Self-Supervised Learning for data scarcity in a fatigue damage prognostic problem

With the increasing availability of data for Prognostics and Health Management (PHM), Deep Learning (DL) techniques are now the subject of considerable attention for this application, often achieving more accurate Remaining Useful Life (RUL) predictions. However, one of the major challenges for DL t...

Full description

Saved in:
Bibliographic Details
Published inEngineering applications of artificial intelligence Vol. 120; p. 105837
Main Authors Akrim, Anass, Gogu, Christian, Vingerhoeds, Rob, Salaün, Michel
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2023
Elsevier
Subjects
Online AccessGet full text
ISSN0952-1976
1873-6769
1873-6769
DOI10.1016/j.engappai.2023.105837

Cover

Abstract With the increasing availability of data for Prognostics and Health Management (PHM), Deep Learning (DL) techniques are now the subject of considerable attention for this application, often achieving more accurate Remaining Useful Life (RUL) predictions. However, one of the major challenges for DL techniques resides in the difficulty of obtaining large amounts of labelled data on industrial systems. To overcome this lack of labelled data, an emerging learning technique is considered in our work: Self-Supervised Learning, a sub-category of unsupervised learning approaches. This paper aims to investigate whether pre-training DL models in a self-supervised way on unlabelled sensors data can be useful for RUL estimation with only Few-Shots Learning, i.e. with scarce labelled data. In this research, a fatigue damage prognostics problem is addressed, through the estimation of the RUL of aluminium alloy panels (typical of aerospace structures) subject to fatigue cracks from strain gauge data. Synthetic datasets composed of strain data are used allowing to extensively investigate the influence of the dataset size on the predictive performance. Results show that the self-supervised pre-trained models are able to significantly outperform the non-pre-trained models in downstream RUL prediction task, and with less computational expense, showing promising results in prognostic tasks when only limited labelled data is available. •Self-supervised learning is investigated to address data scarcity in prognostics.•Fatigue crack propagation prognostics in structures based on strain data.•Synthetic dataset composed of multivariate run-to-failure strain time series.•Self-supervised pre-trained models improve RUL estimation performance. [Display omitted]
AbstractList With the increasing availability of data for Prognostics and Health Management (PHM), Deep Learning (DL) techniques are now the subject of considerable attention for this application, often achieving more accurate Remaining Useful Life (RUL) predictions. However, one of the major challenges for DL techniques resides in the difficulty of obtaininglarge amounts of labelled data on industrial systems. To overcome this lack of labelled data, an emerging learning technique is considered in our work: Self-Supervised Learning, a sub-category of unsupervised learning approaches. This paper aims to investigate whether pre-training DL models in a self-supervised way on unlabelled sensors data can be useful for RUL estimation with only Few-Shots Learning, i.e. with scarce labelled data. In this research, a fatigue damage prognostics problem is addressed, through the estimation of the RUL of aluminum alloy panels (typical of aerospace structures) subject to fatigue cracks from strain gauge data. Synthetic datasets composed of strain data are used allowing to extensively investigate the influence of the dataset size on the predictive performance. Results show that the self-supervised pre-trained models are able to significantly outperform the non-pre-trained models in downstream RUL prediction task, and with less computational expense, showing promising results in prognostic tasks when only limited labelled data is available.
With the increasing availability of data for Prognostics and Health Management (PHM), Deep Learning (DL) techniques are now the subject of considerable attention for this application, often achieving more accurate Remaining Useful Life (RUL) predictions. However, one of the major challenges for DL techniques resides in the difficulty of obtaining large amounts of labelled data on industrial systems. To overcome this lack of labelled data, an emerging learning technique is considered in our work: Self-Supervised Learning, a sub-category of unsupervised learning approaches. This paper aims to investigate whether pre-training DL models in a self-supervised way on unlabelled sensors data can be useful for RUL estimation with only Few-Shots Learning, i.e. with scarce labelled data. In this research, a fatigue damage prognostics problem is addressed, through the estimation of the RUL of aluminium alloy panels (typical of aerospace structures) subject to fatigue cracks from strain gauge data. Synthetic datasets composed of strain data are used allowing to extensively investigate the influence of the dataset size on the predictive performance. Results show that the self-supervised pre-trained models are able to significantly outperform the non-pre-trained models in downstream RUL prediction task, and with less computational expense, showing promising results in prognostic tasks when only limited labelled data is available. •Self-supervised learning is investigated to address data scarcity in prognostics.•Fatigue crack propagation prognostics in structures based on strain data.•Synthetic dataset composed of multivariate run-to-failure strain time series.•Self-supervised pre-trained models improve RUL estimation performance. [Display omitted]
ArticleNumber 105837
Author Akrim, Anass
Salaün, Michel
Gogu, Christian
Vingerhoeds, Rob
Author_xml – sequence: 1
  givenname: Anass
  orcidid: 0000-0003-4944-000X
  surname: Akrim
  fullname: Akrim, Anass
  email: anass.akrim@gmail.com
  organization: Institut Clément Ader (UMR CNRS 5312) INSA/UPS/ISAE/Mines Albi, Université de Toulouse, 3 rue Caroline Aigle, 31400 Toulouse, France
– sequence: 2
  givenname: Christian
  surname: Gogu
  fullname: Gogu, Christian
  organization: Institut Clément Ader (UMR CNRS 5312) INSA/UPS/ISAE/Mines Albi, Université de Toulouse, 3 rue Caroline Aigle, 31400 Toulouse, France
– sequence: 3
  givenname: Rob
  orcidid: 0000-0002-2339-4853
  surname: Vingerhoeds
  fullname: Vingerhoeds, Rob
  organization: ISAE-SUPAERO, Université de Toulouse, 10 Avenue Edouard Belin, 31400 Toulouse, France
– sequence: 4
  givenname: Michel
  surname: Salaün
  fullname: Salaün, Michel
  organization: Institut Clément Ader (UMR CNRS 5312) INSA/UPS/ISAE/Mines Albi, Université de Toulouse, 3 rue Caroline Aigle, 31400 Toulouse, France
BackLink https://hal.science/hal-03978536$$DView record in HAL
BookMark eNqNkE1r3DAQhkVJoZu0f6H42oO3I2stWdBDQ8gXLISQ9ixm5ZGrxSsbybth_320uCHQS3qaYeZ9Rug5Z2dhCMTYVw5LDlx-3y4pdDiO6JcVVCIP60aoD2zBGyVKqaQ-YwvQdVVyreQndp7SFgBEs5IL9vhEvSuf9iPFg0_UFmvCGHzoCjfEosUJi2QxWj8dCx8KLBxOvttTXu2wo2KMQxeGNHl7ajc97T6zjw77RF_-1gv2--b619VduX64vb-6XJdW6NVU1q6tQUlwGuSqrjaq4QpsBa4CbMBtKpL5G7ayDXFbtxysyr3TeoVakGzFBVPz3X0Y8fiMfW_G6HcYj4aDOZkxW_NqxpzMmNlMJr_N5B98Y4Ycurtcm9MMhFZNLeSB56ycszYOKUVy___Ij3_A7DC7G8IU0ffv4z9nnLLCg6dokvUULLU-kp1MO_j3TrwAwk2mDg
CitedBy_id crossref_primary_10_1016_j_ress_2024_110296
crossref_primary_10_3390_aerospace11090741
crossref_primary_10_1016_j_compositesb_2024_111863
crossref_primary_10_3390_math12050758
crossref_primary_10_1002_eng2_12788
crossref_primary_10_1080_10589759_2025_2450063
crossref_primary_10_1016_j_conengprac_2024_105900
crossref_primary_10_1016_j_eswa_2023_122807
crossref_primary_10_1155_stc_9997872
crossref_primary_10_3390_s25020531
crossref_primary_10_1016_j_engappai_2024_109268
crossref_primary_10_1007_s10845_024_02544_7
crossref_primary_10_3390_fractalfract8010014
crossref_primary_10_1016_j_tws_2024_112330
crossref_primary_10_1080_01694243_2025_2450268
crossref_primary_10_3390_machines11100923
crossref_primary_10_1016_j_eswa_2023_122113
crossref_primary_10_1177_14759217251321080
crossref_primary_10_1016_j_inffus_2024_102814
crossref_primary_10_1016_j_ymssp_2024_111120
Cites_doi 10.1145/3502287
10.1155/2018/3813029
10.1016/j.engappai.2022.105140
10.1016/j.jmsy.2020.07.008
10.1038/nature14539
10.1504/IJHM.2021.114174
10.1016/j.jwpe.2018.12.010
10.7717/peerj-cs.1045
10.4249/scholarpedia.5947
10.1038/323533a0
10.1109/TKDE.2021.3090866
10.1155/2015/793161
10.1023/A:1022627411411
10.1007/s11036-006-5186-9
10.1038/s41598-022-08417-4
10.1016/j.ress.2018.11.027
10.1155/2018/8141259
10.1016/j.coche.2021.100778
10.3390/data5010005
10.1016/j.engappai.2020.103793
10.1016/j.jcp.2019.109136
10.1145/3472291
10.1016/j.ress.2021.108126
10.1016/j.ijforecast.2020.06.008
10.1016/j.jmsy.2018.04.008
10.1109/TII.2018.2881543
10.1115/1.3656900
10.1016/j.engappai.2020.103678
10.1016/j.neucom.2021.10.036
10.3390/info9030056
10.1016/j.ress.2021.107864
10.3390/technologies9010002
10.1016/j.engappai.2010.11.004
10.1016/j.engappai.2021.104497
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
ADTOC
UNPAY
DOI 10.1016/j.engappai.2023.105837
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10.1016/j.engappai.2023.105837
oai:HAL:hal-03978536v1
10_1016_j_engappai_2023_105837
S0952197623000210
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
1XC
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c394t-5fd50760f906452b78170c20f20a80fb2e6583c2c8e1c5d10c72c8f994a93e6d3
IEDL.DBID .~1
ISSN 0952-1976
1873-6769
IngestDate Sun Oct 26 04:16:38 EDT 2025
Sat Oct 25 06:44:56 EDT 2025
Sat Oct 25 06:16:11 EDT 2025
Thu Apr 24 23:06:33 EDT 2025
Fri Feb 23 02:37:33 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Data scarcity
Self-Supervised Learning (SSL)
Prognostics and Health Management (PHM)
Deep Learning (DL)
Remaining Useful Life (RUL)
Data Scarcity
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-5fd50760f906452b78170c20f20a80fb2e6583c2c8e1c5d10c72c8f994a93e6d3
ORCID 0000-0003-4944-000X
0000-0002-2339-4853
0000-0002-7278-5631
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/am/pii/S0952197623000210?via%3Dihub
ParticipantIDs unpaywall_primary_10_1016_j_engappai_2023_105837
hal_primary_oai_HAL_hal_03978536v1
crossref_primary_10_1016_j_engappai_2023_105837
crossref_citationtrail_10_1016_j_engappai_2023_105837
elsevier_sciencedirect_doi_10_1016_j_engappai_2023_105837
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
2023-04
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Paris, Erdogan (b51) 1963; 85
Yengera, Mutter, Marescaux, Padoy (b69) 2018
Fink, Wang, Svensén, Dersin, Lee, Ducoffe (b19) 2020; 92
Jaiswal, Babu, Zadeh, Banerjee, Makedon (b37) 2021; 9
Ho (b29) 1995
Yamak, Yujian, Gadosey (b68) 2019
He, Chen, Xie, Li, Dollár, Girshick (b25) 2022
Rana (b53) 2016
Jimenez, Schwartz, Vingerhoeds, Grabot, Salaün (b38) 2020; 56
Damianou, Lawrence (b14) 2013
Jagtap, Karniadakis (b32) 2022
Theissler, Pérez-Velázquez, Kettelgerdes, Elger (b63) 2021; 215
Ba, Kiros, Hinton (b4) 2016
Yoon, Lee, Lim, Jung, Kang, Kim, Park, Choi (b70) 2017
Zhu, Hou, Chen, Gao, Xu, He (b73) 2021; 106
Jagtap, Kawaguchi, Karniadakis (b34) 2020; 404
Sun, Ma, Zhao, Tian, Yan, Chen (b62) 2018; 15
Mao, Lv, Shi, Zou, Guo (b47) 2010
Akrim, Gogu, Guillebot de Nerville, Strähle, Waffa Pagou, Salaün, Vingerhoeds (b2) 2022
Shao-feng, Yun-fei, Xiao-ling, Yu-dong, Yi-qiang (b60) 2013
Chen, Kornblith, Swersky, Norouzi, Hinton (b10) 2020; 33
Guo, Zhu, Wang, Prahlad, Ho, Lee (b22) 2022
Chen, Radford, Child, Wu, Jun, Luan, Sutskever (b11) 2020
Hahn, Mechefske (b24) 2021; 4
LeCun, Bengio, Hinton (b44) 2015; 521
Rasmussen (b54) 2003
Voulodimos, Doulamis, Bebis, Stathaki (b66) 2018; 2018
Hinton (b28) 2009; 4
Cortes, Vapnik (b13) 1995; 20
Tsui, Chen, Zhou, Hai, Wang (b65) 2015; 2015
Zhu, Min, Kadav, Graf (b74) 2020
Rumelhart, Hinton, Williams (b58) 1986; 323
Gutierrez-Torre, Berral, Buchaca, Guevara, Soret, Carrera (b23) 2020; 94
Bansal, Sharma, Kathuria (b5) 2022; 54
Cho, Van Merriënboer, Gulcehre, Bahdanau, Bougares, Schwenk, Bengio (b12) 2014
Endo, Poston, Sullivan, Fei-Fei, Pohl, Adeli (b18) 2022
Atamuradov, Medjaher, Dersin, Lamoureux, Zerhouni (b3) 2017; 8
Adaloglou (b1) 2020
Ren, Sun, Cui, Zhang (b55) 2018; 48
Yue, Fu, Liang (b72) 2018; 9
Borzooei, Amerlinck, Abolfathi, Panepinto, Nopens, Lorenzi, Meucci, Zanetti (b8) 2019; 28
Berthou, Duplessis, Stabat, Rivière, Marchio (b7) 2019
Olah (b50) 2015
Brown, Mann, Ryder, Subbiah, Kaplan, Dhariwal, Neelakantan, Shyam, Sastry, Askell (b9) 2020
Krokotsch, Knaak, Gühmann (b43) 2022; 13
Ren, Xiao, Chang, Huang, Li, Gupta, Chen, Wang (b56) 2021; 54
Kandemir (b40) 2015
Kingma, Welling (b42) 2013
Baptista, Prendinger, Henriques (b6) 2020
Jain, Shah, Brunette, Borriello, Roy (b36) 2006; 11
Wen, Liu (b67) 2011
Ding, Zhuang, Ding, Jia (b16) 2022; 218
Yu, Yin, Xia, Chen, Li, Huang (b71) 2022
Ellefsen, Bjørlykhaug, Æsøy, Ushakov, Zhang (b17) 2019; 183
Jing, Tian (b39) 2020
Jadon (b31) 2021
Nandy, Duan, Kulik (b49) 2022; 36
Shurrab, Duwairi (b61) 2022; 8
Dhariwal, Jun, Payne, Kim, Radford, Sutskever (b15) 2020
Jagtap, Shin, Kawaguchi, Karniadakis (b35) 2022; 468
Raina, Battle, Lee, Packer, Ng (b52) 2007
Saxena, Goebel, Simon, Eklund (b59) 2008
Liu, Zhang, Hou, Mian, Wang, Zhang, Tang (b45) 2021
Ma, Su, Zhao, Liu (b46) 2018; 2018
Gorgoglione, Castro, Chreties, Etcheverry (b21) 2020; 5
Ghiasi, Noori, Sheikhian, Zeynolabedin, Sun, Jun, Hamouda, Bateni, Abolfathi (b20) 2022; 12
Kingma, Ba (b41) 2014
He, Zhang, Ren, Sun (b26) 2016
Rocchetta, Gao, Mavroeidis, Petkovic (b57) 2022; 114
Hrinchuk, Khrulkov, Mirvakhabova, Orlova, Oseledets (b30) 2019
Hewamalage, Bergmeir, Bandara (b27) 2021; 37
Jagtap, Kawaguchi, Em Karniadakis (b33) 2020; 476
Mazloumi, Rose, Currie, Moridpour (b48) 2011; 24
Torrey, Shavlik (b64) 2010
Wen (10.1016/j.engappai.2023.105837_b67) 2011
Berthou (10.1016/j.engappai.2023.105837_b7) 2019
Kingma (10.1016/j.engappai.2023.105837_b41) 2014
Rasmussen (10.1016/j.engappai.2023.105837_b54) 2003
Brown (10.1016/j.engappai.2023.105837_b9) 2020
Ellefsen (10.1016/j.engappai.2023.105837_b17) 2019; 183
Zhu (10.1016/j.engappai.2023.105837_b74) 2020
Hewamalage (10.1016/j.engappai.2023.105837_b27) 2021; 37
Torrey (10.1016/j.engappai.2023.105837_b64) 2010
He (10.1016/j.engappai.2023.105837_b26) 2016
Bansal (10.1016/j.engappai.2023.105837_b5) 2022; 54
Voulodimos (10.1016/j.engappai.2023.105837_b66) 2018; 2018
Chen (10.1016/j.engappai.2023.105837_b10) 2020; 33
Hahn (10.1016/j.engappai.2023.105837_b24) 2021; 4
Yamak (10.1016/j.engappai.2023.105837_b68) 2019
Ho (10.1016/j.engappai.2023.105837_b29) 1995
Atamuradov (10.1016/j.engappai.2023.105837_b3) 2017; 8
Mao (10.1016/j.engappai.2023.105837_b47) 2010
Ba (10.1016/j.engappai.2023.105837_b4) 2016
Hinton (10.1016/j.engappai.2023.105837_b28) 2009; 4
Guo (10.1016/j.engappai.2023.105837_b22) 2022
Ren (10.1016/j.engappai.2023.105837_b56) 2021; 54
Rana (10.1016/j.engappai.2023.105837_b53) 2016
Ma (10.1016/j.engappai.2023.105837_b46) 2018; 2018
Ding (10.1016/j.engappai.2023.105837_b16) 2022; 218
Saxena (10.1016/j.engappai.2023.105837_b59) 2008
Tsui (10.1016/j.engappai.2023.105837_b65) 2015; 2015
Fink (10.1016/j.engappai.2023.105837_b19) 2020; 92
Cho (10.1016/j.engappai.2023.105837_b12) 2014
Gutierrez-Torre (10.1016/j.engappai.2023.105837_b23) 2020; 94
Jaiswal (10.1016/j.engappai.2023.105837_b37) 2021; 9
Baptista (10.1016/j.engappai.2023.105837_b6) 2020
Raina (10.1016/j.engappai.2023.105837_b52) 2007
Jagtap (10.1016/j.engappai.2023.105837_b32) 2022
Krokotsch (10.1016/j.engappai.2023.105837_b43) 2022; 13
Rocchetta (10.1016/j.engappai.2023.105837_b57) 2022; 114
Jimenez (10.1016/j.engappai.2023.105837_b38) 2020; 56
Jagtap (10.1016/j.engappai.2023.105837_b35) 2022; 468
Paris (10.1016/j.engappai.2023.105837_b51) 1963; 85
Jagtap (10.1016/j.engappai.2023.105837_b34) 2020; 404
Endo (10.1016/j.engappai.2023.105837_b18) 2022
Chen (10.1016/j.engappai.2023.105837_b11) 2020
Sun (10.1016/j.engappai.2023.105837_b62) 2018; 15
Adaloglou (10.1016/j.engappai.2023.105837_b1) 2020
Jagtap (10.1016/j.engappai.2023.105837_b33) 2020; 476
Shao-feng (10.1016/j.engappai.2023.105837_b60) 2013
Ren (10.1016/j.engappai.2023.105837_b55) 2018; 48
Mazloumi (10.1016/j.engappai.2023.105837_b48) 2011; 24
Yoon (10.1016/j.engappai.2023.105837_b70) 2017
LeCun (10.1016/j.engappai.2023.105837_b44) 2015; 521
Damianou (10.1016/j.engappai.2023.105837_b14) 2013
Yengera (10.1016/j.engappai.2023.105837_b69) 2018
Olah (10.1016/j.engappai.2023.105837_b50) 2015
Borzooei (10.1016/j.engappai.2023.105837_b8) 2019; 28
Cortes (10.1016/j.engappai.2023.105837_b13) 1995; 20
Jadon (10.1016/j.engappai.2023.105837_b31) 2021
Kandemir (10.1016/j.engappai.2023.105837_b40) 2015
Rumelhart (10.1016/j.engappai.2023.105837_b58) 1986; 323
Yue (10.1016/j.engappai.2023.105837_b72) 2018; 9
Kingma (10.1016/j.engappai.2023.105837_b42) 2013
Theissler (10.1016/j.engappai.2023.105837_b63) 2021; 215
He (10.1016/j.engappai.2023.105837_b25) 2022
Jain (10.1016/j.engappai.2023.105837_b36) 2006; 11
Akrim (10.1016/j.engappai.2023.105837_b2) 2022
Zhu (10.1016/j.engappai.2023.105837_b73) 2021; 106
Hrinchuk (10.1016/j.engappai.2023.105837_b30) 2019
Shurrab (10.1016/j.engappai.2023.105837_b61) 2022; 8
Yu (10.1016/j.engappai.2023.105837_b71) 2022
Gorgoglione (10.1016/j.engappai.2023.105837_b21) 2020; 5
Nandy (10.1016/j.engappai.2023.105837_b49) 2022; 36
Jing (10.1016/j.engappai.2023.105837_b39) 2020
Liu (10.1016/j.engappai.2023.105837_b45) 2021
Dhariwal (10.1016/j.engappai.2023.105837_b15) 2020
Ghiasi (10.1016/j.engappai.2023.105837_b20) 2022; 12
References_xml – year: 2019
  ident: b7
  article-title: Urban energy models validation in data scarcity context: Case of the electricity consumption in the French residential sector
  publication-title: Building Simulation 2019
– volume: 476
  year: 2020
  ident: b33
  article-title: Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
– volume: 33
  start-page: 22243
  year: 2020
  end-page: 22255
  ident: b10
  article-title: Big self-supervised models are strong semi-supervised learners
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 36
  year: 2022
  ident: b49
  article-title: Audacity of huge: overcoming challenges of data scarcity and data quality for machine learning in computational materials discovery
  publication-title: Curr. Opin. Chem. Eng.
– volume: 2015
  year: 2015
  ident: b65
  article-title: Prognostics and health management: A review on data driven approaches
  publication-title: Math. Probl. Eng.
– year: 2016
  ident: b53
  article-title: Gated recurrent unit (GRU) for emotion classification from noisy speech
– volume: 12
  start-page: 1
  year: 2022
  end-page: 15
  ident: b20
  article-title: Uncertainty quantification of granular computing-neural network model for prediction of pollutant longitudinal dispersion coefficient in aquatic streams
  publication-title: Sci. Rep.
– volume: 404
  year: 2020
  ident: b34
  article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks
  publication-title: J. Comput. Phys.
– volume: 85
  start-page: 528
  year: 1963
  end-page: 533
  ident: b51
  article-title: A critical analysis of crack propagation laws
  publication-title: J. Basic Eng.
– start-page: 1
  year: 2008
  end-page: 9
  ident: b59
  article-title: Damage propagation modeling for aircraft engine run-to-failure simulation
  publication-title: 2008 International Conference on Prognostics and Health Management
– volume: 218
  year: 2022
  ident: b16
  article-title: Self-supervised pretraining via contrast learning for intelligent incipient fault detection of bearings
  publication-title: Reliab. Eng. Syst. Saf.
– start-page: 3
  year: 2013
  end-page: 7
  ident: b60
  article-title: Development and application of prognostics and health management technology
  publication-title: Proceedings of the 20th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits
– start-page: 49
  year: 2019
  end-page: 55
  ident: b68
  article-title: A comparison between arima, lstm, and gru for time series forecasting
  publication-title: Proceedings of the 2019 2nd International Conference on Algorithms, Computing and Artificial Intelligence
– start-page: 278
  year: 1995
  end-page: 282
  ident: b29
  article-title: Random decision forests
  publication-title: Proceedings of 3rd International Conference on Document Analysis and Recognition, Vol. 1
– start-page: 1691
  year: 2020
  end-page: 1703
  ident: b11
  article-title: Generative pretraining from pixels
  publication-title: International Conference on Machine Learning
– volume: 183
  start-page: 240
  year: 2019
  end-page: 251
  ident: b17
  article-title: Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 2018
  year: 2018
  ident: b66
  article-title: Recent developments in deep learning for engineering applications
  publication-title: Comput. Intell. Neurosci.
– volume: 9
  year: 2021
  ident: b37
  article-title: A survey on contrastive self-supervised learning
  publication-title: Technologies
– year: 2019
  ident: b30
  article-title: Tensorized embedding layers for efficient model compression
– start-page: 759
  year: 2007
  end-page: 766
  ident: b52
  article-title: Self-taught learning: transfer learning from unlabeled data
  publication-title: Proceedings of the 24th International Conference on Machine Learning
– year: 2022
  ident: b71
  article-title: Self-supervised learning for recommender systems: A survey
– year: 2020
  ident: b9
  article-title: Language models are few-shot learners
– volume: 4
  start-page: 69
  year: 2021
  end-page: 98
  ident: b24
  article-title: Self-supervised learning for tool wear monitoring with a disentangled-variational-autoencoder
  publication-title: Int. J. Hydromechatron.
– year: 2014
  ident: b12
  article-title: Learning phrase representations using RNN encoder-decoder for statistical machine translation
– volume: 37
  start-page: 388
  year: 2021
  end-page: 427
  ident: b27
  article-title: Recurrent neural networks for time series forecasting: Current status and future directions
  publication-title: Int. J. Forecast.
– volume: 54
  start-page: 1
  year: 2021
  end-page: 40
  ident: b56
  article-title: A survey of deep active learning
  publication-title: ACM Comput. Surv.
– start-page: 207
  year: 2013
  end-page: 215
  ident: b14
  article-title: Deep gaussian processes
  publication-title: Artificial Intelligence and Statistics
– volume: 114
  year: 2022
  ident: b57
  article-title: A robust model selection framework for fault detection and system health monitoring with limited failure examples: Heterogeneous data fusion and formal sensitivity bounds
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 1
  year: 2011
  end-page: 5
  ident: b67
  article-title: Applications of Prognostics and Health Management in aviation industry
  publication-title: 2011 Prognostics and System Health Managment Confernece
– volume: 28
  start-page: 10
  year: 2019
  end-page: 20
  ident: b8
  article-title: Data scarcity in modelling and simulation of a large-scale WWTP: stop sign or a challenge
  publication-title: J. Water Process Eng.
– year: 2020
  ident: b1
  article-title: Intuitive explanation of skip connections in deep learning
  publication-title: AI Summer
– volume: 106
  year: 2021
  ident: b73
  article-title: Novel virtual sample generation using conditional GAN for developing soft sensor with small data
  publication-title: Eng. Appl. Artif. Intell.
– year: 2014
  ident: b41
  article-title: Adam: A method for stochastic optimization
– start-page: 730
  year: 2015
  end-page: 738
  ident: b40
  article-title: Asymmetric transfer learning with deep gaussian processes
  publication-title: International Conference on Machine Learning
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b44
  article-title: Deep learning
  publication-title: Nature
– start-page: 130
  year: 2022
  end-page: 139
  ident: b18
  article-title: GaitForeMer: Self-supervised pre-training of transformers via human motion forecasting for few-shot gait impairment severity estimation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 5
  start-page: 5
  year: 2020
  ident: b21
  article-title: Overcoming data scarcity in earth science
  publication-title: Data
– year: 2018
  ident: b69
  article-title: Less is more: Surgical phase recognition with less annotations through self-supervised pre-training of CNN-LSTM networks
– start-page: 242
  year: 2010
  end-page: 264
  ident: b64
  article-title: Transfer learning
  publication-title: Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques
– year: 2022
  ident: b22
  article-title: Masked self-supervision for remaining useful lifetime prediction in machine tools
– volume: 4
  start-page: 5947
  year: 2009
  ident: b28
  article-title: Deep belief networks
  publication-title: Scholarpedia
– volume: 9
  start-page: 56
  year: 2018
  ident: b72
  article-title: Residual recurrent neural networks for learning sequential representations
  publication-title: Information
– year: 2020
  ident: b15
  article-title: Jukebox: A generative model for music
– volume: 11
  start-page: 327
  year: 2006
  end-page: 339
  ident: b36
  article-title: Exploiting mobility for energy efficient data collection in wireless sensor networks
  publication-title: Mob. Netw. Appl.
– volume: 48
  start-page: 71
  year: 2018
  end-page: 77
  ident: b55
  article-title: Bearing remaining useful life prediction based on deep autoencoder and deep neural networks
  publication-title: J. Manuf. Syst.
– volume: 13
  year: 2022
  ident: b43
  article-title: Improving semi-supervised learning for remaining useful lifetime estimation through self-supervision
  publication-title: Int. J. Progn. Health Manag.
– volume: 2018
  year: 2018
  ident: b46
  article-title: Predicting the remaining useful life of an aircraft engine using a stacked sparse autoencoder with multilayer self-learning
  publication-title: Complexity
– year: 2022
  ident: b32
  article-title: How important are activation functions in regression and classification? A survey, performance comparison, and future directions
– volume: 56
  start-page: 539
  year: 2020
  end-page: 557
  ident: b38
  article-title: Towards multi-model approaches to predictive maintenance: A systematic literature survey on diagnostics and prognostics
  publication-title: J. Manuf. Syst.
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: b58
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– start-page: 16000
  year: 2022
  end-page: 16009
  ident: b25
  article-title: Masked autoencoders are scalable vision learners
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 54
  start-page: 1
  year: 2022
  end-page: 29
  ident: b5
  article-title: A systematic review on data scarcity problem in deep learning: solution and applications
  publication-title: ACM Comput. Surv.
– year: 2013
  ident: b42
  article-title: Auto-encoding variational bayes
– year: 2021
  ident: b45
  article-title: Self-supervised learning: Generative or contrastive
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 2017
  ident: b70
  article-title: Semi-supervised learning with deep generative models for asset failure prediction
– volume: 92
  year: 2020
  ident: b19
  article-title: Potential, challenges and future directions for deep learning in prognostics and health management applications
  publication-title: Eng. Appl. Artif. Intell.
– year: 2015
  ident: b50
  article-title: Understanding LSTM networks
– start-page: 25
  year: 2022
  end-page: 33
  ident: b2
  article-title: A framework for generating large data sets for fatigue damage prognostic problems
  publication-title: 2022 IEEE International Conference on Prognostics and Health Management
– start-page: 1
  year: 2010
  end-page: 6
  ident: b47
  article-title: Research of the military aircraft maintenance support mode based on the prognostics and health management
  publication-title: 2010 Prognostics and System Health Management Conference
– start-page: 6538
  year: 2020
  end-page: 6547
  ident: b74
  article-title: S3vae: Self-supervised sequential vae for representation disentanglement and data generation
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 63
  year: 2003
  end-page: 71
  ident: b54
  article-title: Gaussian processes in machine learning
  publication-title: Summer School on Machine Learning
– start-page: 161
  year: 2021
  end-page: 170
  ident: b31
  article-title: COVID-19 detection from scarce chest x-ray image data using few-shot deep learning approach
  publication-title: Medical Imaging 2021: Imaging Informatics for Healthcare, Research, and Applications, Vol. 11601
– volume: 15
  start-page: 2416
  year: 2018
  end-page: 2425
  ident: b62
  article-title: Deep transfer learning based on sparse autoencoder for remaining useful life prediction of tool in manufacturing
  publication-title: IEEE Trans. Ind. Inform.
– year: 2016
  ident: b4
  article-title: Layer normalization
– volume: 8
  start-page: 1
  year: 2017
  end-page: 31
  ident: b3
  article-title: Prognostics and health management for maintenance practitioners-review, implementation and tools evaluation
  publication-title: Int. J. Progn. Health Manag.
– start-page: 11
  year: 2020
  ident: b6
  article-title: Prognostics in aeronautics with deep recurrent neural networks
  publication-title: PHM Society European Conference, Vol. 5
– volume: 468
  start-page: 165
  year: 2022
  end-page: 180
  ident: b35
  article-title: Deep Kronecker neural networks: A general framework for neural networks with adaptive activation functions
  publication-title: Neurocomputing
– volume: 94
  year: 2020
  ident: b23
  article-title: Improving maritime traffic emission estimations on missing data with CRBMs
  publication-title: Eng. Appl. Artif. Intell.
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b13
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– year: 2020
  ident: b39
  article-title: Self-supervised visual feature learning with deep neural networks: A survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 770
  year: 2016
  end-page: 778
  ident: b26
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 24
  start-page: 534
  year: 2011
  end-page: 542
  ident: b48
  article-title: Prediction intervals to account for uncertainties in neural network predictions: Methodology and application in bus travel time prediction
  publication-title: Eng. Appl. Artif. Intell.
– volume: 215
  year: 2021
  ident: b63
  article-title: Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 8
  year: 2022
  ident: b61
  article-title: Self-supervised learning methods and applications in medical imaging analysis: A survey
  publication-title: PeerJ Comput. Sci.
– year: 2022
  ident: 10.1016/j.engappai.2023.105837_b32
– volume: 54
  start-page: 1
  issue: 10s
  year: 2022
  ident: 10.1016/j.engappai.2023.105837_b5
  article-title: A systematic review on data scarcity problem in deep learning: solution and applications
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3502287
– volume: 476
  issue: 2239
  year: 2020
  ident: 10.1016/j.engappai.2023.105837_b33
  article-title: Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
– start-page: 3
  year: 2013
  ident: 10.1016/j.engappai.2023.105837_b60
  article-title: Development and application of prognostics and health management technology
– start-page: 130
  year: 2022
  ident: 10.1016/j.engappai.2023.105837_b18
  article-title: GaitForeMer: Self-supervised pre-training of transformers via human motion forecasting for few-shot gait impairment severity estimation
– start-page: 1
  year: 2011
  ident: 10.1016/j.engappai.2023.105837_b67
  article-title: Applications of Prognostics and Health Management in aviation industry
– volume: 2018
  year: 2018
  ident: 10.1016/j.engappai.2023.105837_b46
  article-title: Predicting the remaining useful life of an aircraft engine using a stacked sparse autoencoder with multilayer self-learning
  publication-title: Complexity
  doi: 10.1155/2018/3813029
– volume: 114
  year: 2022
  ident: 10.1016/j.engappai.2023.105837_b57
  article-title: A robust model selection framework for fault detection and system health monitoring with limited failure examples: Heterogeneous data fusion and formal sensitivity bounds
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105140
– volume: 56
  start-page: 539
  year: 2020
  ident: 10.1016/j.engappai.2023.105837_b38
  article-title: Towards multi-model approaches to predictive maintenance: A systematic literature survey on diagnostics and prognostics
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2020.07.008
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.engappai.2023.105837_b44
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 4
  start-page: 69
  issue: 1
  year: 2021
  ident: 10.1016/j.engappai.2023.105837_b24
  article-title: Self-supervised learning for tool wear monitoring with a disentangled-variational-autoencoder
  publication-title: Int. J. Hydromechatron.
  doi: 10.1504/IJHM.2021.114174
– volume: 28
  start-page: 10
  year: 2019
  ident: 10.1016/j.engappai.2023.105837_b8
  article-title: Data scarcity in modelling and simulation of a large-scale WWTP: stop sign or a challenge
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2018.12.010
– year: 2014
  ident: 10.1016/j.engappai.2023.105837_b41
– volume: 8
  year: 2022
  ident: 10.1016/j.engappai.2023.105837_b61
  article-title: Self-supervised learning methods and applications in medical imaging analysis: A survey
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.1045
– year: 2020
  ident: 10.1016/j.engappai.2023.105837_b39
  article-title: Self-supervised visual feature learning with deep neural networks: A survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 11
  year: 2020
  ident: 10.1016/j.engappai.2023.105837_b6
  article-title: Prognostics in aeronautics with deep recurrent neural networks
– year: 2013
  ident: 10.1016/j.engappai.2023.105837_b42
– volume: 4
  start-page: 5947
  issue: 5
  year: 2009
  ident: 10.1016/j.engappai.2023.105837_b28
  article-title: Deep belief networks
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.5947
– start-page: 242
  year: 2010
  ident: 10.1016/j.engappai.2023.105837_b64
  article-title: Transfer learning
– year: 2019
  ident: 10.1016/j.engappai.2023.105837_b7
  article-title: Urban energy models validation in data scarcity context: Case of the electricity consumption in the French residential sector
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 10.1016/j.engappai.2023.105837_b58
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– year: 2021
  ident: 10.1016/j.engappai.2023.105837_b45
  article-title: Self-supervised learning: Generative or contrastive
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2021.3090866
– volume: 2015
  year: 2015
  ident: 10.1016/j.engappai.2023.105837_b65
  article-title: Prognostics and health management: A review on data driven approaches
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2015/793161
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.engappai.2023.105837_b13
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022627411411
– volume: 11
  start-page: 327
  issue: 3
  year: 2006
  ident: 10.1016/j.engappai.2023.105837_b36
  article-title: Exploiting mobility for energy efficient data collection in wireless sensor networks
  publication-title: Mob. Netw. Appl.
  doi: 10.1007/s11036-006-5186-9
– start-page: 25
  year: 2022
  ident: 10.1016/j.engappai.2023.105837_b2
  article-title: A framework for generating large data sets for fatigue damage prognostic problems
– volume: 12
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.engappai.2023.105837_b20
  article-title: Uncertainty quantification of granular computing-neural network model for prediction of pollutant longitudinal dispersion coefficient in aquatic streams
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-08417-4
– volume: 183
  start-page: 240
  year: 2019
  ident: 10.1016/j.engappai.2023.105837_b17
  article-title: Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2018.11.027
– volume: 2018
  year: 2018
  ident: 10.1016/j.engappai.2023.105837_b66
  article-title: Recent developments in deep learning for engineering applications
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2018/8141259
– year: 2020
  ident: 10.1016/j.engappai.2023.105837_b1
  article-title: Intuitive explanation of skip connections in deep learning
  publication-title: AI Summer
– start-page: 278
  year: 1995
  ident: 10.1016/j.engappai.2023.105837_b29
  article-title: Random decision forests
– volume: 36
  year: 2022
  ident: 10.1016/j.engappai.2023.105837_b49
  article-title: Audacity of huge: overcoming challenges of data scarcity and data quality for machine learning in computational materials discovery
  publication-title: Curr. Opin. Chem. Eng.
  doi: 10.1016/j.coche.2021.100778
– year: 2015
  ident: 10.1016/j.engappai.2023.105837_b50
– start-page: 770
  year: 2016
  ident: 10.1016/j.engappai.2023.105837_b26
  article-title: Deep residual learning for image recognition
– start-page: 1
  year: 2010
  ident: 10.1016/j.engappai.2023.105837_b47
  article-title: Research of the military aircraft maintenance support mode based on the prognostics and health management
– volume: 5
  start-page: 5
  issue: 1
  year: 2020
  ident: 10.1016/j.engappai.2023.105837_b21
  article-title: Overcoming data scarcity in earth science
  publication-title: Data
  doi: 10.3390/data5010005
– volume: 94
  year: 2020
  ident: 10.1016/j.engappai.2023.105837_b23
  article-title: Improving maritime traffic emission estimations on missing data with CRBMs
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103793
– start-page: 63
  year: 2003
  ident: 10.1016/j.engappai.2023.105837_b54
  article-title: Gaussian processes in machine learning
– year: 2020
  ident: 10.1016/j.engappai.2023.105837_b9
– start-page: 730
  year: 2015
  ident: 10.1016/j.engappai.2023.105837_b40
  article-title: Asymmetric transfer learning with deep gaussian processes
– volume: 404
  year: 2020
  ident: 10.1016/j.engappai.2023.105837_b34
  article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.109136
– year: 2014
  ident: 10.1016/j.engappai.2023.105837_b12
– year: 2016
  ident: 10.1016/j.engappai.2023.105837_b4
– volume: 54
  start-page: 1
  issue: 9
  year: 2021
  ident: 10.1016/j.engappai.2023.105837_b56
  article-title: A survey of deep active learning
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3472291
– volume: 218
  year: 2022
  ident: 10.1016/j.engappai.2023.105837_b16
  article-title: Self-supervised pretraining via contrast learning for intelligent incipient fault detection of bearings
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2021.108126
– start-page: 1
  year: 2008
  ident: 10.1016/j.engappai.2023.105837_b59
  article-title: Damage propagation modeling for aircraft engine run-to-failure simulation
– volume: 37
  start-page: 388
  issue: 1
  year: 2021
  ident: 10.1016/j.engappai.2023.105837_b27
  article-title: Recurrent neural networks for time series forecasting: Current status and future directions
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2020.06.008
– volume: 48
  start-page: 71
  year: 2018
  ident: 10.1016/j.engappai.2023.105837_b55
  article-title: Bearing remaining useful life prediction based on deep autoencoder and deep neural networks
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2018.04.008
– volume: 15
  start-page: 2416
  issue: 4
  year: 2018
  ident: 10.1016/j.engappai.2023.105837_b62
  article-title: Deep transfer learning based on sparse autoencoder for remaining useful life prediction of tool in manufacturing
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2018.2881543
– start-page: 207
  year: 2013
  ident: 10.1016/j.engappai.2023.105837_b14
  article-title: Deep gaussian processes
– year: 2022
  ident: 10.1016/j.engappai.2023.105837_b22
– volume: 13
  issue: 1
  year: 2022
  ident: 10.1016/j.engappai.2023.105837_b43
  article-title: Improving semi-supervised learning for remaining useful lifetime estimation through self-supervision
  publication-title: Int. J. Progn. Health Manag.
– year: 2016
  ident: 10.1016/j.engappai.2023.105837_b53
– start-page: 49
  year: 2019
  ident: 10.1016/j.engappai.2023.105837_b68
  article-title: A comparison between arima, lstm, and gru for time series forecasting
– volume: 85
  start-page: 528
  issue: 4
  year: 1963
  ident: 10.1016/j.engappai.2023.105837_b51
  article-title: A critical analysis of crack propagation laws
  publication-title: J. Basic Eng.
  doi: 10.1115/1.3656900
– year: 2018
  ident: 10.1016/j.engappai.2023.105837_b69
– volume: 92
  year: 2020
  ident: 10.1016/j.engappai.2023.105837_b19
  article-title: Potential, challenges and future directions for deep learning in prognostics and health management applications
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103678
– start-page: 16000
  year: 2022
  ident: 10.1016/j.engappai.2023.105837_b25
  article-title: Masked autoencoders are scalable vision learners
– volume: 33
  start-page: 22243
  year: 2020
  ident: 10.1016/j.engappai.2023.105837_b10
  article-title: Big self-supervised models are strong semi-supervised learners
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 8
  start-page: 1
  issue: 060
  year: 2017
  ident: 10.1016/j.engappai.2023.105837_b3
  article-title: Prognostics and health management for maintenance practitioners-review, implementation and tools evaluation
  publication-title: Int. J. Progn. Health Manag.
– volume: 468
  start-page: 165
  year: 2022
  ident: 10.1016/j.engappai.2023.105837_b35
  article-title: Deep Kronecker neural networks: A general framework for neural networks with adaptive activation functions
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.10.036
– year: 2022
  ident: 10.1016/j.engappai.2023.105837_b71
– start-page: 161
  year: 2021
  ident: 10.1016/j.engappai.2023.105837_b31
  article-title: COVID-19 detection from scarce chest x-ray image data using few-shot deep learning approach
– start-page: 759
  year: 2007
  ident: 10.1016/j.engappai.2023.105837_b52
  article-title: Self-taught learning: transfer learning from unlabeled data
– start-page: 1691
  year: 2020
  ident: 10.1016/j.engappai.2023.105837_b11
  article-title: Generative pretraining from pixels
– year: 2017
  ident: 10.1016/j.engappai.2023.105837_b70
– volume: 9
  start-page: 56
  issue: 3
  year: 2018
  ident: 10.1016/j.engappai.2023.105837_b72
  article-title: Residual recurrent neural networks for learning sequential representations
  publication-title: Information
  doi: 10.3390/info9030056
– year: 2019
  ident: 10.1016/j.engappai.2023.105837_b30
– volume: 215
  year: 2021
  ident: 10.1016/j.engappai.2023.105837_b63
  article-title: Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2021.107864
– volume: 9
  issue: 1
  year: 2021
  ident: 10.1016/j.engappai.2023.105837_b37
  article-title: A survey on contrastive self-supervised learning
  publication-title: Technologies
  doi: 10.3390/technologies9010002
– volume: 24
  start-page: 534
  issue: 3
  year: 2011
  ident: 10.1016/j.engappai.2023.105837_b48
  article-title: Prediction intervals to account for uncertainties in neural network predictions: Methodology and application in bus travel time prediction
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2010.11.004
– start-page: 6538
  year: 2020
  ident: 10.1016/j.engappai.2023.105837_b74
  article-title: S3vae: Self-supervised sequential vae for representation disentanglement and data generation
– volume: 106
  year: 2021
  ident: 10.1016/j.engappai.2023.105837_b73
  article-title: Novel virtual sample generation using conditional GAN for developing soft sensor with small data
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104497
– year: 2020
  ident: 10.1016/j.engappai.2023.105837_b15
SSID ssj0003846
Score 2.5134923
Snippet With the increasing availability of data for Prognostics and Health Management (PHM), Deep Learning (DL) techniques are now the subject of considerable...
SourceID unpaywall
hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 105837
SubjectTerms Data scarcity
Deep Learning (DL)
Engineering Sciences
Mechanics
Prognostics and Health Management (PHM)
Remaining Useful Life (RUL)
Self-Supervised Learning (SSL)
Structural mechanics
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED_a9GFP6z5ZxjbE2B4VK5Y_n0rYVsIYZSULdE9GUqTUbeqaxm7p_vrdxXLoxqAb7M2cddjyne5-wqffAbyTwoy11IorJRWPdJrwLIk0t1IJFy0ym-pNgexRMp1Hn0_ikx047s_CUFmlj_1dTN9Eay8J_NcM1EVQl2UwQ3yAKw7XsxSbzcvBdaney4_laat3YS-JEZ4PYG9-9HXyvePcCzkNp01YlkpO5Z13Tg2fjWy1VHWtyhE1FacWuBn1R_9zwto9pcrJB21Vq9sbtVrdSUuH-3DVT6irRjkftY0emR-_cT3-1xk_gocexLJJp_UYdmz1BPY9oGU-XKxR1PeM6GVP4XhmV47P2ppi1BpHe4LXJUP0zKhela0N9TdqbllZMcUcus6ytXjrAkMfo3qy6pLIpZnvhfMM5oefvn2Yct_WgRuZRw2P3SKm_4EuJ668UKfEEWhC4UKhMuF0aBEVSROazI5NvBgLk-K1y_NI5dImC_kcBtVlZV8AM1q4zBJMUTKyodOxw6FhYm2SY2aOhxD3tiuM5zyn1huroi9uOyt6mxdk86Kz-RCCrV7dsX7cq5H3rlH8Ys0CU9O9um_Rl7YPIsLv6eRLQTKBcBEBVXI9HoLYutpfvtPLf1d5BYPmqrWvEWg1-o1fOj8BPFgoMg
  priority: 102
  providerName: Unpaywall
Title Self-Supervised Learning for data scarcity in a fatigue damage prognostic problem
URI https://dx.doi.org/10.1016/j.engappai.2023.105837
https://hal.science/hal-03978536
https://www.sciencedirect.com/science/article/am/pii/S0952197623000210?via%3Dihub
UnpaywallVersion publishedVersion
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AKRWK
  dateStart: 19880301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swELcYPGwvfOxDdEBlTXt168b5fKyqVYGialtXjT1FtmuXohIi2g7xwt--u8QpTEIqEk9OLrZi3dnnX5S7-xHyVXDdUUJJJqWQzFdRyOLQV8wIya0_iU2kygDZYZiO_bOL4GKL9OpcGAyrdL6_8umlt3aSttNmu5jN2iMAB7DdYDMLXn65YAa7HyGLQevhMcxDxFWyDnRm2PtJlvBVy-RTWRRy1kIScaS8jZEP_fkD6s0lRkq-XeWFvL-T8_mTY6i_T3YdfqTdaooHZMvk78mew5LU7dQFiGq6hlr2gfwYmbllo1WB7mEBvV1t1SkF4EoxVJQuNFILLe_pLKeSWrDadGXg0TV4HYqhXPkN1nWmjobmIxn3v_3qpcwxKjAtEn_JAjsJ8FecTbBMnaciLM-nPW49LmNulWcAkAjt6dh0dDDpcB3BtU0SXybChBPxiWznN7k5JFQrbmODCEEK33hWBRa6eqExYQKHYtAgQa3GTLty48h6Mc_quLKrrFZ_hurPKvU3SHs9rqgKbmwckdRWyv5bOhmcChvHfgGzrl-EtbbT7nmGMg5IDbBM-LfTIHxt9RfO6fMr5nRE3uFdFR50TLaXtytzAshnqZrl0m6Sne7pIB1iO_j5ewDtePi9--cfCQgFIQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxEB1BeoBLS1tQQ6G1ql6dOOv9PEYIlLYpUhWQuFm2Y4egdFk1CYgLv52ZrDdQqRJIva3GY601Y8-81Y7nAXyVwvaMNJprLTWPTZbyPI0Nd1ILH49zl5lVgexpOjiPv18kFxtw1NyFobLKEPvrmL6K1kHSDdbsVtNpd4TgAI8bHmYpVl8um_AqTqKMvsA69491HjKvb-ugNif1J9eErzqunOiq0tMOsYgT521OhOj_zlCbl1QqubUsK313q2ezJ3noZAdeBwDJ-vUa38KGK9_BmwAmWTiqcxQ1fA2N7D38GrmZ56NlRfFhjtqhueqEIXJlVCvK5pa4hRZ3bFoyzTy6bbJ0OPQbww6jWq7ymho7s8BDswvnJ8dnRwMeKBW4lUW84IkfJ_QvzhfUpy4yGfXns5HwkdC58CZyiEikjWzuejYZ94TN8NkXRawL6dKx3INWeV26D8CsET53BBG0jF3kTeJRNUqdSwvMikkbksaMyoZ-40R7MVNNYdmVasyvyPyqNn8buut5Vd1x49kZReMl9dfeUZgWnp37Bd26fhE12x70h4pkAqEagpn0ptcGsfb6C9e0_x9r-gxbg7OfQzX8dvrjI2zTSF0rdACtxZ-lO0QYtDCfVtv8AbwbA2M
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED_a9GFP6z5ZxjbE2B4VK5Y_n0rYVsIYZSULdE9GUqTUbeqaxm7p_vrdxXLoxqAb7M2cddjyne5-wqffAbyTwoy11IorJRWPdJrwLIk0t1IJFy0ym-pNgexRMp1Hn0_ikx047s_CUFmlj_1dTN9Eay8J_NcM1EVQl2UwQ3yAKw7XsxSbzcvBdaney4_laat3YS-JEZ4PYG9-9HXyvePcCzkNp01YlkpO5Z13Tg2fjWy1VHWtyhE1FacWuBn1R_9zwto9pcrJB21Vq9sbtVrdSUuH-3DVT6irRjkftY0emR-_cT3-1xk_gocexLJJp_UYdmz1BPY9oGU-XKxR1PeM6GVP4XhmV47P2ppi1BpHe4LXJUP0zKhela0N9TdqbllZMcUcus6ytXjrAkMfo3qy6pLIpZnvhfMM5oefvn2Yct_WgRuZRw2P3SKm_4EuJ668UKfEEWhC4UKhMuF0aBEVSROazI5NvBgLk-K1y_NI5dImC_kcBtVlZV8AM1q4zBJMUTKyodOxw6FhYm2SY2aOhxD3tiuM5zyn1huroi9uOyt6mxdk86Kz-RCCrV7dsX7cq5H3rlH8Ys0CU9O9um_Rl7YPIsLv6eRLQTKBcBEBVXI9HoLYutpfvtPLf1d5BYPmqrWvEWg1-o1fOj8BPFgoMg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Supervised+Learning+for+data+scarcity+in+a+fatigue+damage+prognostic+problem&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Akrim%2C+Anass&rft.au=Gogu%2C+Christian&rft.au=Vingerhoeds%2C+Rob&rft.au=Sala%C3%BCn%2C+Michel&rft.date=2023-04-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=120&rft_id=info:doi/10.1016%2Fj.engappai.2023.105837&rft.externalDocID=S0952197623000210
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon