Self-Supervised Learning for data scarcity in a fatigue damage prognostic problem
With the increasing availability of data for Prognostics and Health Management (PHM), Deep Learning (DL) techniques are now the subject of considerable attention for this application, often achieving more accurate Remaining Useful Life (RUL) predictions. However, one of the major challenges for DL t...
Saved in:
| Published in | Engineering applications of artificial intelligence Vol. 120; p. 105837 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.04.2023
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0952-1976 1873-6769 1873-6769 |
| DOI | 10.1016/j.engappai.2023.105837 |
Cover
| Abstract | With the increasing availability of data for Prognostics and Health Management (PHM), Deep Learning (DL) techniques are now the subject of considerable attention for this application, often achieving more accurate Remaining Useful Life (RUL) predictions. However, one of the major challenges for DL techniques resides in the difficulty of obtaining large amounts of labelled data on industrial systems. To overcome this lack of labelled data, an emerging learning technique is considered in our work: Self-Supervised Learning, a sub-category of unsupervised learning approaches. This paper aims to investigate whether pre-training DL models in a self-supervised way on unlabelled sensors data can be useful for RUL estimation with only Few-Shots Learning, i.e. with scarce labelled data. In this research, a fatigue damage prognostics problem is addressed, through the estimation of the RUL of aluminium alloy panels (typical of aerospace structures) subject to fatigue cracks from strain gauge data. Synthetic datasets composed of strain data are used allowing to extensively investigate the influence of the dataset size on the predictive performance. Results show that the self-supervised pre-trained models are able to significantly outperform the non-pre-trained models in downstream RUL prediction task, and with less computational expense, showing promising results in prognostic tasks when only limited labelled data is available.
•Self-supervised learning is investigated to address data scarcity in prognostics.•Fatigue crack propagation prognostics in structures based on strain data.•Synthetic dataset composed of multivariate run-to-failure strain time series.•Self-supervised pre-trained models improve RUL estimation performance.
[Display omitted] |
|---|---|
| AbstractList | With the increasing availability of data for Prognostics and Health Management (PHM), Deep Learning (DL) techniques are now the subject of considerable attention for this application, often achieving more accurate Remaining Useful Life (RUL) predictions. However, one of the major challenges for DL techniques resides in the difficulty of obtaininglarge amounts of labelled data on industrial systems. To overcome this lack of labelled data, an emerging learning technique is considered in our work: Self-Supervised Learning, a sub-category of unsupervised learning approaches. This paper aims to investigate whether pre-training DL models in a self-supervised way on unlabelled sensors data can be useful for RUL estimation with only Few-Shots Learning, i.e. with scarce labelled data. In this research, a fatigue damage prognostics problem is addressed, through the estimation of the RUL of aluminum alloy panels (typical of aerospace structures) subject to fatigue cracks from strain gauge data. Synthetic datasets composed of strain data are used allowing to extensively investigate the influence of the dataset size on the predictive performance. Results show that the self-supervised pre-trained models are able to significantly outperform the non-pre-trained models in downstream RUL prediction task, and with less computational expense, showing promising results in prognostic tasks when only limited labelled data is available. With the increasing availability of data for Prognostics and Health Management (PHM), Deep Learning (DL) techniques are now the subject of considerable attention for this application, often achieving more accurate Remaining Useful Life (RUL) predictions. However, one of the major challenges for DL techniques resides in the difficulty of obtaining large amounts of labelled data on industrial systems. To overcome this lack of labelled data, an emerging learning technique is considered in our work: Self-Supervised Learning, a sub-category of unsupervised learning approaches. This paper aims to investigate whether pre-training DL models in a self-supervised way on unlabelled sensors data can be useful for RUL estimation with only Few-Shots Learning, i.e. with scarce labelled data. In this research, a fatigue damage prognostics problem is addressed, through the estimation of the RUL of aluminium alloy panels (typical of aerospace structures) subject to fatigue cracks from strain gauge data. Synthetic datasets composed of strain data are used allowing to extensively investigate the influence of the dataset size on the predictive performance. Results show that the self-supervised pre-trained models are able to significantly outperform the non-pre-trained models in downstream RUL prediction task, and with less computational expense, showing promising results in prognostic tasks when only limited labelled data is available. •Self-supervised learning is investigated to address data scarcity in prognostics.•Fatigue crack propagation prognostics in structures based on strain data.•Synthetic dataset composed of multivariate run-to-failure strain time series.•Self-supervised pre-trained models improve RUL estimation performance. [Display omitted] |
| ArticleNumber | 105837 |
| Author | Akrim, Anass Salaün, Michel Gogu, Christian Vingerhoeds, Rob |
| Author_xml | – sequence: 1 givenname: Anass orcidid: 0000-0003-4944-000X surname: Akrim fullname: Akrim, Anass email: anass.akrim@gmail.com organization: Institut Clément Ader (UMR CNRS 5312) INSA/UPS/ISAE/Mines Albi, Université de Toulouse, 3 rue Caroline Aigle, 31400 Toulouse, France – sequence: 2 givenname: Christian surname: Gogu fullname: Gogu, Christian organization: Institut Clément Ader (UMR CNRS 5312) INSA/UPS/ISAE/Mines Albi, Université de Toulouse, 3 rue Caroline Aigle, 31400 Toulouse, France – sequence: 3 givenname: Rob orcidid: 0000-0002-2339-4853 surname: Vingerhoeds fullname: Vingerhoeds, Rob organization: ISAE-SUPAERO, Université de Toulouse, 10 Avenue Edouard Belin, 31400 Toulouse, France – sequence: 4 givenname: Michel surname: Salaün fullname: Salaün, Michel organization: Institut Clément Ader (UMR CNRS 5312) INSA/UPS/ISAE/Mines Albi, Université de Toulouse, 3 rue Caroline Aigle, 31400 Toulouse, France |
| BackLink | https://hal.science/hal-03978536$$DView record in HAL |
| BookMark | eNqNkE1r3DAQhkVJoZu0f6H42oO3I2stWdBDQ8gXLISQ9ixm5ZGrxSsbybth_320uCHQS3qaYeZ9Rug5Z2dhCMTYVw5LDlx-3y4pdDiO6JcVVCIP60aoD2zBGyVKqaQ-YwvQdVVyreQndp7SFgBEs5IL9vhEvSuf9iPFg0_UFmvCGHzoCjfEosUJi2QxWj8dCx8KLBxOvttTXu2wo2KMQxeGNHl7ajc97T6zjw77RF_-1gv2--b619VduX64vb-6XJdW6NVU1q6tQUlwGuSqrjaq4QpsBa4CbMBtKpL5G7ayDXFbtxysyr3TeoVakGzFBVPz3X0Y8fiMfW_G6HcYj4aDOZkxW_NqxpzMmNlMJr_N5B98Y4Ycurtcm9MMhFZNLeSB56ycszYOKUVy___Ij3_A7DC7G8IU0ffv4z9nnLLCg6dokvUULLU-kp1MO_j3TrwAwk2mDg |
| CitedBy_id | crossref_primary_10_1016_j_ress_2024_110296 crossref_primary_10_3390_aerospace11090741 crossref_primary_10_1016_j_compositesb_2024_111863 crossref_primary_10_3390_math12050758 crossref_primary_10_1002_eng2_12788 crossref_primary_10_1080_10589759_2025_2450063 crossref_primary_10_1016_j_conengprac_2024_105900 crossref_primary_10_1016_j_eswa_2023_122807 crossref_primary_10_1155_stc_9997872 crossref_primary_10_3390_s25020531 crossref_primary_10_1016_j_engappai_2024_109268 crossref_primary_10_1007_s10845_024_02544_7 crossref_primary_10_3390_fractalfract8010014 crossref_primary_10_1016_j_tws_2024_112330 crossref_primary_10_1080_01694243_2025_2450268 crossref_primary_10_3390_machines11100923 crossref_primary_10_1016_j_eswa_2023_122113 crossref_primary_10_1177_14759217251321080 crossref_primary_10_1016_j_inffus_2024_102814 crossref_primary_10_1016_j_ymssp_2024_111120 |
| Cites_doi | 10.1145/3502287 10.1155/2018/3813029 10.1016/j.engappai.2022.105140 10.1016/j.jmsy.2020.07.008 10.1038/nature14539 10.1504/IJHM.2021.114174 10.1016/j.jwpe.2018.12.010 10.7717/peerj-cs.1045 10.4249/scholarpedia.5947 10.1038/323533a0 10.1109/TKDE.2021.3090866 10.1155/2015/793161 10.1023/A:1022627411411 10.1007/s11036-006-5186-9 10.1038/s41598-022-08417-4 10.1016/j.ress.2018.11.027 10.1155/2018/8141259 10.1016/j.coche.2021.100778 10.3390/data5010005 10.1016/j.engappai.2020.103793 10.1016/j.jcp.2019.109136 10.1145/3472291 10.1016/j.ress.2021.108126 10.1016/j.ijforecast.2020.06.008 10.1016/j.jmsy.2018.04.008 10.1109/TII.2018.2881543 10.1115/1.3656900 10.1016/j.engappai.2020.103678 10.1016/j.neucom.2021.10.036 10.3390/info9030056 10.1016/j.ress.2021.107864 10.3390/technologies9010002 10.1016/j.engappai.2010.11.004 10.1016/j.engappai.2021.104497 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 1XC VOOES ADTOC UNPAY |
| DOI | 10.1016/j.engappai.2023.105837 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1873-6769 |
| ExternalDocumentID | 10.1016/j.engappai.2023.105837 oai:HAL:hal-03978536v1 10_1016_j_engappai_2023_105837 S0952197623000210 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 1XC VOOES ADTOC UNPAY |
| ID | FETCH-LOGICAL-c394t-5fd50760f906452b78170c20f20a80fb2e6583c2c8e1c5d10c72c8f994a93e6d3 |
| IEDL.DBID | .~1 |
| ISSN | 0952-1976 1873-6769 |
| IngestDate | Sun Oct 26 04:16:38 EDT 2025 Sat Oct 25 06:44:56 EDT 2025 Sat Oct 25 06:16:11 EDT 2025 Thu Apr 24 23:06:33 EDT 2025 Fri Feb 23 02:37:33 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Data scarcity Self-Supervised Learning (SSL) Prognostics and Health Management (PHM) Deep Learning (DL) Remaining Useful Life (RUL) Data Scarcity |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c394t-5fd50760f906452b78170c20f20a80fb2e6583c2c8e1c5d10c72c8f994a93e6d3 |
| ORCID | 0000-0003-4944-000X 0000-0002-2339-4853 0000-0002-7278-5631 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/am/pii/S0952197623000210?via%3Dihub |
| ParticipantIDs | unpaywall_primary_10_1016_j_engappai_2023_105837 hal_primary_oai_HAL_hal_03978536v1 crossref_primary_10_1016_j_engappai_2023_105837 crossref_citationtrail_10_1016_j_engappai_2023_105837 elsevier_sciencedirect_doi_10_1016_j_engappai_2023_105837 |
| PublicationCentury | 2000 |
| PublicationDate | April 2023 2023-04-00 2023-04 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: April 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Paris, Erdogan (b51) 1963; 85 Yengera, Mutter, Marescaux, Padoy (b69) 2018 Fink, Wang, Svensén, Dersin, Lee, Ducoffe (b19) 2020; 92 Jaiswal, Babu, Zadeh, Banerjee, Makedon (b37) 2021; 9 Ho (b29) 1995 Yamak, Yujian, Gadosey (b68) 2019 He, Chen, Xie, Li, Dollár, Girshick (b25) 2022 Rana (b53) 2016 Jimenez, Schwartz, Vingerhoeds, Grabot, Salaün (b38) 2020; 56 Damianou, Lawrence (b14) 2013 Jagtap, Karniadakis (b32) 2022 Theissler, Pérez-Velázquez, Kettelgerdes, Elger (b63) 2021; 215 Ba, Kiros, Hinton (b4) 2016 Yoon, Lee, Lim, Jung, Kang, Kim, Park, Choi (b70) 2017 Zhu, Hou, Chen, Gao, Xu, He (b73) 2021; 106 Jagtap, Kawaguchi, Karniadakis (b34) 2020; 404 Sun, Ma, Zhao, Tian, Yan, Chen (b62) 2018; 15 Mao, Lv, Shi, Zou, Guo (b47) 2010 Akrim, Gogu, Guillebot de Nerville, Strähle, Waffa Pagou, Salaün, Vingerhoeds (b2) 2022 Shao-feng, Yun-fei, Xiao-ling, Yu-dong, Yi-qiang (b60) 2013 Chen, Kornblith, Swersky, Norouzi, Hinton (b10) 2020; 33 Guo, Zhu, Wang, Prahlad, Ho, Lee (b22) 2022 Chen, Radford, Child, Wu, Jun, Luan, Sutskever (b11) 2020 Hahn, Mechefske (b24) 2021; 4 LeCun, Bengio, Hinton (b44) 2015; 521 Rasmussen (b54) 2003 Voulodimos, Doulamis, Bebis, Stathaki (b66) 2018; 2018 Hinton (b28) 2009; 4 Cortes, Vapnik (b13) 1995; 20 