Ward Capacity Strain: A Novel Predictor of Delays in Intensive Care Unit Survivor Throughput
In prior research of intensive care units (ICUs) (2, 3) and emergency departments (EDs) (4), higher patient volume, turnover, and severity of illness have shown associations with patient outcomes (e.g., mortality), patient throughput, and care delivery (5-11). Variables included ward-level measures...
Saved in:
Published in | Annals of the American Thoracic Society Vol. 16; no. 3; pp. 387 - 390 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Thoracic Society
01.03.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2329-6933 2325-6621 2325-6621 |
DOI | 10.1513/AnnalsATS.201809-621RL |
Cover
Abstract | In prior research of intensive care units (ICUs) (2, 3) and emergency departments (EDs) (4), higher patient volume, turnover, and severity of illness have shown associations with patient outcomes (e.g., mortality), patient throughput, and care delivery (5-11). Variables included ward-level measures of patient volume (census, numbers of admissions and discharges), staff workload (presence of any off-ward transports and transfusions, and numbers of medications administered and respiratory therapy orders), and overall acuity (number of patients on telemetry, presence of any patients with quick Sequential Organ Failure Assessment >2 [24], and ICU transfers). To identify strain variables associated with longer admission wait times and to quantify the variance explained by ward capacity strain, we estimated two least absolute shrinkage and selection operator (LASSO) (25) regressions, a method for building parsimonious regression models that selects variables in descending order of variance explained and incorporates a penalty for adding more variables. [...]LASSO regression is only one of multiple penalized regression and alternate methods to identify predictors of ward admission wait times. |
---|---|
AbstractList | In prior research of intensive care units (ICUs) (2, 3) and emergency departments (EDs) (4), higher patient volume, turnover, and severity of illness have shown associations with patient outcomes (e.g., mortality), patient throughput, and care delivery (5-11). Variables included ward-level measures of patient volume (census, numbers of admissions and discharges), staff workload (presence of any off-ward transports and transfusions, and numbers of medications administered and respiratory therapy orders), and overall acuity (number of patients on telemetry, presence of any patients with quick Sequential Organ Failure Assessment >2 [24], and ICU transfers). To identify strain variables associated with longer admission wait times and to quantify the variance explained by ward capacity strain, we estimated two least absolute shrinkage and selection operator (LASSO) (25) regressions, a method for building parsimonious regression models that selects variables in descending order of variance explained and incorporates a penalty for adding more variables. [...]LASSO regression is only one of multiple penalized regression and alternate methods to identify predictors of ward admission wait times. |
ArticleNumber | AnnalsATS.201809-621RL |
Author | Prasad Kerlin, Meeta Halpern, Scott D Weissman, Gary E Ratcliffe, Sarah J Harhay, Michael O Anesi, George L Kohn, Rachel Greysen, S Ryan Bayes, Brian |
Author_xml | – sequence: 1 givenname: Rachel surname: Kohn fullname: Kohn, Rachel organization: University of Pennsylvania Perelman School of Medicine, 14640, Department of Medicine, Philadelphia, Pennsylvania, United States, University of Pennsylvania Perelman School of Medicine, 14640, Center for Clinical Epidemiology and Biostatistics, Philadelphia, Pennsylvania, United States, University of Pennsylvania Perelman School of Medicine, 14640, Leonard Davis Institute of Health Economics, Philadelphia, Pennsylvania, United States, University of Pennsylvania Perelman School of Medicine, 14640, Palliative and Advanced Illness Research (PAIR) Center, Philadelphia, Pennsylvania, United States – sequence: 2 givenname: Michael O orcidid: 0000-0002-0553-674X surname: Harhay fullname: Harhay, Michael O organization: University of Pennsylvania Perelman School of Medicine, 14640, Department of Biostatistics, Epidemiology and Informatics, Philadelphia, Pennsylvania, United States, University of Pennsylvania Perelman School of Medicine, 14640, Leonard Davis Institute of Health Economics, Philadelphia, Pennsylvania, United States, University of Pennsylvania Perelman School of Medicine, 14640, Palliative and Advanced Illness Research (PAIR) Center, Philadelphia, Pennsylvania, United States – sequence: 3 givenname: Gary E orcidid: 0000-0001-9588-3819 surname: Weissman fullname: Weissman, Gary E organization: University of Pennsylvania Perelman School of Medicine, 14640, Department of Medicine, Philadelphia, Pennsylvania, United States, University of Pennsylvania Perelman School of Medicine, 14640, Leonard Davis Institute of Health Economics, Philadelphia, Pennsylvania, United States, University of Pennsylvania Perelman School of Medicine, 14640, Palliative and Advanced Illness Research (PAIR) Center, Philadelphia, Pennsylvania, United States – sequence: 4 givenname: George L orcidid: 0000-0003-4585-0714 surname: Anesi fullname: Anesi, George L organization: University of Pennsylvania Perelman School of Medicine, 14640, Department of Medicine, Philadelphia, Pennsylvania, United States, University of Pennsylvania Perelman School of Medicine, 14640, Center for Clinical Epidemiology and Biostatistics, Philadelphia, Pennsylvania, United States, University of Pennsylvania Perelman School of Medicine, 14640, Leonard Davis Institute of Health Economics, Philadelphia, Pennsylvania, United States, University of Pennsylvania Perelman School of Medicine, 14640, Palliative and Advanced Illness Research (PAIR), Philadelphia, Pennsylvania, United States – sequence: 5 givenname: Brian surname: Bayes fullname: Bayes, Brian organization: University of Pennsylvania Perelman School of Medicine, 14640, Center for Clinical Epidemiology and Biostatistics, Philadelphia, Pennsylvania, United States, University of Pennsylvania Perelman School of Medicine, 14640, Palliative and Advanced Illness Research (PAIR) Center, Philadelphia, Pennsylvania, United States – sequence: 6 givenname: S Ryan surname: Greysen fullname: Greysen, S Ryan organization: University of Pennsylvania Perelman School of Medicine, 14640, Department of Medicine, Philadelphia, Pennsylvania, United States, University of Pennsylvania Perelman School of Medicine, 14640, Center for Clinical Epidemiology and Biostatistics, Philadelphia, Pennsylvania, United States, University of Pennsylvania Perelman School of Medicine, 14640, Leonard Davis Institute of Health Economics, Philadelphia, Pennsylvania, United States, University of Pennsylvania Perelman School of Medicine, 14640, Palliative and Advanced Illness Research (PAIR) Center, Philadelphia, Pennsylvania, United States – sequence: 7 givenname: Sarah J surname: Ratcliffe fullname: Ratcliffe, Sarah J organization: University of Virginia, Department of Public Health Sciences, Division of Biostatistics, Charlottesville, Virginia, United States – sequence: 8 givenname: Scott D surname: Halpern fullname: Halpern, Scott D organization: University of Pennsylvania Perelman School of Medicine, 14640, Department of Medicine, Philadelphia, Pennsylvania, United States, University of Pennsylvania Perelman School of Medicine, 14640, Center for Clinical Epidemiology and Biostatistics, Philadelphia, Pennsylvania, United States, University of Pennsylvania Perelman School of Medicine, 14640, Leonard Davis Institute of Health Economics, Philadelphia, Pennsylvania, United States, University of Pennsylvania Perelman School of Medicine, 14640, Palliative and Advanced Illness Research (PAIR) Center, Philadelphia, Pennsylvania, United States – sequence: 9 givenname: Meeta surname: Prasad Kerlin fullname: Prasad Kerlin, Meeta organization: University of Pennsylvania Perelman School of Medicine, 14640, Department of Medicine, Philadelphia, Pennsylvania, United States, University of Pennsylvania Perelman School of Medicine, 14640, Center for Clinical Epidemiology and Biostatistics, Philadelphia, Pennsylvania, United States, University of Pennsylvania Perelman School of Medicine, 14640, Leonard Davis Institute of Health Economics, Philadelphia, Pennsylvania, United States, University of Pennsylvania Perelman School of Medicine, 14640, Palliative and Advanced Illness Research (PAIR) Center, Philadelphia, Pennsylvania, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30407847$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV9LHDEUxUOxVKt-BQn44sto_kwmGSmFZbVVWNrirvgihGwm40ZmkzXJDOy3b9ZVaX0xL0nI79x7cs9XsOO8MwAcYXSKGaZnI-dUF0ez6SlBWKC6qAi-mXwCe4QSVlT5tvN8zg81pbvgMMZHlJdgWPD6C9ilqERclHwP3N-p0MCxWilt0xpOU1DWncMR_OUH08E_wTRWJx-gb-GF6dQ6QuvgtUvGRTuYrAwG3jqb4LQPgx0yOVsE3z8sVn06AJ_bbNQcvuz74PbH5Wx8VUx-_7wejyaFpnWZihIb2lIhKKNNq9FcNHNKkCZ1i1tSE8UJIkRVHNdsjjE3JdeqpFQz3oqKlIzug-_buqt-vjSNNi5_o5OrYJcqrKVXVv7_4uxCPvhBVrk_xiIXOHkpEPxTb2KSSxu16TrljO-jJJgSwlieX0aP36GPvg-bPDJVV5QjzHmmjv519GbldfAZ-LYFdPAxBtPKPH-VrN8YtJ3ESG6ilm9Ry23U8jnqLK_eyV87fCD8CwzPrvc |
CitedBy_id | crossref_primary_10_7326_M20_1260 crossref_primary_10_1007_s10597_024_01251_0 |
ContentType | Journal Article |
Copyright | Copyright American Thoracic Society Mar 2019 Copyright © 2019 by the American Thoracic Society 2019 |
Copyright_xml | – notice: Copyright American Thoracic Society Mar 2019 – notice: Copyright © 2019 by the American Thoracic Society 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AO 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH K9. KB0 M0S M1P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1513/AnnalsATS.201809-621RL |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Database Suite (ProQuest) ProQuest One Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Health & Medical Collection (Alumni) Medical Database Nursing & Allied Health Premium Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Academic Middle East (New) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2325-6621 |
EndPage | 390 |
ExternalDocumentID | PMC6394118 30407847 10_1513_AnnalsATS_201809_621RL |
Genre | Letter Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: K08 HL116771 – fundername: NHLBI NIH HHS grantid: K99 HL141678 – fundername: NHLBI NIH HHS grantid: K24 HL143289 – fundername: NHLBI NIH HHS grantid: T32 HL007891 – fundername: NHLBI NIH HHS grantid: F32 HL139107 – fundername: NHLBI NIH HHS grantid: T32 HL098054 |
GroupedDBID | 0R~ 7RV 7X7 88E 8AO 8FI 8FJ AAWTL AAYXX ABJNI ABUWG ACGFO ACGFS ACIHN ADBBV AEAQA AFKRA AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS BAWUL BENPR BKEYQ BPHCQ BVXVI C45 CCPQU CITATION DIK EBS EJD EMOBN FYUFA H13 HMCUK HZ~ LSO M1P M5~ NAPCQ NQS O9- OFXIZ OVD OVIDX P0W PHGZM PHGZT PQQKQ PROAC PSQYO TEORI THO UKHRP 3V. CGR CUY CVF ECM EIF NPM OK1 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c394t-41e3f388353dfc0b8db320c29f1f292a72022a67195b117e47ca433c57f862453 |
IEDL.DBID | 7X7 |
ISSN | 2329-6933 2325-6621 |
IngestDate | Thu Aug 21 13:47:16 EDT 2025 Thu Sep 04 21:34:51 EDT 2025 Fri Jul 25 02:21:28 EDT 2025 Thu Jan 02 22:59:08 EST 2025 Thu Apr 24 23:11:49 EDT 2025 Tue Jul 01 01:48:35 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-41e3f388353dfc0b8db320c29f1f292a72022a67195b117e47ca433c57f862453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Correspondence-1 content type line 23 Statistical Editor, AnnalsATS. Their participation complies with American Thoracic Society requirements for recusal from review and decisions for authored works. |
ORCID | 0000-0002-0553-674X 0000-0001-9588-3819 0000-0003-4585-0714 0000-0002-9373-5035 |
PMID | 30407847 |
PQID | 2196370177 |
PQPubID | 2031827 |
PageCount | 4 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6394118 proquest_miscellaneous_2132255851 proquest_journals_2196370177 pubmed_primary_30407847 crossref_citationtrail_10_1513_AnnalsATS_201809_621RL crossref_primary_10_1513_AnnalsATS_201809_621RL |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Annals of the American Thoracic Society |
PublicationTitleAlternate | Ann Am Thorac Soc |
PublicationYear | 2019 |
Publisher | American Thoracic Society |
Publisher_xml | – name: American Thoracic Society |
SSID | ssj0000851879 |
Score | 2.3476713 |
Snippet | In prior research of intensive care units (ICUs) (2, 3) and emergency departments (EDs) (4), higher patient volume, turnover, and severity of illness have... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 387 |
SubjectTerms | Censuses Clinical outcomes Comorbidity Emergency Service, Hospital - statistics & numerical data Hospital Bed Capacity - statistics & numerical data Hospitalists Humans Illnesses Intensive care Intensive Care Units - statistics & numerical data Letters Mortality Patients Retrospective Studies Sepsis Studies Survivors Telemetry Time-to-Treatment - trends United States Workloads |
Title | Ward Capacity Strain: A Novel Predictor of Delays in Intensive Care Unit Survivor Throughput |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30407847 https://www.proquest.com/docview/2196370177 https://www.proquest.com/docview/2132255851 https://pubmed.ncbi.nlm.nih.gov/PMC6394118 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swEBddC2Mvo_tOv1BhryKWJVtWX0r6RRltKE3K8jAwliyxQrCzJin0v--drbjLBtuzTti6O51-pzvdEfIVS4KLwqdMeG6Y1CZl2iQlkwrQidEi8o2jeD1ML-_kt0kyCRdu85BWubKJjaEua4t35P0YVUWB_qjj2S-GXaMwuhpaaLwiWxyQCLZuUBPV3bEgnMiacnuAGzRLwXkPj4QTLvptheLBeIQJXlkE4zG_vVo_n_4CnX_mTv52GF1sk7cBRdJBK_Z3ZMNV78nr6xAn_0B-fAfB01M4CC2gbDpqGkEc0QEd1o9uSm8ekBK8bVp7euamxdOc3le0S2en-CqJIhyloyXYkkegHLcNfWbLxUdyd3E-Pr1koY8Cs0LLBZPcCS8ywFqi9DYyWWlEHNlYe-5jHRcqhoO8SBXXieFcOalsIYWwifL4fCQRn8hmVVfuC6EZj3wcSVsYV0rwq7MIyLzyrsxSbaXukWTFvdyGIuO4xGmOzgZwPe-4nrdczxuu90i_mzdry2z8d8beSjh52Hbz_EVJeuSwG4YNg1GQonL1EmnQhmE0tEc-t7LsPikiDGtKmK3WpNwRYDHu9ZHq_mdTlBuQngRnbeffv7VL3sAidJvEtkc2Fw9Ltw-oZmEOGtU9IFsn58Ob22cHwPW- |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NnQS8IL4pDDASPEZNbCeOkSZU9qGOtdW0dmIPSCFxbDGpSsraDu2f42_jLkkDBQme9uyzEp_Pvt_5vgDeUElwkbrIEy7IPKmzyNNZmHtSITrJtPBdZSiOxtHgTH48D8-34Mc6F4bCKtd3YnVR56WhN_IeJ1FRKD_q_fybR12jyLu6bqGRNq0V8t2qxFiT2HFsr7-jCbfYPdrH_X7L-eHBdG_gNV0GPCO0XHoysMKJGJGIyJ3xszjPBPcN1y5wXPNUcVRzaaQCHWZBoKxUJpVCmFA5Sq6grhGoArYlPaB0YPvDwfjktH3lIUATVwX_ELloL9JCNGnKYSB6dY3k_nRCIWaxj-M8OB1uasi_YO-f0Zu_qcPDe3C3wbGsXwvefdiyxQO4NWo89Q_h8ycUPbaHqtggzmeTqhXFO9Zn4_LKztjJJVGivc9Kx_btLL1esIuCtQH1jPKiGAFiNlnhbXaFlNO6pdB8tXwEZzfC48fQKcrCPgUWB77jvjRpZnOJln3sI5lTzuZxpI3UXQjX3EtMU-acljhLyNxBrict15Oa60nF9S702nnzutDHf2fsrDcnaQ7-Ivklpl143Q7jkSU_TFrYckU0dIuSP7YLT-q9bD8pfHKsSpytNna5JaBy4JsjxcXXqiw4Yk2J5uKzf__WK7g9mI6GyfBofPwc7uCCdB1StwOd5eXKvkCMtcxeNoLM4MtNn52fVlM1jQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIU28IMZnYYCR4NFq_JE4noRQtVJtbKsm2ok-IIXEsbVJVVLWdmj_Gn8dd_mCggRPe_ZZie_O59_5zneEvMGS4DL1EZOeZ0yZLGImC3OmNKCTzMjAV47i6Tg6PFcfZ-Fsi_xo38JgWmVrEytDnZcW78j7AlVFB1gsyTdpEWfD0fvFN4YdpDDS2rbTqFXk2N18B_dt-e5oCLJ-K8Tow_TgkDUdBpiVRq2Y4k56GQMKkbm3QRbnmRSBFcZzL4xItYAjLo00N2HGuXZK21RJaUPt8WEFdowA839HS6WwbYSe6e5-B6FMXJX6A8xiWGSkbB4oh1z26-rIg-kEk8viAMYF_3SyeTb-BXj_zNv87SAc3Sf3GgRLB7XK7ZItVzwgO6dNjP4h-fIZlI4ewCFsAeHTSdWEYp8O6Li8dnN6doWU4OnT0tOhm6c3S3pZ0C6VnuKLKIpQmE7WYMeugXJaNxNarFePyPmtcPgx2S7Kwj0lNOaBF4GyaeZyBT59HACZ197lcWSsMj0SttxLbFPgHJc4T9DRAa4nHdeTmutJxfUe6XfzFnWJj__O2GuFkzRbfpn8UtAeed0Nw2bFCExauHKNNGg_MRLbI09qWXaflAGGVBXM1htS7giwEPjmSHF5URUEB5SpwFF89u_fekV2YMckJ0fj4-fkLqzH1Ll0e2R7dbV2LwBcrbKXlRZT8vW2t81P1rIzKQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ward+Capacity+Strain%3A+A+Novel+Predictor+of+Delays+in+Intensive+Care+Unit+Survivor+Throughput&rft.jtitle=Annals+of+the+American+Thoracic+Society&rft.au=Kohn%2C+Rachel&rft.au=Harhay%2C+Michael+O&rft.au=Weissman%2C+Gary+E&rft.au=Anesi%2C+George+L&rft.date=2019-03-01&rft.issn=2325-6621&rft.eissn=2325-6621&rft.volume=16&rft.issue=3&rft.spage=387&rft_id=info:doi/10.1513%2FAnnalsATS.201809-621RL&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-6933&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-6933&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-6933&client=summon |