Integrating Sentinel-1/2 Data and Machine Learning to Map Cotton Fields in Northern Xinjiang, China
Timely and accurate information of cotton planting areas is essential for monitoring and managing cotton fields. However, there is no large-scale and high-resolution method suitable for mapping cotton fields, and the problems associated with low resolution and poor timeliness need to be solved. Here...
Saved in:
| Published in | Remote sensing (Basel, Switzerland) Vol. 13; no. 23; p. 4819 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.12.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2072-4292 2072-4292 |
| DOI | 10.3390/rs13234819 |
Cover
| Abstract | Timely and accurate information of cotton planting areas is essential for monitoring and managing cotton fields. However, there is no large-scale and high-resolution method suitable for mapping cotton fields, and the problems associated with low resolution and poor timeliness need to be solved. Here, we proposed a new framework for mapping cotton fields based on Sentinel-1/2 data for different phenological periods, random forest classifiers, and the multi-scale image segmentation method. A cotton field map for 2019 at a spatial resolution of 10 m was generated for northern Xinjiang, a dominant cotton planting region in China. The overall accuracy and kappa coefficient of the map were 0.932 and 0.813, respectively. The results showed that the boll opening stage was the best phenological phase for mapping cotton fields and the cotton fields was identified most accurately at the early boll opening stage, about 40 days before harvest. Additionally, Sentinel-1 and the red edge bands in Sentinel-2 are important for cotton field mapping, and there is great potential for the fusion of optical images and microwave images in crop mapping. This study provides an effective approach for high-resolution and high-accuracy cotton field mapping, which is vital for sustainable monitoring and management of cotton planting. |
|---|---|
| AbstractList | Timely and accurate information of cotton planting areas is essential for monitoring and managing cotton fields. However, there is no large-scale and high-resolution method suitable for mapping cotton fields, and the problems associated with low resolution and poor timeliness need to be solved. Here, we proposed a new framework for mapping cotton fields based on Sentinel-1/2 data for different phenological periods, random forest classifiers, and the multi-scale image segmentation method. A cotton field map for 2019 at a spatial resolution of 10 m was generated for northern Xinjiang, a dominant cotton planting region in China. The overall accuracy and kappa coefficient of the map were 0.932 and 0.813, respectively. The results showed that the boll opening stage was the best phenological phase for mapping cotton fields and the cotton fields was identified most accurately at the early boll opening stage, about 40 days before harvest. Additionally, Sentinel-1 and the red edge bands in Sentinel-2 are important for cotton field mapping, and there is great potential for the fusion of optical images and microwave images in crop mapping. This study provides an effective approach for high-resolution and high-accuracy cotton field mapping, which is vital for sustainable monitoring and management of cotton planting. |
| Author | Hu, Tao Hu, Yina Dong, Jianquan Qiu, Sijing Peng, Jian |
| Author_xml | – sequence: 1 givenname: Tao orcidid: 0000-0002-9903-6411 surname: Hu fullname: Hu, Tao – sequence: 2 givenname: Yina orcidid: 0000-0002-2358-7831 surname: Hu fullname: Hu, Yina – sequence: 3 givenname: Jianquan surname: Dong fullname: Dong, Jianquan – sequence: 4 givenname: Sijing surname: Qiu fullname: Qiu, Sijing – sequence: 5 givenname: Jian surname: Peng fullname: Peng, Jian |
| BookMark | eNp9kV1rVDEQhoNUsNbe-AsC3oj22HycPUkuZbW6sOqFCt6FOTmTbZbTZE2ySP99s66oFDEQJgzPPANvHpOTmCIS8pSzV1IadpkLl0L2mpsH5FQwJbpeGHHy1_sROS9ly9qRkhvWnxK3ihU3GWqIG_oZY6s4d_xS0DdQgUKc6Adw161L1wg5HrCaWm9Hl6nWFOlVwHkqNET6MeV6jTnSbyFuA8TNBV22SXhCHnqYC57_qmfk69XbL8v33frTu9Xy9bpz0vS1k35UnhvvuWh31BoXeuKjmphW2julF4AORz0YL71XuBgFCKf5oPqFZ2qQZ2R19E4JtnaXww3kW5sg2J-NlDcWcg1uRntQSWOcB5S9GRmMKFoeYuA954LL5np5dO3jDm5_wDz_FnJmD3HbP3E3-vmR3uX0fY-l2ptQHM4zREz7YsUgB82VkQfxs3voNu1zbLk0imkue9GrRr04Ui6nUjL6_29n92AXavvRFGuGMP9r5A5hf6pW |
| CitedBy_id | crossref_primary_10_3390_agronomy14010075 crossref_primary_10_1016_j_jag_2022_102969 crossref_primary_10_3390_rs15081988 crossref_primary_10_1039_D2AN01523D crossref_primary_10_3390_agronomy13112800 crossref_primary_10_1016_j_compag_2022_107260 crossref_primary_10_1038_s41597_023_02584_3 crossref_primary_10_1016_j_scitotenv_2023_161757 crossref_primary_10_3390_land12091769 |
| Cites_doi | 10.1016/j.rse.2019.111400 10.1016/j.rse.2021.112394 10.1016/S0034-4257(02)00096-2 10.1080/15481603.2017.1370169 10.1016/j.rse.2013.08.023 10.3390/rs8030166 10.1016/j.isprsjprs.2020.01.001 10.1371/journal.pone.0107042 10.1016/j.rse.2008.02.011 10.3390/s8031613 10.1016/j.rse.2009.04.014 10.1016/S0034-4257(96)00067-3 10.3389/feart.2017.00017 10.1016/j.isprsjprs.2017.06.003 10.1016/j.rse.2017.03.047 10.1016/j.rse.2017.06.031 10.3390/rs12071187 10.1016/j.rse.2004.12.009 10.1016/j.isprsjprs.2015.04.008 10.1016/j.rse.2020.111951 10.1016/j.rse.2017.11.026 10.1016/j.isprsjprs.2020.04.001 10.1016/j.isprsjprs.2011.11.002 10.1080/01431161.2018.1530812 10.3390/rs11141666 10.1080/014311600210407 10.3390/rs9030236 10.1080/01431161.2020.1862440 10.1007/s10113-014-0677-x 10.1016/j.isprsjprs.2019.03.012 10.1016/j.rse.2011.10.011 10.1080/15481603.2017.1408892 10.3390/rs10081200 10.1038/s41597-019-0036-3 10.1016/j.isprsjprs.2017.01.019 10.3390/f12050553 10.1080/01431161.2016.1148285 10.3390/rs8060488 10.1016/j.rse.2015.09.008 10.1016/j.agee.2011.10.016 10.1080/0143116042000274015 10.3390/rs5116026 10.1016/S1671-2927(09)60073-0 10.1016/j.scib.2019.03.002 10.1080/13658810903174803 10.1080/01431169608949028 10.3390/rs70505347 10.1016/j.isprsjprs.2021.03.004 10.1016/S2095-3119(19)62812-1 10.1016/j.rse.2018.11.007 10.1016/j.isprsjprs.2020.06.022 10.1080/01431161.2019.1693072 10.1016/0034-4257(87)90015-0 10.1016/j.rse.2019.01.016 10.1016/j.isprsjprs.2013.11.018 10.1016/j.rse.2016.02.016 10.1016/j.rse.2019.04.016 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7S9 L.6 ADTOC UNPAY DOA |
| DOI | 10.3390/rs13234819 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Publicly Available Content Database AGRICOLA CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Openly Available Collection - DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_5aec399cfae349b0abe2904261411213 10.3390/rs13234819 10_3390_rs13234819 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI 7S9 L.6 PUEGO ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c394t-3fb7f19ff12ff1b88e58d1b7d0878fc785aeceb869f3ff7e5b2a2c816745f0763 |
| IEDL.DBID | DOA |
| ISSN | 2072-4292 |
| IngestDate | Fri Oct 03 12:53:51 EDT 2025 Sun Oct 26 04:07:36 EDT 2025 Fri Sep 05 13:11:16 EDT 2025 Fri Jul 25 12:00:12 EDT 2025 Thu Oct 16 04:31:14 EDT 2025 Thu Apr 24 22:58:34 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c394t-3fb7f19ff12ff1b88e58d1b7d0878fc785aeceb869f3ff7e5b2a2c816745f0763 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9903-6411 0000-0002-2358-7831 |
| OpenAccessLink | https://doaj.org/article/5aec399cfae349b0abe2904261411213 |
| PQID | 2608134247 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5aec399cfae349b0abe2904261411213 unpaywall_primary_10_3390_rs13234819 proquest_miscellaneous_2636817933 proquest_journals_2608134247 crossref_primary_10_3390_rs13234819 crossref_citationtrail_10_3390_rs13234819 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Chen (ref_9) 2019; 151 ref_50 Liu (ref_5) 2015; 15 Forkuor (ref_47) 2017; 55 Steinhausen (ref_52) 2018; 73 ref_14 Georganos (ref_29) 2018; 55 Lawrence (ref_31) 2015; 17 Vogelmann (ref_49) 2009; 113 King (ref_1) 2017; 195 Hu (ref_16) 2013; 5 Chen (ref_44) 2016; 50 You (ref_54) 2020; 161 Son (ref_12) 2021; 42 Jin (ref_11) 2019; 228 Huete (ref_25) 2002; 83 Wu (ref_21) 2010; 9 Tamiminia (ref_58) 2020; 164 ref_23 Pan (ref_43) 2012; 119 Dragut (ref_38) 2010; 24 Wang (ref_35) 2019; 81 Gao (ref_26) 1996; 58 Ryu (ref_56) 2019; 223 Gella (ref_51) 2021; 175 Gorelick (ref_22) 2017; 202 Phalke (ref_61) 2020; 167 Wang (ref_10) 2015; 527 Werner (ref_20) 2019; 41 Yang (ref_13) 2021; 259 Zhong (ref_18) 2014; 140 Chan (ref_42) 2008; 112 Deines (ref_59) 2019; 233 ref_34 Hao (ref_7) 2015; 7 ref_32 Defourny (ref_60) 2019; 221 Dash (ref_27) 2004; 25 Su (ref_36) 2017; 130 Grzegozewski (ref_45) 2016; 37 Woodcock (ref_39) 1987; 21 Fung (ref_24) 2000; 21 Wang (ref_3) 2020; 247 Liu (ref_19) 2019; 40 Ghimire (ref_33) 2012; 67 Dong (ref_53) 2016; 185 Xiao (ref_2) 2005; 95 ref_46 Gong (ref_28) 2019; 64 Goldblatt (ref_30) 2018; 205 ref_41 ref_40 Hao (ref_6) 2020; 19 Illera (ref_55) 1996; 17 Xiong (ref_15) 2017; 126 Dragut (ref_37) 2014; 88 ref_48 Qin (ref_4) 2015; 105 Bridhikitti (ref_8) 2012; 146 Zhou (ref_17) 2008; 8 Shelestov (ref_57) 2017; 5 |
| References_xml | – volume: 233 start-page: 111400 year: 2019 ident: ref_59 article-title: Mapping three decades of annual irrigation across the US High Plains Aquifer using Landsat and Google Earth Engine publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111400 – volume: 81 start-page: 98 year: 2019 ident: ref_35 article-title: Unsupervised segmentation parameter selection using the local spatial statistics for remote sensing image segmentation publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 259 start-page: 112394 year: 2021 ident: ref_13 article-title: A systematic method for spatio-temporal phenology estimation of paddy rice using time series Sentinel-1 images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112394 – volume: 83 start-page: 195 year: 2002 ident: ref_25 article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00096-2 – volume: 55 start-page: 331 year: 2017 ident: ref_47 article-title: Landsat-8 vs. Sentinel-2: Examining the added value of sentinel-2’s red-edge bands to land-use and land-cover mapping in Burkina Faso publication-title: GISci. Remote Sens. doi: 10.1080/15481603.2017.1370169 – volume: 140 start-page: 1 year: 2014 ident: ref_18 article-title: Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.08.023 – ident: ref_48 doi: 10.3390/rs8030166 – volume: 161 start-page: 109 year: 2020 ident: ref_54 article-title: Examining earliest identifiable timing of crops using all available Sentinel 1/2 imagery and Google Earth Engine publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.01.001 – ident: ref_32 doi: 10.1371/journal.pone.0107042 – volume: 112 start-page: 2999 year: 2008 ident: ref_42 article-title: Evaluation of Random Forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.02.011 – volume: 8 start-page: 1613 year: 2008 ident: ref_17 article-title: Object-based land cover classification and change analysis in the Baltimore metropolitan area using multitemporal high resolution remote sensing data publication-title: Sensors doi: 10.3390/s8031613 – volume: 113 start-page: 1739 year: 2009 ident: ref_49 article-title: Monitoring orest changes in the southwestern United States using multitemporal Landsat data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.04.014 – volume: 58 start-page: 257 year: 1996 ident: ref_26 article-title: NDWI—A normal difference water index for remote sensing of vegetation liquid water from space publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00067-3 – volume: 5 start-page: 1 year: 2017 ident: ref_57 article-title: Exploring Google Earth Engine platform for big data processing: Classification of multi-temporal satellite imagery for crop mapping publication-title: Front. Earth Sci. doi: 10.3389/feart.2017.00017 – volume: 130 start-page: 256 year: 2017 ident: ref_36 article-title: Local and global evaluation for remote sensing image segmentation publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.06.003 – volume: 195 start-page: 13 year: 2017 ident: ref_1 article-title: A multi-resolution approach to national-scale cultivated area estimation of soybean publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.03.047 – volume: 202 start-page: 18 year: 2017 ident: ref_22 article-title: Google Earth Engine: Planetary-scale geospatial analysis for everyone publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.031 – ident: ref_50 doi: 10.3390/rs12071187 – volume: 95 start-page: 480 year: 2005 ident: ref_2 article-title: Mapping paddy rice agriculture in southern China using multi-temporal MODIS images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.12.009 – volume: 105 start-page: 220 year: 2015 ident: ref_4 article-title: Mapping paddy rice planting area in cold temperate climate region through analysis of time series Landsat 8 (OLI), Landsat 7 (ETM+) and MODIS imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.04.008 – volume: 247 start-page: 111951 year: 2020 ident: ref_3 article-title: Mapping sugarcane plantation dynamics in Guangxi, China, by time series Sentinel-1, Sentinel-2 and Landsat images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111951 – volume: 527 start-page: 1130 year: 2015 ident: ref_10 article-title: Flood hazard risk assessment model based on Random Forest publication-title: Water Resour. Res. – volume: 205 start-page: 253 year: 2018 ident: ref_30 article-title: Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.11.026 – volume: 164 start-page: 152 year: 2020 ident: ref_58 article-title: Google Earth Engine for geo-big data applications: A meta-analysis and systematic review publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.04.001 – volume: 67 start-page: 93 year: 2012 ident: ref_33 article-title: An assessment of the effectiveness of a Random Forest classifier for land-cover classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2011.11.002 – volume: 40 start-page: 2703 year: 2019 ident: ref_19 article-title: Regional scale mapping of fractional rice cropping change using a phenology-based temporal mixture analysis publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2018.1530812 – ident: ref_23 doi: 10.3390/rs11141666 – volume: 21 start-page: 1011 year: 2000 ident: ref_24 article-title: Environmental quality and its changes, an analysis using NDVI publication-title: Int. J. Remote Sens. doi: 10.1080/014311600210407 – ident: ref_40 doi: 10.3390/rs9030236 – volume: 42 start-page: 2722 year: 2021 ident: ref_12 article-title: A phenological object-based approach for rice crop classification using time-series Sentinel-1 Synthetic Aperture Radar (SAR) data in Taiwan publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2020.1862440 – volume: 15 start-page: 919 year: 2015 ident: ref_5 article-title: Shifts in the extent and location of rice cropping areas match the climate change pattern in China during 1980–2010 publication-title: Reg. Environ. Chang. doi: 10.1007/s10113-014-0677-x – volume: 151 start-page: 176 year: 2019 ident: ref_9 article-title: Automatic mapping of planting year for tree crops with Landsat satellite time series stacks publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.03.012 – volume: 119 start-page: 232 year: 2012 ident: ref_43 article-title: Winter wheat area estimation from MODIS-EVI time series data using the Crop Proportion Phenology Index publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.10.011 – volume: 55 start-page: 221 year: 2018 ident: ref_29 article-title: Less is more: Optimizing classification performance through feature selection in a very-high-resolution remote sensing object-based urban application publication-title: GISci. Remote Sens. doi: 10.1080/15481603.2017.1408892 – ident: ref_41 doi: 10.3390/rs10081200 – ident: ref_34 doi: 10.1038/s41597-019-0036-3 – volume: 126 start-page: 225 year: 2017 ident: ref_15 article-title: Automated cropland mapping of continental Africa using Google Earth Engine cloud computing publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.01.019 – ident: ref_14 doi: 10.3390/f12050553 – volume: 37 start-page: 1257 year: 2016 ident: ref_45 article-title: Mapping soya bean and corn crops in the State of Parana, Brazil, using EVI images from the MODIS sensor publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2016.1148285 – ident: ref_46 doi: 10.3390/rs8060488 – volume: 17 start-page: 115 year: 2015 ident: ref_31 article-title: The America View classification methods accuracy comparison project: A rigorous approach for model selection publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.09.008 – volume: 146 start-page: 113 year: 2012 ident: ref_8 article-title: Estimation of Southeast Asian rice paddy areas with different ecosystems from moderate-resolution satellite imagery publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2011.10.016 – volume: 25 start-page: 5403 year: 2004 ident: ref_27 article-title: The MERIS terrestrial chlorophyll index publication-title: Int. J. Remote Sens. doi: 10.1080/0143116042000274015 – volume: 5 start-page: 6026 year: 2013 ident: ref_16 article-title: Exploring the use of google earth imagery and object-based methods in land use/cover mapping publication-title: Remote Sens. doi: 10.3390/rs5116026 – volume: 9 start-page: 101 year: 2010 ident: ref_21 article-title: Characterizing spatial patterns of phenology in cropland of China based on remotely sensed data publication-title: Agric. Sci. China doi: 10.1016/S1671-2927(09)60073-0 – volume: 64 start-page: 370 year: 2019 ident: ref_28 article-title: Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017 publication-title: Sci. Bull. doi: 10.1016/j.scib.2019.03.002 – volume: 24 start-page: 859 year: 2010 ident: ref_38 article-title: ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658810903174803 – volume: 17 start-page: 577 year: 1996 ident: ref_55 article-title: A navigation algorithm for satellite images publication-title: Int. J. Remote Sens. doi: 10.1080/01431169608949028 – volume: 7 start-page: 5347 year: 2015 ident: ref_7 article-title: Feature selection of time series MODIS data for early crop classification using Random Forest: A case study in Kansas, USA publication-title: Remote Sens. doi: 10.3390/rs70505347 – volume: 175 start-page: 171 year: 2021 ident: ref_51 article-title: Mapping crop types in complex farming areas using SAR imagery with dynamic time warping publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.03.004 – volume: 19 start-page: 1897 year: 2020 ident: ref_6 article-title: Early-season crop type mapping using 30-m reference time series publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(19)62812-1 – volume: 221 start-page: 551 year: 2019 ident: ref_60 article-title: Near real-time agriculture monitoring at national scale at parcel resolution: Performance assessment of the Sen2-Agri automated system in various cropping systems around the world publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.11.007 – volume: 50 start-page: 117 year: 2016 ident: ref_44 article-title: Mapping tropical forests and deciduous rubber plantations in Hainan Island, China by integrating PALSAR 25-m and multi-temporal Landsat images publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 167 start-page: 104 year: 2020 ident: ref_61 article-title: Mapping croplands of Europe, Middle East, Russia, and Central Asia using Landsat, Random Forest, and Google Earth Engine publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.06.022 – volume: 41 start-page: 2457 year: 2019 ident: ref_20 article-title: Mapping cotton fields using data mining and MODIS time-series publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2019.1693072 – volume: 21 start-page: 311 year: 1987 ident: ref_39 article-title: The factor of scale in remote sensing publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(87)90015-0 – volume: 223 start-page: 95 year: 2019 ident: ref_56 article-title: What is global photosynthesis? History, uncertainties and opportunities publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.01.016 – volume: 88 start-page: 119 year: 2014 ident: ref_37 article-title: Automated parameterization for multi-scale image segmentation on multiple layers publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.11.018 – volume: 185 start-page: 142 year: 2016 ident: ref_53 article-title: Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.02.016 – volume: 73 start-page: 595 year: 2018 ident: ref_52 article-title: Combining Sentinel-1 and Sentinel-2 data for improved land use and land cover mapping of monsoon regions publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 228 start-page: 115 year: 2019 ident: ref_11 article-title: Smallholder maize area and yield mapping at national scales with Google Earth Engine publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.04.016 |
| SSID | ssj0000331904 |
| Score | 2.352938 |
| Snippet | Timely and accurate information of cotton planting areas is essential for monitoring and managing cotton fields. However, there is no large-scale and... |
| SourceID | doaj unpaywall proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 4819 |
| SubjectTerms | Algorithms China Cotton cotton field mapping Crops High resolution image analysis Image processing Image segmentation Learning algorithms Machine learning Mapping Monitoring multi-scale image segmentation method Noise Northern Xinjiang, China phenology Planting Radiation random forest classifiers Remote sensing Sentinel-1/2 Spatial discrimination Spatial resolution Time series Vegetation Wheat |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxsxEBapc0gvoemDOkmLSnMpdPHqsV7pUEqTxoRCTGkb8G2RVpKbYrSOvabk31cjazcJlBz2oh32oRlJo9HM9yF0MhaaGVOrrHTSQkmOzLRTRaaIAf07ziJn5OV0fHHFv82K2Q6adrUwkFbZzYlxojZNDTHyUfC7BWGc8vLz8iYD1ig4Xe0oNFSiVjCfIsTYE7RLARlrgHZPz6fff_RRl5wFk8v5Fqc0fFg-Wq3DfgyqUeWDlSkC-D_wOvc2fqlu_6rF4t4CNHmG9pPniL9sVX2Adqx_jvYSifnv2xcIQsoR-iGsRvgnZAF5u8jIiOKvqlVYeYMvY-qkxQlVdY7bJrQt8VnTBh8QTyCdbY2vPY7HOXbl8eza_wkWNP-II9P2S3Q1Of91dpElDoWsZpK3GXO6dEQ6R2i4tBC2EIbo0uSiFK4uRaFsbbUYS8ecK22hqaK1gNqEwuVh8nmFBr7x9jXCJbHSWWJIDIEoIbSy1CppqNOKu2KIPnT9V9UJYBx4LhZV2GhAX1d3fT1E73vZ5RZW479Sp6CGXgKgsGNDs5pXaWRV8APBy6qdsoxLnSttqYw7Q04Ar26IjjslVml8rqs7axqid_3tMLLguER522xAho0FzF_hESe98h_53MPH33SEnlJIiIm5MMdo0K429k3waFr9NpnpP4rL9Tc priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dixMxEA_Sezhf_Barp0S8F8G93ST7kTzJeVoO4Q5BC_VpSTZJr1qypd0q51_vTLqtdyIi-LAv2dklYWYyM8nMbwg5LKUR1jY6qbxyWJKjEuN1kWhmkf8-F7Fn5Nl5eTrO30-KyZUqfkyrhFB8FjdpnlU8wX5KKRMpF2kO5itdWP_6W3-WhM4E2CeGNVZ7ZQHe-IDsjc8_HH_GnnLbrzeopDCNLF2uIPrC2lN1zQ5FuP5rPub-Oiz05Xc9n18xN6PbRG8nusky-Xq07sxR8-M3DMf_Wckdcqv3RenxRnjukhsu3CP7fVv0i8v7BA-pI5gE2Df6EfOKgpsnLOX0re401cHSs5iM6WiP0zqlXQtjC3rSduBV0hEmyK3oLNB4QeSWgU5m4QvI5PQVjb27H5Dx6N2nk9Ok78qQNELlXSK8qTxT3jMOj5HSFdIyU9lMVtI3lSy0a5yRpfLC-8oVhmveSKx2KHwG29lDMghtcI8IrZhT3jHL4qGKltJox51Wlnujc18Mycstj-qmhyzHzhnzGkIX5Gf9i59D8mJHu9gAdfyR6g2yekeB4NpxoF1O615Xa1wA-G2N107kymTaOK5irAn84UwMycFWUOpe41c1xIWSiZzn1ZA8370GXcULGB1cu0YaUUrcEeEXhzsB-8t0H_8b2RNyk2OqTcyyOSCDbrl2T8FX6syzXh1-ArCpDMM priority: 102 providerName: Unpaywall |
| Title | Integrating Sentinel-1/2 Data and Machine Learning to Map Cotton Fields in Northern Xinjiang, China |
| URI | https://www.proquest.com/docview/2608134247 https://www.proquest.com/docview/2636817933 https://www.mdpi.com/2072-4292/13/23/4819/pdf?version=1638244110 https://doaj.org/article/5aec399cfae349b0abe2904261411213 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Openly Available Collection - DOAJ customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: 8FG dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBdb99C9lH2ytF3QWF8GM7FkO5Ye04-0jCWUdYHsyUj2qesISkgcSv_73clulsLYXvpgjOXDHHfn0510-h1jR31lk6oqTZQ7DXQkR0fWmSwyoiL9uzQJPSNH4_7FJP0yzaZbrb6oJqyBB24E18sMlDiJls5AkmobGwtSh8A_FQRHRt43VnormQo-OEHTitMGjxQZiHvLFeZddOpUP5iBAlD_g-hyd-0X5u7WzGZbE83wBdtrI0Q-aDh7yZ6Af8V222blP-9eM1o6DhAPOOvwK6r28TCLRE_yU1MbbnzFR6FEEniLnnrN6zmOLfjJvMZYjw-pbG3FbzwP2zaw9Hx643-hpVx_5qGj9hs2GZ59P7mI2l4JEUonraPE2dwJ7ZyQeFmlIFOVsHkVq1y5MlckR7Cqr13iXA6ZlUaWis4gZC5GJ_OW7fi5h3eM5wK0A1GJsNRhlLIGJBhdSWdN6rIO-3Qvv6JsgcSpn8WswISCZF38kXWHfdzQLhr4jL9SHZMaNhQEeR0G0BCK1hCK_xlChx3eK7Fo_8NVgdmaEkkq07zDPmxe4x9E2yLGw3xNNElfkZ_CTxxtlP8Pdvcfg90D9lxSeUyojDlkO_VyDe8xvqltlz1Vw_MuezY4HX29wvvx2fjyWzcYOD5NxpeDH78BbCb8mA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGdigXxKcoDDBiHJCIGjtOYx8mxD6qjq0Vgk3qLdixXYYqp7Sppv5z_G34uUnGJLTbDrk4Vj7el997fn4_hPb6XCVaFzLKrDBwJEdEyso0kkQD_y1LAmbkaNwfXrAvk3Syhf40Z2GgrLKxicFQ67KAHHnP-92cJIyy7NP8dwSoUbC72kBoyBpaQe-HFmP1wY5Ts77yIdxy_-TI8_s9pYPj88NhVKMMREUiWBUlVmWWCGsJ9Zfi3KRcE5XpmGfcFhlPpSmM4n1hE2szkyoqacGhej-1sVdP_9x7aIclTPjgb-fgePz1W5vliRMv4jHb9EX1hIh7i6WP_-D0q7ixEgbAgBtebmfl5nJ9JWezfxa8wUP0oPZU8eeNaD1CW8Y9Rp0aNP3n-gmCFHZoNeFXP_wdqo6cmUWkR_GRrCSWTuNRKNU0uO7iOsVV6cfm-LCsvM-JB1A-t8SXDoftI7NweHLpfnmJnX7EAdn7Kbq4E2o-Q9uudOY5whkxwhqiSUi5SM6VNNRIoalVktm0iz409MuLuqE54GrMch_YAK3za1p30bt27nzTxuO_sw6ADe0MaL0dBsrFNK81OYcf8F5dYaXxLFexVIaKEIkyAv3xumi3YWJe24Nlfi29XfS2ve01GbZnpDPlCuYkfQ720j9ir2X-LZ_74vY3vUGd4fnoLD87GZ--RPcpFOOEOpxdtF0tVuaV96Yq9boWWYx-3LWW_AXh7zOE |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpFolwqnmLbAkaUAxLRxk6ysQ-ogi6hpbRCgkp7S-3EXopWznY3q2p_ja_rjDdJqYR66yEXZ5THvDwzngchuwOho7IsVJBaabAkRwbaqiRQrET62zjyMyOPTwYHp_G3UTJaI3_bWhhMq2x1olfUZVVgjLwPdrdgUczjtG-btIgfw2xvehHgBCk8aW3HaaxY5MgsL8F9m388HAKt33Geffm1fxA0EwaCIpJxHURWp5ZJaxmHSwthElEynZahSIUtUpEoUxgtBtJG1qYm0VzxQmDmfmJDEE147j1yP8Uu7lilnn3t4jthBMwdxquOqICCsD-bg-eHda_yxh7oRwXcsG83Fm6qlpdqMvlnq8sekc3GRqWfVkz1mKwZ94RsNOPSfy-fEgxe-yYTsO_Rn5hv5MwkYH1Oh6pWVLmSHvskTUOb_q1jWlewNqX7VQ3WJs0wcW5Ozx31B0dm5ujo3P0BXh1_oH6m9zNyeie4fE7WXeXMC0JTZqQ1rGQ-2KKE0Mpwo2TJrVaxTXrkfYu_vGhameNEjUkOLg3iOr_GdY-87WCnqwYe_4X6jGToILDptl-oZuO8keEcfwDsucIqE8VSh0obLr0PGjPsjNcjOy0R80YTzPNrvu2RN91tkGE8mFHOVAuEAQZCTQmP2O2If8vnbt3-ptfkAchG_v3w5GibPOSYheMTcHbIej1bmJdgRtX6ledXSs7uWkCuAH84MR4 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dixMxEA_Sezhf_Barp0S8F8G93ST7kTzJeVoO4Q5BC_VpSTZJr1qypd0q51_vTLqtdyIi-LAv2dklYWYyM8nMbwg5LKUR1jY6qbxyWJKjEuN1kWhmkf8-F7Fn5Nl5eTrO30-KyZUqfkyrhFB8FjdpnlU8wX5KKRMpF2kO5itdWP_6W3-WhM4E2CeGNVZ7ZQHe-IDsjc8_HH_GnnLbrzeopDCNLF2uIPrC2lN1zQ5FuP5rPub-Oiz05Xc9n18xN6PbRG8nusky-Xq07sxR8-M3DMf_Wckdcqv3RenxRnjukhsu3CP7fVv0i8v7BA-pI5gE2Df6EfOKgpsnLOX0re401cHSs5iM6WiP0zqlXQtjC3rSduBV0hEmyK3oLNB4QeSWgU5m4QvI5PQVjb27H5Dx6N2nk9Ok78qQNELlXSK8qTxT3jMOj5HSFdIyU9lMVtI3lSy0a5yRpfLC-8oVhmveSKx2KHwG29lDMghtcI8IrZhT3jHL4qGKltJox51Wlnujc18Mycstj-qmhyzHzhnzGkIX5Gf9i59D8mJHu9gAdfyR6g2yekeB4NpxoF1O615Xa1wA-G2N107kymTaOK5irAn84UwMycFWUOpe41c1xIWSiZzn1ZA8370GXcULGB1cu0YaUUrcEeEXhzsB-8t0H_8b2RNyk2OqTcyyOSCDbrl2T8FX6syzXh1-ArCpDMM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+Sentinel-1%2F2+Data+and+Machine+Learning+to+Map+Cotton+Fields+in+Northern+Xinjiang%2C+China&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Niuyuetaohua&rft.au=Hu%2C+Yina&rft.au=Dong%2C+Jianquan&rft.au=Qiu%2C+Sijing&rft.date=2021-12-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=13&rft.issue=23&rft_id=info:doi/10.3390%2Frs13234819&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |