297025
– ident: ref22
  doi: 10.1109/NSSMIC.2007.4436889
– ident: ref3
  doi: 10.1137/1.9780898719284
– ident: ref15
  doi: 10.1038/nature09741
– ident: ref20
  doi: 10.1088/0031-9155/57/7/2039
– ident: ref19
  doi: 10.1214/aos/1176342503
– ident: ref8
  doi: 10.1088/0031-9155/53/17/021
– ident: ref5
  doi: 10.1109/TIT.2006.871582
– ident: ref10
  doi: 10.1016/j.ultramic.2011.11.004
– ident: ref11
  doi: 10.1111/jmi.12162
– ident: ref25
  doi: 10.1016/j.ultramic.2012.07.003
– ident: ref21
  doi: 10.1016/j.dam.2005.02.028
– ident: ref12
  doi: 10.1007/978-0-8176-4543-4
– ident: ref27
  doi: 10.1007/s10851-010-0251-1
– ident: ref18
  doi: 10.1016/j.cviu.2014.06.002
SSID ssj0014516
Score 2.4309752
Snippet In this paper, we present a novel iterative reconstruction algorithm for discrete tomography (DT) named total variation regularized discrete algebraic...
SourceID unpaywall
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 455
SubjectTerms Algebra
Algorithms
Automation
compressive sensing
Computed tomography
Discrete tomography
Image processing
Image reconstruction
Image segmentation
Imaging
Linear programming
Optimization
prior knowledge
Reconstruction
Reconstruction algorithms
sparse reconstruction
Tomography
Total variation
Tuning
SummonAdditionalLinks – databaseName: IEEE Xplore Digital Library (LUT)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61vUAPLbQ8wktG4gIiu0mcxDG3FdulIC2qqm3pLfIrsOpustpNhAp_nnFeaqGquEXKWJ7In-0vHs83AG9YZmLPUO3i4s_dUBvtilBGrqdlwLXI_MyzycnTr_HxWfjlIrrYgvd9Lowxpr58Zgb2sY7l60JV9qhsyGgYIQHZhm2WxE2uVh8xsAVn68hmxFyGtL8LSXp8OPt8Yu9wRQMr15XEVigUPbMhP3pjN6rLq9zGNHfhXpWvxNVPsVhc230m-zDt_G4unVwOqlIO1K-_JB3_98MewF5LQ8mowc1D2DL5Aey3lJS0E35zALvX9AoP4ffs_NQdIwX-QEZkip2Q00JWm5KMFt-L9bz8sSTIgcl4jmsRknEyK5atIjaZrIslabOpyElz_IOQIGNRCvINm5JRVRZIn_H1p7W4IudiURlyhCtQk1z5CM4mR7OPx25bvcFVlIelG8c6SHTiSZ74odbSZEHMhUwk85RQmaS-9hiPhFImE0jDmIoMN7GKhGEcbelj2MmL3DwFogOmTOhnGfKZUHuKU25lBikNNI91lDkw7EYxVa20ua2wsUjrXxyPpwiB1EIgbSHgwNu-xaqR9bjD9tCOWG_XDpYDrzugpDglbZxF5KaoNqmPfywJ9Snjd9lY4syQXTnwpEFZ30EHTgfe9bD7x8tyvrrh5bPbvXwO99GqPTR6ATvlujIvkUaV8lU9f_4AWRwWfw
  priority: 102
  providerName: IEEE
Title TVR-DART: A More Robust Algorithm for Discrete Tomography From Limited Projection Data With Automated Gray Value Estimation
URI https://ieeexplore.ieee.org/document/7345565
https://www.ncbi.nlm.nih.gov/pubmed/26642453
https://www.proquest.com/docview/1772831379
https://www.proquest.com/docview/1793267124
https://ir.cwi.nl/pub/23689
UnpaywallVersion submittedVersion
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library (LUT)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6N7gHtgcEGIwwmI_ECUtokTuIY8RLRlYG0qZraMZ4ix3agIk2mNNG08c9zbtKq_JrEc87KSfed_V0u9xngFct06GiqbNz8ue0rrWzhp4HtqNTjSmRu5pjh5NOz8GTqf7oMLrfgcD0LU_Xl9axf5AN0Z-DRMOL3YDsMkGj3YHt6No6_LPuXAbOZuyS3WIVjQYzYWzUhHT6oZ0aK0g36RqArMj8zbxw6y1tU_kYod-B-U1yJm2uR5xuHzGgX3q3ca_8t-d5v6rQvb39TbvyH_w_hQUcuSdyi4RFs6WIPdjuiSbo0XuzBzoYK4T78mFyc20Mktm9JTE7LSpPzMm0WNYnzr2U1q7_NCTJbMpzhDoMUm0zKeadzTUZVOSfdjBQZtx91MNBkKGpBPuNSEjd1iaQYH3-oxA25EHmjyTHuK-3I5GOYjo4n70_s7k4GW1Lu13YYKi9SkZPyyPWVSnXmhVykUcocKWSWUlc5jAdCSp0JJFdMBprrUAZCM4629An0irLQT4Eoj0ntu1mGLMVXjuSUG_FASj3FQxVkFgxWQUtkJ1hu7s3Ik2Xh4vBk8nGcmDAnXZgteL1ecdWKddxhu29wsLZj1A-Q3FrwcoWLBBPNdE9EoctmkbhYh0TUpYzfZWPoMEPOZMFBC6r1CzAZTJeZWvBmjbI_vETg_uLls_8xfg69umr0C2RJdXq0HGU86nLmJ7_-Dr0
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4a42HsgcHGpVyNxAuItEltxzFvFV3pYJ2mqbu8RY7tQEXbVG0iNPjzHCdptME08RYpx_KJ_Nn-4uPzHYC3IrWhb6nxcPGXHjPWeIol3PNN0pVGpUHqu-Tk0VE4PGVfLvjFBnxocmGsteXlM9t2j2Us32S6cEdlHUEZRwJyB-5yxhivsrWamIErOVvGNrnwBBL_dVDSl53xwbG7xcXbTrArCp1UKPrmgn702n5UFli5iWtuw1YxX6jLn2o6vbL_DHZgtPa8unbyo13kSVv_-kvU8X8_7QHcr4ko6VXIeQgbdr4LOzUpJfWUX-3C9hXFwj34PT478fpIgj-SHhlhJ-QkS4pVTnrTb9lykn-fEWTBpD_B1QjpOBlns1oTmwyW2YzU-VTkuDoAQlCQvsoVOcempFfkGRJofP15qS7JmZoWluzjGlSlVz6C08H--NPQq-s3eJpKlnthaLqRifxERgEzJrFpN5QqiRLha6XThAbGF5IrrW2qkIgJza20oebKCom29DFszrO5fQrEdIW2LEhTZDTM-FpS6YQGKe0aGRqetqCzHsVY1-LmrsbGNC5_cnwZIwRiB4G4hkAL3jUtFpWwxy22e27EGrt6sFrwZg2UGCeli7Souc2KVRzgP0tEAyrkbTaOOgvkVy14UqGs6WANzha8b2D3j5f5ZHHNy2c3e_katobj0WF8eHD09Tncwxb1EdIL2MyXhX2JpCpPXpVz6Q8MRBnM
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6V9IB6oNDyMC8tEheQnNhe2-tFXCzSUJBaRVVSysla764hwrErx1ZV-PPMxo4VXpU4e1Yeab7Z_cbj-RbgJct06GiqbNz8ue0rrWzhp4HtqNTjSmRu5pjh5JPT8Hjuf7wILnbgST8LUw3l1WJY5CN0Z-TRMOK3YDcMkGgPYHd-Oo0_r_uXAbOZuya3WIVjQYzY2zQhHT6qF0aK0g2GRqArMj8zbx0661tU_kYo9-B2U1yK6yuR51uHzGQf3m7ca_8t-TZs6nQov_-m3PgP_-_CnY5ckrhFwz3Y0cUB7HdEk3RpvDqAvS0VwkP4MTs_s8dIbN-QmJyUlSZnZdqsahLnX8pqUX9dEmS2ZLzAHQYpNpmVy07nmkyqckm6GSkybT_qYKDJWNSCfMKlJG7qEkkxPn5fiWtyLvJGkyPcV9qRyfswnxzN3h3b3Z0MtqTcr-0wVF6kIiflkesrlerMC7lIo5Q5Usgspa5yGA-ElDoTSK6YDDTXoQyEZhxt6QMYFGWhHwFRHpPad7MMWYqvHMkpN-KBlHqKhyrILBhtgpbITrDc3JuRJ-vCxeHJ7MM0MWFOujBb8KpfcdmKddxge2hw0Nsx6gdIbi14scFFgolmuiei0GWzSlysQyLqUsZvsjF0mCFnsuBhC6r-BZgMpstMLXjdo-wPLxG4v3j5-H-Mn8Kgrhr9DFlSnT7vsuUnbSENvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TVR-DART%3A+A+More+Robust+Algorithm+for+Discrete+Tomography+From+Limited+Projection+Data+With+Automated+Gray+Value+Estimation&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Palenstijn%2C+Willem+Jan&rft.au=Batenburg%2C+Kees+Joost&rft.date=2016-01-01&rft.issn=1941-0042&rft.eissn=1941-0042&rft.volume=25&rft.issue=1&rft.spage=455&rft_id=info:doi/10.1109%2FTIP.2015.2504869&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon