Systematic approach towards extracting endmember spectra from hyperspectral image using PPI and SMACC and its evaluation using spectral library

This study focuses on systematic approach towards extraction of endmember spectra from hyperspectral image. The study demonstrates the effect of systematic preprocessing like atmospheric correction, radiometric correction (bad band and columns correction), and geometric correction on hyperspectral i...

Full description

Saved in:
Bibliographic Details
Published inApplied geomatics Vol. 7; no. 1; pp. 37 - 48
Main Authors Aggarwal, Arpit, Garg, R. D.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2015
Springer
Subjects
Online AccessGet full text
ISSN1866-9298
1866-928X
DOI10.1007/s12518-014-0149-5

Cover

Abstract This study focuses on systematic approach towards extraction of endmember spectra from hyperspectral image. The study demonstrates the effect of systematic preprocessing like atmospheric correction, radiometric correction (bad band and columns correction), and geometric correction on hyperspectral image. The study also focuses on the selection of the method for extracting endmember spectra depending upon the land-cover classes present in the study area. Two algorithms for extracting endmember spectra, i.e., pixel purity index (PPI) and sequential maximum angle convex cone (SMACC), have been used. To validate and perform comparative analysis of the two algorithms, spectral library has been created using field spectroradiometer and used as a reference to evaluate their performance. Visually, good results have been observed between extracted endmember spectra and reference library spectra after applying the rigorous preprocessing. To further analyze the two endmember extraction algorithms, spectral angle mapper (SAM) scores have been computed for various endmember spectral classes with respect to reference spectral library. The tabulated SAM scores for the endmembers of PPI and SMACC show that SMACC is more effective in extracting endmember spectra of vegetation classes while PPI is a more effective algorithm for roads and dry soil. It has been observed that systematic approach towards extracting endmember spectra from a hyperspectral image should consist of proper preprocessing steps, ground validation with a reference spectral library, and most importantly the proper selection of algorithm as the performance of algorithms for extracting endmember spectra depends on the land-cover classes present in the study area.
AbstractList This study focuses on systematic approach towards extraction of endmember spectra from hyperspectral image. The study demonstrates the effect of systematic preprocessing like atmospheric correction, radiometric correction (bad band and columns correction), and geometric correction on hyperspectral image. The study also focuses on the selection of the method for extracting endmember spectra depending upon the land-cover classes present in the study area. Two algorithms for extracting endmember spectra, i.e., pixel purity index (PPI) and sequential maximum angle convex cone (SMACC), have been used. To validate and perform comparative analysis of the two algorithms, spectral library has been created using field spectroradiometer and used as a reference to evaluate their performance. Visually, good results have been observed between extracted endmember spectra and reference library spectra after applying the rigorous preprocessing. To further analyze the two endmember extraction algorithms, spectral angle mapper (SAM) scores have been computed for various endmember spectral classes with respect to reference spectral library. The tabulated SAM scores for the endmembers of PPI and SMACC show that SMACC is more effective in extracting endmember spectra of vegetation classes while PPI is a more effective algorithm for roads and dry soil. It has been observed that systematic approach towards extracting endmember spectra from a hyperspectral image should consist of proper preprocessing steps, ground validation with a reference spectral library, and most importantly the proper selection of algorithm as the performance of algorithms for extracting endmember spectra depends on the land-cover classes present in the study area.
Audience Academic
Author Garg, R. D.
Aggarwal, Arpit
Author_xml – sequence: 1
  givenname: Arpit
  surname: Aggarwal
  fullname: Aggarwal, Arpit
  email: Arpit.coer@gmail.com
  organization: Risk Management Solutions India
– sequence: 2
  givenname: R. D.
  surname: Garg
  fullname: Garg, R. D.
  organization: Deparment of Civil Engineering, Geomatics Engineering Group, Indian Institute of Technology Roorkee
BookMark eNp9kc9u3CAQxlGVSk3TPEBvHNuDU8Bgm-Nq1T8rpWrUTaTeEMZjh8jGLuAm-xR95eJ4FSk9BIQYjb7fDHzzFp240QFC7ym5oISUnwJlglYZoXw5MhOv0CmtiiKTrPp18hTL6g06D-GOLKskgrNT9Hd_CBEGHa3Bepr8qM0tjuO99k3A8BC9NtG6DoNrBhhq8DhMYFIat34c8O1hAn_M9NgOugM8hwW4utph7Rq8_77Zbh8jG1PFP7qfU7PRHWVPbG9rr_3hHXrd6j7A-fE-QzdfPl9vv2WXP77utpvLzOSSx0zoGrhmjENjikrKhpekrkj6E4GcUsENoaQinNaM5aIqOeV1DoLnhjJNgOZn6MNaN3359wwhqsEGA32vHYxzULQoZFVQXsgkvVilne5BWdeOiytpNzBYkybR2pTflLSUvBBsAT4-A5ImJis7PYegdvufz7V01Ro_huChVZNPNvqDokQtw1XrcFUa7HKkEokp_2OMjY-mpofZ_kWSrWRIXVwHXt2Ns3fJ6Begf-n9usE
CitedBy_id crossref_primary_10_1016_j_optlastec_2018_11_057
crossref_primary_10_3390_s19112443
crossref_primary_10_3390_drones7080536
crossref_primary_10_1007_s12665_016_5367_1
crossref_primary_10_3390_rs15235496
crossref_primary_10_1007_s12517_020_06070_7
crossref_primary_10_1016_j_geothermics_2024_103194
Cites_doi 10.1109/36.3001
10.1109/TGRS.2005.844293
10.1117/12.406610
10.1109/IGARSS.2002.1026105
10.1016/0034-4257(93)90013-N
10.1117/12.366289
10.1117/12.543794
ContentType Journal Article
Copyright Società Italiana di Fotogrammetria e Topografia (SIFET) 2014
COPYRIGHT 2015 Springer
Copyright_xml – notice: Società Italiana di Fotogrammetria e Topografia (SIFET) 2014
– notice: COPYRIGHT 2015 Springer
DBID AAYXX
CITATION
ISR
8FD
FR3
H8D
KR7
L7M
DOI 10.1007/s12518-014-0149-5
DatabaseName CrossRef
Gale In Context: Science
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1866-928X
EndPage 48
ExternalDocumentID A717946529
10_1007_s12518_014_0149_5
GroupedDBID -5A
-5G
-BR
-EM
-~C
.VR
06D
0R~
0VY
1N0
203
23M
2J2
2JN
2KG
2LR
2VQ
2XV
30V
4.4
406
408
40D
67M
6J9
6NX
875
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACCUX
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BDATZ
BGNMA
BSONS
C1A
CAG
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IAO
IKXTQ
ISR
ITC
IWAJR
IXD
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M4Y
N2Q
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OK1
P2P
PF0
PT4
QOS
R89
R9I
ROL
RSV
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7Z
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c394t-5abe4a224edc6899d470b800540e31154c0108041b223587414b3e543c12a0e13
IEDL.DBID U2A
ISSN 1866-9298
IngestDate Mon Jul 21 10:43:48 EDT 2025
Mon Oct 20 16:28:26 EDT 2025
Thu Oct 16 15:20:37 EDT 2025
Thu Apr 24 22:51:17 EDT 2025
Wed Oct 01 03:26:19 EDT 2025
Fri Feb 21 02:24:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords PPI
Endmembers
SMACC
Spectral library
Atmospheric correction
SAM
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-5abe4a224edc6899d470b800540e31154c0108041b223587414b3e543c12a0e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1669861469
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_1669861469
gale_infotracacademiconefile_A717946529
gale_incontextgauss_ISR_A717946529
crossref_primary_10_1007_s12518_014_0149_5
crossref_citationtrail_10_1007_s12518_014_0149_5
springer_journals_10_1007_s12518_014_0149_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-03-01
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle Applied geomatics
PublicationTitleAbbrev Appl Geomat
PublicationYear 2015
Publisher Springer Berlin Heidelberg
Springer
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
References CR10
Green, Berman, Switzer, Craig (CR2) 1988; 26
CR4
CR3
CR6
Boardman (CR1) 1994; 4
Theiler, Lavenier, Harvey, Perkins, Szymanski (CR9) 2000; 4132
CR7
Nascimento, Bioucas-Dias (CR8) 2005; 43
Keshava, Mustard (CR5) 2002; 19
149_CR4
AA Green (149_CR2) 1988; 26
N Keshava (149_CR5) 2002; 19
149_CR6
149_CR7
JW Boardman (149_CR1) 1994; 4
J Theiler (149_CR9) 2000; 4132
149_CR3
J Nascimento (149_CR8) 2005; 43
149_CR10
References_xml – volume: 26
  start-page: 65
  issue: 1
  year: 1988
  end-page: 74
  ident: CR2
  article-title: A transformation for ordering multispectral data in terms of image quality with implications for noise removal
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/36.3001
– volume: 43
  start-page: 898
  issue: 4
  year: 2005
  end-page: 910
  ident: CR8
  article-title: Vertex component analysis: a fast algorithm to unmix hyperspectral data
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2005.844293
– volume: 4
  start-page: 2369
  year: 1994
  end-page: 2371
  ident: CR1
  article-title: Geometric mixture analysis of imaging spectrometry data
  publication-title: Proc Int Geosci Remote Sens Symp
– ident: CR6
– volume: 4132
  start-page: 61
  year: 2000
  end-page: 71
  ident: CR9
  article-title: Using blocks of skewers for faster computation of pixel purity index
  publication-title: SPIE Proc
  doi: 10.1117/12.406610
– ident: CR7
– ident: CR3
– ident: CR4
– volume: 19
  start-page: 44
  issue: 1
  year: 2002
  end-page: 57
  ident: CR5
  article-title: Spectral unmixing, Signal Processing Magazine
  publication-title: IEEE
– ident: CR10
– ident: 149_CR4
  doi: 10.1109/IGARSS.2002.1026105
– ident: 149_CR6
  doi: 10.1016/0034-4257(93)90013-N
– volume: 4
  start-page: 2369
  year: 1994
  ident: 149_CR1
  publication-title: Proc Int Geosci Remote Sens Symp
– volume: 43
  start-page: 898
  issue: 4
  year: 2005
  ident: 149_CR8
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2005.844293
– volume: 26
  start-page: 65
  issue: 1
  year: 1988
  ident: 149_CR2
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/36.3001
– ident: 149_CR7
– volume: 4132
  start-page: 61
  year: 2000
  ident: 149_CR9
  publication-title: SPIE Proc
  doi: 10.1117/12.406610
– ident: 149_CR10
  doi: 10.1117/12.366289
– ident: 149_CR3
  doi: 10.1117/12.543794
– volume: 19
  start-page: 44
  issue: 1
  year: 2002
  ident: 149_CR5
  publication-title: IEEE
SSID ssj0000070542
Score 2.0233626
Snippet This study focuses on systematic approach towards extraction of endmember spectra from hyperspectral image. The study demonstrates the effect of systematic...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 37
SubjectTerms Algorithms
Angles (geometry)
Earth and Environmental Science
Extraction
Geographical Information Systems/Cartography
Geography
Geophysics/Geodesy
Libraries
Measurement Science and Instrumentation
Methods
Original Paper
Preprocessing
Remote Sensing/Photogrammetry
Spectra
Surveying
Vegetation
Title Systematic approach towards extracting endmember spectra from hyperspectral image using PPI and SMACC and its evaluation using spectral library
URI https://link.springer.com/article/10.1007/s12518-014-0149-5
https://www.proquest.com/docview/1669861469
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1866-928X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000070542
  issn: 1866-9298
  databaseCode: AFBBN
  dateStart: 20090601
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1866-928X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000070542
  issn: 1866-9298
  databaseCode: AGYKE
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1866-928X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000070542
  issn: 1866-9298
  databaseCode: U2A
  dateStart: 20090601
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BewAOCAqoy6NyERISKFIedrI5RquWAmoPLCu1J8t2ZreV2izaZA_8Cv4yM14npVCQOESKorGVZOyZsT3fNwBvMucUuXUVKcZvSYXzyMYSIycdGhWjMwWDk49P8qOZ_HSqTgOOu-2z3fsjSW-pr8Fu5Io58YqzJmQZqbuwrZjNiwbxLK2GjRUmsFG-aA5zuUXk_sf9aeZtvdzwR79b5T-OR73XOXwED0O4KKqNfh_DHWx24MEvJII7cC_UMT___gR-TAdiZtGzhYvOZ8a2gsywh0Q1C4FNfYVcCkR4pOXKCIaZiHNalK7Ck0txcUW2RnBi_ELQ6l-YphbT42oy8XcXHfU4UIUHsaFt2Bx6CrPDg6-ToyiUXIhcVsouUsaiNOTWsXY5LcVqWcR27OM6ZF4e6WJOSpSJTRljS-GItBkqmbkkNTEm2TPYapYN7oJI0rRAlVhM3FyWtR1LS-FHkVpaQJV1Vo8g7n-8doGPnMtiXOprJmXWlSY98VVqNYJ3Q5NvGzKOfwm_Zm1qJrloOItmYdZtqz9Ov-iqYDOUq7QcwdsgNF-yDkwAJdAnMC_WDcn9flRomoF8rGIaXK5bneR5OaYoJyeZ9_1w0cEUtH9_wef_Jf0C7lOspjbpby9hq1ut8RXFQ53dg-3qw9nngz0_D34CFOcCag
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dT9swFL1i5YHtYQO2ad0XBiFN2hSUDztpHqtq0AJFiBaJPVm24xY0SKcmfdj-xP7y7k2ddjCGxEOkKLqJ8uFcH9vnnAuwGxkjsFsXniD9Fhd25GmfW89wY5XwrVEJiZP7J3H3nB9eiAun4y5qtnu9JFll6qXYDbtiIl4Ra4KnnngCqxzHJ2EDVtsH346WUytkYSOqsjnk5uYhAGjV65n3XedWj3Q3L_-zQFr1O_svYFjf8Zxu8n1vVuo98-uOmeMjH2kdnjscytrzhrMBKzbfhGd_uRNuwporkH758yX8Hiwcn1ltQ87KinJbMMzvldYqHzObZzeWaoywSsI5VYz0K-wSR7tTd-SaXd1gEmPEuB-z09MeU3nGBv12p1PtXZV4xYUHuQtbnOtmnV7B-f7XYafruVoOnolSXnpCacsV4gWbmRjHeBlPfN2qAKMlwx9ufGI78kCHJN5FnMN1ZAWPTBAq3wbRa2jkk9y-ARaEYWJFoG1gRjzNdItrxDVJqHFklmZR1gS__p7SOKNzqrdxLZcWzfTeJb5z2lIpmvB5ccqPucvHQ8E71EgkuWfkRM8Zq1lRyN7gTLYTym-xCNMmfHJBowl9A-XUDvgIZLh1K3K7bmwSf21ar1G5ncwKGcRx2kL4FGPMl7oBSZdjiv_f4NtHRW_BWnfYP5bHvZOjd_AUAaGYc-zeQ6OczuwHBF2l_uh-sj8kFCCC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBdrC2v3MLpupdlHp43BYMPUH5IdP4asoVk_CEsDfROSfEkLrVJi52F_xf7l3Tmyu3YfsAeDMSdh-6S7k3S_3zH2IbFWoluXgST8lpAwDUwoILDCgpYhWJ0ROPn0LD2aiK8X8sLXOS2bbPfmSHKFaSCWJlcd3BbTgzvgG7plSsKiDAqRB3KNbQjiScABPYl77SYLkdnIuoAO8boFGAp0m5PNP_Vyzzc9tNC_HZXWHmiwzZ760JH3Vrp-xh6B22FPfiEU3GGbvqb55ffn7Me4JWnmDXM4r-os2ZKjSa7hUW7GwRU3QGVBeI26XGhOkBN-iQvUhX9yza9u0O5wSpKf8dFoyLUr-Pi01-_Xd1cV9tjShnuxtq3fKHrBJoPD8_5R4MsvBDbJRRVIbUBodPFQ2BSXZYXIQtOtYzwgjh5hQ0pQFJGJCW-LoYkwCUiR2CjWIUTJLlt3cwd7jEdxnIGMDER2KvLCdIXBUCSLDS6m8iIpOixsfryynpucSmRcqztWZdKVQj3RlSvZYZ_aJrcrYo5_Cb8nbSoivHCUUTPTy7JUw_E31cvIJKUyzjvsoxeazkkH2gMU8BOII-ue5LtmVCicjXTEoh3Ml6WK0jTvYsSTosznZrgobxbKv7_gy_-Sfssej74M1Mnw7PgV28IQTq6y4l6z9WqxhDcYJlVmv54KPwEQ5wf-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+approach+towards+extracting+endmember+spectra+from+hyperspectral+image+using+PPI+and+SMACC+and+its+evaluation+using+spectral+library&rft.jtitle=Applied+geomatics&rft.au=Aggarwal%2C+Arpit&rft.au=Garg%2C+R.+D&rft.date=2015-03-01&rft.pub=Springer&rft.issn=1866-9298&rft.volume=7&rft.issue=1&rft.spage=37&rft_id=info:doi/10.1007%2Fs12518-014-0149-5&rft.externalDBID=ISR&rft.externalDocID=A717946529
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-9298&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-9298&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-9298&client=summon