Integrating Sentinel-1/2 Data and Machine Learning to Map Cotton Fields in Northern Xinjiang, China

Timely and accurate information of cotton planting areas is essential for monitoring and managing cotton fields. However, there is no large-scale and high-resolution method suitable for mapping cotton fields, and the problems associated with low resolution and poor timeliness need to be solved. Here...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 13; no. 23; p. 4819
Main Authors Hu, Tao, Hu, Yina, Dong, Jianquan, Qiu, Sijing, Peng, Jian
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2021
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs13234819

Cover

Abstract Timely and accurate information of cotton planting areas is essential for monitoring and managing cotton fields. However, there is no large-scale and high-resolution method suitable for mapping cotton fields, and the problems associated with low resolution and poor timeliness need to be solved. Here, we proposed a new framework for mapping cotton fields based on Sentinel-1/2 data for different phenological periods, random forest classifiers, and the multi-scale image segmentation method. A cotton field map for 2019 at a spatial resolution of 10 m was generated for northern Xinjiang, a dominant cotton planting region in China. The overall accuracy and kappa coefficient of the map were 0.932 and 0.813, respectively. The results showed that the boll opening stage was the best phenological phase for mapping cotton fields and the cotton fields was identified most accurately at the early boll opening stage, about 40 days before harvest. Additionally, Sentinel-1 and the red edge bands in Sentinel-2 are important for cotton field mapping, and there is great potential for the fusion of optical images and microwave images in crop mapping. This study provides an effective approach for high-resolution and high-accuracy cotton field mapping, which is vital for sustainable monitoring and management of cotton planting.
AbstractList Timely and accurate information of cotton planting areas is essential for monitoring and managing cotton fields. However, there is no large-scale and high-resolution method suitable for mapping cotton fields, and the problems associated with low resolution and poor timeliness need to be solved. Here, we proposed a new framework for mapping cotton fields based on Sentinel-1/2 data for different phenological periods, random forest classifiers, and the multi-scale image segmentation method. A cotton field map for 2019 at a spatial resolution of 10 m was generated for northern Xinjiang, a dominant cotton planting region in China. The overall accuracy and kappa coefficient of the map were 0.932 and 0.813, respectively. The results showed that the boll opening stage was the best phenological phase for mapping cotton fields and the cotton fields was identified most accurately at the early boll opening stage, about 40 days before harvest. Additionally, Sentinel-1 and the red edge bands in Sentinel-2 are important for cotton field mapping, and there is great potential for the fusion of optical images and microwave images in crop mapping. This study provides an effective approach for high-resolution and high-accuracy cotton field mapping, which is vital for sustainable monitoring and management of cotton planting.
Author Hu, Tao
Hu, Yina
Dong, Jianquan
Qiu, Sijing
Peng, Jian
Author_xml – sequence: 1
  givenname: Tao
  orcidid: 0000-0002-9903-6411
  surname: Hu
  fullname: Hu, Tao
– sequence: 2
  givenname: Yina
  orcidid: 0000-0002-2358-7831
  surname: Hu
  fullname: Hu, Yina
– sequence: 3
  givenname: Jianquan
  surname: Dong
  fullname: Dong, Jianquan
– sequence: 4
  givenname: Sijing
  surname: Qiu
  fullname: Qiu, Sijing
– sequence: 5
  givenname: Jian
  surname: Peng
  fullname: Peng, Jian
BookMark eNp9kV1rVDEQhoNUsNbe-AsC3oj22HycPUkuZbW6sOqFCt6FOTmTbZbTZE2ySP99s66oFDEQJgzPPANvHpOTmCIS8pSzV1IadpkLl0L2mpsH5FQwJbpeGHHy1_sROS9ly9qRkhvWnxK3ihU3GWqIG_oZY6s4d_xS0DdQgUKc6Adw161L1wg5HrCaWm9Hl6nWFOlVwHkqNET6MeV6jTnSbyFuA8TNBV22SXhCHnqYC57_qmfk69XbL8v33frTu9Xy9bpz0vS1k35UnhvvuWh31BoXeuKjmphW2julF4AORz0YL71XuBgFCKf5oPqFZ2qQZ2R19E4JtnaXww3kW5sg2J-NlDcWcg1uRntQSWOcB5S9GRmMKFoeYuA954LL5np5dO3jDm5_wDz_FnJmD3HbP3E3-vmR3uX0fY-l2ptQHM4zREz7YsUgB82VkQfxs3voNu1zbLk0imkue9GrRr04Ui6nUjL6_29n92AXavvRFGuGMP9r5A5hf6pW
CitedBy_id crossref_primary_10_3390_agronomy14010075
crossref_primary_10_1016_j_jag_2022_102969
crossref_primary_10_3390_rs15081988
crossref_primary_10_1039_D2AN01523D
crossref_primary_10_3390_agronomy13112800
crossref_primary_10_1016_j_compag_2022_107260
crossref_primary_10_1038_s41597_023_02584_3
crossref_primary_10_1016_j_scitotenv_2023_161757
crossref_primary_10_3390_land12091769
Cites_doi 10.1016/j.rse.2019.111400
10.1016/j.rse.2021.112394
10.1016/S0034-4257(02)00096-2
10.1080/15481603.2017.1370169
10.1016/j.rse.2013.08.023
10.3390/rs8030166
10.1016/j.isprsjprs.2020.01.001
10.1371/journal.pone.0107042
10.1016/j.rse.2008.02.011
10.3390/s8031613
10.1016/j.rse.2009.04.014
10.1016/S0034-4257(96)00067-3
10.3389/feart.2017.00017
10.1016/j.isprsjprs.2017.06.003
10.1016/j.rse.2017.03.047
10.1016/j.rse.2017.06.031
10.3390/rs12071187
10.1016/j.rse.2004.12.009
10.1016/j.isprsjprs.2015.04.008
10.1016/j.rse.2020.111951
10.1016/j.rse.2017.11.026
10.1016/j.isprsjprs.2020.04.001
10.1016/j.isprsjprs.2011.11.002
10.1080/01431161.2018.1530812
10.3390/rs11141666
10.1080/014311600210407
10.3390/rs9030236
10.1080/01431161.2020.1862440
10.1007/s10113-014-0677-x
10.1016/j.isprsjprs.2019.03.012
10.1016/j.rse.2011.10.011
10.1080/15481603.2017.1408892
10.3390/rs10081200
10.1038/s41597-019-0036-3
10.1016/j.isprsjprs.2017.01.019
10.3390/f12050553
10.1080/01431161.2016.1148285
10.3390/rs8060488
10.1016/j.rse.2015.09.008
10.1016/j.agee.2011.10.016
10.1080/0143116042000274015
10.3390/rs5116026
10.1016/S1671-2927(09)60073-0
10.1016/j.scib.2019.03.002
10.1080/13658810903174803
10.1080/01431169608949028
10.3390/rs70505347
10.1016/j.isprsjprs.2021.03.004
10.1016/S2095-3119(19)62812-1
10.1016/j.rse.2018.11.007
10.1016/j.isprsjprs.2020.06.022
10.1080/01431161.2019.1693072
10.1016/0034-4257(87)90015-0
10.1016/j.rse.2019.01.016
10.1016/j.isprsjprs.2013.11.018
10.1016/j.rse.2016.02.016
10.1016/j.rse.2019.04.016
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7S9
L.6
ADTOC
UNPAY
DOA
DOI 10.3390/rs13234819
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database
AGRICOLA
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Openly Available Collection - DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_5aec399cfae349b0abe2904261411213
10.3390/rs13234819
10_3390_rs13234819
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
7S9
L.6
PUEGO
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c394t-3fb7f19ff12ff1b88e58d1b7d0878fc785aeceb869f3ff7e5b2a2c816745f0763
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Fri Oct 03 12:53:51 EDT 2025
Sun Oct 26 04:07:36 EDT 2025
Fri Sep 05 13:11:16 EDT 2025
Fri Jul 25 12:00:12 EDT 2025
Thu Oct 16 04:31:14 EDT 2025
Thu Apr 24 22:58:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-3fb7f19ff12ff1b88e58d1b7d0878fc785aeceb869f3ff7e5b2a2c816745f0763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9903-6411
0000-0002-2358-7831
OpenAccessLink https://doaj.org/article/5aec399cfae349b0abe2904261411213
PQID 2608134247
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_5aec399cfae349b0abe2904261411213
unpaywall_primary_10_3390_rs13234819
proquest_miscellaneous_2636817933
proquest_journals_2608134247
crossref_primary_10_3390_rs13234819
crossref_citationtrail_10_3390_rs13234819
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Chen (ref_9) 2019; 151
ref_50
Liu (ref_5) 2015; 15
Forkuor (ref_47) 2017; 55
Steinhausen (ref_52) 2018; 73
ref_14
Georganos (ref_29) 2018; 55
Lawrence (ref_31) 2015; 17
Vogelmann (ref_49) 2009; 113
King (ref_1) 2017; 195
Hu (ref_16) 2013; 5
Chen (ref_44) 2016; 50
You (ref_54) 2020; 161
Son (ref_12) 2021; 42
Jin (ref_11) 2019; 228
Huete (ref_25) 2002; 83
Wu (ref_21) 2010; 9
Tamiminia (ref_58) 2020; 164
ref_23
Pan (ref_43) 2012; 119
Dragut (ref_38) 2010; 24
Wang (ref_35) 2019; 81
Gao (ref_26) 1996; 58
Ryu (ref_56) 2019; 223
Gella (ref_51) 2021; 175
Gorelick (ref_22) 2017; 202
Phalke (ref_61) 2020; 167
Wang (ref_10) 2015; 527
Werner (ref_20) 2019; 41
Yang (ref_13) 2021; 259
Zhong (ref_18) 2014; 140
Chan (ref_42) 2008; 112
Deines (ref_59) 2019; 233
ref_34
Hao (ref_7) 2015; 7
ref_32
Defourny (ref_60) 2019; 221
Dash (ref_27) 2004; 25
Su (ref_36) 2017; 130
Grzegozewski (ref_45) 2016; 37
Woodcock (ref_39) 1987; 21
Fung (ref_24) 2000; 21
Wang (ref_3) 2020; 247
Liu (ref_19) 2019; 40
Ghimire (ref_33) 2012; 67
Dong (ref_53) 2016; 185
Xiao (ref_2) 2005; 95
ref_46
Gong (ref_28) 2019; 64
Goldblatt (ref_30) 2018; 205
ref_41
ref_40
Hao (ref_6) 2020; 19
Illera (ref_55) 1996; 17
Xiong (ref_15) 2017; 126
Dragut (ref_37) 2014; 88
ref_48
Qin (ref_4) 2015; 105
Bridhikitti (ref_8) 2012; 146
Zhou (ref_17) 2008; 8
Shelestov (ref_57) 2017; 5
References_xml – volume: 233
  start-page: 111400
  year: 2019
  ident: ref_59
  article-title: Mapping three decades of annual irrigation across the US High Plains Aquifer using Landsat and Google Earth Engine
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111400
– volume: 81
  start-page: 98
  year: 2019
  ident: ref_35
  article-title: Unsupervised segmentation parameter selection using the local spatial statistics for remote sensing image segmentation
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 259
  start-page: 112394
  year: 2021
  ident: ref_13
  article-title: A systematic method for spatio-temporal phenology estimation of paddy rice using time series Sentinel-1 images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112394
– volume: 83
  start-page: 195
  year: 2002
  ident: ref_25
  article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00096-2
– volume: 55
  start-page: 331
  year: 2017
  ident: ref_47
  article-title: Landsat-8 vs. Sentinel-2: Examining the added value of sentinel-2’s red-edge bands to land-use and land-cover mapping in Burkina Faso
  publication-title: GISci. Remote Sens.
  doi: 10.1080/15481603.2017.1370169
– volume: 140
  start-page: 1
  year: 2014
  ident: ref_18
  article-title: Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.08.023
– ident: ref_48
  doi: 10.3390/rs8030166
– volume: 161
  start-page: 109
  year: 2020
  ident: ref_54
  article-title: Examining earliest identifiable timing of crops using all available Sentinel 1/2 imagery and Google Earth Engine
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.01.001
– ident: ref_32
  doi: 10.1371/journal.pone.0107042
– volume: 112
  start-page: 2999
  year: 2008
  ident: ref_42
  article-title: Evaluation of Random Forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.02.011
– volume: 8
  start-page: 1613
  year: 2008
  ident: ref_17
  article-title: Object-based land cover classification and change analysis in the Baltimore metropolitan area using multitemporal high resolution remote sensing data
  publication-title: Sensors
  doi: 10.3390/s8031613
– volume: 113
  start-page: 1739
  year: 2009
  ident: ref_49
  article-title: Monitoring orest changes in the southwestern United States using multitemporal Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.04.014
– volume: 58
  start-page: 257
  year: 1996
  ident: ref_26
  article-title: NDWI—A normal difference water index for remote sensing of vegetation liquid water from space
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00067-3
– volume: 5
  start-page: 1
  year: 2017
  ident: ref_57
  article-title: Exploring Google Earth Engine platform for big data processing: Classification of multi-temporal satellite imagery for crop mapping
  publication-title: Front. Earth Sci.
  doi: 10.3389/feart.2017.00017
– volume: 130
  start-page: 256
  year: 2017
  ident: ref_36
  article-title: Local and global evaluation for remote sensing image segmentation
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.06.003
– volume: 195
  start-page: 13
  year: 2017
  ident: ref_1
  article-title: A multi-resolution approach to national-scale cultivated area estimation of soybean
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.03.047
– volume: 202
  start-page: 18
  year: 2017
  ident: ref_22
  article-title: Google Earth Engine: Planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.031
– ident: ref_50
  doi: 10.3390/rs12071187
– volume: 95
  start-page: 480
  year: 2005
  ident: ref_2
  article-title: Mapping paddy rice agriculture in southern China using multi-temporal MODIS images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.12.009
– volume: 105
  start-page: 220
  year: 2015
  ident: ref_4
  article-title: Mapping paddy rice planting area in cold temperate climate region through analysis of time series Landsat 8 (OLI), Landsat 7 (ETM+) and MODIS imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.04.008
– volume: 247
  start-page: 111951
  year: 2020
  ident: ref_3
  article-title: Mapping sugarcane plantation dynamics in Guangxi, China, by time series Sentinel-1, Sentinel-2 and Landsat images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111951
– volume: 527
  start-page: 1130
  year: 2015
  ident: ref_10
  article-title: Flood hazard risk assessment model based on Random Forest
  publication-title: Water Resour. Res.
– volume: 205
  start-page: 253
  year: 2018
  ident: ref_30
  article-title: Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.11.026
– volume: 164
  start-page: 152
  year: 2020
  ident: ref_58
  article-title: Google Earth Engine for geo-big data applications: A meta-analysis and systematic review
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.04.001
– volume: 67
  start-page: 93
  year: 2012
  ident: ref_33
  article-title: An assessment of the effectiveness of a Random Forest classifier for land-cover classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2011.11.002
– volume: 40
  start-page: 2703
  year: 2019
  ident: ref_19
  article-title: Regional scale mapping of fractional rice cropping change using a phenology-based temporal mixture analysis
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2018.1530812
– ident: ref_23
  doi: 10.3390/rs11141666
– volume: 21
  start-page: 1011
  year: 2000
  ident: ref_24
  article-title: Environmental quality and its changes, an analysis using NDVI
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311600210407
– ident: ref_40
  doi: 10.3390/rs9030236
– volume: 42
  start-page: 2722
  year: 2021
  ident: ref_12
  article-title: A phenological object-based approach for rice crop classification using time-series Sentinel-1 Synthetic Aperture Radar (SAR) data in Taiwan
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2020.1862440
– volume: 15
  start-page: 919
  year: 2015
  ident: ref_5
  article-title: Shifts in the extent and location of rice cropping areas match the climate change pattern in China during 1980–2010
  publication-title: Reg. Environ. Chang.
  doi: 10.1007/s10113-014-0677-x
– volume: 151
  start-page: 176
  year: 2019
  ident: ref_9
  article-title: Automatic mapping of planting year for tree crops with Landsat satellite time series stacks
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.03.012
– volume: 119
  start-page: 232
  year: 2012
  ident: ref_43
  article-title: Winter wheat area estimation from MODIS-EVI time series data using the Crop Proportion Phenology Index
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.10.011
– volume: 55
  start-page: 221
  year: 2018
  ident: ref_29
  article-title: Less is more: Optimizing classification performance through feature selection in a very-high-resolution remote sensing object-based urban application
  publication-title: GISci. Remote Sens.
  doi: 10.1080/15481603.2017.1408892
– ident: ref_41
  doi: 10.3390/rs10081200
– ident: ref_34
  doi: 10.1038/s41597-019-0036-3
– volume: 126
  start-page: 225
  year: 2017
  ident: ref_15
  article-title: Automated cropland mapping of continental Africa using Google Earth Engine cloud computing
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.01.019
– ident: ref_14
  doi: 10.3390/f12050553
– volume: 37
  start-page: 1257
  year: 2016
  ident: ref_45
  article-title: Mapping soya bean and corn crops in the State of Parana, Brazil, using EVI images from the MODIS sensor
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1148285
– ident: ref_46
  doi: 10.3390/rs8060488
– volume: 17
  start-page: 115
  year: 2015
  ident: ref_31
  article-title: The America View classification methods accuracy comparison project: A rigorous approach for model selection
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.09.008
– volume: 146
  start-page: 113
  year: 2012
  ident: ref_8
  article-title: Estimation of Southeast Asian rice paddy areas with different ecosystems from moderate-resolution satellite imagery
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2011.10.016
– volume: 25
  start-page: 5403
  year: 2004
  ident: ref_27
  article-title: The MERIS terrestrial chlorophyll index
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/0143116042000274015
– volume: 5
  start-page: 6026
  year: 2013
  ident: ref_16
  article-title: Exploring the use of google earth imagery and object-based methods in land use/cover mapping
  publication-title: Remote Sens.
  doi: 10.3390/rs5116026
– volume: 9
  start-page: 101
  year: 2010
  ident: ref_21
  article-title: Characterizing spatial patterns of phenology in cropland of China based on remotely sensed data
  publication-title: Agric. Sci. China
  doi: 10.1016/S1671-2927(09)60073-0
– volume: 64
  start-page: 370
  year: 2019
  ident: ref_28
  article-title: Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2019.03.002
– volume: 24
  start-page: 859
  year: 2010
  ident: ref_38
  article-title: ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658810903174803
– volume: 17
  start-page: 577
  year: 1996
  ident: ref_55
  article-title: A navigation algorithm for satellite images
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169608949028
– volume: 7
  start-page: 5347
  year: 2015
  ident: ref_7
  article-title: Feature selection of time series MODIS data for early crop classification using Random Forest: A case study in Kansas, USA
  publication-title: Remote Sens.
  doi: 10.3390/rs70505347
– volume: 175
  start-page: 171
  year: 2021
  ident: ref_51
  article-title: Mapping crop types in complex farming areas using SAR imagery with dynamic time warping
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.03.004
– volume: 19
  start-page: 1897
  year: 2020
  ident: ref_6
  article-title: Early-season crop type mapping using 30-m reference time series
  publication-title: J. Integr. Agric.
  doi: 10.1016/S2095-3119(19)62812-1
– volume: 221
  start-page: 551
  year: 2019
  ident: ref_60
  article-title: Near real-time agriculture monitoring at national scale at parcel resolution: Performance assessment of the Sen2-Agri automated system in various cropping systems around the world
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.11.007
– volume: 50
  start-page: 117
  year: 2016
  ident: ref_44
  article-title: Mapping tropical forests and deciduous rubber plantations in Hainan Island, China by integrating PALSAR 25-m and multi-temporal Landsat images
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 167
  start-page: 104
  year: 2020
  ident: ref_61
  article-title: Mapping croplands of Europe, Middle East, Russia, and Central Asia using Landsat, Random Forest, and Google Earth Engine
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.06.022
– volume: 41
  start-page: 2457
  year: 2019
  ident: ref_20
  article-title: Mapping cotton fields using data mining and MODIS time-series
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2019.1693072
– volume: 21
  start-page: 311
  year: 1987
  ident: ref_39
  article-title: The factor of scale in remote sensing
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(87)90015-0
– volume: 223
  start-page: 95
  year: 2019
  ident: ref_56
  article-title: What is global photosynthesis? History, uncertainties and opportunities
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.01.016
– volume: 88
  start-page: 119
  year: 2014
  ident: ref_37
  article-title: Automated parameterization for multi-scale image segmentation on multiple layers
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.11.018
– volume: 185
  start-page: 142
  year: 2016
  ident: ref_53
  article-title: Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.02.016
– volume: 73
  start-page: 595
  year: 2018
  ident: ref_52
  article-title: Combining Sentinel-1 and Sentinel-2 data for improved land use and land cover mapping of monsoon regions
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 228
  start-page: 115
  year: 2019
  ident: ref_11
  article-title: Smallholder maize area and yield mapping at national scales with Google Earth Engine
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.04.016
SSID ssj0000331904
Score 2.352938
Snippet Timely and accurate information of cotton planting areas is essential for monitoring and managing cotton fields. However, there is no large-scale and...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4819
SubjectTerms Algorithms
China
Cotton
cotton field mapping
Crops
High resolution
image analysis
Image processing
Image segmentation
Learning algorithms
Machine learning
Mapping
Monitoring
multi-scale image segmentation method
Noise
Northern Xinjiang, China
phenology
Planting
Radiation
random forest classifiers
Remote sensing
Sentinel-1/2
Spatial discrimination
Spatial resolution
Time series
Vegetation
Wheat
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxsxEBapc0gvoemDOkmLSnMpdPHqsV7pUEqTxoRCTGkb8G2RVpKbYrSOvabk31cjazcJlBz2oh32oRlJo9HM9yF0MhaaGVOrrHTSQkmOzLRTRaaIAf07ziJn5OV0fHHFv82K2Q6adrUwkFbZzYlxojZNDTHyUfC7BWGc8vLz8iYD1ig4Xe0oNFSiVjCfIsTYE7RLARlrgHZPz6fff_RRl5wFk8v5Fqc0fFg-Wq3DfgyqUeWDlSkC-D_wOvc2fqlu_6rF4t4CNHmG9pPniL9sVX2Adqx_jvYSifnv2xcIQsoR-iGsRvgnZAF5u8jIiOKvqlVYeYMvY-qkxQlVdY7bJrQt8VnTBh8QTyCdbY2vPY7HOXbl8eza_wkWNP-II9P2S3Q1Of91dpElDoWsZpK3GXO6dEQ6R2i4tBC2EIbo0uSiFK4uRaFsbbUYS8ecK22hqaK1gNqEwuVh8nmFBr7x9jXCJbHSWWJIDIEoIbSy1CppqNOKu2KIPnT9V9UJYBx4LhZV2GhAX1d3fT1E73vZ5RZW479Sp6CGXgKgsGNDs5pXaWRV8APBy6qdsoxLnSttqYw7Q04Ar26IjjslVml8rqs7axqid_3tMLLguER522xAho0FzF_hESe98h_53MPH33SEnlJIiIm5MMdo0K429k3waFr9NpnpP4rL9Tc
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dixMxEA_Sezhf_Barp0S8F8G93ST7kTzJeVoO4Q5BC_VpSTZJr1qypd0q51_vTLqtdyIi-LAv2dklYWYyM8nMbwg5LKUR1jY6qbxyWJKjEuN1kWhmkf8-F7Fn5Nl5eTrO30-KyZUqfkyrhFB8FjdpnlU8wX5KKRMpF2kO5itdWP_6W3-WhM4E2CeGNVZ7ZQHe-IDsjc8_HH_GnnLbrzeopDCNLF2uIPrC2lN1zQ5FuP5rPub-Oiz05Xc9n18xN6PbRG8nusky-Xq07sxR8-M3DMf_Wckdcqv3RenxRnjukhsu3CP7fVv0i8v7BA-pI5gE2Df6EfOKgpsnLOX0re401cHSs5iM6WiP0zqlXQtjC3rSduBV0hEmyK3oLNB4QeSWgU5m4QvI5PQVjb27H5Dx6N2nk9Ok78qQNELlXSK8qTxT3jMOj5HSFdIyU9lMVtI3lSy0a5yRpfLC-8oVhmveSKx2KHwG29lDMghtcI8IrZhT3jHL4qGKltJox51Wlnujc18Mycstj-qmhyzHzhnzGkIX5Gf9i59D8mJHu9gAdfyR6g2yekeB4NpxoF1O615Xa1wA-G2N107kymTaOK5irAn84UwMycFWUOpe41c1xIWSiZzn1ZA8370GXcULGB1cu0YaUUrcEeEXhzsB-8t0H_8b2RNyk2OqTcyyOSCDbrl2T8FX6syzXh1-ArCpDMM
  priority: 102
  providerName: Unpaywall
Title Integrating Sentinel-1/2 Data and Machine Learning to Map Cotton Fields in Northern Xinjiang, China
URI https://www.proquest.com/docview/2608134247
https://www.proquest.com/docview/2636817933
https://www.mdpi.com/2072-4292/13/23/4819/pdf?version=1638244110
https://doaj.org/article/5aec399cfae349b0abe2904261411213
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Openly Available Collection - DOAJ
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ADMLS
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: 8FG
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBdb99C9lH2ytF3QWF8GM7FkO5Ye04-0jCWUdYHsyUj2qesISkgcSv_73clulsLYXvpgjOXDHHfn0510-h1jR31lk6oqTZQ7DXQkR0fWmSwyoiL9uzQJPSNH4_7FJP0yzaZbrb6oJqyBB24E18sMlDiJls5AkmobGwtSh8A_FQRHRt43VnormQo-OEHTitMGjxQZiHvLFeZddOpUP5iBAlD_g-hyd-0X5u7WzGZbE83wBdtrI0Q-aDh7yZ6Af8V222blP-9eM1o6DhAPOOvwK6r28TCLRE_yU1MbbnzFR6FEEniLnnrN6zmOLfjJvMZYjw-pbG3FbzwP2zaw9Hx643-hpVx_5qGj9hs2GZ59P7mI2l4JEUonraPE2dwJ7ZyQeFmlIFOVsHkVq1y5MlckR7Cqr13iXA6ZlUaWis4gZC5GJ_OW7fi5h3eM5wK0A1GJsNRhlLIGJBhdSWdN6rIO-3Qvv6JsgcSpn8WswISCZF38kXWHfdzQLhr4jL9SHZMaNhQEeR0G0BCK1hCK_xlChx3eK7Fo_8NVgdmaEkkq07zDPmxe4x9E2yLGw3xNNElfkZ_CTxxtlP8Pdvcfg90D9lxSeUyojDlkO_VyDe8xvqltlz1Vw_MuezY4HX29wvvx2fjyWzcYOD5NxpeDH78BbCb8mA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGdigXxKcoDDBiHJCIGjtOYx8mxD6qjq0Vgk3qLdixXYYqp7Sppv5z_G34uUnGJLTbDrk4Vj7el997fn4_hPb6XCVaFzLKrDBwJEdEyso0kkQD_y1LAmbkaNwfXrAvk3Syhf40Z2GgrLKxicFQ67KAHHnP-92cJIyy7NP8dwSoUbC72kBoyBpaQe-HFmP1wY5Ts77yIdxy_-TI8_s9pYPj88NhVKMMREUiWBUlVmWWCGsJ9Zfi3KRcE5XpmGfcFhlPpSmM4n1hE2szkyoqacGhej-1sVdP_9x7aIclTPjgb-fgePz1W5vliRMv4jHb9EX1hIh7i6WP_-D0q7ixEgbAgBtebmfl5nJ9JWezfxa8wUP0oPZU8eeNaD1CW8Y9Rp0aNP3n-gmCFHZoNeFXP_wdqo6cmUWkR_GRrCSWTuNRKNU0uO7iOsVV6cfm-LCsvM-JB1A-t8SXDoftI7NweHLpfnmJnX7EAdn7Kbq4E2o-Q9uudOY5whkxwhqiSUi5SM6VNNRIoalVktm0iz409MuLuqE54GrMch_YAK3za1p30bt27nzTxuO_sw6ADe0MaL0dBsrFNK81OYcf8F5dYaXxLFexVIaKEIkyAv3xumi3YWJe24Nlfi29XfS2ve01GbZnpDPlCuYkfQ720j9ir2X-LZ_74vY3vUGd4fnoLD87GZ--RPcpFOOEOpxdtF0tVuaV96Yq9boWWYx-3LWW_AXh7zOE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpFolwqnmLbAkaUAxLRxk6ysQ-ogi6hpbRCgkp7S-3EXopWznY3q2p_ja_rjDdJqYR66yEXZ5THvDwzngchuwOho7IsVJBaabAkRwbaqiRQrET62zjyMyOPTwYHp_G3UTJaI3_bWhhMq2x1olfUZVVgjLwPdrdgUczjtG-btIgfw2xvehHgBCk8aW3HaaxY5MgsL8F9m388HAKt33Geffm1fxA0EwaCIpJxHURWp5ZJaxmHSwthElEynZahSIUtUpEoUxgtBtJG1qYm0VzxQmDmfmJDEE147j1yP8Uu7lilnn3t4jthBMwdxquOqICCsD-bg-eHda_yxh7oRwXcsG83Fm6qlpdqMvlnq8sekc3GRqWfVkz1mKwZ94RsNOPSfy-fEgxe-yYTsO_Rn5hv5MwkYH1Oh6pWVLmSHvskTUOb_q1jWlewNqX7VQ3WJs0wcW5Ozx31B0dm5ujo3P0BXh1_oH6m9zNyeie4fE7WXeXMC0JTZqQ1rGQ-2KKE0Mpwo2TJrVaxTXrkfYu_vGhameNEjUkOLg3iOr_GdY-87WCnqwYe_4X6jGToILDptl-oZuO8keEcfwDsucIqE8VSh0obLr0PGjPsjNcjOy0R80YTzPNrvu2RN91tkGE8mFHOVAuEAQZCTQmP2O2If8vnbt3-ptfkAchG_v3w5GibPOSYheMTcHbIej1bmJdgRtX6ledXSs7uWkCuAH84MR4
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dixMxEA_Sezhf_Barp0S8F8G93ST7kTzJeVoO4Q5BC_VpSTZJr1qypd0q51_vTLqtdyIi-LAv2dklYWYyM8nMbwg5LKUR1jY6qbxyWJKjEuN1kWhmkf8-F7Fn5Nl5eTrO30-KyZUqfkyrhFB8FjdpnlU8wX5KKRMpF2kO5itdWP_6W3-WhM4E2CeGNVZ7ZQHe-IDsjc8_HH_GnnLbrzeopDCNLF2uIPrC2lN1zQ5FuP5rPub-Oiz05Xc9n18xN6PbRG8nusky-Xq07sxR8-M3DMf_Wckdcqv3RenxRnjukhsu3CP7fVv0i8v7BA-pI5gE2Df6EfOKgpsnLOX0re401cHSs5iM6WiP0zqlXQtjC3rSduBV0hEmyK3oLNB4QeSWgU5m4QvI5PQVjb27H5Dx6N2nk9Ok78qQNELlXSK8qTxT3jMOj5HSFdIyU9lMVtI3lSy0a5yRpfLC-8oVhmveSKx2KHwG29lDMghtcI8IrZhT3jHL4qGKltJox51Wlnujc18Mycstj-qmhyzHzhnzGkIX5Gf9i59D8mJHu9gAdfyR6g2yekeB4NpxoF1O615Xa1wA-G2N107kymTaOK5irAn84UwMycFWUOpe41c1xIWSiZzn1ZA8370GXcULGB1cu0YaUUrcEeEXhzsB-8t0H_8b2RNyk2OqTcyyOSCDbrl2T8FX6syzXh1-ArCpDMM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+Sentinel-1%2F2+Data+and+Machine+Learning+to+Map+Cotton+Fields+in+Northern+Xinjiang%2C+China&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Niuyuetaohua&rft.au=Hu%2C+Yina&rft.au=Dong%2C+Jianquan&rft.au=Qiu%2C+Sijing&rft.date=2021-12-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=13&rft.issue=23&rft_id=info:doi/10.3390%2Frs13234819&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon