Systematic approach towards extracting endmember spectra from hyperspectral image using PPI and SMACC and its evaluation using spectral library
This study focuses on systematic approach towards extraction of endmember spectra from hyperspectral image. The study demonstrates the effect of systematic preprocessing like atmospheric correction, radiometric correction (bad band and columns correction), and geometric correction on hyperspectral i...
        Saved in:
      
    
          | Published in | Applied geomatics Vol. 7; no. 1; pp. 37 - 48 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        01.03.2015
     Springer  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1866-9298 1866-928X  | 
| DOI | 10.1007/s12518-014-0149-5 | 
Cover
| Abstract | This study focuses on systematic approach towards extraction of endmember spectra from hyperspectral image. The study demonstrates the effect of systematic preprocessing like atmospheric correction, radiometric correction (bad band and columns correction), and geometric correction on hyperspectral image. The study also focuses on the selection of the method for extracting endmember spectra depending upon the land-cover classes present in the study area. Two algorithms for extracting endmember spectra, i.e., pixel purity index (PPI) and sequential maximum angle convex cone (SMACC), have been used. To validate and perform comparative analysis of the two algorithms, spectral library has been created using field spectroradiometer and used as a reference to evaluate their performance. Visually, good results have been observed between extracted endmember spectra and reference library spectra after applying the rigorous preprocessing. To further analyze the two endmember extraction algorithms, spectral angle mapper (SAM) scores have been computed for various endmember spectral classes with respect to reference spectral library. The tabulated SAM scores for the endmembers of PPI and SMACC show that SMACC is more effective in extracting endmember spectra of vegetation classes while PPI is a more effective algorithm for roads and dry soil. It has been observed that systematic approach towards extracting endmember spectra from a hyperspectral image should consist of proper preprocessing steps, ground validation with a reference spectral library, and most importantly the proper selection of algorithm as the performance of algorithms for extracting endmember spectra depends on the land-cover classes present in the study area. | 
    
|---|---|
| AbstractList | This study focuses on systematic approach towards extraction of endmember spectra from hyperspectral image. The study demonstrates the effect of systematic preprocessing like atmospheric correction, radiometric correction (bad band and columns correction), and geometric correction on hyperspectral image. The study also focuses on the selection of the method for extracting endmember spectra depending upon the land-cover classes present in the study area. Two algorithms for extracting endmember spectra, i.e., pixel purity index (PPI) and sequential maximum angle convex cone (SMACC), have been used. To validate and perform comparative analysis of the two algorithms, spectral library has been created using field spectroradiometer and used as a reference to evaluate their performance. Visually, good results have been observed between extracted endmember spectra and reference library spectra after applying the rigorous preprocessing. To further analyze the two endmember extraction algorithms, spectral angle mapper (SAM) scores have been computed for various endmember spectral classes with respect to reference spectral library. The tabulated SAM scores for the endmembers of PPI and SMACC show that SMACC is more effective in extracting endmember spectra of vegetation classes while PPI is a more effective algorithm for roads and dry soil. It has been observed that systematic approach towards extracting endmember spectra from a hyperspectral image should consist of proper preprocessing steps, ground validation with a reference spectral library, and most importantly the proper selection of algorithm as the performance of algorithms for extracting endmember spectra depends on the land-cover classes present in the study area. | 
    
| Audience | Academic | 
    
| Author | Garg, R. D. Aggarwal, Arpit  | 
    
| Author_xml | – sequence: 1 givenname: Arpit surname: Aggarwal fullname: Aggarwal, Arpit email: Arpit.coer@gmail.com organization: Risk Management Solutions India – sequence: 2 givenname: R. D. surname: Garg fullname: Garg, R. D. organization: Deparment of Civil Engineering, Geomatics Engineering Group, Indian Institute of Technology Roorkee  | 
    
| BookMark | eNp9kc9u3CAQxlGVSk3TPEBvHNuDU8Bgm-Nq1T8rpWrUTaTeEMZjh8jGLuAm-xR95eJ4FSk9BIQYjb7fDHzzFp240QFC7ym5oISUnwJlglYZoXw5MhOv0CmtiiKTrPp18hTL6g06D-GOLKskgrNT9Hd_CBEGHa3Bepr8qM0tjuO99k3A8BC9NtG6DoNrBhhq8DhMYFIat34c8O1hAn_M9NgOugM8hwW4utph7Rq8_77Zbh8jG1PFP7qfU7PRHWVPbG9rr_3hHXrd6j7A-fE-QzdfPl9vv2WXP77utpvLzOSSx0zoGrhmjENjikrKhpekrkj6E4GcUsENoaQinNaM5aIqOeV1DoLnhjJNgOZn6MNaN3359wwhqsEGA32vHYxzULQoZFVQXsgkvVilne5BWdeOiytpNzBYkybR2pTflLSUvBBsAT4-A5ImJis7PYegdvufz7V01Ro_huChVZNPNvqDokQtw1XrcFUa7HKkEokp_2OMjY-mpofZ_kWSrWRIXVwHXt2Ns3fJ6Begf-n9usE | 
    
| CitedBy_id | crossref_primary_10_1016_j_optlastec_2018_11_057 crossref_primary_10_3390_s19112443 crossref_primary_10_3390_drones7080536 crossref_primary_10_1007_s12665_016_5367_1 crossref_primary_10_3390_rs15235496 crossref_primary_10_1007_s12517_020_06070_7 crossref_primary_10_1016_j_geothermics_2024_103194  | 
    
| Cites_doi | 10.1109/36.3001 10.1109/TGRS.2005.844293 10.1117/12.406610 10.1109/IGARSS.2002.1026105 10.1016/0034-4257(93)90013-N 10.1117/12.366289 10.1117/12.543794  | 
    
| ContentType | Journal Article | 
    
| Copyright | Società Italiana di Fotogrammetria e Topografia (SIFET) 2014 COPYRIGHT 2015 Springer  | 
    
| Copyright_xml | – notice: Società Italiana di Fotogrammetria e Topografia (SIFET) 2014 – notice: COPYRIGHT 2015 Springer  | 
    
| DBID | AAYXX CITATION ISR 8FD FR3 H8D KR7 L7M  | 
    
| DOI | 10.1007/s12518-014-0149-5 | 
    
| DatabaseName | CrossRef Gale In Context: Science Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitleList | Aerospace Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography Engineering  | 
    
| EISSN | 1866-928X | 
    
| EndPage | 48 | 
    
| ExternalDocumentID | A717946529 10_1007_s12518_014_0149_5  | 
    
| GroupedDBID | -5A -5G -BR -EM -~C .VR 06D 0R~ 0VY 1N0 203 23M 2J2 2JN 2KG 2LR 2VQ 2XV 30V 4.4 406 408 40D 67M 6J9 6NX 875 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABKTR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACCUX ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BDATZ BGNMA BSONS C1A CAG COF CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HMJXF HRMNR HVGLF HZ~ IAO IKXTQ ISR ITC IWAJR IXD J-C J0Z JBSCW JZLTJ KOV LLZTM M4Y N2Q NPVJJ NQJWS NU0 O9- O93 O9J OK1 P2P PF0 PT4 QOS R89 R9I ROL RSV S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TUC U2A UG4 UOJIU UTJUX UZXMN VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7Z ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 8FD FR3 H8D KR7 L7M  | 
    
| ID | FETCH-LOGICAL-c394t-5abe4a224edc6899d470b800540e31154c0108041b223587414b3e543c12a0e13 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1866-9298 | 
    
| IngestDate | Mon Jul 21 10:43:48 EDT 2025 Mon Oct 20 16:28:26 EDT 2025 Thu Oct 16 15:20:37 EDT 2025 Thu Apr 24 22:51:17 EDT 2025 Wed Oct 01 03:26:19 EDT 2025 Fri Feb 21 02:24:57 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | PPI Endmembers SMACC Spectral library Atmospheric correction SAM  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c394t-5abe4a224edc6899d470b800540e31154c0108041b223587414b3e543c12a0e13 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PQID | 1669861469 | 
    
| PQPubID | 23500 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | proquest_miscellaneous_1669861469 gale_infotracacademiconefile_A717946529 gale_incontextgauss_ISR_A717946529 crossref_primary_10_1007_s12518_014_0149_5 crossref_citationtrail_10_1007_s12518_014_0149_5 springer_journals_10_1007_s12518_014_0149_5  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2015-03-01 | 
    
| PublicationDateYYYYMMDD | 2015-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg | 
    
| PublicationTitle | Applied geomatics | 
    
| PublicationTitleAbbrev | Appl Geomat | 
    
| PublicationYear | 2015 | 
    
| Publisher | Springer Berlin Heidelberg Springer  | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer  | 
    
| References | CR10 Green, Berman, Switzer, Craig (CR2) 1988; 26 CR4 CR3 CR6 Boardman (CR1) 1994; 4 Theiler, Lavenier, Harvey, Perkins, Szymanski (CR9) 2000; 4132 CR7 Nascimento, Bioucas-Dias (CR8) 2005; 43 Keshava, Mustard (CR5) 2002; 19 149_CR4 AA Green (149_CR2) 1988; 26 N Keshava (149_CR5) 2002; 19 149_CR6 149_CR7 JW Boardman (149_CR1) 1994; 4 J Theiler (149_CR9) 2000; 4132 149_CR3 J Nascimento (149_CR8) 2005; 43 149_CR10  | 
    
| References_xml | – volume: 26 start-page: 65 issue: 1 year: 1988 end-page: 74 ident: CR2 article-title: A transformation for ordering multispectral data in terms of image quality with implications for noise removal publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/36.3001 – volume: 43 start-page: 898 issue: 4 year: 2005 end-page: 910 ident: CR8 article-title: Vertex component analysis: a fast algorithm to unmix hyperspectral data publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2005.844293 – volume: 4 start-page: 2369 year: 1994 end-page: 2371 ident: CR1 article-title: Geometric mixture analysis of imaging spectrometry data publication-title: Proc Int Geosci Remote Sens Symp – ident: CR6 – volume: 4132 start-page: 61 year: 2000 end-page: 71 ident: CR9 article-title: Using blocks of skewers for faster computation of pixel purity index publication-title: SPIE Proc doi: 10.1117/12.406610 – ident: CR7 – ident: CR3 – ident: CR4 – volume: 19 start-page: 44 issue: 1 year: 2002 end-page: 57 ident: CR5 article-title: Spectral unmixing, Signal Processing Magazine publication-title: IEEE – ident: CR10 – ident: 149_CR4 doi: 10.1109/IGARSS.2002.1026105 – ident: 149_CR6 doi: 10.1016/0034-4257(93)90013-N – volume: 4 start-page: 2369 year: 1994 ident: 149_CR1 publication-title: Proc Int Geosci Remote Sens Symp – volume: 43 start-page: 898 issue: 4 year: 2005 ident: 149_CR8 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2005.844293 – volume: 26 start-page: 65 issue: 1 year: 1988 ident: 149_CR2 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/36.3001 – ident: 149_CR7 – volume: 4132 start-page: 61 year: 2000 ident: 149_CR9 publication-title: SPIE Proc doi: 10.1117/12.406610 – ident: 149_CR10 doi: 10.1117/12.366289 – ident: 149_CR3 doi: 10.1117/12.543794 – volume: 19 start-page: 44 issue: 1 year: 2002 ident: 149_CR5 publication-title: IEEE  | 
    
| SSID | ssj0000070542 | 
    
| Score | 2.0233626 | 
    
| Snippet | This study focuses on systematic approach towards extraction of endmember spectra from hyperspectral image. The study demonstrates the effect of systematic... | 
    
| SourceID | proquest gale crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 37 | 
    
| SubjectTerms | Algorithms Angles (geometry) Earth and Environmental Science Extraction Geographical Information Systems/Cartography Geography Geophysics/Geodesy Libraries Measurement Science and Instrumentation Methods Original Paper Preprocessing Remote Sensing/Photogrammetry Spectra Surveying Vegetation  | 
    
| Title | Systematic approach towards extracting endmember spectra from hyperspectral image using PPI and SMACC and its evaluation using spectral library | 
    
| URI | https://link.springer.com/article/10.1007/s12518-014-0149-5 https://www.proquest.com/docview/1669861469  | 
    
| Volume | 7 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1866-928X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000070542 issn: 1866-9298 databaseCode: AFBBN dateStart: 20090601 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1866-928X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000070542 issn: 1866-9298 databaseCode: AGYKE dateStart: 20090101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1866-928X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000070542 issn: 1866-9298 databaseCode: U2A dateStart: 20090601 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BewAOCAqoy6NyERISKFIedrI5RquWAmoPLCu1J8t2ZreV2izaZA_8Cv4yM14npVCQOESKorGVZOyZsT3fNwBvMucUuXUVKcZvSYXzyMYSIycdGhWjMwWDk49P8qOZ_HSqTgOOu-2z3fsjSW-pr8Fu5Io58YqzJmQZqbuwrZjNiwbxLK2GjRUmsFG-aA5zuUXk_sf9aeZtvdzwR79b5T-OR73XOXwED0O4KKqNfh_DHWx24MEvJII7cC_UMT___gR-TAdiZtGzhYvOZ8a2gsywh0Q1C4FNfYVcCkR4pOXKCIaZiHNalK7Ck0txcUW2RnBi_ELQ6l-YphbT42oy8XcXHfU4UIUHsaFt2Bx6CrPDg6-ToyiUXIhcVsouUsaiNOTWsXY5LcVqWcR27OM6ZF4e6WJOSpSJTRljS-GItBkqmbkkNTEm2TPYapYN7oJI0rRAlVhM3FyWtR1LS-FHkVpaQJV1Vo8g7n-8doGPnMtiXOprJmXWlSY98VVqNYJ3Q5NvGzKOfwm_Zm1qJrloOItmYdZtqz9Ov-iqYDOUq7QcwdsgNF-yDkwAJdAnMC_WDcn9flRomoF8rGIaXK5bneR5OaYoJyeZ9_1w0cEUtH9_wef_Jf0C7lOspjbpby9hq1ut8RXFQ53dg-3qw9nngz0_D34CFOcCag | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dT9swFL1i5YHtYQO2ad0XBiFN2hSUDztpHqtq0AJFiBaJPVm24xY0SKcmfdj-xP7y7k2ddjCGxEOkKLqJ8uFcH9vnnAuwGxkjsFsXniD9Fhd25GmfW89wY5XwrVEJiZP7J3H3nB9eiAun4y5qtnu9JFll6qXYDbtiIl4Ra4KnnngCqxzHJ2EDVtsH346WUytkYSOqsjnk5uYhAGjV65n3XedWj3Q3L_-zQFr1O_svYFjf8Zxu8n1vVuo98-uOmeMjH2kdnjscytrzhrMBKzbfhGd_uRNuwporkH758yX8Hiwcn1ltQ87KinJbMMzvldYqHzObZzeWaoywSsI5VYz0K-wSR7tTd-SaXd1gEmPEuB-z09MeU3nGBv12p1PtXZV4xYUHuQtbnOtmnV7B-f7XYafruVoOnolSXnpCacsV4gWbmRjHeBlPfN2qAKMlwx9ufGI78kCHJN5FnMN1ZAWPTBAq3wbRa2jkk9y-ARaEYWJFoG1gRjzNdItrxDVJqHFklmZR1gS__p7SOKNzqrdxLZcWzfTeJb5z2lIpmvB5ccqPucvHQ8E71EgkuWfkRM8Zq1lRyN7gTLYTym-xCNMmfHJBowl9A-XUDvgIZLh1K3K7bmwSf21ar1G5ncwKGcRx2kL4FGPMl7oBSZdjiv_f4NtHRW_BWnfYP5bHvZOjd_AUAaGYc-zeQ6OczuwHBF2l_uh-sj8kFCCC | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBdrC2v3MLpupdlHp43BYMPUH5IdP4asoVk_CEsDfROSfEkLrVJi52F_xf7l3Tmyu3YfsAeDMSdh-6S7k3S_3zH2IbFWoluXgST8lpAwDUwoILDCgpYhWJ0ROPn0LD2aiK8X8sLXOS2bbPfmSHKFaSCWJlcd3BbTgzvgG7plSsKiDAqRB3KNbQjiScABPYl77SYLkdnIuoAO8boFGAp0m5PNP_Vyzzc9tNC_HZXWHmiwzZ760JH3Vrp-xh6B22FPfiEU3GGbvqb55ffn7Me4JWnmDXM4r-os2ZKjSa7hUW7GwRU3QGVBeI26XGhOkBN-iQvUhX9yza9u0O5wSpKf8dFoyLUr-Pi01-_Xd1cV9tjShnuxtq3fKHrBJoPD8_5R4MsvBDbJRRVIbUBodPFQ2BSXZYXIQtOtYzwgjh5hQ0pQFJGJCW-LoYkwCUiR2CjWIUTJLlt3cwd7jEdxnIGMDER2KvLCdIXBUCSLDS6m8iIpOixsfryynpucSmRcqztWZdKVQj3RlSvZYZ_aJrcrYo5_Cb8nbSoivHCUUTPTy7JUw_E31cvIJKUyzjvsoxeazkkH2gMU8BOII-ue5LtmVCicjXTEoh3Ml6WK0jTvYsSTosznZrgobxbKv7_gy_-Sfssej74M1Mnw7PgV28IQTq6y4l6z9WqxhDcYJlVmv54KPwEQ5wf- | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+approach+towards+extracting+endmember+spectra+from+hyperspectral+image+using+PPI+and+SMACC+and+its+evaluation+using+spectral+library&rft.jtitle=Applied+geomatics&rft.au=Aggarwal%2C+Arpit&rft.au=Garg%2C+R.+D&rft.date=2015-03-01&rft.pub=Springer&rft.issn=1866-9298&rft.volume=7&rft.issue=1&rft.spage=37&rft_id=info:doi/10.1007%2Fs12518-014-0149-5&rft.externalDBID=ISR&rft.externalDocID=A717946529 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-9298&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-9298&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-9298&client=summon |