Tsui, Chen, Zhou, Hai, Wang (b65) 2015; 2015 Zhu, Min, Kadav, Graf (b74) 2020 Rumelhart, Hinton, Williams (b58) 1986; 323 Gutierrez-Torre, Berral, Buchaca, Guevara, Soret, Carrera (b23) 2020; 94 Bansal, Sharma, Kathuria (b5) 2022; 54 Cho, Van Merriënboer, Gulcehre, Bahdanau, Bougares, Schwenk, Bengio (b12) 2014 Endo, Poston, Sullivan, Fei-Fei, Pohl, Adeli (b18) 2022 Atamuradov, Medjaher, Dersin, Lamoureux, Zerhouni (b3) 2017; 8 Adaloglou (b1) 2020 Ren, Sun, Cui, Zhang (b55) 2018; 48 Yue, Fu, Liang (b72) 2018; 9 Borzooei, Amerlinck, Abolfathi, Panepinto, Nopens, Lorenzi, Meucci, Zanetti (b8) 2019; 28 Berthou, Duplessis, Stabat, Rivière, Marchio (b7) 2019 Olah (b50) 2015 Brown, Mann, Ryder, Subbiah, Kaplan, Dhariwal, Neelakantan, Shyam, Sastry, Askell (b9) 2020 Krokotsch, Knaak, Gühmann (b43) 2022; 13 Ren, Xiao, Chang, Huang, Li, Gupta, Chen, Wang (b56) 2021; 54 Kandemir (b40) 2015 Kingma, Welling (b42) 2013 Baptista, Prendinger, Henriques (b6) 2020 Jain, Shah, Brunette, Borriello, Roy (b36) 2006; 11 Wen, Liu (b67) 2011 Ding, Zhuang, Ding, Jia (b16) 2022; 218 Yu, Yin, Xia, Chen, Li, Huang (b71) 2022 Ellefsen, Bjørlykhaug, Æsøy, Ushakov, Zhang (b17) 2019; 183 Jing, Tian (b39) 2020 Jadon (b31) 2021 Nandy, Duan, Kulik (b49) 2022; 36 Shurrab, Duwairi (b61) 2022; 8 Dhariwal, Jun, Payne, Kim, Radford, Sutskever (b15) 2020 Jagtap, Shin, Kawaguchi, Karniadakis (b35) 2022; 468 Raina, Battle, Lee, Packer, Ng (b52) 2007 Saxena, Goebel, Simon, Eklund (b59) 2008 Liu, Zhang, Hou, Mian, Wang, Zhang, Tang (b45) 2021 Ma, Su, Zhao, Liu (b46) 2018; 2018 Gorgoglione, Castro, Chreties, Etcheverry (b21) 2020; 5 Ghiasi, Noori, Sheikhian, Zeynolabedin, Sun, Jun, Hamouda, Bateni, Abolfathi (b20) 2022; 12 Kingma, Ba (b41) 2014 He, Zhang, Ren, Sun (b26) 2016 Rocchetta, Gao, Mavroeidis, Petkovic (b57) 2022; 114 Hrinchuk, Khrulkov, Mirvakhabova, Orlova, Oseledets (b30) 2019 Hewamalage, Bergmeir, Bandara (b27) 2021; 37 Jagtap, Kawaguchi, Em Karniadakis (b33) 2020; 476 Mazloumi, Rose, Currie, Moridpour (b48) 2011; 24 Torrey, Shavlik (b64) 2010 Wen (10.1016/j.engappai.2023.105837_b67) 2011 Berthou (10.1016/j.engappai.2023.105837_b7) 2019 Kingma (10.1016/j.engappai.2023.105837_b41) 2014 Rasmussen (10.1016/j.engappai.2023.105837_b54) 2003 Brown (10.1016/j.engappai.2023.105837_b9) 2020 Ellefsen (10.1016/j.engappai.2023.105837_b17) 2019; 183 Zhu (10.1016/j.engappai.2023.105837_b74) 2020 Hewamalage (10.1016/j.engappai.2023.105837_b27) 2021; 37 Torrey (10.1016/j.engappai.2023.105837_b64) 2010 He (10.1016/j.engappai.2023.105837_b26) 2016 Bansal (10.1016/j.engappai.2023.105837_b5) 2022; 54 Voulodimos (10.1016/j.engappai.2023.105837_b66) 2018; 2018 Chen (10.1016/j.engappai.2023.105837_b10) 2020; 33 Hahn (10.1016/j.engappai.2023.105837_b24) 2021; 4 Yamak (10.1016/j.engappai.2023.105837_b68) 2019 Ho (10.1016/j.engappai.2023.105837_b29) 1995 Atamuradov (10.1016/j.engappai.2023.105837_b3) 2017; 8 Mao (10.1016/j.engappai.2023.105837_b47) 2010 Ba (10.1016/j.engappai.2023.105837_b4) 2016 Hinton (10.1016/j.engappai.2023.105837_b28) 2009; 4 Guo (10.1016/j.engappai.2023.105837_b22) 2022 Ren (10.1016/j.engappai.2023.105837_b56) 2021; 54 Rana (10.1016/j.engappai.2023.105837_b53) 2016 Ma (10.1016/j.engappai.2023.105837_b46) 2018; 2018 Ding (10.1016/j.engappai.2023.105837_b16) 2022; 218 Saxena (10.1016/j.engappai.2023.105837_b59) 2008 Tsui (10.1016/j.engappai.2023.105837_b65) 2015; 2015 Fink (10.1016/j.engappai.2023.105837_b19) 2020; 92 Cho (10.1016/j.engappai.2023.105837_b12) 2014 Gutierrez-Torre (10.1016/j.engappai.2023.105837_b23) 2020; 94 Jaiswal (10.1016/j.engappai.2023.105837_b37) 2021; 9 Baptista (10.1016/j.engappai.2023.105837_b6) 2020 Raina (10.1016/j.engappai.2023.105837_b52) 2007 Jagtap (10.1016/j.engappai.2023.105837_b32) 2022 Krokotsch (10.1016/j.engappai.2023.105837_b43) 2022; 13 Rocchetta (10.1016/j.engappai.2023.105837_b57) 2022; 114 Jimenez (10.1016/j.engappai.2023.105837_b38) 2020; 56 Jagtap (10.1016/j.engappai.2023.105837_b35) 2022; 468 Paris (10.1016/j.engappai.2023.105837_b51) 1963; 85 Jagtap (10.1016/j.engappai.2023.105837_b34) 2020; 404 Endo (10.1016/j.engappai.2023.105837_b18) 2022 Chen (10.1016/j.engappai.2023.105837_b11) 2020 Sun (10.1016/j.engappai.2023.105837_b62) 2018; 15 Adaloglou (10.1016/j.engappai.2023.105837_b1) 2020 Jagtap (10.1016/j.engappai.2023.105837_b33) 2020; 476 Shao-feng (10.1016/j.engappai.2023.105837_b60) 2013 Ren (10.1016/j.engappai.2023.105837_b55) 2018; 48 Mazloumi (10.1016/j.engappai.2023.105837_b48) 2011; 24 Yoon (10.1016/j.engappai.2023.105837_b70) 2017 LeCun (10.1016/j.engappai.2023.105837_b44) 2015; 521 Damianou (10.1016/j.engappai.2023.105837_b14) 2013 Yengera (10.1016/j.engappai.2023.105837_b69) 2018 Olah (10.1016/j.engappai.2023.105837_b50) 2015 Borzooei (10.1016/j.engappai.2023.105837_b8) 2019; 28 Cortes (10.1016/j.engappai.2023.105837_b13) 1995; 20 Jadon (10.1016/j.engappai.2023.105837_b31) 2021 Kandemir (10.1016/j.engappai.2023.105837_b40) 2015 Rumelhart (10.1016/j.engappai.2023.105837_b58) 1986; 323 Yue (10.1016/j.engappai.2023.105837_b72) 2018; 9 Kingma (10.1016/j.engappai.2023.105837_b42) 2013 Theissler (10.1016/j.engappai.2023.105837_b63) 2021; 215 He (10.1016/j.engappai.2023.105837_b25) 2022 Jain (10.1016/j.engappai.2023.105837_b36) 2006; 11 Akrim (10.1016/j.engappai.2023.105837_b2) 2022 Zhu (10.1016/j.engappai.2023.105837_b73) 2021; 106 Hrinchuk (10.1016/j.engappai.2023.105837_b30) 2019 Shurrab (10.1016/j.engappai.2023.105837_b61) 2022; 8 Yu (10.1016/j.engappai.2023.105837_b71) 2022 Gorgoglione (10.1016/j.engappai.2023.105837_b21) 2020; 5 Nandy (10.1016/j.engappai.2023.105837_b49) 2022; 36 Jing (10.1016/j.engappai.2023.105837_b39) 2020 Liu (10.1016/j.engappai.2023.105837_b45) 2021 Dhariwal (10.1016/j.engappai.2023.105837_b15) 2020 Ghiasi (10.1016/j.engappai.2023.105837_b20) 2022; 12 |
| References_xml | – year: 2019 ident: b7 article-title: Urban energy models validation in data scarcity context: Case of the electricity consumption in the French residential sector publication-title: Building Simulation 2019 – volume: 476 year: 2020 ident: b33 article-title: Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. – volume: 33 start-page: 22243 year: 2020 end-page: 22255 ident: b10 article-title: Big self-supervised models are strong semi-supervised learners publication-title: Adv. Neural Inf. Process. Syst. – volume: 36 year: 2022 ident: b49 article-title: Audacity of huge: overcoming challenges of data scarcity and data quality for machine learning in computational materials discovery publication-title: Curr. Opin. Chem. Eng. – volume: 2015 year: 2015 ident: b65 article-title: Prognostics and health management: A review on data driven approaches publication-title: Math. Probl. Eng. – year: 2016 ident: b53 article-title: Gated recurrent unit (GRU) for emotion classification from noisy speech – volume: 12 start-page: 1 year: 2022 end-page: 15 ident: b20 article-title: Uncertainty quantification of granular computing-neural network model for prediction of pollutant longitudinal dispersion coefficient in aquatic streams publication-title: Sci. Rep. – volume: 404 year: 2020 ident: b34 article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks publication-title: J. Comput. Phys. – volume: 85 start-page: 528 year: 1963 end-page: 533 ident: b51 article-title: A critical analysis of crack propagation laws publication-title: J. Basic Eng. – start-page: 1 year: 2008 end-page: 9 ident: b59 article-title: Damage propagation modeling for aircraft engine run-to-failure simulation publication-title: 2008 International Conference on Prognostics and Health Management – volume: 218 year: 2022 ident: b16 article-title: Self-supervised pretraining via contrast learning for intelligent incipient fault detection of bearings publication-title: Reliab. Eng. Syst. Saf. – start-page: 3 year: 2013 end-page: 7 ident: b60 article-title: Development and application of prognostics and health management technology publication-title: Proceedings of the 20th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits – start-page: 49 year: 2019 end-page: 55 ident: b68 article-title: A comparison between arima, lstm, and gru for time series forecasting publication-title: Proceedings of the 2019 2nd International Conference on Algorithms, Computing and Artificial Intelligence – start-page: 278 year: 1995 end-page: 282 ident: b29 article-title: Random decision forests publication-title: Proceedings of 3rd International Conference on Document Analysis and Recognition, Vol. 1 – start-page: 1691 year: 2020 end-page: 1703 ident: b11 article-title: Generative pretraining from pixels publication-title: International Conference on Machine Learning – volume: 183 start-page: 240 year: 2019 end-page: 251 ident: b17 article-title: Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture publication-title: Reliab. Eng. Syst. Saf. – volume: 2018 year: 2018 ident: b66 article-title: Recent developments in deep learning for engineering applications publication-title: Comput. Intell. Neurosci. – volume: 9 year: 2021 ident: b37 article-title: A survey on contrastive self-supervised learning publication-title: Technologies – year: 2019 ident: b30 article-title: Tensorized embedding layers for efficient model compression – start-page: 759 year: 2007 end-page: 766 ident: b52 article-title: Self-taught learning: transfer learning from unlabeled data publication-title: Proceedings of the 24th International Conference on Machine Learning – year: 2022 ident: b71 article-title: Self-supervised learning for recommender systems: A survey – year: 2020 ident: b9 article-title: Language models are few-shot learners – volume: 4 start-page: 69 year: 2021 end-page: 98 ident: b24 article-title: Self-supervised learning for tool wear monitoring with a disentangled-variational-autoencoder publication-title: Int. J. Hydromechatron. – year: 2014 ident: b12 article-title: Learning phrase representations using RNN encoder-decoder for statistical machine translation – volume: 37 start-page: 388 year: 2021 end-page: 427 ident: b27 article-title: Recurrent neural networks for time series forecasting: Current status and future directions publication-title: Int. J. Forecast. – volume: 54 start-page: 1 year: 2021 end-page: 40 ident: b56 article-title: A survey of deep active learning publication-title: ACM Comput. Surv. – start-page: 207 year: 2013 end-page: 215 ident: b14 article-title: Deep gaussian processes publication-title: Artificial Intelligence and Statistics – volume: 114 year: 2022 ident: b57 article-title: A robust model selection framework for fault detection and system health monitoring with limited failure examples: Heterogeneous data fusion and formal sensitivity bounds publication-title: Eng. Appl. Artif. Intell. – start-page: 1 year: 2011 end-page: 5 ident: b67 article-title: Applications of Prognostics and Health Management in aviation industry publication-title: 2011 Prognostics and System Health Managment Confernece – volume: 28 start-page: 10 year: 2019 end-page: 20 ident: b8 article-title: Data scarcity in modelling and simulation of a large-scale WWTP: stop sign or a challenge publication-title: J. Water Process Eng. – year: 2020 ident: b1 article-title: Intuitive explanation of skip connections in deep learning publication-title: AI Summer – volume: 106 year: 2021 ident: b73 article-title: Novel virtual sample generation using conditional GAN for developing soft sensor with small data publication-title: Eng. Appl. Artif. Intell. – year: 2014 ident: b41 article-title: Adam: A method for stochastic optimization – start-page: 730 year: 2015 end-page: 738 ident: b40 article-title: Asymmetric transfer learning with deep gaussian processes publication-title: International Conference on Machine Learning – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b44 article-title: Deep learning publication-title: Nature – start-page: 130 year: 2022 end-page: 139 ident: b18 article-title: GaitForeMer: Self-supervised pre-training of transformers via human motion forecasting for few-shot gait impairment severity estimation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 5 start-page: 5 year: 2020 ident: b21 article-title: Overcoming data scarcity in earth science publication-title: Data – year: 2018 ident: b69 article-title: Less is more: Surgical phase recognition with less annotations through self-supervised pre-training of CNN-LSTM networks – start-page: 242 year: 2010 end-page: 264 ident: b64 article-title: Transfer learning publication-title: Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques – year: 2022 ident: b22 article-title: Masked self-supervision for remaining useful lifetime prediction in machine tools – volume: 4 start-page: 5947 year: 2009 ident: b28 article-title: Deep belief networks publication-title: Scholarpedia – volume: 9 start-page: 56 year: 2018 ident: b72 article-title: Residual recurrent neural networks for learning sequential representations publication-title: Information – year: 2020 ident: b15 article-title: Jukebox: A generative model for music – volume: 11 start-page: 327 year: 2006 end-page: 339 ident: b36 article-title: Exploiting mobility for energy efficient data collection in wireless sensor networks publication-title: Mob. Netw. Appl. – volume: 48 start-page: 71 year: 2018 end-page: 77 ident: b55 article-title: Bearing remaining useful life prediction based on deep autoencoder and deep neural networks publication-title: J. Manuf. Syst. – volume: 13 year: 2022 ident: b43 article-title: Improving semi-supervised learning for remaining useful lifetime estimation through self-supervision publication-title: Int. J. Progn. Health Manag. – volume: 2018 year: 2018 ident: b46 article-title: Predicting the remaining useful life of an aircraft engine using a stacked sparse autoencoder with multilayer self-learning publication-title: Complexity – year: 2022 ident: b32 article-title: How important are activation functions in regression and classification? A survey, performance comparison, and future directions – volume: 56 start-page: 539 year: 2020 end-page: 557 ident: b38 article-title: Towards multi-model approaches to predictive maintenance: A systematic literature survey on diagnostics and prognostics publication-title: J. Manuf. Syst. – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: b58 article-title: Learning representations by back-propagating errors publication-title: Nature – start-page: 16000 year: 2022 end-page: 16009 ident: b25 article-title: Masked autoencoders are scalable vision learners publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 54 start-page: 1 year: 2022 end-page: 29 ident: b5 article-title: A systematic review on data scarcity problem in deep learning: solution and applications publication-title: ACM Comput. Surv. – year: 2013 ident: b42 article-title: Auto-encoding variational bayes – year: 2021 ident: b45 article-title: Self-supervised learning: Generative or contrastive publication-title: IEEE Trans. Knowl. Data Eng. – year: 2017 ident: b70 article-title: Semi-supervised learning with deep generative models for asset failure prediction – volume: 92 year: 2020 ident: b19 article-title: Potential, challenges and future directions for deep learning in prognostics and health management applications publication-title: Eng. Appl. Artif. Intell. – year: 2015 ident: b50 article-title: Understanding LSTM networks – start-page: 25 year: 2022 end-page: 33 ident: b2 article-title: A framework for generating large data sets for fatigue damage prognostic problems publication-title: 2022 IEEE International Conference on Prognostics and Health Management – start-page: 1 year: 2010 end-page: 6 ident: b47 article-title: Research of the military aircraft maintenance support mode based on the prognostics and health management publication-title: 2010 Prognostics and System Health Management Conference – start-page: 6538 year: 2020 end-page: 6547 ident: b74 article-title: S3vae: Self-supervised sequential vae for representation disentanglement and data generation publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 63 year: 2003 end-page: 71 ident: b54 article-title: Gaussian processes in machine learning publication-title: Summer School on Machine Learning – start-page: 161 year: 2021 end-page: 170 ident: b31 article-title: COVID-19 detection from scarce chest x-ray image data using few-shot deep learning approach publication-title: Medical Imaging 2021: Imaging Informatics for Healthcare, Research, and Applications, Vol. 11601 – volume: 15 start-page: 2416 year: 2018 end-page: 2425 ident: b62 article-title: Deep transfer learning based on sparse autoencoder for remaining useful life prediction of tool in manufacturing publication-title: IEEE Trans. Ind. Inform. – year: 2016 ident: b4 article-title: Layer normalization – volume: 8 start-page: 1 year: 2017 end-page: 31 ident: b3 article-title: Prognostics and health management for maintenance practitioners-review, implementation and tools evaluation publication-title: Int. J. Progn. Health Manag. – start-page: 11 year: 2020 ident: b6 article-title: Prognostics in aeronautics with deep recurrent neural networks publication-title: PHM Society European Conference, Vol. 5 – volume: 468 start-page: 165 year: 2022 end-page: 180 ident: b35 article-title: Deep Kronecker neural networks: A general framework for neural networks with adaptive activation functions publication-title: Neurocomputing – volume: 94 year: 2020 ident: b23 article-title: Improving maritime traffic emission estimations on missing data with CRBMs publication-title: Eng. Appl. Artif. Intell. – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: b13 article-title: Support-vector networks publication-title: Mach. Learn. – year: 2020 ident: b39 article-title: Self-supervised visual feature learning with deep neural networks: A survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 770 year: 2016 end-page: 778 ident: b26 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 24 start-page: 534 year: 2011 end-page: 542 ident: b48 article-title: Prediction intervals to account for uncertainties in neural network predictions: Methodology and application in bus travel time prediction publication-title: Eng. Appl. Artif. Intell. – volume: 215 year: 2021 ident: b63 article-title: Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry publication-title: Reliab. Eng. Syst. Saf. – volume: 8 year: 2022 ident: b61 article-title: Self-supervised learning methods and applications in medical imaging analysis: A survey publication-title: PeerJ Comput. Sci. – year: 2022 ident: 10.1016/j.engappai.2023.105837_b32 – volume: 54 start-page: 1 issue: 10s year: 2022 ident: 10.1016/j.engappai.2023.105837_b5 article-title: A systematic review on data scarcity problem in deep learning: solution and applications publication-title: ACM Comput. Surv. doi: 10.1145/3502287 – volume: 476 issue: 2239 year: 2020 ident: 10.1016/j.engappai.2023.105837_b33 article-title: Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. – start-page: 3 year: 2013 ident: 10.1016/j.engappai.2023.105837_b60 article-title: Development and application of prognostics and health management technology – start-page: 130 year: 2022 ident: 10.1016/j.engappai.2023.105837_b18 article-title: GaitForeMer: Self-supervised pre-training of transformers via human motion forecasting for few-shot gait impairment severity estimation – start-page: 1 year: 2011 ident: 10.1016/j.engappai.2023.105837_b67 article-title: Applications of Prognostics and Health Management in aviation industry – volume: 2018 year: 2018 ident: 10.1016/j.engappai.2023.105837_b46 article-title: Predicting the remaining useful life of an aircraft engine using a stacked sparse autoencoder with multilayer self-learning publication-title: Complexity doi: 10.1155/2018/3813029 – volume: 114 year: 2022 ident: 10.1016/j.engappai.2023.105837_b57 article-title: A robust model selection framework for fault detection and system health monitoring with limited failure examples: Heterogeneous data fusion and formal sensitivity bounds publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105140 – volume: 56 start-page: 539 year: 2020 ident: 10.1016/j.engappai.2023.105837_b38 article-title: Towards multi-model approaches to predictive maintenance: A systematic literature survey on diagnostics and prognostics publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2020.07.008 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.engappai.2023.105837_b44 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 4 start-page: 69 issue: 1 year: 2021 ident: 10.1016/j.engappai.2023.105837_b24 article-title: Self-supervised learning for tool wear monitoring with a disentangled-variational-autoencoder publication-title: Int. J. Hydromechatron. doi: 10.1504/IJHM.2021.114174 – volume: 28 start-page: 10 year: 2019 ident: 10.1016/j.engappai.2023.105837_b8 article-title: Data scarcity in modelling and simulation of a large-scale WWTP: stop sign or a challenge publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2018.12.010 – year: 2014 ident: 10.1016/j.engappai.2023.105837_b41 – volume: 8 year: 2022 ident: 10.1016/j.engappai.2023.105837_b61 article-title: Self-supervised learning methods and applications in medical imaging analysis: A survey publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.1045 – year: 2020 ident: 10.1016/j.engappai.2023.105837_b39 article-title: Self-supervised visual feature learning with deep neural networks: A survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 11 year: 2020 ident: 10.1016/j.engappai.2023.105837_b6 article-title: Prognostics in aeronautics with deep recurrent neural networks – year: 2013 ident: 10.1016/j.engappai.2023.105837_b42 – volume: 4 start-page: 5947 issue: 5 year: 2009 ident: 10.1016/j.engappai.2023.105837_b28 article-title: Deep belief networks publication-title: Scholarpedia doi: 10.4249/scholarpedia.5947 – start-page: 242 year: 2010 ident: 10.1016/j.engappai.2023.105837_b64 article-title: Transfer learning – year: 2019 ident: 10.1016/j.engappai.2023.105837_b7 article-title: Urban energy models validation in data scarcity context: Case of the electricity consumption in the French residential sector – volume: 323 start-page: 533 issue: 6088 year: 1986 ident: 10.1016/j.engappai.2023.105837_b58 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – year: 2021 ident: 10.1016/j.engappai.2023.105837_b45 article-title: Self-supervised learning: Generative or contrastive publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2021.3090866 – volume: 2015 year: 2015 ident: 10.1016/j.engappai.2023.105837_b65 article-title: Prognostics and health management: A review on data driven approaches publication-title: Math. Probl. Eng. doi: 10.1155/2015/793161 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.engappai.2023.105837_b13 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1023/A:1022627411411 – volume: 11 start-page: 327 issue: 3 year: 2006 ident: 10.1016/j.engappai.2023.105837_b36 article-title: Exploiting mobility for energy efficient data collection in wireless sensor networks publication-title: Mob. Netw. Appl. doi: 10.1007/s11036-006-5186-9 – start-page: 25 year: 2022 ident: 10.1016/j.engappai.2023.105837_b2 article-title: A framework for generating large data sets for fatigue damage prognostic problems – volume: 12 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.engappai.2023.105837_b20 article-title: Uncertainty quantification of granular computing-neural network model for prediction of pollutant longitudinal dispersion coefficient in aquatic streams publication-title: Sci. Rep. doi: 10.1038/s41598-022-08417-4 – volume: 183 start-page: 240 year: 2019 ident: 10.1016/j.engappai.2023.105837_b17 article-title: Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2018.11.027 – volume: 2018 year: 2018 ident: 10.1016/j.engappai.2023.105837_b66 article-title: Recent developments in deep learning for engineering applications publication-title: Comput. Intell. Neurosci. doi: 10.1155/2018/8141259 – year: 2020 ident: 10.1016/j.engappai.2023.105837_b1 article-title: Intuitive explanation of skip connections in deep learning publication-title: AI Summer – start-page: 278 year: 1995 ident: 10.1016/j.engappai.2023.105837_b29 article-title: Random decision forests – volume: 36 year: 2022 ident: 10.1016/j.engappai.2023.105837_b49 article-title: Audacity of huge: overcoming challenges of data scarcity and data quality for machine learning in computational materials discovery publication-title: Curr. Opin. Chem. Eng. doi: 10.1016/j.coche.2021.100778 – year: 2015 ident: 10.1016/j.engappai.2023.105837_b50 – start-page: 770 year: 2016 ident: 10.1016/j.engappai.2023.105837_b26 article-title: Deep residual learning for image recognition – start-page: 1 year: 2010 ident: 10.1016/j.engappai.2023.105837_b47 article-title: Research of the military aircraft maintenance support mode based on the prognostics and health management – volume: 5 start-page: 5 issue: 1 year: 2020 ident: 10.1016/j.engappai.2023.105837_b21 article-title: Overcoming data scarcity in earth science publication-title: Data doi: 10.3390/data5010005 – volume: 94 year: 2020 ident: 10.1016/j.engappai.2023.105837_b23 article-title: Improving maritime traffic emission estimations on missing data with CRBMs publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103793 – start-page: 63 year: 2003 ident: 10.1016/j.engappai.2023.105837_b54 article-title: Gaussian processes in machine learning – year: 2020 ident: 10.1016/j.engappai.2023.105837_b9 – start-page: 730 year: 2015 ident: 10.1016/j.engappai.2023.105837_b40 article-title: Asymmetric transfer learning with deep gaussian processes – volume: 404 year: 2020 ident: 10.1016/j.engappai.2023.105837_b34 article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.109136 – year: 2014 ident: 10.1016/j.engappai.2023.105837_b12 – year: 2016 ident: 10.1016/j.engappai.2023.105837_b4 – volume: 54 start-page: 1 issue: 9 year: 2021 ident: 10.1016/j.engappai.2023.105837_b56 article-title: A survey of deep active learning publication-title: ACM Comput. Surv. doi: 10.1145/3472291 – volume: 218 year: 2022 ident: 10.1016/j.engappai.2023.105837_b16 article-title: Self-supervised pretraining via contrast learning for intelligent incipient fault detection of bearings publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2021.108126 – start-page: 1 year: 2008 ident: 10.1016/j.engappai.2023.105837_b59 article-title: Damage propagation modeling for aircraft engine run-to-failure simulation – volume: 37 start-page: 388 issue: 1 year: 2021 ident: 10.1016/j.engappai.2023.105837_b27 article-title: Recurrent neural networks for time series forecasting: Current status and future directions publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2020.06.008 – volume: 48 start-page: 71 year: 2018 ident: 10.1016/j.engappai.2023.105837_b55 article-title: Bearing remaining useful life prediction based on deep autoencoder and deep neural networks publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2018.04.008 – volume: 15 start-page: 2416 issue: 4 year: 2018 ident: 10.1016/j.engappai.2023.105837_b62 article-title: Deep transfer learning based on sparse autoencoder for remaining useful life prediction of tool in manufacturing publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2018.2881543 – start-page: 207 year: 2013 ident: 10.1016/j.engappai.2023.105837_b14 article-title: Deep gaussian processes – year: 2022 ident: 10.1016/j.engappai.2023.105837_b22 – volume: 13 issue: 1 year: 2022 ident: 10.1016/j.engappai.2023.105837_b43 article-title: Improving semi-supervised learning for remaining useful lifetime estimation through self-supervision publication-title: Int. J. Progn. Health Manag. – year: 2016 ident: 10.1016/j.engappai.2023.105837_b53 – start-page: 49 year: 2019 ident: 10.1016/j.engappai.2023.105837_b68 article-title: A comparison between arima, lstm, and gru for time series forecasting – volume: 85 start-page: 528 issue: 4 year: 1963 ident: 10.1016/j.engappai.2023.105837_b51 article-title: A critical analysis of crack propagation laws publication-title: J. Basic Eng. doi: 10.1115/1.3656900 – year: 2018 ident: 10.1016/j.engappai.2023.105837_b69 – volume: 92 year: 2020 ident: 10.1016/j.engappai.2023.105837_b19 article-title: Potential, challenges and future directions for deep learning in prognostics and health management applications publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103678 – start-page: 16000 year: 2022 ident: 10.1016/j.engappai.2023.105837_b25 article-title: Masked autoencoders are scalable vision learners – volume: 33 start-page: 22243 year: 2020 ident: 10.1016/j.engappai.2023.105837_b10 article-title: Big self-supervised models are strong semi-supervised learners publication-title: Adv. Neural Inf. Process. Syst. – volume: 8 start-page: 1 issue: 060 year: 2017 ident: 10.1016/j.engappai.2023.105837_b3 article-title: Prognostics and health management for maintenance practitioners-review, implementation and tools evaluation publication-title: Int. J. Progn. Health Manag. – volume: 468 start-page: 165 year: 2022 ident: 10.1016/j.engappai.2023.105837_b35 article-title: Deep Kronecker neural networks: A general framework for neural networks with adaptive activation functions publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.10.036 – year: 2022 ident: 10.1016/j.engappai.2023.105837_b71 – start-page: 161 year: 2021 ident: 10.1016/j.engappai.2023.105837_b31 article-title: COVID-19 detection from scarce chest x-ray image data using few-shot deep learning approach – start-page: 759 year: 2007 ident: 10.1016/j.engappai.2023.105837_b52 article-title: Self-taught learning: transfer learning from unlabeled data – start-page: 1691 year: 2020 ident: 10.1016/j.engappai.2023.105837_b11 article-title: Generative pretraining from pixels – year: 2017 ident: 10.1016/j.engappai.2023.105837_b70 – volume: 9 start-page: 56 issue: 3 year: 2018 ident: 10.1016/j.engappai.2023.105837_b72 article-title: Residual recurrent neural networks for learning sequential representations publication-title: Information doi: 10.3390/info9030056 – year: 2019 ident: 10.1016/j.engappai.2023.105837_b30 – volume: 215 year: 2021 ident: 10.1016/j.engappai.2023.105837_b63 article-title: Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2021.107864 – volume: 9 issue: 1 year: 2021 ident: 10.1016/j.engappai.2023.105837_b37 article-title: A survey on contrastive self-supervised learning publication-title: Technologies doi: 10.3390/technologies9010002 – volume: 24 start-page: 534 issue: 3 year: 2011 ident: 10.1016/j.engappai.2023.105837_b48 article-title: Prediction intervals to account for uncertainties in neural network predictions: Methodology and application in bus travel time prediction publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2010.11.004 – start-page: 6538 year: 2020 ident: 10.1016/j.engappai.2023.105837_b74 article-title: S3vae: Self-supervised sequential vae for representation disentanglement and data generation – volume: 106 year: 2021 ident: 10.1016/j.engappai.2023.105837_b73 article-title: Novel virtual sample generation using conditional GAN for developing soft sensor with small data publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104497 – year: 2020 ident: 10.1016/j.engappai.2023.105837_b15 |
| SSID | ssj0003846 |
| Score | 2.5134923 |
| Snippet | With the increasing availability of data for Prognostics and Health Management (PHM), Deep Learning (DL) techniques are now the subject of considerable... |
| SourceID | unpaywall hal crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 105837 |
| SubjectTerms | Data scarcity Deep Learning (DL) Engineering Sciences Mechanics Prognostics and Health Management (PHM) Remaining Useful Life (RUL) Self-Supervised Learning (SSL) Structural mechanics |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED_a9GFP6z5ZxjbE2B4VK5Y_n0rYVsIYZSULdE9GUqTUbeqaxm7p_vrdxXLoxqAb7M2cddjyne5-wqffAbyTwoy11IorJRWPdJrwLIk0t1IJFy0ym-pNgexRMp1Hn0_ikx047s_CUFmlj_1dTN9Eay8J_NcM1EVQl2UwQ3yAKw7XsxSbzcvBdaney4_laat3YS-JEZ4PYG9-9HXyvePcCzkNp01YlkpO5Z13Tg2fjWy1VHWtyhE1FacWuBn1R_9zwto9pcrJB21Vq9sbtVrdSUuH-3DVT6irRjkftY0emR-_cT3-1xk_gocexLJJp_UYdmz1BPY9oGU-XKxR1PeM6GVP4XhmV47P2ppi1BpHe4LXJUP0zKhela0N9TdqbllZMcUcus6ytXjrAkMfo3qy6pLIpZnvhfMM5oefvn2Yct_WgRuZRw2P3SKm_4EuJ668UKfEEWhC4UKhMuF0aBEVSROazI5NvBgLk-K1y_NI5dImC_kcBtVlZV8AM1q4zBJMUTKyodOxw6FhYm2SY2aOhxD3tiuM5zyn1huroi9uOyt6mxdk86Kz-RCCrV7dsX7cq5H3rlH8Ys0CU9O9um_Rl7YPIsLv6eRLQTKBcBEBVXI9HoLYutpfvtPLf1d5BYPmqrWvEWg1-o1fOj8BPFgoMg priority: 102 providerName: Unpaywall |
| Title | Self-Supervised Learning for data scarcity in a fatigue damage prognostic problem |
| URI | https://dx.doi.org/10.1016/j.engappai.2023.105837 https://hal.science/hal-03978536 https://www.sciencedirect.com/science/article/am/pii/S0952197623000210?via%3Dihub |
| UnpaywallVersion | publishedVersion |
| Volume | 120 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AKRWK dateStart: 19880301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swELcYPGwvfOxDdEBlTXt168b5fKyqVYGialtXjT1FtmuXohIi2g7xwt--u8QpTEIqEk9OLrZi3dnnX5S7-xHyVXDdUUJJJqWQzFdRyOLQV8wIya0_iU2kygDZYZiO_bOL4GKL9OpcGAyrdL6_8umlt3aSttNmu5jN2iMAB7DdYDMLXn65YAa7HyGLQevhMcxDxFWyDnRm2PtJlvBVy-RTWRRy1kIScaS8jZEP_fkD6s0lRkq-XeWFvL-T8_mTY6i_T3YdfqTdaooHZMvk78mew5LU7dQFiGq6hlr2gfwYmbllo1WB7mEBvV1t1SkF4EoxVJQuNFILLe_pLKeSWrDadGXg0TV4HYqhXPkN1nWmjobmIxn3v_3qpcwxKjAtEn_JAjsJ8FecTbBMnaciLM-nPW49LmNulWcAkAjt6dh0dDDpcB3BtU0SXybChBPxiWznN7k5JFQrbmODCEEK33hWBRa6eqExYQKHYtAgQa3GTLty48h6Mc_quLKrrFZ_hurPKvU3SHs9rqgKbmwckdRWyv5bOhmcChvHfgGzrl-EtbbT7nmGMg5IDbBM-LfTIHxt9RfO6fMr5nRE3uFdFR50TLaXtytzAshnqZrl0m6Sne7pIB1iO_j5ewDtePi9--cfCQgFIQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxEB1BeoBLS1tQQ6G1ql6dOOv9PEYIlLYpUhWQuFm2Y4egdFk1CYgLv52ZrDdQqRJIva3GY601Y8-81Y7nAXyVwvaMNJprLTWPTZbyPI0Nd1ILH49zl5lVgexpOjiPv18kFxtw1NyFobLKEPvrmL6K1kHSDdbsVtNpd4TgAI8bHmYpVl8um_AqTqKMvsA69491HjKvb-ugNif1J9eErzqunOiq0tMOsYgT521OhOj_zlCbl1QqubUsK313q2ezJ3noZAdeBwDJ-vUa38KGK9_BmwAmWTiqcxQ1fA2N7D38GrmZ56NlRfFhjtqhueqEIXJlVCvK5pa4hRZ3bFoyzTy6bbJ0OPQbww6jWq7ymho7s8BDswvnJ8dnRwMeKBW4lUW84IkfJ_QvzhfUpy4yGfXns5HwkdC58CZyiEikjWzuejYZ94TN8NkXRawL6dKx3INWeV26D8CsET53BBG0jF3kTeJRNUqdSwvMikkbksaMyoZ-40R7MVNNYdmVasyvyPyqNn8buut5Vd1x49kZReMl9dfeUZgWnp37Bd26fhE12x70h4pkAqEagpn0ptcGsfb6C9e0_x9r-gxbg7OfQzX8dvrjI2zTSF0rdACtxZ-lO0QYtDCfVtv8AbwbA2M |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED_a9GFP6z5ZxjbE2B4VK5Y_n0rYVsIYZSULdE9GUqTUbeqaxm7p_vrdxXLoxqAb7M2cddjyne5-wqffAbyTwoy11IorJRWPdJrwLIk0t1IJFy0ym-pNgexRMp1Hn0_ikx047s_CUFmlj_1dTN9Eay8J_NcM1EVQl2UwQ3yAKw7XsxSbzcvBdaney4_laat3YS-JEZ4PYG9-9HXyvePcCzkNp01YlkpO5Z13Tg2fjWy1VHWtyhE1FacWuBn1R_9zwto9pcrJB21Vq9sbtVrdSUuH-3DVT6irRjkftY0emR-_cT3-1xk_gocexLJJp_UYdmz1BPY9oGU-XKxR1PeM6GVP4XhmV47P2ppi1BpHe4LXJUP0zKhela0N9TdqbllZMcUcus6ytXjrAkMfo3qy6pLIpZnvhfMM5oefvn2Yct_WgRuZRw2P3SKm_4EuJ668UKfEEWhC4UKhMuF0aBEVSROazI5NvBgLk-K1y_NI5dImC_kcBtVlZV8AM1q4zBJMUTKyodOxw6FhYm2SY2aOhxD3tiuM5zyn1huroi9uOyt6mxdk86Kz-RCCrV7dsX7cq5H3rlH8Ys0CU9O9um_Rl7YPIsLv6eRLQTKBcBEBVXI9HoLYutpfvtPLf1d5BYPmqrWvEWg1-o1fOj8BPFgoMg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Supervised+Learning+for+data+scarcity+in+a+fatigue+damage+prognostic+problem&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Akrim%2C+Anass&rft.au=Gogu%2C+Christian&rft.au=Vingerhoeds%2C+Rob&rft.au=Sala%C3%BCn%2C+Michel&rft.date=2023-04-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=120&rft_id=info:doi/10.1016%2Fj.engappai.2023.105837&rft.externalDocID=S0952197623000210 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |