Beach State Recognition Using Argus Imagery and Convolutional Neural Networks
Nearshore morphology is a key driver in wave breaking and the resulting nearshore circulation, recreational safety, and nutrient dispersion. Morphology persists within the nearshore in specific shapes that can be classified into equilibrium states. Equilibrium states convey qualitative information a...
        Saved in:
      
    
          | Published in | Remote sensing (Basel, Switzerland) Vol. 12; no. 23; p. 3953 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.12.2020
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2072-4292 2072-4292  | 
| DOI | 10.3390/rs12233953 | 
Cover
| Abstract | Nearshore morphology is a key driver in wave breaking and the resulting nearshore circulation, recreational safety, and nutrient dispersion. Morphology persists within the nearshore in specific shapes that can be classified into equilibrium states. Equilibrium states convey qualitative information about bathymetry and relevant physical processes. While nearshore bathymetry is a challenge to collect, much information about the underlying bathymetry can be gained from remote sensing of the surfzone. This study presents a new method to automatically classify beach state from Argus daytimexposure imagery using a machine learning technique called convolutional neural networks (CNNs). The CNN processed imagery from two locations: Narrabeen, New South Wales, Australia and Duck, North Carolina, USA. Three different CNN models are examined, one trained at Narrabeen, one at Duck, and one trained at both locations. Each model was tested at the location where it was trained in a self-test, and the single-beach models were tested at the location where it was not trained in a transfer-test. For the self-tests, skill (as measured by the F-score) was comparable to expert agreement (CNN F-values at Duck = 0.80 and Narrabeen = 0.59). For the transfer-tests, the CNN model skill was reduced by 24–48%, suggesting the algorithm requires additional local data to improve transferability performance. Transferability tests showed that comparable F-scores (within 10%) to the self-trained cases can be achieved at both locations when at least 25% of the training data is from each site. This suggests that if applied to additional locations, a CNN model trained at one location may be skillful at new sites with limited new imagery data needed. Finally, a CNN visualization technique (Guided-Grad-CAM) confirmed that the CNN determined classifications using image regions (e.g., incised rip channels, terraces) that were consistent with beach state labelling rules. | 
    
|---|---|
| AbstractList | Nearshore morphology is a key driver in wave breaking and the resulting nearshore circulation, recreational safety, and nutrient dispersion. Morphology persists within the nearshore in specific shapes that can be classified into equilibrium states. Equilibrium states convey qualitative information about bathymetry and relevant physical processes. While nearshore bathymetry is a challenge to collect, much information about the underlying bathymetry can be gained from remote sensing of the surfzone. This study presents a new method to automatically classify beach state from Argus daytimexposure imagery using a machine learning technique called convolutional neural networks (CNNs). The CNN processed imagery from two locations: Narrabeen, New South Wales, Australia and Duck, North Carolina, USA. Three different CNN models are examined, one trained at Narrabeen, one at Duck, and one trained at both locations. Each model was tested at the location where it was trained in a self-test, and the single-beach models were tested at the location where it was not trained in a transfer-test. For the self-tests, skill (as measured by the F-score) was comparable to expert agreement (CNN F-values at Duck = 0.80 and Narrabeen = 0.59). For the transfer-tests, the CNN model skill was reduced by 24–48%, suggesting the algorithm requires additional local data to improve transferability performance. Transferability tests showed that comparable F-scores (within 10%) to the self-trained cases can be achieved at both locations when at least 25% of the training data is from each site. This suggests that if applied to additional locations, a CNN model trained at one location may be skillful at new sites with limited new imagery data needed. Finally, a CNN visualization technique (Guided-Grad-CAM) confirmed that the CNN determined classifications using image regions (e.g., incised rip channels, terraces) that were consistent with beach state labelling rules. | 
    
| Author | Simmons, Joshua A. Wilson, Greg W. Splinter, Kristen D. Ellenson, Ashley N. Hesser, Tyler J.  | 
    
| Author_xml | – sequence: 1 givenname: Ashley N. surname: Ellenson fullname: Ellenson, Ashley N. – sequence: 2 givenname: Joshua A. orcidid: 0000-0003-0606-7225 surname: Simmons fullname: Simmons, Joshua A. – sequence: 3 givenname: Greg W. surname: Wilson fullname: Wilson, Greg W. – sequence: 4 givenname: Tyler J. surname: Hesser fullname: Hesser, Tyler J. – sequence: 5 givenname: Kristen D. orcidid: 0000-0002-0082-8444 surname: Splinter fullname: Splinter, Kristen D.  | 
    
| BookMark | eNp9kVtrFEEQhRtJwBjz4i8Y8EWU1b5O7zzGxctCTEDNc1NT3TP22tu9ds8Y9t_byYpKkNRLFcVXh8OpJ-QopugIecboayE6-iYXxnmdlHhETjjVfCF5x4_-mR-Ts1I2tJYQrKPyhHx66wC_NV8mmFzz2WEao598is118XFszvM4l2a9hdHlfQPRNqsUf6Yw3zIQmks357s23aT8vTwlxwOE4s5-91Ny_f7d19XHxcXVh_Xq_GKBopPTQlEplR4Q-yUsATRyyaitBlFh33bOousUc1QOLaC2lFptVcu6nolWo5TilKwPujbBxuyy30LemwTe3C1SHg3kyWNwRg-C25YLt0SQgtpeONSu18qKVvYMq9arg9Ycd7C_gRD-CDJqboM1f4Ot9IsDvcvpx-zKZLa-oAsBoktzMVwxxjqpmaro83voJs25plYp2WqtO9rqStEDhTmVkt1g0Ndn1HinDD7838PLeycPGP4FjNCkBw | 
    
| CitedBy_id | crossref_primary_10_1016_j_isprsjprs_2023_09_022 crossref_primary_10_5194_esurf_11_1145_2023 crossref_primary_10_7717_peerj_13413 crossref_primary_10_1029_2021EA001896 crossref_primary_10_3389_fpubh_2021_768278 crossref_primary_10_1029_2024JH000172 crossref_primary_10_3390_rs15143485 crossref_primary_10_3390_rs14236048 crossref_primary_10_1016_j_margeo_2024_107472 crossref_primary_10_1017_cft_2022_4 crossref_primary_10_2166_hydro_2022_068 crossref_primary_10_1016_j_coastaleng_2024_104542 crossref_primary_10_1016_j_coastaleng_2024_104685 crossref_primary_10_3390_rs14194686 crossref_primary_10_1016_j_oceaneng_2022_110819 crossref_primary_10_1109_ACCESS_2023_3317689 crossref_primary_10_1016_j_envsoft_2022_105356 crossref_primary_10_1029_2022GL101219 crossref_primary_10_1016_j_softx_2022_101073 crossref_primary_10_5194_hess_26_795_2022 crossref_primary_10_3390_s21217352 crossref_primary_10_3390_rs13173372 crossref_primary_10_3390_rs14030453 crossref_primary_10_1016_j_softx_2022_101215  | 
    
| Cites_doi | 10.1016/j.ipm.2009.03.002 10.1016/j.cageo.2009.05.003 10.2112/SI65-078.1 10.1016/S0025-3227(00)00168-7 10.1016/j.ocemod.2015.08.002 10.1126/science.181.4094.20 10.1080/10095020.2015.1116206 10.1016/j.coastaleng.2019.103572 10.1109/CVPR.2016.319 10.1016/j.earscirev.2016.09.008 10.1016/0025-3227(84)90008-2 10.1146/annurev-marine-121211-172408 10.5194/nhess-19-2295-2019 10.1029/2010JC006382 10.1016/j.margeo.2013.09.005 10.1016/j.csr.2010.12.018 10.20944/preprints201903.0283.v1 10.1029/2006GL027105 10.5962/bhl.title.48254 10.1016/j.margeo.2004.04.017 10.1016/j.coastaleng.2020.103689 10.1016/j.margeo.2006.10.022 10.1029/JC094iC01p00995 10.1016/j.coastaleng.2019.03.006 10.1002/2014JC010329 10.1016/S0025-3227(97)00019-4 10.1029/2010JC006286 10.1016/j.margeo.2007.06.001 10.1029/2011JF001989 10.1109/ICCV.2017.74 10.1016/j.coastaleng.2019.103593 10.1109/48.557542 10.1029/2005JC002965 10.1109/ACPR.2015.7486592 10.1016/j.geomorph.2010.11.004 10.1016/j.geomorph.2015.03.006 10.1038/sdata.2016.24 10.1029/JC095iC07p11575 10.3390/rs10111744 10.1093/bioinformatics/16.5.412 10.1016/j.margeo.2010.12.002 10.1016/j.patcog.2019.04.009 10.1016/j.coastaleng.2015.07.010 10.1016/j.margeo.2006.10.029 10.1109/TGRS.2006.877758 10.1016/j.ocecoaman.2019.104902 10.1016/j.coastaleng.2007.01.003 10.1002/2017GL073094 10.1016/S0278-4343(02)00235-2 10.1016/j.coastaleng.2007.01.009 10.1016/j.ocecoaman.2017.04.004 10.1016/j.margeo.2007.02.018 10.1016/0025-3227(85)90123-9 10.1007/978-3-319-10602-1 10.1111/j.1753-318X.2008.00013.x 10.1016/j.margeo.2015.06.010 10.1016/j.coastaleng.2004.07.018 10.5962/bhl.title.48249 10.1029/2004JC002401 10.1109/CVPR.2016.90 10.1016/j.envsoft.2019.104528 10.1029/1999JC000167 10.1016/j.coastaleng.2019.103595 10.1002/esp.4760  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/rs12233953 | 
    
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library ProQuest SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | Publicly Available Content Database AGRICOLA CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography | 
    
| EISSN | 2072-4292 | 
    
| ExternalDocumentID | oai_doaj_org_article_7f32d623e8ca430db3ec7eb75d364b1c 10.3390/rs12233953 10_3390_rs12233953  | 
    
| GeographicLocations | North Carolina United States--US New South Wales  | 
    
| GeographicLocations_xml | – name: North Carolina – name: United States--US – name: New South Wales  | 
    
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO ADTOC C1A IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c394t-504457fccb8a8aa7c2410d429c5cb69edce951e04f6ac7d00d7d5619b1367c443 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2072-4292 | 
    
| IngestDate | Fri Oct 03 12:41:29 EDT 2025 Sun Oct 26 04:14:55 EDT 2025 Wed Oct 01 13:43:03 EDT 2025 Mon Oct 20 02:52:14 EDT 2025 Thu Oct 16 04:45:06 EDT 2025 Thu Apr 24 22:54:46 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 23 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c394t-504457fccb8a8aa7c2410d429c5cb69edce951e04f6ac7d00d7d5619b1367c443 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-0082-8444 0000-0003-0606-7225  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2072-4292/12/23/3953/pdf?version=1607251834 | 
    
| PQID | 2467779067 | 
    
| PQPubID | 2032338 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7f32d623e8ca430db3ec7eb75d364b1c unpaywall_primary_10_3390_rs12233953 proquest_miscellaneous_2511194715 proquest_journals_2467779067 crossref_citationtrail_10_3390_rs12233953 crossref_primary_10_3390_rs12233953  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020-12-01 | 
    
| PublicationDateYYYYMMDD | 2020-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Remote sensing (Basel, Switzerland) | 
    
| PublicationYear | 2020 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Morichon (ref_27) 2013; 65 Alexander (ref_52) 2004; 208 Inman (ref_4) 1973; 181 Pianca (ref_67) 2015; 120 Austin (ref_6) 2013; 29 ref_58 ref_57 Ruessink (ref_33) 2001; 106 ref_54 Buscombe (ref_43) 2020; 45 Dubarbier (ref_21) 2017; 44 Peres (ref_38) 2015; 94 ref_51 ref_18 ref_17 Castelle (ref_12) 2015; 238 Hoonhout (ref_45) 2015; 105 ref_59 Masselink (ref_29) 1993; 9 Ranasinghe (ref_16) 2004; 51 Balaguer (ref_71) 2010; 36 Browne (ref_32) 2006; 44 Holland (ref_55) 1997; 22 ref_61 Contardo (ref_34) 2015; 368 Ghosh (ref_56) 2019; 93 ref_60 Turner (ref_53) 2016; 3 Sokolova (ref_75) 2009; 45 Buscombe (ref_42) 2020; 155 Leatherman (ref_9) 2018; 156 Castelle (ref_7) 2016; 163 Lippmann (ref_31) 1989; 94 ref_68 ref_66 Siegle (ref_19) 2007; 236 ref_20 Hoonhout (ref_44) 2019; 154 ref_64 ref_63 Ellenson (ref_40) 2020; 157 ref_62 Castelle (ref_23) 2007; 245 Lippmann (ref_14) 1990; 95 Baldi (ref_65) 2000; 16 Short (ref_28) 1994; 12 Loureiro (ref_30) 2013; 346 Holman (ref_37) 2013; 5 Molines (ref_39) 2019; 149 Turner (ref_2) 2007; 236 Smit (ref_36) 2007; 54 Helderop (ref_10) 2019; 181 ref_35 Holman (ref_13) 2007; 54 Reeve (ref_50) 2008; 1 Wright (ref_8) 1984; 56 Wu (ref_73) 2015; 18 ref_74 Bohling (ref_72) 2005; 1 Beuzen (ref_48) 2019; 19 Price (ref_24) 2011; 31 Ruessink (ref_22) 2003; 23 Plant (ref_70) 1997; 140 Thornton (ref_11) 2007; 240 (ref_41) 2020; 158 Wright (ref_15) 1985; 62 ref_47 Vos (ref_46) 2019; 122 Madsen (ref_69) 2001; 173 Ojeda (ref_25) 2011; 280 ref_1 Armaroli (ref_26) 2011; 126 ref_3 ref_49 ref_5  | 
    
| References_xml | – volume: 45 start-page: 427 year: 2009 ident: ref_75 article-title: A systematic analysis of performance measures for classification tasks publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2009.03.002 – ident: ref_74 – volume: 36 start-page: 231 year: 2010 ident: ref_71 article-title: Definition of a comprehensive set of texture semivariogram features and their evaluation for object-oriented image classification publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2009.05.003 – volume: 65 start-page: 458 year: 2013 ident: ref_27 article-title: Video monitoring nearshore sandbar morphodynamics on a partially engineered embayed beach publication-title: J. Coast. Res. doi: 10.2112/SI65-078.1 – volume: 12 start-page: 197 year: 1994 ident: ref_28 article-title: Rip currents and beach hazards: Their impact on public safety and implications for coastal management publication-title: J. Coast. Res. – volume: 173 start-page: 121 year: 2001 ident: ref_69 article-title: Intertidal beach slope predictions compared to field data publication-title: Mar. Geol. doi: 10.1016/S0025-3227(00)00168-7 – volume: 94 start-page: 128 year: 2015 ident: ref_38 article-title: Significant wave height record extension by neural networks and reanalysis wind data publication-title: Ocean Model. doi: 10.1016/j.ocemod.2015.08.002 – ident: ref_68 – volume: 181 start-page: 20 year: 1973 ident: ref_4 article-title: The coastal challenge publication-title: Science doi: 10.1126/science.181.4094.20 – volume: 18 start-page: 159 year: 2015 ident: ref_73 article-title: Evaluation of semivariogram features for object-based image classification publication-title: Geo-Spat. Inf. Sci. doi: 10.1080/10095020.2015.1116206 – volume: 154 start-page: 103572 year: 2019 ident: ref_44 article-title: Physical model of scour at the toe of rock armoured structures publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2019.103572 – ident: ref_58 – ident: ref_64 doi: 10.1109/CVPR.2016.319 – volume: 163 start-page: 1 year: 2016 ident: ref_7 article-title: Rip current types, circulation and hazard publication-title: Earth-Sci. Rev. doi: 10.1016/j.earscirev.2016.09.008 – volume: 56 start-page: 93 year: 1984 ident: ref_8 article-title: Morphodynamic variability of surf zones and beaches: A synthesis publication-title: Mar. Geol. doi: 10.1016/0025-3227(84)90008-2 – volume: 5 start-page: 95 year: 2013 ident: ref_37 article-title: Remote Sensing of the Nearshore publication-title: Annu. Rev. Mar. Sci. doi: 10.1146/annurev-marine-121211-172408 – volume: 19 start-page: 2295 year: 2019 ident: ref_48 article-title: Ensemble models from machine learning: An example of wave runup and coastal dune erosion publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-19-2295-2019 – volume: 29 start-page: 283 year: 2013 ident: ref_6 article-title: Rip Current Prediction: Development, Validation, and Evaluation of an Operational Tool publication-title: J. Coast. Res. – ident: ref_20 doi: 10.1029/2010JC006382 – volume: 346 start-page: 153 year: 2013 ident: ref_30 article-title: Applicability of parametric beach morphodynamic state classification on embayed beaches publication-title: Mar. Geol. doi: 10.1016/j.margeo.2013.09.005 – volume: 31 start-page: 659 year: 2011 ident: ref_24 article-title: State dynamics of a double sandbar system publication-title: Cont. Shelf Res. doi: 10.1016/j.csr.2010.12.018 – ident: ref_47 doi: 10.20944/preprints201903.0283.v1 – ident: ref_18 doi: 10.1029/2006GL027105 – ident: ref_51 doi: 10.5962/bhl.title.48254 – volume: 208 start-page: 101 year: 2004 ident: ref_52 article-title: Quantification of nearshore morphology based on video imaging publication-title: Mar. Geol. doi: 10.1016/j.margeo.2004.04.017 – ident: ref_62 – volume: 158 start-page: 103689 year: 2020 ident: ref_41 article-title: Deep learning video analysis as measurement technique in physical models publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2020.103689 – ident: ref_17 – volume: 236 start-page: 143 year: 2007 ident: ref_19 article-title: Coupling video imaging and numerical modelling for the study of inlet morphodynamics publication-title: Mar. Geol. doi: 10.1016/j.margeo.2006.10.022 – volume: 94 start-page: 995 year: 1989 ident: ref_31 article-title: Quantification of sand bar morphology: A video technique based on wave dissipation publication-title: J. Geophys. Res. Ocean. doi: 10.1029/JC094iC01p00995 – volume: 149 start-page: 15 year: 2019 ident: ref_39 article-title: Distribution of individual wave overtopping volumes on mound breakwaters publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2019.03.006 – volume: 120 start-page: 2159 year: 2015 ident: ref_67 article-title: Shoreline variability from days to decades: Results of long-term video imaging publication-title: J. Geophys. Res. Ocean. doi: 10.1002/2014JC010329 – volume: 140 start-page: 1 year: 1997 ident: ref_70 article-title: Intertidal beach profile estimation using video images publication-title: Mar. Geol. doi: 10.1016/S0025-3227(97)00019-4 – ident: ref_3 doi: 10.1029/2010JC006286 – volume: 245 start-page: 141 year: 2007 ident: ref_23 article-title: Double bar beach dynamics on the high-energy meso-macrotidal French Aquitanian Coast: A review publication-title: Mar. Geol. doi: 10.1016/j.margeo.2007.06.001 – ident: ref_54 doi: 10.1029/2011JF001989 – ident: ref_61 doi: 10.1109/ICCV.2017.74 – volume: 155 start-page: 103593 year: 2020 ident: ref_42 article-title: Optical wave gauging using deep neural networks publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2019.103593 – volume: 22 start-page: 81 year: 1997 ident: ref_55 article-title: Practical use of video imagery in nearshore oceanographic field studies publication-title: IEEE J. Ocean. Eng. doi: 10.1109/48.557542 – ident: ref_1 doi: 10.1029/2005JC002965 – volume: 9 start-page: 785 year: 1993 ident: ref_29 article-title: The Effect of Tide Range on Beach Morphodynamics and Morphology: A Conceptual Beach Model publication-title: J. Coast. Res. – ident: ref_66 doi: 10.1109/ACPR.2015.7486592 – volume: 126 start-page: 201 year: 2011 ident: ref_26 article-title: Dynamics of a nearshore bar system in the northern Adriatic: A video-based morphological classification publication-title: Geomorphology doi: 10.1016/j.geomorph.2010.11.004 – volume: 238 start-page: 135 year: 2015 ident: ref_12 article-title: Impact of the winter 2013–2014 series of severe Western Europe storms on a double-barred sandy coast: Beach and dune erosion and megacusp embayments publication-title: Geomorphology doi: 10.1016/j.geomorph.2015.03.006 – volume: 3 start-page: 160024 year: 2016 ident: ref_53 article-title: A multi-decade dataset of monthly beach profile surveys and inshore wave forcing at Narrabeen, Australia publication-title: Sci. Data doi: 10.1038/sdata.2016.24 – volume: 1 start-page: 1 year: 2005 ident: ref_72 article-title: Introduction to geostatistics and variogram analysis publication-title: Kans. Geol. Surv. – volume: 95 start-page: 11575 year: 1990 ident: ref_14 article-title: The spatial and temporal variability of sand bar morphology publication-title: J. Geophys. Res. Ocean. doi: 10.1029/JC095iC07p11575 – ident: ref_35 doi: 10.3390/rs10111744 – volume: 16 start-page: 412 year: 2000 ident: ref_65 article-title: Assessing the accuracy of prediction algorithms for classification: An overview publication-title: Bioinformatics doi: 10.1093/bioinformatics/16.5.412 – volume: 280 start-page: 76 year: 2011 ident: ref_25 article-title: Dynamics of single-barred embayed beaches publication-title: Mar. Geol. doi: 10.1016/j.margeo.2010.12.002 – volume: 93 start-page: 79 year: 2019 ident: ref_56 article-title: Reshaping inputs for convolutional neural network: Some common and uncommon methods publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.04.009 – volume: 105 start-page: 1 year: 2015 ident: ref_45 article-title: An automated method for semantic classification of regions in coastal images publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2015.07.010 – volume: 236 start-page: 209 year: 2007 ident: ref_2 article-title: Observations of rip spacing, persistence and mobility at a long, straight coastline publication-title: Mar. Geol. doi: 10.1016/j.margeo.2006.10.029 – volume: 44 start-page: 3418 year: 2006 ident: ref_32 article-title: Objective Beach-State Classification From Optical Sensing of Cross-Shore Dissipation Profiles publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2006.877758 – volume: 181 start-page: 104902 year: 2019 ident: ref_10 article-title: Social, geomorphic, and climatic factors driving US coastal city vulnerability to storm surge flooding publication-title: Ocean Coast. Manag. doi: 10.1016/j.ocecoaman.2019.104902 – volume: 54 start-page: 477 year: 2007 ident: ref_13 article-title: The history and technical capabilities of Argus publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2007.01.003 – volume: 44 start-page: 5645 year: 2017 ident: ref_21 article-title: Mechanisms controlling the complete accretionary beach state sequence publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL073094 – volume: 23 start-page: 513 year: 2003 ident: ref_22 article-title: Video observations of nearshore bar behaviour. Part 2: Alongshore non-uniform variability publication-title: Cont. Shelf Res. doi: 10.1016/S0278-4343(02)00235-2 – volume: 54 start-page: 539 year: 2007 ident: ref_36 article-title: The role of video imagery in predicting daily to monthly coastal evolution publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2007.01.009 – volume: 156 start-page: 35 year: 2018 ident: ref_9 article-title: Coastal erosion and the United States national flood insurance program publication-title: Ocean Coast. Manag. doi: 10.1016/j.ocecoaman.2017.04.004 – volume: 240 start-page: 151 year: 2007 ident: ref_11 article-title: Rip currents, mega-cusps, and eroding dunes publication-title: Mar. Geol. doi: 10.1016/j.margeo.2007.02.018 – volume: 62 start-page: 339 year: 1985 ident: ref_15 article-title: Short-term changes in the morphodynamic states of beaches and surf zones: An empirical predictive model publication-title: Mar. Geol. doi: 10.1016/0025-3227(85)90123-9 – ident: ref_63 doi: 10.1007/978-3-319-10602-1 – volume: 1 start-page: 110 year: 2008 ident: ref_50 article-title: An investigation of the link between beach morphology and wave climate at Duck, NC, USA publication-title: J. Flood Risk Manag. doi: 10.1111/j.1753-318X.2008.00013.x – volume: 368 start-page: 25 year: 2015 ident: ref_34 article-title: Sandbar straightening under wind-sea and swell forcing publication-title: Mar. Geol. doi: 10.1016/j.margeo.2015.06.010 – volume: 51 start-page: 629 year: 2004 ident: ref_16 article-title: Morphodynamics of intermediate beaches: A video imaging and numerical modelling study publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2004.07.018 – ident: ref_49 doi: 10.5962/bhl.title.48249 – ident: ref_5 doi: 10.1029/2004JC002401 – ident: ref_59 doi: 10.1109/CVPR.2016.90 – volume: 122 start-page: 104528 year: 2019 ident: ref_46 article-title: CoastSat: A Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available satellite imagery publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2019.104528 – ident: ref_60 – volume: 106 start-page: 16969 year: 2001 ident: ref_33 article-title: Effect of hydrodynamics and bathymetry on video estimates of nearshore sandbar position publication-title: J. Geophys. Res. Ocean. doi: 10.1029/1999JC000167 – ident: ref_57 – volume: 157 start-page: 103595 year: 2020 ident: ref_40 article-title: An application of a machine learning algorithm to determine and describe error patterns within wave model output publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2019.103595 – volume: 45 start-page: 638 year: 2020 ident: ref_43 article-title: SediNet: A configurable deep learning model for mixed qualitative and quantitative optical granulometry publication-title: Earth Surf. Process. Landf. doi: 10.1002/esp.4760  | 
    
| SSID | ssj0000331904 | 
    
| Score | 2.3899543 | 
    
| Snippet | Nearshore morphology is a key driver in wave breaking and the resulting nearshore circulation, recreational safety, and nutrient dispersion. Morphology... | 
    
| SourceID | doaj unpaywall proquest crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 3953 | 
    
| SubjectTerms | Algorithms Aquatic birds Argus artificial intelligence Artificial neural networks Bathymeters Bathymetry beach state Beaches Cameras Classification CNN Coasts Cyclones Datasets deep learning ducks Energy Grain size Image classification information Labeling Laboratories Learning algorithms Machine learning Measurement techniques Model testing Morphology Nearshore circulation nearshore morphology Neural networks New South Wales North Carolina R&D Remote sensing Research & development Sediments Self tests Soil erosion Swimming Terraces testing Topography Wave breaking Wave power  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS-wwEA7iRS_y_PF4ff6gohcPxbRJmuaooqigB1HwVpJJ6jvs64q7q-x_70zaXVeQ5-WdCu20hJk03zfM8A1jhxKCdlQzBM59JnNuMuswS1HQIH7KIheOKro3t-Xlg7x-VI8Lo76oJ6yTB-4cd6wbUXjE6FCBlYJ7JwLo4LTyopQuBzp9eWUWkql4BgvcWlx2eqQC8_rjl1GOSCiMEp8QKAr1f2KXK5P22U7f7GCwADQXP9hazxDTk25l62wptBtspR9W_me6yW5OqQMyjTQxvZs1AA3bNJb_8cWnySi9-kviFNPUtj49G7av_Q7DD5McR7zE_u_RFnu4OL8_u8z6qQgZCCPHmeJSKt0AuMpW1mpADOYeYQUUuNJQVyeypsBlU1rQHkOgPZIk40icDaQUP9lyO2zDL5ZKr2SDfClQvEwRHA-N0qCCU6aBqkrY0cxTNfSS4TS5YlBj6kBerT-8mrCDue1zJ5TxpdUpOXxuQeLW8QaGvO5DXn8X8oTtzMJV93_cqC7wxCftxFInbH_-GP8VKoDYNgwnaIPsMjcIxyphh_Mw_2O5v__HcrfZakFJeuyB2WHL45dJ2EUmM3Z7cdO-A-Iw8PQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7aFcEE8RKCiIXjhEdWI7Tg4IsVWrgtQVqqjUW-RXymFJln2A9t8z43VSKqGeIiXOQ54ZzzeeyTcAR8J6ZShnaBlzmchZnWmDUYq0LfpPUeTcUEb3YlaeX4mv1_J6D2bDvzBUVjmsiWGhdr2lPfLjAi2auPFK9WnxK6OuUZRdHVpo6NhawX0MFGMPYL8gZqwJ7E9PZ98ux10XxlHlmNjxlHKM94-Xqxw9JK8lv-OZAoH_HdR5sOkWevtHz-f_OKCzx_AoIsf0807UT2DPd0_hIDYx_7F9BhdTqoxMA3xML4fCoL5LQ1kA3nizWaVffhJpxTbVnUtP-u531Dx8MNF0hEOoC189h6uz0-8n51nslpBZXot1JpkQUrXWmkpXWiuLvpk5dDdWWlPWVO2JaMoz0ZbaKoeiUQ7BU22ItM0KwV_ApOs7_xJS4aRoEUd5kmNdeMN8K5WV3si6tVWVwIdhphobqcSpo8W8wZCCZrW5ndUE3o9jFzsCjf-OmtKEjyOI9Dqc6Jc3TbShRrW8cAjXfGW14MwZ7q3yRknHS2Fym8DhIK4mWuKqudWbBN6Nl9GGKDGiO99vcAyizrxGNy0TOBrFfM_nvrr_Ta_hYUFheah6OYTJernxbxC7rM3bqJB_Acd97kU priority: 102 providerName: ProQuest  | 
    
| Title | Beach State Recognition Using Argus Imagery and Convolutional Neural Networks | 
    
| URI | https://www.proquest.com/docview/2467779067 https://www.proquest.com/docview/2511194715 https://www.mdpi.com/2072-4292/12/23/3953/pdf?version=1607251834 https://doaj.org/article/7f32d623e8ca430db3ec7eb75d364b1c  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 12 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: 8FG dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-x9mG88I2WMaog9sJDlg_bcfKE2rEyEK2mQaXxFNmOMxBdUrXNUPnruUvTsiGEkHiylJwtW3fO_c6-_A7gkBsrNd0ZmiDIPR4Gqac0RinCFOg_eRQyTTe6o3F8OuHvL8TFjb_4Ka0SQ_GvzUc6CmTkUT0lP4z8iPksFcyf5cXr6_YsidjR0EEnjO9ANxaIxjvQnYzP-p-pptym95qVlGF0788XIfpDGueWH2ro-m9hzN26nKnVdzWd3nA3w_ugNhNdZ5l8O6qX-sj8-I3D8X9W8gDutVjU7a-N5yHcseUj2G3Lon9ZPYbRgHIt3QaQuuebVKOqdJtEA-x4WS_cd1dEg7FyVZm7x1V53doyDkzEH03TZJovnsBkePLp-NRr6y94hqV86YmAcyELY3SiEqWkQW8f5LgKI4yOU8ofRXxmA17EysgclS1zhGOpJho4wzl7Cp2yKu0euDwXvEBkZsky0sjqwBZCGmG1SAuTJA682mgjMy05OdXImGYYpJDmsl-ac-DlVna2puT4o9SAlLqVIBrt5kE1v8zaXZnJgkU5AkCbGMVZkGtmjbRaipzFXIfGgYONSWTt3l5kEfoWYmmMpQMvtq9xV9JViyptVaMM4tgwRccvHDjcmtJfprv_b2LP4G5EAX-TT3MAneW8ts8RFS11D3aS4dsedPtvRh8-Yjs4GZ-d95ozhl67KX4CZdkKuw | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9rBcUHmJQIEgyoFDVCe24_hQIba02qXdFapaqbfgV9rDkmw3u1T75_htjLPJlkqot54iJc5rPOP5xh5_A7DLjBParxkaQmzEYiIjpTFK4aZA_8mSmGq_ojsap4Nz9v2CX2zAn24vjE-r7MbEZqC2lfFz5HsJWrTnxkvFl-l15KtG-dXVroSGaksr2P2GYqzd2HHsljcYwtX7w2_Y35-S5Ojw7GAQtVUGIkMlm0ecMMZFYYzOVKaUMOjTiMVh2nCjU-mzJBGFOMKKVBlh8ZeERdAhtSc7M4xRfO4j2GKUSQz-tvqH4x-n61keQlHFCVvxolIqyd6sjtEjU8npHU_YFAy4g3J7i3KqljdqMvnH4R1tw5MWqYZfV6r1FDZc-Qx6bdH0q-VzGPV9JmbYwNXwtEtEqsqwSUPAGy8XdTj85UkylqEqbXhQlb9bTccHe1qQ5tDkodcv4PxB5PYSNsuqdK8gZJazAnGb83ojE6eJK7gw3GkuC5NlAXzuJJWblrrcV9CY5BjCeKnmt1IN4OO67XRF2PHfVn0v8HULT7LdnKhml3lrs7koaGIRHrrMKEaJ1dQZ4bTglqZMxyaAna678tby6_xWTwP4sL6MNusXYlTpqgW2QZQbS4QFPIDddTff87mv73_Te-gNzkYn-clwfPwGHid-SqDJuNmBzfls4d4ibprrd61yhvDzoe3hLw_GK3A | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlEuiKcIFAiiHDhE68R2nBwQoi1Ll9IKISr1FvxKOSzJstml2r_Gr2Mmm6RUQr31FCmZvMYzns_2-BuAHWG9MrRmaBlzkYhZHmmDoxRpS4yfIom5oRXdo-P04ER8OpWnG_Cn3wtDaZV9n9h21K62NEc-StCjiRsvVaOyS4v4sj9-N_sVUQUpWmnty2msTeTQr85x-Na8nexjW79OkvGHb3sHUVdhILI8F4tIMiGkKq01mc60VhbjGXPYRVtpTZpThiQiEM9EmWqrHP6Ocgg4ckNEZ1YIjs-9ATcVsbjTLvXxx2F-h3E0bibWjKic52w0b2KMxTyX_FIMbEsFXMK3W8tqplfnejr9J9SN78KdDqOG79dGdQ82fHUftrpy6T9WD-Bol3Iwwxaohl_7FKS6CtsEBLzxbNmEk59Ej7EKdeXCvbr63dk4PpgIQdpDm4HePISTa9HaI9is6so_hlA4KUpEbJ4sJk-8Yb6UykpvZF7aLAvgTa-pwnak5VQ7Y1rg4IW0WlxoNYBXg-xsTdXxX6ldUvggQfTa7Yl6flZ03lqokicOgaHPrBacOcO9Vd4o6XgqTGwD2O6bq-h8vikuLDSAl8Nl9FZagtGVr5cog_g2zhEQyAB2hma-4nOfXP2mF3ALvaD4PDk-fAq3E5oLaFNttmFzMV_6ZwiYFuZ5a5khfL9uV_gL5dopCg | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RQEB50-1Bfar3RaJWIffEhTXIuOcmTtKWlCi0iLtSncG6p0m2y7G4q6693JpusrYgIPgWSyeGEmZP5JufLNwB7wnplaM_QJomLRJoUkTZYpUhbYf4ULOWGdnTPzrPTsfhwIS9u_cVPtEosxb91L2mWKBZRP6U4ZTHjMS8kj6euenfTf0sidTRM0DkX92Ejk4jGR7AxPv948IV6yg13r1RJOVb38WyeYj6kce7koU6u_w7G3GzrqV5-15PJrXRz8hD0MNEVy-Rqv12YffvjNw3H_3mSbdjqsWh4sAqeR3DP149hs2-L_nX5BM4OiWsZdoA0_DRQjZo67IgGeONlOw_fX5MMxjLUtQuPmvqmj2UcmIQ_ukPHNJ8_hfHJ8eej06jvvxBZXohFJBMhpKqsNbnOtVYWs33i8CmstCYriD-K-Mwnosq0VQ6drRzCscKQDJwVgj-DUd3UfgdC4aSoEJl5ioyCeZP4SiorvZFFZfM8gLeDN0rbi5NTj4xJiUUKea785bkA3qxtpytJjj9aHZJT1xYko92daGaXZb8qS1Vx5hAA-txqwRNnuLfKGyUdz4RJbQC7Q0iU_dqelwxzC6k0ZiqA1-vLuCppq0XXvmnRBnFsWmDilwHsrUPpL9N9_m9mL-ABo4K_49Pswmgxa_1LREUL86oP_J-KrwWy | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beach+State+Recognition+Using+Argus+Imagery+and+Convolutional+Neural+Networks&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Ellenson%2C+Ashley+N.&rft.au=Simmons%2C+Joshua+A.&rft.au=Wilson%2C+Greg+W.&rft.au=Hesser%2C+Tyler+J.&rft.date=2020-12-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=12&rft.issue=23&rft.spage=3953&rft_id=info:doi/10.3390%2Frs12233953&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs12233953 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |