UVIO: Adaptive Kalman Filtering UWB-Aided Visual-Inertial SLAM System for Complex Indoor Environments

Precise positioning in an indoor environment is a challenging task because it is difficult to receive a strong and reliable global positioning system (GPS) signal. For existing wireless indoor positioning methods, ultra-wideband (UWB) has become more popular because of its low energy consumption and...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 16; no. 17; p. 3245
Main Authors Li, Junxi, Wang, Shouwen, Hao, Jiahui, Ma, Biao, Chu, Henry K.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2024
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs16173245

Cover

More Information
Summary:Precise positioning in an indoor environment is a challenging task because it is difficult to receive a strong and reliable global positioning system (GPS) signal. For existing wireless indoor positioning methods, ultra-wideband (UWB) has become more popular because of its low energy consumption and high interference immunity. Nevertheless, factors such as indoor non-line-of-sight (NLOS) obstructions can still lead to large errors or fluctuations in the measurement data. In this paper, we propose a fusion method based on ultra-wideband (UWB), inertial measurement unit (IMU), and visual simultaneous localization and mapping (V-SLAM) to achieve high accuracy and robustness in tracking a mobile robot in a complex indoor environment. Specifically, we first focus on the identification and correction between line-of-sight (LOS) and non-line-of-sight (NLOS) UWB signals. The distance evaluated from UWB is first processed by an adaptive Kalman filter with IMU signals for pose estimation, where a new noise covariance matrix using the received signal strength indicator (RSSI) and estimation of precision (EOP) is proposed to reduce the effect due to NLOS. After that, the corrected UWB estimation is tightly integrated with IMU and visual SLAM through factor graph optimization (FGO) to further refine the pose estimation. The experimental results show that, compared with single or dual positioning systems, the proposed fusion method provides significant improvements in positioning accuracy in a complex indoor environment.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2072-4292
2072-4292
DOI:10.3390/rs16173245