Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation

•Two metaheuristic algorithms (WOA and MFO) are used.•These algorithms are applied to multilevel thresholding image segmentation.•MFO and WOA are better than compared algorithms.•MFO is better than WOA for higher number of thresholds. Determining the optimal thresholding for image segmentation has g...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 83; pp. 242 - 256
Main Authors Aziz, Mohamed Abd El, Ewees, Ahmed A., Hassanien, Aboul Ella
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 15.10.2017
Elsevier BV
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2017.04.023

Cover

Abstract •Two metaheuristic algorithms (WOA and MFO) are used.•These algorithms are applied to multilevel thresholding image segmentation.•MFO and WOA are better than compared algorithms.•MFO is better than WOA for higher number of thresholds. Determining the optimal thresholding for image segmentation has got more attention in recent years since it has many applications. There are several methods used to find the optimal thresholding values such as Otsu and Kapur based methods. These methods are suitable for bi-level thresholding case and they can be easily extended to the multilevel case, however, the process of determining the optimal thresholds in the case of multilevel thresholding is time-consuming. To avoid this problem, this paper examines the ability of two nature inspired algorithms namely: Whale Optimization Algorithm (WOA) and Moth-Flame Optimization (MFO) to determine the optimal multilevel thresholding for image segmentation. The MFO algorithm is inspired from the natural behavior of moths which have a special navigation style at night since they fly using the moonlight, whereas, the WOA algorithm emulates the natural cooperative behaviors of whales. The candidate solutions in the adapted algorithms were created using the image histogram, and then they were updated based on the characteristics of each algorithm. The solutions are assessed using the Otsu’s fitness function during the optimization operation. The performance of the proposed algorithms has been evaluated using several of benchmark images and has been compared with five different swarm algorithms. The results have been analyzed based on the best fitness values, PSNR, and SSIM measures, as well as time complexity and the ANOVA test. The experimental results showed that the proposed methods outperformed the other swarm algorithms; in addition, the MFO showed better results than WOA, as well as provided a good balance between exploration and exploitation in all images at small and high threshold numbers.
AbstractList Determining the optimal thresholding for image segmentation has got more attention in recent years since it has many applications. There are several methods used to find the optimal thresholding values such as Otsu and Kapur based methods. These methods are suitable for bi-level thresholding case and they can be easily extended to the multilevel case, however, the process of determining the optimal thresholds in the case of multilevel thresholding is time-consuming. To avoid this problem, this paper examines the ability of two nature inspired algorithms namely: Whale Optimization Algorithm (WOA) and Moth-Flame Optimization (MFO) to determine the optimal multilevel thresholding for image segmentation. The MFO algorithm is inspired from the natural behavior of moths which have a special navigation style at night since they fly using the moonlight, whereas, the WOA algorithm emulates the natural cooperative behaviors of whales. The candidate solutions in the adapted algorithms were created using the image histogram, and then they were updated based on the characteristics of each algorithm. The solutions are assessed using the Otsu's fitness function during the optimization operation. The performance of the proposed algorithms has been evaluated using several of benchmark images and has been compared with five different swarm algorithms. The results have been analyzed based on the best fitness values, PSNR, and SSIM measures, as well as time complexity and the ANOVA test. The experimental results showed that the proposed methods outperformed the other swarm algorithms; in addition, the MFO showed better results than WOA, as well as provided a good balance between exploration and exploitation in all images at small and high threshold numbers.
•Two metaheuristic algorithms (WOA and MFO) are used.•These algorithms are applied to multilevel thresholding image segmentation.•MFO and WOA are better than compared algorithms.•MFO is better than WOA for higher number of thresholds. Determining the optimal thresholding for image segmentation has got more attention in recent years since it has many applications. There are several methods used to find the optimal thresholding values such as Otsu and Kapur based methods. These methods are suitable for bi-level thresholding case and they can be easily extended to the multilevel case, however, the process of determining the optimal thresholds in the case of multilevel thresholding is time-consuming. To avoid this problem, this paper examines the ability of two nature inspired algorithms namely: Whale Optimization Algorithm (WOA) and Moth-Flame Optimization (MFO) to determine the optimal multilevel thresholding for image segmentation. The MFO algorithm is inspired from the natural behavior of moths which have a special navigation style at night since they fly using the moonlight, whereas, the WOA algorithm emulates the natural cooperative behaviors of whales. The candidate solutions in the adapted algorithms were created using the image histogram, and then they were updated based on the characteristics of each algorithm. The solutions are assessed using the Otsu’s fitness function during the optimization operation. The performance of the proposed algorithms has been evaluated using several of benchmark images and has been compared with five different swarm algorithms. The results have been analyzed based on the best fitness values, PSNR, and SSIM measures, as well as time complexity and the ANOVA test. The experimental results showed that the proposed methods outperformed the other swarm algorithms; in addition, the MFO showed better results than WOA, as well as provided a good balance between exploration and exploitation in all images at small and high threshold numbers.
Author Ewees, Ahmed A.
Hassanien, Aboul Ella
Aziz, Mohamed Abd El
Author_xml – sequence: 1
  givenname: Mohamed Abd El
  surname: Aziz
  fullname: Aziz, Mohamed Abd El
  email: abd_el_aziz_m@yahoo.com
  organization: Department of Mathematics, Faculty of Science, Zagazig University, Egypt
– sequence: 2
  givenname: Ahmed A.
  surname: Ewees
  fullname: Ewees, Ahmed A.
  email: a.ewees@hotmail.com, ewees@du.edu.eg
  organization: Department of Computer, Damietta University, Egypt
– sequence: 3
  givenname: Aboul Ella
  surname: Hassanien
  fullname: Hassanien, Aboul Ella
  email: aboitcairo@gmail.com
  organization: Faculty of Computers and Information, Cairo University, Egypt
BookMark eNp9kLFOwzAQhi1UJNrCCzBFYk6w4yROJJaqooBU1AXEaDnOJXHlxMV2i-DpSQlTh063fN_d_f8MTXrTA0K3BEcEk-x-G4H7ElGMCYtwEuGYXqApyRkNM1bQCZriImVhQlhyhWbObfEAYsymqPlohYZgs_OqUz_CK9MHC90Yq3zbBaKvglfj23ClRXdC1cYG3V57peEAOvCtBdcaXam-CVQnGggcNB30_g-_Rpe10A5u_uccva8e35bP4Xrz9LJcrENJi8SHVNASkiyNK1JXFMtcAIUsLbO0IKIuU5AkLnGdJ5AJmZMix2leljKvsoIAjms6R3fj3p01n3twnm_N3vbDSU4KGhPGWMoGKh8paY1zFmou1fint0JpTjA_1sq3_FgrP9bKccKHWgc1PlF3dohrv89LD6MEQ_SDAsudVNBLqJQF6Xll1Dn9F9djlf4
CitedBy_id crossref_primary_10_1002_tee_23410
crossref_primary_10_1016_j_apm_2025_115930
crossref_primary_10_3390_pr9122276
crossref_primary_10_1016_j_eswa_2019_01_047
crossref_primary_10_1002_cpe_4872
crossref_primary_10_1109_ACCESS_2020_3005452
crossref_primary_10_1016_j_engappai_2020_104105
crossref_primary_10_1016_j_eswa_2018_06_023
crossref_primary_10_1080_15325008_2023_2243940
crossref_primary_10_1007_s11042_022_13288_y
crossref_primary_10_1016_j_compag_2019_02_002
crossref_primary_10_3390_biomimetics8050400
crossref_primary_10_1080_23080477_2023_2225957
crossref_primary_10_1080_0952813X_2022_2040598
crossref_primary_10_1007_s11042_020_10313_w
crossref_primary_10_1007_s00500_021_06441_6
crossref_primary_10_1063_5_0181395
crossref_primary_10_1109_ACCESS_2019_2905009
crossref_primary_10_4018_IJSIR_2020100106
crossref_primary_10_1371_journal_pone_0295643
crossref_primary_10_1016_j_eswa_2021_114841
crossref_primary_10_1002_ima_22889
crossref_primary_10_1007_s00521_021_05771_8
crossref_primary_10_1109_ACCESS_2019_2896673
crossref_primary_10_1007_s11042_020_10237_5
crossref_primary_10_1016_j_scs_2023_104908
crossref_primary_10_1007_s10489_020_01840_y
crossref_primary_10_1117_1_JEI_27_6_063008
crossref_primary_10_1016_j_dajour_2023_100223
crossref_primary_10_3390_app142311414
crossref_primary_10_1016_j_ref_2020_06_008
crossref_primary_10_1002_2050_7038_12159
crossref_primary_10_3390_math12050636
crossref_primary_10_1109_ACCESS_2023_3291146
crossref_primary_10_1007_s00366_019_00917_8
crossref_primary_10_3390_pr10091694
crossref_primary_10_17780_ksujes_1414212
crossref_primary_10_1038_s41598_023_51135_8
crossref_primary_10_3390_healthcare10040677
crossref_primary_10_1371_journal_pone_0271692
crossref_primary_10_1016_j_physa_2019_123094
crossref_primary_10_1007_s00500_020_05130_0
crossref_primary_10_1016_j_engappai_2021_104410
crossref_primary_10_1016_j_yofte_2019_101965
crossref_primary_10_1109_JSEN_2023_3269594
crossref_primary_10_1155_2021_9931521
crossref_primary_10_1007_s11042_020_10467_7
crossref_primary_10_1088_1757_899X_623_1_012013
crossref_primary_10_1155_2019_1510257
crossref_primary_10_3389_fenrg_2021_676305
crossref_primary_10_1007_s12205_020_2096_5
crossref_primary_10_3390_rs11091046
crossref_primary_10_1016_j_aej_2024_02_012
crossref_primary_10_1177_00202940231180622
crossref_primary_10_1016_j_eswa_2020_114418
crossref_primary_10_1155_2021_8878686
crossref_primary_10_1007_s11042_019_08117_8
crossref_primary_10_1016_j_rico_2023_100276
crossref_primary_10_1007_s00500_023_08135_7
crossref_primary_10_1007_s12065_020_00539_w
crossref_primary_10_1016_j_eswa_2020_113201
crossref_primary_10_1007_s11831_019_09334_y
crossref_primary_10_1007_s00521_020_04989_2
crossref_primary_10_3233_JIFS_233286
crossref_primary_10_1007_s11042_023_16494_4
crossref_primary_10_3390_sym10060210
crossref_primary_10_1007_s11227_021_04281_7
crossref_primary_10_1007_s00521_020_04823_9
crossref_primary_10_1515_jisys_2017_0641
crossref_primary_10_1016_j_future_2020_08_019
crossref_primary_10_1016_j_eswa_2021_114766
crossref_primary_10_1109_ACCESS_2020_2966665
crossref_primary_10_1007_s00521_019_04570_6
crossref_primary_10_1007_s00530_024_01281_4
crossref_primary_10_1038_s41377_024_01734_5
crossref_primary_10_1007_s41348_024_00953_7
crossref_primary_10_1007_s10479_019_03407_8
crossref_primary_10_17671_gazibtd_1172909
crossref_primary_10_1016_j_displa_2024_102727
crossref_primary_10_1155_2020_8810759
crossref_primary_10_3390_s24072270
crossref_primary_10_1007_s00521_021_06747_4
crossref_primary_10_1007_s10462_022_10157_w
crossref_primary_10_1080_21642583_2022_2140723
crossref_primary_10_1109_TMAG_2021_3086724
crossref_primary_10_1109_ACCESS_2021_3060749
crossref_primary_10_3390_jmse12081313
crossref_primary_10_1016_j_enconman_2020_112764
crossref_primary_10_1016_j_jocs_2024_102323
crossref_primary_10_1007_s42235_023_00332_2
crossref_primary_10_3390_sym13010048
crossref_primary_10_1007_s10586_021_03319_y
crossref_primary_10_1007_s42235_023_00367_5
crossref_primary_10_1515_med_2020_0006
crossref_primary_10_1007_s11042_018_5840_9
crossref_primary_10_1145_3380743
crossref_primary_10_1002_cpe_5949
crossref_primary_10_1088_1361_6501_abf8ed
crossref_primary_10_1109_ACCESS_2020_2987689
crossref_primary_10_1109_ACCESS_2020_2968943
crossref_primary_10_1007_s00521_021_06858_y
crossref_primary_10_1016_j_eswa_2020_113233
crossref_primary_10_1007_s11227_024_06080_2
crossref_primary_10_1016_j_knosys_2022_108341
crossref_primary_10_1063_5_0048961
crossref_primary_10_1002_dac_4617
crossref_primary_10_1007_s13042_024_02146_y
crossref_primary_10_1007_s13369_024_08952_4
crossref_primary_10_1016_j_swevo_2019_03_004
crossref_primary_10_3390_s18113878
crossref_primary_10_1016_j_asoc_2021_108039
crossref_primary_10_1016_j_tsep_2023_102315
crossref_primary_10_1016_j_ins_2024_120711
crossref_primary_10_3390_e23121599
crossref_primary_10_1080_23311916_2020_1863304
crossref_primary_10_1007_s00500_021_05611_w
crossref_primary_10_3390_en11030535
crossref_primary_10_32604_cmc_2021_015586
crossref_primary_10_3390_electronics12122698
crossref_primary_10_1007_s00521_017_3131_4
crossref_primary_10_1016_j_compstruct_2023_116764
crossref_primary_10_1016_j_knosys_2022_108172
crossref_primary_10_1016_j_buildenv_2022_108954
crossref_primary_10_1109_ACCESS_2020_2971249
crossref_primary_10_3390_e22030328
crossref_primary_10_1155_2022_9910982
crossref_primary_10_1007_s00521_020_04849_z
crossref_primary_10_1007_s12065_019_00238_1
crossref_primary_10_1155_2021_9962565
crossref_primary_10_4018_IJSIR_300370
crossref_primary_10_1007_s00521_019_04210_z
crossref_primary_10_1016_j_knosys_2020_105570
crossref_primary_10_1016_j_eswa_2019_03_043
crossref_primary_10_1007_s00521_022_08167_4
crossref_primary_10_4018_IJAMC_290532
crossref_primary_10_1038_s41598_024_83788_4
crossref_primary_10_1155_2021_5537998
crossref_primary_10_1016_j_knosys_2019_02_010
crossref_primary_10_1007_s10462_018_09676_2
crossref_primary_10_1109_ACCESS_2019_2903345
crossref_primary_10_1007_s10586_024_04601_5
crossref_primary_10_1155_2022_9009406
crossref_primary_10_1007_s00034_020_01602_8
crossref_primary_10_1038_s41598_024_71448_6
crossref_primary_10_1016_j_asoc_2019_105522
crossref_primary_10_1115_1_4044767
crossref_primary_10_1016_j_compbiomed_2024_109011
crossref_primary_10_1155_2021_6663773
crossref_primary_10_1080_19942060_2024_2443128
crossref_primary_10_1016_j_jksuci_2018_04_007
crossref_primary_10_1515_mt_2020_0039
crossref_primary_10_1007_s11276_022_03048_z
crossref_primary_10_1007_s11227_021_03706_7
crossref_primary_10_1007_s10586_024_04525_0
crossref_primary_10_1002_jnm_2675
crossref_primary_10_1080_0305215X_2019_1624740
crossref_primary_10_1002_ima_22916
crossref_primary_10_1007_s41870_019_00328_4
crossref_primary_10_1007_s40815_022_01265_4
crossref_primary_10_26634_jmt_5_2_15631
crossref_primary_10_1002_dac_5483
crossref_primary_10_1007_s00500_023_08416_1
crossref_primary_10_3390_e21040398
crossref_primary_10_1371_journal_pone_0279438
crossref_primary_10_1016_j_compbiomed_2022_106404
crossref_primary_10_1016_j_eswa_2023_121303
crossref_primary_10_1007_s00521_019_04015_0
crossref_primary_10_4018_IJAMC_2020100104
crossref_primary_10_1007_s00500_021_05889_w
crossref_primary_10_1007_s11227_020_03566_7
crossref_primary_10_1049_iet_com_2019_0359
crossref_primary_10_1007_s10489_023_04512_9
crossref_primary_10_1016_j_asoc_2019_03_026
crossref_primary_10_1016_j_enconman_2018_08_053
crossref_primary_10_1038_s41598_023_47837_8
crossref_primary_10_2174_1574893617666220920102401
crossref_primary_10_1016_j_asoc_2020_106418
crossref_primary_10_1016_j_eswa_2021_115106
crossref_primary_10_3390_sym13050757
crossref_primary_10_1109_TNSE_2022_3153095
crossref_primary_10_1007_s11042_020_09664_1
crossref_primary_10_1109_ACCESS_2018_2879965
crossref_primary_10_1155_2020_7595174
crossref_primary_10_1007_s11042_018_5637_x
crossref_primary_10_1007_s11042_022_14024_2
crossref_primary_10_1109_ACCESS_2021_3052149
crossref_primary_10_1016_j_eswa_2019_03_002
crossref_primary_10_1016_j_asoc_2020_106642
crossref_primary_10_1016_j_asoc_2020_106526
crossref_primary_10_1109_ACCESS_2019_2908718
crossref_primary_10_1155_2023_8160121
crossref_primary_10_1007_s12652_020_01777_7
crossref_primary_10_1007_s11042_022_12168_9
crossref_primary_10_1109_ACCESS_2020_3020895
crossref_primary_10_1109_ACCESS_2022_3145905
crossref_primary_10_1016_j_cageo_2024_105667
crossref_primary_10_1108_EC_07_2017_0264
crossref_primary_10_1007_s11042_022_12001_3
crossref_primary_10_1007_s00521_018_3764_y
crossref_primary_10_1007_s00366_020_00971_7
crossref_primary_10_1002_sam_11444
crossref_primary_10_1016_j_knosys_2020_105889
crossref_primary_10_1155_2022_5245622
crossref_primary_10_1007_s41870_024_02167_4
crossref_primary_10_1016_j_jsv_2019_114931
crossref_primary_10_1007_s11042_022_12330_3
crossref_primary_10_1007_s13369_021_06042_3
crossref_primary_10_1051_matecconf_201713900157
crossref_primary_10_1007_s11760_019_01585_3
crossref_primary_10_1088_1742_6596_1982_1_012076
crossref_primary_10_1016_j_asoc_2020_106638
crossref_primary_10_1016_j_matcom_2019_06_017
crossref_primary_10_3390_app10113667
crossref_primary_10_3390_pr10050858
crossref_primary_10_3233_JIFS_236930
crossref_primary_10_1016_j_asoc_2019_105577
crossref_primary_10_3390_rs16101768
crossref_primary_10_1016_j_isatra_2022_02_023
crossref_primary_10_3390_electronics10030312
crossref_primary_10_3390_math7080688
crossref_primary_10_1088_1402_4896_ad1377
crossref_primary_10_1007_s10586_020_03162_7
crossref_primary_10_1016_j_eswa_2021_115436
crossref_primary_10_3390_a12090182
crossref_primary_10_1007_s00521_022_07204_6
crossref_primary_10_1016_j_eswa_2023_122316
crossref_primary_10_1117_1_JEI_31_5_051420
crossref_primary_10_1109_ACCESS_2019_2909945
crossref_primary_10_1007_s00500_021_05961_5
crossref_primary_10_1002_spe_2941
crossref_primary_10_3934_mbe_2021236
crossref_primary_10_47836_pjst_28_4_14
crossref_primary_10_1109_ACCESS_2020_2970438
crossref_primary_10_1080_13588265_2022_2074705
crossref_primary_10_1016_j_cnsns_2020_105256
crossref_primary_10_3390_pr9071155
crossref_primary_10_1016_j_ins_2019_04_022
crossref_primary_10_7717_peerj_cs_2121
crossref_primary_10_1016_j_aei_2019_02_006
crossref_primary_10_1142_S0219467822500127
crossref_primary_10_1109_ACCESS_2019_2891673
crossref_primary_10_3233_JIFS_210936
crossref_primary_10_1109_TCBB_2021_3104734
crossref_primary_10_1016_j_asoc_2019_105925
crossref_primary_10_1007_s10489_022_04064_4
crossref_primary_10_1016_j_csite_2024_104028
crossref_primary_10_1016_j_engappai_2019_103370
crossref_primary_10_1007_s12530_023_09566_1
crossref_primary_10_1109_ACCESS_2020_3012686
crossref_primary_10_1016_j_measurement_2019_106920
crossref_primary_10_1007_s13369_021_05470_5
crossref_primary_10_1016_j_egyr_2022_09_025
crossref_primary_10_4018_IJISMD_306644
crossref_primary_10_1016_j_engappai_2019_103457
crossref_primary_10_1016_j_eswa_2021_115003
crossref_primary_10_1007_s10489_018_1362_4
crossref_primary_10_1016_j_eswa_2021_116145
crossref_primary_10_4018_IJAMC_304073
crossref_primary_10_1007_s00521_020_05013_3
crossref_primary_10_1007_s11235_020_00654_0
crossref_primary_10_1007_s00521_024_09524_1
crossref_primary_10_1007_s13198_019_00801_0
crossref_primary_10_1007_s13198_024_02422_8
crossref_primary_10_1007_s40031_022_00740_8
crossref_primary_10_1155_2021_6635462
crossref_primary_10_1093_bfgp_elac028
crossref_primary_10_1007_s13369_020_04434_5
crossref_primary_10_1016_j_asoc_2019_105937
crossref_primary_10_3390_diagnostics13081422
crossref_primary_10_1007_s13748_024_00319_y
crossref_primary_10_1080_15567036_2021_1943068
crossref_primary_10_1007_s00357_018_9297_3
crossref_primary_10_1016_j_compeleceng_2024_109569
crossref_primary_10_3934_mbe_2021155
crossref_primary_10_1134_S1054661822010060
crossref_primary_10_1016_j_solener_2018_10_050
crossref_primary_10_1002_int_22658
crossref_primary_10_29130_dubited_389368
crossref_primary_10_1007_s13369_019_03874_y
crossref_primary_10_4018_IJISMD_2019070105
crossref_primary_10_1155_2020_8834162
crossref_primary_10_3390_rs11121421
crossref_primary_10_3390_e21030318
crossref_primary_10_1007_s11042_023_14637_1
crossref_primary_10_1016_j_eswa_2018_10_050
crossref_primary_10_1016_j_asoc_2020_106367
crossref_primary_10_1007_s11831_024_10093_8
crossref_primary_10_1016_j_infrared_2019_03_010
crossref_primary_10_1002_oca_2790
crossref_primary_10_1109_ACCESS_2019_2891632
crossref_primary_10_3390_en16010232
crossref_primary_10_1109_ACCESS_2020_2993580
crossref_primary_10_1016_j_asej_2021_01_014
crossref_primary_10_1007_s11042_023_16300_1
crossref_primary_10_1016_j_eswax_2020_100032
crossref_primary_10_1109_ACCESS_2019_2904511
crossref_primary_10_3390_sym11050716
crossref_primary_10_1007_s11042_020_09306_6
crossref_primary_10_1016_j_asoc_2019_105723
crossref_primary_10_1016_j_jclepro_2019_119468
crossref_primary_10_1109_ACCESS_2018_2884130
crossref_primary_10_3390_math12020262
crossref_primary_10_1155_2019_5982410
crossref_primary_10_1016_j_eswa_2019_113018
crossref_primary_10_1016_j_eswa_2021_115286
crossref_primary_10_1109_ACCESS_2019_2941918
crossref_primary_10_1016_j_jestch_2021_03_011
crossref_primary_10_1109_ACCESS_2020_3046651
crossref_primary_10_1007_s11277_022_09586_1
crossref_primary_10_1016_j_artmed_2019_101756
crossref_primary_10_1016_j_eswa_2018_04_028
crossref_primary_10_1016_j_jclepro_2021_127672
crossref_primary_10_1016_j_joim_2021_08_001
crossref_primary_10_3390_app11136222
crossref_primary_10_1007_s11042_018_5815_x
crossref_primary_10_1109_ACCESS_2019_2959325
crossref_primary_10_1007_s00603_023_03364_6
crossref_primary_10_1016_j_matcom_2021_07_010
crossref_primary_10_1007_s11831_022_09801_z
crossref_primary_10_37394_232016_2023_18_15
crossref_primary_10_1007_s11053_021_09913_6
crossref_primary_10_3390_math13020256
crossref_primary_10_1016_j_knosys_2022_108610
crossref_primary_10_1109_ACCESS_2019_2900985
crossref_primary_10_1038_s41598_023_36066_8
crossref_primary_10_1007_s11042_019_08138_3
crossref_primary_10_1007_s12652_021_03001_6
crossref_primary_10_1111_jmi_13105
crossref_primary_10_1016_j_cie_2019_106040
crossref_primary_10_1016_j_asoc_2020_106063
crossref_primary_10_1016_j_compbiomed_2022_106075
crossref_primary_10_1142_S0219467824500049
crossref_primary_10_2139_ssrn_4188471
crossref_primary_10_1080_19393555_2020_1825882
crossref_primary_10_1016_j_iswa_2024_200445
crossref_primary_10_4018_IJSIR_2020040103
crossref_primary_10_1016_j_knosys_2018_12_008
crossref_primary_10_1186_s12880_024_01361_x
crossref_primary_10_1007_s00521_021_06273_3
crossref_primary_10_3390_math10244776
crossref_primary_10_1007_s00367_019_00608_9
crossref_primary_10_1109_ACCESS_2020_2989445
crossref_primary_10_1109_ACCESS_2020_3007928
crossref_primary_10_3390_math11051136
crossref_primary_10_1016_j_eswa_2020_113428
crossref_primary_10_1016_j_jcde_2019_02_002
crossref_primary_10_1016_j_buildenv_2019_106413
crossref_primary_10_1007_s00500_023_08202_z
crossref_primary_10_1007_s00521_020_05368_7
crossref_primary_10_1109_ACCESS_2021_3108447
crossref_primary_10_1007_s10462_021_10052_w
crossref_primary_10_3390_sym14091923
crossref_primary_10_1016_j_eswa_2018_08_045
crossref_primary_10_1109_LRA_2023_3241752
crossref_primary_10_3390_math12071049
crossref_primary_10_1016_j_jclepro_2019_119082
crossref_primary_10_1007_s11760_022_02375_0
crossref_primary_10_1002_ima_22468
crossref_primary_10_1016_j_eswa_2019_07_037
crossref_primary_10_1007_s00521_022_07718_z
crossref_primary_10_1016_j_aej_2021_02_031
crossref_primary_10_1016_j_apenergy_2022_119033
crossref_primary_10_1016_j_asoc_2020_106157
crossref_primary_10_1109_ACCESS_2020_2990893
crossref_primary_10_1007_s10462_021_10086_0
crossref_primary_10_1007_s12065_024_01001_x
crossref_primary_10_1016_j_eswa_2020_113844
crossref_primary_10_3390_electronics8101071
crossref_primary_10_1002_jnm_3019
crossref_primary_10_3390_rs11091134
crossref_primary_10_1007_s00500_021_06623_2
crossref_primary_10_1016_j_eswa_2020_113719
crossref_primary_10_1007_s41870_023_01606_y
crossref_primary_10_1155_2022_4587880
crossref_primary_10_1007_s00521_020_04820_y
crossref_primary_10_1016_j_eswa_2020_113617
crossref_primary_10_1142_S0219622021500425
crossref_primary_10_1155_2021_5289038
crossref_primary_10_3390_biomimetics10010047
crossref_primary_10_1016_j_ijleo_2023_170997
crossref_primary_10_3390_pr11020534
crossref_primary_10_1007_s13198_024_02669_1
crossref_primary_10_1186_s13638_021_02013_2
crossref_primary_10_1007_s00500_019_04315_6
crossref_primary_10_1093_jcde_qwaf014
crossref_primary_10_3233_JIFS_191747
crossref_primary_10_3390_math7050384
crossref_primary_10_3390_en14041008
crossref_primary_10_1007_s00202_024_02573_8
crossref_primary_10_1007_s10462_020_09933_3
crossref_primary_10_1016_j_bspc_2024_106631
crossref_primary_10_1109_ACCESS_2020_3005717
crossref_primary_10_1007_s10489_020_01722_3
crossref_primary_10_18517_ijods_1_2_82_98_2020
crossref_primary_10_1007_s40747_020_00200_0
crossref_primary_10_1016_j_jhydrol_2020_124989
crossref_primary_10_1093_jcde_qwad053
crossref_primary_10_1111_exsy_12717
crossref_primary_10_1016_j_eswa_2021_114901
crossref_primary_10_1088_1361_6501_ab0352
crossref_primary_10_1016_j_asej_2019_09_010
crossref_primary_10_3390_e23121637
Cites_doi 10.1016/j.knosys.2015.07.006
10.1016/j.jocs.2013.07.001
10.1016/j.amc.2009.10.018
10.1016/j.eswa.2011.06.011
10.1016/j.engappai.2013.09.013
10.3390/e13040841
10.15282/ijets.5.2016.1.2.1041
10.1016/j.eswa.2013.10.059
10.1109/4235.585893
10.1016/0734-189X(85)90125-2
10.1016/j.amc.2006.06.057
10.1109/TAP.2013.2238654
10.1016/j.eswa.2013.05.041
10.1525/bio.2013.63.2.5
10.1016/j.eswa.2014.09.049
10.1016/j.swevo.2013.02.001
10.1109/TSMC.1979.4310076
10.1016/j.knosys.2015.12.022
10.1016/j.eswa.2016.08.046
10.1016/j.advengsoft.2016.01.008
10.1016/j.eswa.2012.04.078
10.1108/02644401011008577
10.1109/TIP.2003.819861
10.1016/j.cviu.2007.09.001
10.1016/j.asoc.2012.03.072
10.1007/s10489-016-0810-2
10.1155/2013/575414
10.1016/j.sigpro.2012.07.010
10.1016/j.eswa.2016.02.024
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier BV Oct 15, 2017
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier BV Oct 15, 2017
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2017.04.023
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 256
ExternalDocumentID 10_1016_j_eswa_2017_04_023
S0957417417302671
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c394t-3a3be4652d1fd30c8ae3e65b6591afb5ec12b0f84e6ac8198058bbc8d691e02f3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Fri Jul 25 02:29:06 EDT 2025
Sat Oct 25 05:14:11 EDT 2025
Thu Apr 24 23:10:24 EDT 2025
Fri Feb 23 02:39:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Image segmentation
Multilevel thresholding
Moth-Flame Optimization (MFO)
Whale Optimization Algorithm (WOA)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-3a3be4652d1fd30c8ae3e65b6591afb5ec12b0f84e6ac8198058bbc8d691e02f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1932177757
PQPubID 2045477
PageCount 15
ParticipantIDs proquest_journals_1932177757
crossref_citationtrail_10_1016_j_eswa_2017_04_023
crossref_primary_10_1016_j_eswa_2017_04_023
elsevier_sciencedirect_doi_10_1016_j_eswa_2017_04_023
PublicationCentury 2000
PublicationDate 2017-10-15
PublicationDateYYYYMMDD 2017-10-15
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-15
  day: 15
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Touma (bib0022) 2016; 5
Erdmann, Wachs-Lopes, Gallão, Ribeiro, Rodrigues (bib0014) 2015
Horng (bib0020) 2010; 215
Otsu (bib0036) 1979; 9
Parmar, Pandya, Bhoye, Trivedi, Jangir, Ladumor (bib0038) 2016
Ghamisi, Couceiro, Benediktsson, Ferreira (bib0016) 2012; 39
Elsayed, Sarker, Essam (bib0013) 2014; 27
Hammouche, Diaf, Siarry (bib0019) 2008; 109
Martin, Fowlkes, Tal, Malik (bib0028) 2001; Vol. 2
Ye, Hu, Wang, Chen (bib0047) 2011
Kaveh, Ghazaan (bib0024) 2016
Pruthi, Gupta (bib0039) 2016
Yang (bib0046) 2014
Horng (bib0021) 2011; 38
Bhandari, Kumar, Singh (bib0007) 2015; 42
Mirjalili, Lewis (bib0031) 2016; 95
Kapur, Sahoo, Wong (bib0023) 1985; 29
Cherukuri, Rayapudi (bib0010) 2016; 5
Goldbogen, Friedlaender, Calambokidis, McKenna, Simon, Nowacek (bib0017) 2013; 63
Bayraktar, Komurcu, Bossard, Werner (bib0006) 2013; 61
Fayad, Hatt, Visvikis (bib0015) 2015; 56
Bhandari, Singh, Kumar, Singh (bib0008) 2014; 41
Ouadfel, Taleb-Ahmed (bib0037) 2016; 55
Zhang, Wu (bib0049) 2011; 13
Mirjalili (bib0029) 2015; 89
Oliva, Cuevas, Pajares, Zaldivar, Perez-Cisneros (bib0035) 2013; 2013
Sanyal, Chatterjee, Munshi (bib0041) 2011; 38
Chen, Zhou, Zhang, Dai, Chao, Shi (bib0009) 2016; 2016
Vikas, Nanda (bib0034) 2016
Dirami, Hammouche, Diaf, Siarry (bib0012) 2013; 93
Mirjalili (bib0030) 2016; 96
Akay (bib0004) 2013; 13
Li, Li, Liu (bib0026) 2016; 45
Kennedy, Eberhart (bib0040) 1995; Vol. 4(4)
Agrawal, Panda, Bhuyan, Panigrahi (bib0003) 2013; 11
Agarwal, Singh, Kumar, Bhattacharya (bib0002) 2016; Vol. 2
Mlakar, Potočnik, Brest (bib0032) 2016; 65
Yin (bib0048) 2007; 184
Marciniak, Kowal, Filipczuk, Korbicz (bib0027) 2014
Wang, Bovik, Sheikh, Simoncelli (bib0043) 2004; 13
Cuevas, Cienfuegos, ZaldíVar, PéRez-Cisneros (bib0011) 2013; 40
Kaveh, Talatahari (bib0025) 2010; 27
Sarkar, Nayan, Kundu, Das, Chaudhuri (bib0042) 2013
Abd El-Aziz, Ewees, Hassanien (bib0001) 2016
Bakhshali, Shamsi (bib0005) 2014; 5
Naik, Gopal (bib0033) 2016; 5
Yang (bib0045) 2009
Guo, Li (bib0018) 2007
Wolpert, Macready (bib0044) 1997; 1
Wang (10.1016/j.eswa.2017.04.023_bib0043) 2004; 13
Vikas (10.1016/j.eswa.2017.04.023_bib0034) 2016
Chen (10.1016/j.eswa.2017.04.023_bib0009) 2016; 2016
Yang (10.1016/j.eswa.2017.04.023_bib0046) 2014
Goldbogen (10.1016/j.eswa.2017.04.023_bib0017) 2013; 63
Yang (10.1016/j.eswa.2017.04.023_bib0045) 2009
Naik (10.1016/j.eswa.2017.04.023_bib0033) 2016; 5
Abd El-Aziz (10.1016/j.eswa.2017.04.023_bib0001) 2016
Zhang (10.1016/j.eswa.2017.04.023_bib0049) 2011; 13
Kennedy (10.1016/j.eswa.2017.04.023_bib0040) 1995; Vol. 4(4)
Cuevas (10.1016/j.eswa.2017.04.023_bib0011) 2013; 40
Horng (10.1016/j.eswa.2017.04.023_bib0021) 2011; 38
Ghamisi (10.1016/j.eswa.2017.04.023_bib0016) 2012; 39
Sanyal (10.1016/j.eswa.2017.04.023_bib0041) 2011; 38
Sarkar (10.1016/j.eswa.2017.04.023_bib0042) 2013
Agarwal (10.1016/j.eswa.2017.04.023_bib0002) 2016; Vol. 2
Parmar (10.1016/j.eswa.2017.04.023_bib0038) 2016
Wolpert (10.1016/j.eswa.2017.04.023_bib0044) 1997; 1
Bhandari (10.1016/j.eswa.2017.04.023_bib0007) 2015; 42
Bhandari (10.1016/j.eswa.2017.04.023_bib0008) 2014; 41
Touma (10.1016/j.eswa.2017.04.023_bib0022) 2016; 5
Mirjalili (10.1016/j.eswa.2017.04.023_bib0030) 2016; 96
Bakhshali (10.1016/j.eswa.2017.04.023_bib0005) 2014; 5
Mirjalili (10.1016/j.eswa.2017.04.023_bib0029) 2015; 89
Bayraktar (10.1016/j.eswa.2017.04.023_bib0006) 2013; 61
Martin (10.1016/j.eswa.2017.04.023_bib0028) 2001; Vol. 2
Fayad (10.1016/j.eswa.2017.04.023_bib0015) 2015; 56
Dirami (10.1016/j.eswa.2017.04.023_bib0012) 2013; 93
Akay (10.1016/j.eswa.2017.04.023_bib0004) 2013; 13
Li (10.1016/j.eswa.2017.04.023_bib0026) 2016; 45
Mlakar (10.1016/j.eswa.2017.04.023_bib0032) 2016; 65
Mirjalili (10.1016/j.eswa.2017.04.023_bib0031) 2016; 95
Agrawal (10.1016/j.eswa.2017.04.023_bib0003) 2013; 11
Cherukuri (10.1016/j.eswa.2017.04.023_bib0010) 2016; 5
Otsu (10.1016/j.eswa.2017.04.023_bib0036) 1979; 9
Kaveh (10.1016/j.eswa.2017.04.023_bib0025) 2010; 27
Elsayed (10.1016/j.eswa.2017.04.023_bib0013) 2014; 27
Horng (10.1016/j.eswa.2017.04.023_bib0020) 2010; 215
Hammouche (10.1016/j.eswa.2017.04.023_bib0019) 2008; 109
Ouadfel (10.1016/j.eswa.2017.04.023_bib0037) 2016; 55
Kaveh (10.1016/j.eswa.2017.04.023_bib0024) 2016
Marciniak (10.1016/j.eswa.2017.04.023_bib0027) 2014
Erdmann (10.1016/j.eswa.2017.04.023_bib0014) 2015
Yin (10.1016/j.eswa.2017.04.023_bib0048) 2007; 184
Kapur (10.1016/j.eswa.2017.04.023_bib0023) 1985; 29
Oliva (10.1016/j.eswa.2017.04.023_bib0035) 2013; 2013
Pruthi (10.1016/j.eswa.2017.04.023_bib0039) 2016
Guo (10.1016/j.eswa.2017.04.023_bib0018) 2007
Ye (10.1016/j.eswa.2017.04.023_bib0047) 2011
References_xml – start-page: 491
  year: 2016
  end-page: 496
  ident: bib0038
  article-title: Optimal active and reactive power dispatch problem solution using moth-flame optimizer algorithm
  publication-title: Energy efficient technologies for sustainability (ICEETS), 2016 international conference on
– volume: 63
  start-page: 90
  year: 2013
  end-page: 100
  ident: bib0017
  article-title: Integrative approaches to the study of baleen whale diving behavior, feeding performance, and foraging ecology
  publication-title: BioScience
– volume: 5
  year: 2016
  ident: bib0033
  article-title: Particle swarm optimization (PSO) based k-means image segmentation algorithm
  publication-title: International Journal of Scientific Research
– volume: 5
  start-page: 251
  year: 2014
  end-page: 257
  ident: bib0005
  article-title: Segmentation of color lip images by optimal thresholding using bacterial foraging optimization (BFO)
  publication-title: Journal of Computational Science
– volume: 41
  start-page: 3538
  year: 2014
  end-page: 3560
  ident: bib0008
  article-title: Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using kapurs entropy
  publication-title: Expert Systems with Applications
– start-page: 654
  year: 2007
  end-page: 658
  ident: bib0018
  article-title: Multilevel thresholding method for image segmentation based on an adaptive particle swarm optimization algorithm
  publication-title: Australasian joint conference on artificial intelligence
– volume: Vol. 2
  start-page: 416
  year: 2001
  end-page: 423
  ident: bib0028
  article-title: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
  publication-title: Computer vision, 2001. ICCV 2001. Proceedings. Eighth IEEE international conference on
– volume: 11
  start-page: 16
  year: 2013
  end-page: 30
  ident: bib0003
  article-title: Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm
  publication-title: Swarm and Evolutionary Computation
– volume: 38
  start-page: 15489
  year: 2011
  end-page: 15498
  ident: bib0041
  article-title: An adaptive bacterial foraging algorithm for fuzzy entropy based image segmentation
  publication-title: Expert Systems with Applications
– volume: 27
  start-page: 155
  year: 2010
  end-page: 182
  ident: bib0025
  article-title: An improved ant colony optimization for constrained engineering design problems
  publication-title: Engineering Computations
– volume: 29
  start-page: 273
  year: 1985
  end-page: 285
  ident: bib0023
  article-title: A new method for gray-level picture thresholding using the entropy of the histogram
  publication-title: Computer vision, graphics, and image processing
– start-page: 699
  year: 2013
  end-page: 706
  ident: bib0042
  article-title: A differential evolutionary multilevel segmentation of near infra-red images using renyis entropy
  publication-title: Proceedings of the international conference on frontiers of intelligent computing: Theory and applications (FICTA)
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: bib0031
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
– start-page: 279
  year: 2015
  end-page: 295
  ident: bib0014
  article-title: A study of a firefly meta-heuristics for multithreshold image segmentation
  publication-title: Developments in medical image processing and computational vision
– volume: 27
  start-page: 57
  year: 2014
  end-page: 69
  ident: bib0013
  article-title: A new genetic algorithm for solving optimization problems
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 184
  start-page: 503
  year: 2007
  end-page: 892
  ident: bib0048
  article-title: Multilevel minimum cross entropy threshold selection based on particle swarm optimization
  publication-title: Applied Mathematics and Computation
– volume: 61
  start-page: 2745
  year: 2013
  end-page: 2757
  ident: bib0006
  article-title: The wind driven optimization technique and its application in electromagnetics
  publication-title: IEEE Transactions on Antennas and Propagation
– volume: Vol. 4(4)
  start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib0040
  article-title: Particle swarm optimization
  publication-title: Neural Networks 1995. Proceedings., IEEE International Conference
– volume: 65
  start-page: 221
  year: 2016
  end-page: 232
  ident: bib0032
  article-title: A hybrid differential evolution for optimal multilevel image thresholding
  publication-title: Expert Systems with Applications
– start-page: 301
  year: 2014
  end-page: 311
  ident: bib0027
  article-title: Swarm intelligence algorithms for multi-level image thresholding
  publication-title: Intelligent systems in technical and medical diagnostics
– volume: 109
  start-page: 163
  year: 2008
  end-page: 175
  ident: bib0019
  article-title: A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation
  publication-title: Computer Vision and Image Understanding
– volume: 13
  start-page: 841
  year: 2011
  end-page: 859
  ident: bib0049
  article-title: Optimal multi-level thresholding based on maximum tsallis entropy via an artificial bee colony approach
  publication-title: Entropy
– volume: 38
  start-page: 13785
  year: 2011
  end-page: 13791
  ident: bib0021
  article-title: Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation
  publication-title: Expert Systems with Applications
– volume: 89
  start-page: 228
  year: 2015
  end-page: 249
  ident: bib0029
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowledge-Based Systems
– volume: Vol. 2
  start-page: 249
  year: 2016
  end-page: 259
  ident: bib0002
  article-title: Social spider algorithm employed multi-level thresholding segmentation approach
  publication-title: Proceedings of first international conference on information and communication technology for intelligent systems
– start-page: 1
  year: 2016
  end-page: 21
  ident: bib0001
  article-title: Hybrid swarms optimization based image segmentation
  publication-title: Hybrid soft computing for image segmentation
– volume: 56
  start-page: 1745
  year: 2015
  ident: bib0015
  article-title: Pet functional volume delineation using an ant colony segmentation approach
  publication-title: Journal of Nuclear Medicine
– start-page: 1
  year: 2016
  end-page: 18
  ident: bib0024
  article-title: Enhanced whale optimization algorithm for sizing optimization of skeletal structures
  publication-title: Mechanics Based Design of Structures and Machines
– start-page: 1
  year: 2014
  end-page: 26
  ident: bib0046
  article-title: Cuckoo search and firefly algorithm: Overview and analysis
  publication-title: Cuckoo search and firefly algorithm
– volume: 5
  year: 2016
  ident: bib0010
  article-title: A novel global MPP tracking of photovoltaic system based on whale optimization algorithm
  publication-title: International Journal of Renewable Energy Development
– volume: 215
  start-page: 3302
  year: 2010
  end-page: 3310
  ident: bib0020
  article-title: A multilevel image thresholding using the honey bee mating optimization
  publication-title: Applied Mathematics and Computation
– volume: 5
  start-page: 11
  year: 2016
  end-page: 18
  ident: bib0022
  article-title: Study of the economic dispatch problem on IEEE 30-bus system using whale optimization algorithm
  publication-title: International Journal of Engineering Technology and Sciences (IJETS)
– start-page: 2470
  year: 2016
  end-page: 2476
  ident: bib0034
  article-title: Multi-objective moth flame optimization
  publication-title: Advances in computing, communications and informatics (ICACCI), 2016 international conference on
– volume: 42
  start-page: 1573
  year: 2015
  end-page: 1601
  ident: bib0007
  article-title: Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using kapur’s, otsu and tsallis functions
  publication-title: Expert Systems with Applications
– volume: 2016
  year: 2016
  ident: bib0009
  article-title: Multilevel image segmentation based on an improved firefly algorithm
  publication-title: Mathematical Problems in Engineering
– volume: 40
  start-page: 6374
  year: 2013
  end-page: 6384
  ident: bib0011
  article-title: A swarm optimization algorithm inspired in the behavior of the social-spider
  publication-title: Expert Systems with Applications
– start-page: 169
  year: 2009
  end-page: 178
  ident: bib0045
  article-title: Firefly algorithms for multimodal optimization
  publication-title: International symposium on stochastic algorithms
– volume: 45
  start-page: 1166
  year: 2016
  end-page: 1178
  ident: bib0026
  article-title: A least squares support vector machine model optimized by moth-flame optimization algorithm for annual power load forecasting
  publication-title: Applied Intelligence
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: bib0044
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 1
  year: 2011
  end-page: 4
  ident: bib0047
  article-title: Automatic threshold selection based on artificial bee colony algorithm
  publication-title: Intelligent systems and applications (ISA), 2011 3rd international workshop on
– volume: 93
  start-page: 139
  year: 2013
  end-page: 153
  ident: bib0012
  article-title: Fast multilevel thresholding for image segmentation through a multiphase level set method
  publication-title: Signal Processing
– start-page: 473
  year: 2016
  end-page: 480
  ident: bib0039
  article-title: Image segmentation using genetic algorithm and OTSU
  publication-title: Proceedings of fifth international conference on soft computing for problem solving
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  ident: bib0036
  article-title: A threshold selection method from gray level histograms
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
– volume: 39
  start-page: 12407
  year: 2012
  end-page: 12417
  ident: bib0016
  article-title: An efficient method for segmentation of images based on fractional calculus and natural selection
  publication-title: Expert Systems with Applications
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: bib0030
  article-title: Sca: A sine cosine algorithm for solving optimization problems
  publication-title: Knowledge-Based Systems
– volume: 13
  start-page: 3066
  year: 2013
  end-page: 3091
  ident: bib0004
  article-title: A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding
  publication-title: Applied Soft Computing
– volume: 55
  start-page: 566
  year: 2016
  end-page: 584
  ident: bib0037
  article-title: Social spiders optimization and flower pollination algorithm for multilevel image thresholding: A performance study
  publication-title: Expert Systems with Applications
– volume: 2013
  year: 2013
  ident: bib0035
  article-title: Multilevel thresholding segmentation based on harmony search optimization
  publication-title: Journal of Applied Mathematics
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: bib0043
  article-title: Image quality assessment: From error measurement to structural similarity
  publication-title: IEEE Transactions on Image Processing
– volume: 89
  start-page: 228
  year: 2015
  ident: 10.1016/j.eswa.2017.04.023_bib0029
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.07.006
– start-page: 473
  year: 2016
  ident: 10.1016/j.eswa.2017.04.023_bib0039
  article-title: Image segmentation using genetic algorithm and OTSU
– volume: 5
  issue: 3
  year: 2016
  ident: 10.1016/j.eswa.2017.04.023_bib0010
  article-title: A novel global MPP tracking of photovoltaic system based on whale optimization algorithm
  publication-title: International Journal of Renewable Energy Development
– volume: 56
  start-page: 1745
  issue: supplement 3
  year: 2015
  ident: 10.1016/j.eswa.2017.04.023_bib0015
  article-title: Pet functional volume delineation using an ant colony segmentation approach
  publication-title: Journal of Nuclear Medicine
– start-page: 2470
  year: 2016
  ident: 10.1016/j.eswa.2017.04.023_bib0034
  article-title: Multi-objective moth flame optimization
– volume: 5
  start-page: 251
  issue: 2
  year: 2014
  ident: 10.1016/j.eswa.2017.04.023_bib0005
  article-title: Segmentation of color lip images by optimal thresholding using bacterial foraging optimization (BFO)
  publication-title: Journal of Computational Science
  doi: 10.1016/j.jocs.2013.07.001
– start-page: 699
  year: 2013
  ident: 10.1016/j.eswa.2017.04.023_bib0042
  article-title: A differential evolutionary multilevel segmentation of near infra-red images using renyis entropy
– volume: Vol. 2
  start-page: 416
  year: 2001
  ident: 10.1016/j.eswa.2017.04.023_bib0028
  article-title: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
– start-page: 1
  year: 2011
  ident: 10.1016/j.eswa.2017.04.023_bib0047
  article-title: Automatic threshold selection based on artificial bee colony algorithm
– volume: 215
  start-page: 3302
  issue: 9
  year: 2010
  ident: 10.1016/j.eswa.2017.04.023_bib0020
  article-title: A multilevel image thresholding using the honey bee mating optimization
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2009.10.018
– start-page: 1
  year: 2014
  ident: 10.1016/j.eswa.2017.04.023_bib0046
  article-title: Cuckoo search and firefly algorithm: Overview and analysis
– volume: 38
  start-page: 15489
  issue: 12
  year: 2011
  ident: 10.1016/j.eswa.2017.04.023_bib0041
  article-title: An adaptive bacterial foraging algorithm for fuzzy entropy based image segmentation
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.06.011
– volume: 27
  start-page: 57
  year: 2014
  ident: 10.1016/j.eswa.2017.04.023_bib0013
  article-title: A new genetic algorithm for solving optimization problems
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2013.09.013
– volume: Vol. 4(4)
  start-page: 1942
  year: 1995
  ident: 10.1016/j.eswa.2017.04.023_bib0040
  article-title: Particle swarm optimization
– volume: 13
  start-page: 841
  issue: 4
  year: 2011
  ident: 10.1016/j.eswa.2017.04.023_bib0049
  article-title: Optimal multi-level thresholding based on maximum tsallis entropy via an artificial bee colony approach
  publication-title: Entropy
  doi: 10.3390/e13040841
– volume: 5
  start-page: 11
  issue: 1
  year: 2016
  ident: 10.1016/j.eswa.2017.04.023_bib0022
  article-title: Study of the economic dispatch problem on IEEE 30-bus system using whale optimization algorithm
  publication-title: International Journal of Engineering Technology and Sciences (IJETS)
  doi: 10.15282/ijets.5.2016.1.2.1041
– volume: 41
  start-page: 3538
  issue: 7
  year: 2014
  ident: 10.1016/j.eswa.2017.04.023_bib0008
  article-title: Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using kapurs entropy
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.10.059
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.eswa.2017.04.023_bib0044
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.585893
– volume: 29
  start-page: 273
  issue: 3
  year: 1985
  ident: 10.1016/j.eswa.2017.04.023_bib0023
  article-title: A new method for gray-level picture thresholding using the entropy of the histogram
  publication-title: Computer vision, graphics, and image processing
  doi: 10.1016/0734-189X(85)90125-2
– volume: 38
  start-page: 13785
  issue: 11
  year: 2011
  ident: 10.1016/j.eswa.2017.04.023_bib0021
  article-title: Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation
  publication-title: Expert Systems with Applications
– volume: 184
  start-page: 503
  year: 2007
  ident: 10.1016/j.eswa.2017.04.023_bib0048
  article-title: Multilevel minimum cross entropy threshold selection based on particle swarm optimization
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2006.06.057
– volume: 61
  start-page: 2745
  issue: 5
  year: 2013
  ident: 10.1016/j.eswa.2017.04.023_bib0006
  article-title: The wind driven optimization technique and its application in electromagnetics
  publication-title: IEEE Transactions on Antennas and Propagation
  doi: 10.1109/TAP.2013.2238654
– volume: 40
  start-page: 6374
  issue: 16
  year: 2013
  ident: 10.1016/j.eswa.2017.04.023_bib0011
  article-title: A swarm optimization algorithm inspired in the behavior of the social-spider
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.05.041
– volume: 63
  start-page: 90
  issue: 2
  year: 2013
  ident: 10.1016/j.eswa.2017.04.023_bib0017
  article-title: Integrative approaches to the study of baleen whale diving behavior, feeding performance, and foraging ecology
  publication-title: BioScience
  doi: 10.1525/bio.2013.63.2.5
– volume: 42
  start-page: 1573
  issue: 3
  year: 2015
  ident: 10.1016/j.eswa.2017.04.023_bib0007
  article-title: Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using kapur’s, otsu and tsallis functions
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.09.049
– start-page: 301
  year: 2014
  ident: 10.1016/j.eswa.2017.04.023_bib0027
  article-title: Swarm intelligence algorithms for multi-level image thresholding
– volume: 11
  start-page: 16
  year: 2013
  ident: 10.1016/j.eswa.2017.04.023_bib0003
  article-title: Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2013.02.001
– start-page: 279
  year: 2015
  ident: 10.1016/j.eswa.2017.04.023_bib0014
  article-title: A study of a firefly meta-heuristics for multithreshold image segmentation
– start-page: 654
  year: 2007
  ident: 10.1016/j.eswa.2017.04.023_bib0018
  article-title: Multilevel thresholding method for image segmentation based on an adaptive particle swarm optimization algorithm
– volume: 9
  start-page: 62
  issue: 1
  year: 1979
  ident: 10.1016/j.eswa.2017.04.023_bib0036
  article-title: A threshold selection method from gray level histograms
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
  doi: 10.1109/TSMC.1979.4310076
– volume: 96
  start-page: 120
  year: 2016
  ident: 10.1016/j.eswa.2017.04.023_bib0030
  article-title: Sca: A sine cosine algorithm for solving optimization problems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.12.022
– start-page: 169
  year: 2009
  ident: 10.1016/j.eswa.2017.04.023_bib0045
  article-title: Firefly algorithms for multimodal optimization
– volume: 65
  start-page: 221
  year: 2016
  ident: 10.1016/j.eswa.2017.04.023_bib0032
  article-title: A hybrid differential evolution for optimal multilevel image thresholding
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.08.046
– start-page: 491
  year: 2016
  ident: 10.1016/j.eswa.2017.04.023_bib0038
  article-title: Optimal active and reactive power dispatch problem solution using moth-flame optimizer algorithm
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.eswa.2017.04.023_bib0031
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 39
  start-page: 12407
  issue: 16
  year: 2012
  ident: 10.1016/j.eswa.2017.04.023_bib0016
  article-title: An efficient method for segmentation of images based on fractional calculus and natural selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.04.078
– volume: 5
  issue: 1
  year: 2016
  ident: 10.1016/j.eswa.2017.04.023_bib0033
  article-title: Particle swarm optimization (PSO) based k-means image segmentation algorithm
  publication-title: International Journal of Scientific Research
– start-page: 1
  year: 2016
  ident: 10.1016/j.eswa.2017.04.023_bib0024
  article-title: Enhanced whale optimization algorithm for sizing optimization of skeletal structures
  publication-title: Mechanics Based Design of Structures and Machines
– volume: 27
  start-page: 155
  issue: 1
  year: 2010
  ident: 10.1016/j.eswa.2017.04.023_bib0025
  article-title: An improved ant colony optimization for constrained engineering design problems
  publication-title: Engineering Computations
  doi: 10.1108/02644401011008577
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 10.1016/j.eswa.2017.04.023_bib0043
  article-title: Image quality assessment: From error measurement to structural similarity
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2003.819861
– volume: 2016
  year: 2016
  ident: 10.1016/j.eswa.2017.04.023_bib0009
  article-title: Multilevel image segmentation based on an improved firefly algorithm
  publication-title: Mathematical Problems in Engineering
– volume: 109
  start-page: 163
  issue: 2
  year: 2008
  ident: 10.1016/j.eswa.2017.04.023_bib0019
  article-title: A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation
  publication-title: Computer Vision and Image Understanding
  doi: 10.1016/j.cviu.2007.09.001
– volume: 13
  start-page: 3066
  issue: 6
  year: 2013
  ident: 10.1016/j.eswa.2017.04.023_bib0004
  article-title: A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2012.03.072
– volume: 45
  start-page: 1166
  issue: 4
  year: 2016
  ident: 10.1016/j.eswa.2017.04.023_bib0026
  article-title: A least squares support vector machine model optimized by moth-flame optimization algorithm for annual power load forecasting
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-016-0810-2
– volume: Vol. 2
  start-page: 249
  year: 2016
  ident: 10.1016/j.eswa.2017.04.023_bib0002
  article-title: Social spider algorithm employed multi-level thresholding segmentation approach
– volume: 2013
  year: 2013
  ident: 10.1016/j.eswa.2017.04.023_bib0035
  article-title: Multilevel thresholding segmentation based on harmony search optimization
  publication-title: Journal of Applied Mathematics
  doi: 10.1155/2013/575414
– volume: 93
  start-page: 139
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2017.04.023_bib0012
  article-title: Fast multilevel thresholding for image segmentation through a multiphase level set method
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2012.07.010
– volume: 55
  start-page: 566
  year: 2016
  ident: 10.1016/j.eswa.2017.04.023_bib0037
  article-title: Social spiders optimization and flower pollination algorithm for multilevel image thresholding: A performance study
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.02.024
– start-page: 1
  year: 2016
  ident: 10.1016/j.eswa.2017.04.023_bib0001
  article-title: Hybrid swarms optimization based image segmentation
SSID ssj0017007
Score 2.6602504
Snippet •Two metaheuristic algorithms (WOA and MFO) are used.•These algorithms are applied to multilevel thresholding image segmentation.•MFO and WOA are better than...
Determining the optimal thresholding for image segmentation has got more attention in recent years since it has many applications. There are several methods...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 242
SubjectTerms Algorithms
Digital imaging
Fitness
Image processing systems
Image segmentation
Moth-Flame Optimization (MFO)
Multilevel
Multilevel thresholding
Optimization
Thresholds
Variance analysis
Whale Optimization Algorithm (WOA)
Title Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation
URI https://dx.doi.org/10.1016/j.eswa.2017.04.023
https://www.proquest.com/docview/1932177757
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG-IXrz4bUSR9ODNTFbart2REAlqwIMSuTXbWj4MDAIz3vzbfd06EknkYLLLltdlee_193tL3wdCt00JpKBD7QH5ww9Kwo0Xw6bzfCOEkVxK7dva4V4_6A7Y05APK6hd1sLYtEqH_QWm52jtnjScNhvL6bTxCsEB0KG9qB2jlFewM2GnGNx_b9I8bPs5UfTbE56VdoUzRY6XWX_Z3kNE5O1Om_QvctqC6Zx7Osfo0AWNuFV81wmqmPQUHZUDGbDbn2do_D4BvMcvAANzV1-JW7PxYjXNJnMcpRr3wDBeB7xgSwpCV5znFs5sEhHOwMJrdzCFp3PAHLw247mrU0rP0aDz8Nbuem6SgpfQkGUejWhsWABWISNN_URGhpqAxwEPSTSKuUlIM_ZHkpkgSiBGkD6XcZxIHYTE-M0RvUB76SI1lwhrpsGsGoCAEmYYkQELEsKNkBwUyUQVkVKFKnFtxu20i5kq88k-lFW7smpXPlOg9iq626xZFk02dkrz0jLql6soYIGd62qlGZXbqGtl41cihODi6p-vvUYH9s7yGeE1tJetPs0NBCpZXM89sY72W4_P3f4P47zoKg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGGDhjSgU8MCGQuPYjt2xqqgKtGUABJuVxO4DtWnVBrHx2zknTiUqwYCUKbGj6M73fXfKPRC6CiSQgm5oD8gfApSEGy8Go_N8I4SRXErt29rhXj_svLD7N_5WQa2yFsamVTrsLzA9R2t3p-6kWZ-Px_UncA6ADu1F7RglCIE2GQ-EjcBuvlZ5Hrb_nCga7gnPLneVM0WSl1l-2uZDROT9TgP6Gzut4XROPu09tOO8RtwsPmwfVUx6gHbLiQzYGeghGr6OAPDxI-DA1BVY4uZkOFuMs9EUR6nGPdCM14ZjsLYKfFecJxdObBYRzkDFS_dnCo-nADp4aYZTV6iUHqGX9u1zq-O5UQpeQhss82hEY8NCUAsZaOonMjLUhDwOeYNEg5ibhASxP5DMhFECToL0uYzjROqwQYwfDOgx2khnqTlBWDMNetWABJQww4gMWZgQboTkIEgmqoiUIlSJ6zNux11MVJlQ9q6s2JUVu_KZArFX0fVqz7zosvHnal5qRv04Kwpo4M99tVKNylnqUlkHlgghuDj952sv0VbnuddV3bv-wxnatk8suRFeQxvZ4sOcg9eSxRf5qfwGUnfpvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Whale+Optimization+Algorithm+and+Moth-Flame+Optimization+for+multilevel+thresholding+image+segmentation&rft.jtitle=Expert+systems+with+applications&rft.au=Aziz%2C+Mohamed+Abd+El&rft.au=Ewees%2C+Ahmed+A.&rft.au=Hassanien%2C+Aboul+Ella&rft.date=2017-10-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=83&rft.spage=242&rft.epage=256&rft_id=info:doi/10.1016%2Fj.eswa.2017.04.023&rft.externalDocID=S0957417417302671
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon