Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation
•Two metaheuristic algorithms (WOA and MFO) are used.•These algorithms are applied to multilevel thresholding image segmentation.•MFO and WOA are better than compared algorithms.•MFO is better than WOA for higher number of thresholds. Determining the optimal thresholding for image segmentation has g...
        Saved in:
      
    
          | Published in | Expert systems with applications Vol. 83; pp. 242 - 256 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Elsevier Ltd
    
        15.10.2017
     Elsevier BV  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0957-4174 1873-6793  | 
| DOI | 10.1016/j.eswa.2017.04.023 | 
Cover
| Abstract | •Two metaheuristic algorithms (WOA and MFO) are used.•These algorithms are applied to multilevel thresholding image segmentation.•MFO and WOA are better than compared algorithms.•MFO is better than WOA for higher number of thresholds.
Determining the optimal thresholding for image segmentation has got more attention in recent years since it has many applications. There are several methods used to find the optimal thresholding values such as Otsu and Kapur based methods. These methods are suitable for bi-level thresholding case and they can be easily extended to the multilevel case, however, the process of determining the optimal thresholds in the case of multilevel thresholding is time-consuming. To avoid this problem, this paper examines the ability of two nature inspired algorithms namely: Whale Optimization Algorithm (WOA) and Moth-Flame Optimization (MFO) to determine the optimal multilevel thresholding for image segmentation. The MFO algorithm is inspired from the natural behavior of moths which have a special navigation style at night since they fly using the moonlight, whereas, the WOA algorithm emulates the natural cooperative behaviors of whales. The candidate solutions in the adapted algorithms were created using the image histogram, and then they were updated based on the characteristics of each algorithm. The solutions are assessed using the Otsu’s fitness function during the optimization operation. The performance of the proposed algorithms has been evaluated using several of benchmark images and has been compared with five different swarm algorithms. The results have been analyzed based on the best fitness values, PSNR, and SSIM measures, as well as time complexity and the ANOVA test. The experimental results showed that the proposed methods outperformed the other swarm algorithms; in addition, the MFO showed better results than WOA, as well as provided a good balance between exploration and exploitation in all images at small and high threshold numbers. | 
    
|---|---|
| AbstractList | Determining the optimal thresholding for image segmentation has got more attention in recent years since it has many applications. There are several methods used to find the optimal thresholding values such as Otsu and Kapur based methods. These methods are suitable for bi-level thresholding case and they can be easily extended to the multilevel case, however, the process of determining the optimal thresholds in the case of multilevel thresholding is time-consuming. To avoid this problem, this paper examines the ability of two nature inspired algorithms namely: Whale Optimization Algorithm (WOA) and Moth-Flame Optimization (MFO) to determine the optimal multilevel thresholding for image segmentation. The MFO algorithm is inspired from the natural behavior of moths which have a special navigation style at night since they fly using the moonlight, whereas, the WOA algorithm emulates the natural cooperative behaviors of whales. The candidate solutions in the adapted algorithms were created using the image histogram, and then they were updated based on the characteristics of each algorithm. The solutions are assessed using the Otsu's fitness function during the optimization operation. The performance of the proposed algorithms has been evaluated using several of benchmark images and has been compared with five different swarm algorithms. The results have been analyzed based on the best fitness values, PSNR, and SSIM measures, as well as time complexity and the ANOVA test. The experimental results showed that the proposed methods outperformed the other swarm algorithms; in addition, the MFO showed better results than WOA, as well as provided a good balance between exploration and exploitation in all images at small and high threshold numbers. •Two metaheuristic algorithms (WOA and MFO) are used.•These algorithms are applied to multilevel thresholding image segmentation.•MFO and WOA are better than compared algorithms.•MFO is better than WOA for higher number of thresholds. Determining the optimal thresholding for image segmentation has got more attention in recent years since it has many applications. There are several methods used to find the optimal thresholding values such as Otsu and Kapur based methods. These methods are suitable for bi-level thresholding case and they can be easily extended to the multilevel case, however, the process of determining the optimal thresholds in the case of multilevel thresholding is time-consuming. To avoid this problem, this paper examines the ability of two nature inspired algorithms namely: Whale Optimization Algorithm (WOA) and Moth-Flame Optimization (MFO) to determine the optimal multilevel thresholding for image segmentation. The MFO algorithm is inspired from the natural behavior of moths which have a special navigation style at night since they fly using the moonlight, whereas, the WOA algorithm emulates the natural cooperative behaviors of whales. The candidate solutions in the adapted algorithms were created using the image histogram, and then they were updated based on the characteristics of each algorithm. The solutions are assessed using the Otsu’s fitness function during the optimization operation. The performance of the proposed algorithms has been evaluated using several of benchmark images and has been compared with five different swarm algorithms. The results have been analyzed based on the best fitness values, PSNR, and SSIM measures, as well as time complexity and the ANOVA test. The experimental results showed that the proposed methods outperformed the other swarm algorithms; in addition, the MFO showed better results than WOA, as well as provided a good balance between exploration and exploitation in all images at small and high threshold numbers.  | 
    
| Author | Ewees, Ahmed A. Hassanien, Aboul Ella Aziz, Mohamed Abd El  | 
    
| Author_xml | – sequence: 1 givenname: Mohamed Abd El surname: Aziz fullname: Aziz, Mohamed Abd El email: abd_el_aziz_m@yahoo.com organization: Department of Mathematics, Faculty of Science, Zagazig University, Egypt – sequence: 2 givenname: Ahmed A. surname: Ewees fullname: Ewees, Ahmed A. email: a.ewees@hotmail.com, ewees@du.edu.eg organization: Department of Computer, Damietta University, Egypt – sequence: 3 givenname: Aboul Ella surname: Hassanien fullname: Hassanien, Aboul Ella email: aboitcairo@gmail.com organization: Faculty of Computers and Information, Cairo University, Egypt  | 
    
| BookMark | eNp9kLFOwzAQhi1UJNrCCzBFYk6w4yROJJaqooBU1AXEaDnOJXHlxMV2i-DpSQlTh063fN_d_f8MTXrTA0K3BEcEk-x-G4H7ElGMCYtwEuGYXqApyRkNM1bQCZriImVhQlhyhWbObfEAYsymqPlohYZgs_OqUz_CK9MHC90Yq3zbBaKvglfj23ClRXdC1cYG3V57peEAOvCtBdcaXam-CVQnGggcNB30_g-_Rpe10A5u_uccva8e35bP4Xrz9LJcrENJi8SHVNASkiyNK1JXFMtcAIUsLbO0IKIuU5AkLnGdJ5AJmZMix2leljKvsoIAjms6R3fj3p01n3twnm_N3vbDSU4KGhPGWMoGKh8paY1zFmou1fint0JpTjA_1sq3_FgrP9bKccKHWgc1PlF3dohrv89LD6MEQ_SDAsudVNBLqJQF6Xll1Dn9F9djlf4 | 
    
| CitedBy_id | crossref_primary_10_1002_tee_23410 crossref_primary_10_1016_j_apm_2025_115930 crossref_primary_10_3390_pr9122276 crossref_primary_10_1016_j_eswa_2019_01_047 crossref_primary_10_1002_cpe_4872 crossref_primary_10_1109_ACCESS_2020_3005452 crossref_primary_10_1016_j_engappai_2020_104105 crossref_primary_10_1016_j_eswa_2018_06_023 crossref_primary_10_1080_15325008_2023_2243940 crossref_primary_10_1007_s11042_022_13288_y crossref_primary_10_1016_j_compag_2019_02_002 crossref_primary_10_3390_biomimetics8050400 crossref_primary_10_1080_23080477_2023_2225957 crossref_primary_10_1080_0952813X_2022_2040598 crossref_primary_10_1007_s11042_020_10313_w crossref_primary_10_1007_s00500_021_06441_6 crossref_primary_10_1063_5_0181395 crossref_primary_10_1109_ACCESS_2019_2905009 crossref_primary_10_4018_IJSIR_2020100106 crossref_primary_10_1371_journal_pone_0295643 crossref_primary_10_1016_j_eswa_2021_114841 crossref_primary_10_1002_ima_22889 crossref_primary_10_1007_s00521_021_05771_8 crossref_primary_10_1109_ACCESS_2019_2896673 crossref_primary_10_1007_s11042_020_10237_5 crossref_primary_10_1016_j_scs_2023_104908 crossref_primary_10_1007_s10489_020_01840_y crossref_primary_10_1117_1_JEI_27_6_063008 crossref_primary_10_1016_j_dajour_2023_100223 crossref_primary_10_3390_app142311414 crossref_primary_10_1016_j_ref_2020_06_008 crossref_primary_10_1002_2050_7038_12159 crossref_primary_10_3390_math12050636 crossref_primary_10_1109_ACCESS_2023_3291146 crossref_primary_10_1007_s00366_019_00917_8 crossref_primary_10_3390_pr10091694 crossref_primary_10_17780_ksujes_1414212 crossref_primary_10_1038_s41598_023_51135_8 crossref_primary_10_3390_healthcare10040677 crossref_primary_10_1371_journal_pone_0271692 crossref_primary_10_1016_j_physa_2019_123094 crossref_primary_10_1007_s00500_020_05130_0 crossref_primary_10_1016_j_engappai_2021_104410 crossref_primary_10_1016_j_yofte_2019_101965 crossref_primary_10_1109_JSEN_2023_3269594 crossref_primary_10_1155_2021_9931521 crossref_primary_10_1007_s11042_020_10467_7 crossref_primary_10_1088_1757_899X_623_1_012013 crossref_primary_10_1155_2019_1510257 crossref_primary_10_3389_fenrg_2021_676305 crossref_primary_10_1007_s12205_020_2096_5 crossref_primary_10_3390_rs11091046 crossref_primary_10_1016_j_aej_2024_02_012 crossref_primary_10_1177_00202940231180622 crossref_primary_10_1016_j_eswa_2020_114418 crossref_primary_10_1155_2021_8878686 crossref_primary_10_1007_s11042_019_08117_8 crossref_primary_10_1016_j_rico_2023_100276 crossref_primary_10_1007_s00500_023_08135_7 crossref_primary_10_1007_s12065_020_00539_w crossref_primary_10_1016_j_eswa_2020_113201 crossref_primary_10_1007_s11831_019_09334_y crossref_primary_10_1007_s00521_020_04989_2 crossref_primary_10_3233_JIFS_233286 crossref_primary_10_1007_s11042_023_16494_4 crossref_primary_10_3390_sym10060210 crossref_primary_10_1007_s11227_021_04281_7 crossref_primary_10_1007_s00521_020_04823_9 crossref_primary_10_1515_jisys_2017_0641 crossref_primary_10_1016_j_future_2020_08_019 crossref_primary_10_1016_j_eswa_2021_114766 crossref_primary_10_1109_ACCESS_2020_2966665 crossref_primary_10_1007_s00521_019_04570_6 crossref_primary_10_1007_s00530_024_01281_4 crossref_primary_10_1038_s41377_024_01734_5 crossref_primary_10_1007_s41348_024_00953_7 crossref_primary_10_1007_s10479_019_03407_8 crossref_primary_10_17671_gazibtd_1172909 crossref_primary_10_1016_j_displa_2024_102727 crossref_primary_10_1155_2020_8810759 crossref_primary_10_3390_s24072270 crossref_primary_10_1007_s00521_021_06747_4 crossref_primary_10_1007_s10462_022_10157_w crossref_primary_10_1080_21642583_2022_2140723 crossref_primary_10_1109_TMAG_2021_3086724 crossref_primary_10_1109_ACCESS_2021_3060749 crossref_primary_10_3390_jmse12081313 crossref_primary_10_1016_j_enconman_2020_112764 crossref_primary_10_1016_j_jocs_2024_102323 crossref_primary_10_1007_s42235_023_00332_2 crossref_primary_10_3390_sym13010048 crossref_primary_10_1007_s10586_021_03319_y crossref_primary_10_1007_s42235_023_00367_5 crossref_primary_10_1515_med_2020_0006 crossref_primary_10_1007_s11042_018_5840_9 crossref_primary_10_1145_3380743 crossref_primary_10_1002_cpe_5949 crossref_primary_10_1088_1361_6501_abf8ed crossref_primary_10_1109_ACCESS_2020_2987689 crossref_primary_10_1109_ACCESS_2020_2968943 crossref_primary_10_1007_s00521_021_06858_y crossref_primary_10_1016_j_eswa_2020_113233 crossref_primary_10_1007_s11227_024_06080_2 crossref_primary_10_1016_j_knosys_2022_108341 crossref_primary_10_1063_5_0048961 crossref_primary_10_1002_dac_4617 crossref_primary_10_1007_s13042_024_02146_y crossref_primary_10_1007_s13369_024_08952_4 crossref_primary_10_1016_j_swevo_2019_03_004 crossref_primary_10_3390_s18113878 crossref_primary_10_1016_j_asoc_2021_108039 crossref_primary_10_1016_j_tsep_2023_102315 crossref_primary_10_1016_j_ins_2024_120711 crossref_primary_10_3390_e23121599 crossref_primary_10_1080_23311916_2020_1863304 crossref_primary_10_1007_s00500_021_05611_w crossref_primary_10_3390_en11030535 crossref_primary_10_32604_cmc_2021_015586 crossref_primary_10_3390_electronics12122698 crossref_primary_10_1007_s00521_017_3131_4 crossref_primary_10_1016_j_compstruct_2023_116764 crossref_primary_10_1016_j_knosys_2022_108172 crossref_primary_10_1016_j_buildenv_2022_108954 crossref_primary_10_1109_ACCESS_2020_2971249 crossref_primary_10_3390_e22030328 crossref_primary_10_1155_2022_9910982 crossref_primary_10_1007_s00521_020_04849_z crossref_primary_10_1007_s12065_019_00238_1 crossref_primary_10_1155_2021_9962565 crossref_primary_10_4018_IJSIR_300370 crossref_primary_10_1007_s00521_019_04210_z crossref_primary_10_1016_j_knosys_2020_105570 crossref_primary_10_1016_j_eswa_2019_03_043 crossref_primary_10_1007_s00521_022_08167_4 crossref_primary_10_4018_IJAMC_290532 crossref_primary_10_1038_s41598_024_83788_4 crossref_primary_10_1155_2021_5537998 crossref_primary_10_1016_j_knosys_2019_02_010 crossref_primary_10_1007_s10462_018_09676_2 crossref_primary_10_1109_ACCESS_2019_2903345 crossref_primary_10_1007_s10586_024_04601_5 crossref_primary_10_1155_2022_9009406 crossref_primary_10_1007_s00034_020_01602_8 crossref_primary_10_1038_s41598_024_71448_6 crossref_primary_10_1016_j_asoc_2019_105522 crossref_primary_10_1115_1_4044767 crossref_primary_10_1016_j_compbiomed_2024_109011 crossref_primary_10_1155_2021_6663773 crossref_primary_10_1080_19942060_2024_2443128 crossref_primary_10_1016_j_jksuci_2018_04_007 crossref_primary_10_1515_mt_2020_0039 crossref_primary_10_1007_s11276_022_03048_z crossref_primary_10_1007_s11227_021_03706_7 crossref_primary_10_1007_s10586_024_04525_0 crossref_primary_10_1002_jnm_2675 crossref_primary_10_1080_0305215X_2019_1624740 crossref_primary_10_1002_ima_22916 crossref_primary_10_1007_s41870_019_00328_4 crossref_primary_10_1007_s40815_022_01265_4 crossref_primary_10_26634_jmt_5_2_15631 crossref_primary_10_1002_dac_5483 crossref_primary_10_1007_s00500_023_08416_1 crossref_primary_10_3390_e21040398 crossref_primary_10_1371_journal_pone_0279438 crossref_primary_10_1016_j_compbiomed_2022_106404 crossref_primary_10_1016_j_eswa_2023_121303 crossref_primary_10_1007_s00521_019_04015_0 crossref_primary_10_4018_IJAMC_2020100104 crossref_primary_10_1007_s00500_021_05889_w crossref_primary_10_1007_s11227_020_03566_7 crossref_primary_10_1049_iet_com_2019_0359 crossref_primary_10_1007_s10489_023_04512_9 crossref_primary_10_1016_j_asoc_2019_03_026 crossref_primary_10_1016_j_enconman_2018_08_053 crossref_primary_10_1038_s41598_023_47837_8 crossref_primary_10_2174_1574893617666220920102401 crossref_primary_10_1016_j_asoc_2020_106418 crossref_primary_10_1016_j_eswa_2021_115106 crossref_primary_10_3390_sym13050757 crossref_primary_10_1109_TNSE_2022_3153095 crossref_primary_10_1007_s11042_020_09664_1 crossref_primary_10_1109_ACCESS_2018_2879965 crossref_primary_10_1155_2020_7595174 crossref_primary_10_1007_s11042_018_5637_x crossref_primary_10_1007_s11042_022_14024_2 crossref_primary_10_1109_ACCESS_2021_3052149 crossref_primary_10_1016_j_eswa_2019_03_002 crossref_primary_10_1016_j_asoc_2020_106642 crossref_primary_10_1016_j_asoc_2020_106526 crossref_primary_10_1109_ACCESS_2019_2908718 crossref_primary_10_1155_2023_8160121 crossref_primary_10_1007_s12652_020_01777_7 crossref_primary_10_1007_s11042_022_12168_9 crossref_primary_10_1109_ACCESS_2020_3020895 crossref_primary_10_1109_ACCESS_2022_3145905 crossref_primary_10_1016_j_cageo_2024_105667 crossref_primary_10_1108_EC_07_2017_0264 crossref_primary_10_1007_s11042_022_12001_3 crossref_primary_10_1007_s00521_018_3764_y crossref_primary_10_1007_s00366_020_00971_7 crossref_primary_10_1002_sam_11444 crossref_primary_10_1016_j_knosys_2020_105889 crossref_primary_10_1155_2022_5245622 crossref_primary_10_1007_s41870_024_02167_4 crossref_primary_10_1016_j_jsv_2019_114931 crossref_primary_10_1007_s11042_022_12330_3 crossref_primary_10_1007_s13369_021_06042_3 crossref_primary_10_1051_matecconf_201713900157 crossref_primary_10_1007_s11760_019_01585_3 crossref_primary_10_1088_1742_6596_1982_1_012076 crossref_primary_10_1016_j_asoc_2020_106638 crossref_primary_10_1016_j_matcom_2019_06_017 crossref_primary_10_3390_app10113667 crossref_primary_10_3390_pr10050858 crossref_primary_10_3233_JIFS_236930 crossref_primary_10_1016_j_asoc_2019_105577 crossref_primary_10_3390_rs16101768 crossref_primary_10_1016_j_isatra_2022_02_023 crossref_primary_10_3390_electronics10030312 crossref_primary_10_3390_math7080688 crossref_primary_10_1088_1402_4896_ad1377 crossref_primary_10_1007_s10586_020_03162_7 crossref_primary_10_1016_j_eswa_2021_115436 crossref_primary_10_3390_a12090182 crossref_primary_10_1007_s00521_022_07204_6 crossref_primary_10_1016_j_eswa_2023_122316 crossref_primary_10_1117_1_JEI_31_5_051420 crossref_primary_10_1109_ACCESS_2019_2909945 crossref_primary_10_1007_s00500_021_05961_5 crossref_primary_10_1002_spe_2941 crossref_primary_10_3934_mbe_2021236 crossref_primary_10_47836_pjst_28_4_14 crossref_primary_10_1109_ACCESS_2020_2970438 crossref_primary_10_1080_13588265_2022_2074705 crossref_primary_10_1016_j_cnsns_2020_105256 crossref_primary_10_3390_pr9071155 crossref_primary_10_1016_j_ins_2019_04_022 crossref_primary_10_7717_peerj_cs_2121 crossref_primary_10_1016_j_aei_2019_02_006 crossref_primary_10_1142_S0219467822500127 crossref_primary_10_1109_ACCESS_2019_2891673 crossref_primary_10_3233_JIFS_210936 crossref_primary_10_1109_TCBB_2021_3104734 crossref_primary_10_1016_j_asoc_2019_105925 crossref_primary_10_1007_s10489_022_04064_4 crossref_primary_10_1016_j_csite_2024_104028 crossref_primary_10_1016_j_engappai_2019_103370 crossref_primary_10_1007_s12530_023_09566_1 crossref_primary_10_1109_ACCESS_2020_3012686 crossref_primary_10_1016_j_measurement_2019_106920 crossref_primary_10_1007_s13369_021_05470_5 crossref_primary_10_1016_j_egyr_2022_09_025 crossref_primary_10_4018_IJISMD_306644 crossref_primary_10_1016_j_engappai_2019_103457 crossref_primary_10_1016_j_eswa_2021_115003 crossref_primary_10_1007_s10489_018_1362_4 crossref_primary_10_1016_j_eswa_2021_116145 crossref_primary_10_4018_IJAMC_304073 crossref_primary_10_1007_s00521_020_05013_3 crossref_primary_10_1007_s11235_020_00654_0 crossref_primary_10_1007_s00521_024_09524_1 crossref_primary_10_1007_s13198_019_00801_0 crossref_primary_10_1007_s13198_024_02422_8 crossref_primary_10_1007_s40031_022_00740_8 crossref_primary_10_1155_2021_6635462 crossref_primary_10_1093_bfgp_elac028 crossref_primary_10_1007_s13369_020_04434_5 crossref_primary_10_1016_j_asoc_2019_105937 crossref_primary_10_3390_diagnostics13081422 crossref_primary_10_1007_s13748_024_00319_y crossref_primary_10_1080_15567036_2021_1943068 crossref_primary_10_1007_s00357_018_9297_3 crossref_primary_10_1016_j_compeleceng_2024_109569 crossref_primary_10_3934_mbe_2021155 crossref_primary_10_1134_S1054661822010060 crossref_primary_10_1016_j_solener_2018_10_050 crossref_primary_10_1002_int_22658 crossref_primary_10_29130_dubited_389368 crossref_primary_10_1007_s13369_019_03874_y crossref_primary_10_4018_IJISMD_2019070105 crossref_primary_10_1155_2020_8834162 crossref_primary_10_3390_rs11121421 crossref_primary_10_3390_e21030318 crossref_primary_10_1007_s11042_023_14637_1 crossref_primary_10_1016_j_eswa_2018_10_050 crossref_primary_10_1016_j_asoc_2020_106367 crossref_primary_10_1007_s11831_024_10093_8 crossref_primary_10_1016_j_infrared_2019_03_010 crossref_primary_10_1002_oca_2790 crossref_primary_10_1109_ACCESS_2019_2891632 crossref_primary_10_3390_en16010232 crossref_primary_10_1109_ACCESS_2020_2993580 crossref_primary_10_1016_j_asej_2021_01_014 crossref_primary_10_1007_s11042_023_16300_1 crossref_primary_10_1016_j_eswax_2020_100032 crossref_primary_10_1109_ACCESS_2019_2904511 crossref_primary_10_3390_sym11050716 crossref_primary_10_1007_s11042_020_09306_6 crossref_primary_10_1016_j_asoc_2019_105723 crossref_primary_10_1016_j_jclepro_2019_119468 crossref_primary_10_1109_ACCESS_2018_2884130 crossref_primary_10_3390_math12020262 crossref_primary_10_1155_2019_5982410 crossref_primary_10_1016_j_eswa_2019_113018 crossref_primary_10_1016_j_eswa_2021_115286 crossref_primary_10_1109_ACCESS_2019_2941918 crossref_primary_10_1016_j_jestch_2021_03_011 crossref_primary_10_1109_ACCESS_2020_3046651 crossref_primary_10_1007_s11277_022_09586_1 crossref_primary_10_1016_j_artmed_2019_101756 crossref_primary_10_1016_j_eswa_2018_04_028 crossref_primary_10_1016_j_jclepro_2021_127672 crossref_primary_10_1016_j_joim_2021_08_001 crossref_primary_10_3390_app11136222 crossref_primary_10_1007_s11042_018_5815_x crossref_primary_10_1109_ACCESS_2019_2959325 crossref_primary_10_1007_s00603_023_03364_6 crossref_primary_10_1016_j_matcom_2021_07_010 crossref_primary_10_1007_s11831_022_09801_z crossref_primary_10_37394_232016_2023_18_15 crossref_primary_10_1007_s11053_021_09913_6 crossref_primary_10_3390_math13020256 crossref_primary_10_1016_j_knosys_2022_108610 crossref_primary_10_1109_ACCESS_2019_2900985 crossref_primary_10_1038_s41598_023_36066_8 crossref_primary_10_1007_s11042_019_08138_3 crossref_primary_10_1007_s12652_021_03001_6 crossref_primary_10_1111_jmi_13105 crossref_primary_10_1016_j_cie_2019_106040 crossref_primary_10_1016_j_asoc_2020_106063 crossref_primary_10_1016_j_compbiomed_2022_106075 crossref_primary_10_1142_S0219467824500049 crossref_primary_10_2139_ssrn_4188471 crossref_primary_10_1080_19393555_2020_1825882 crossref_primary_10_1016_j_iswa_2024_200445 crossref_primary_10_4018_IJSIR_2020040103 crossref_primary_10_1016_j_knosys_2018_12_008 crossref_primary_10_1186_s12880_024_01361_x crossref_primary_10_1007_s00521_021_06273_3 crossref_primary_10_3390_math10244776 crossref_primary_10_1007_s00367_019_00608_9 crossref_primary_10_1109_ACCESS_2020_2989445 crossref_primary_10_1109_ACCESS_2020_3007928 crossref_primary_10_3390_math11051136 crossref_primary_10_1016_j_eswa_2020_113428 crossref_primary_10_1016_j_jcde_2019_02_002 crossref_primary_10_1016_j_buildenv_2019_106413 crossref_primary_10_1007_s00500_023_08202_z crossref_primary_10_1007_s00521_020_05368_7 crossref_primary_10_1109_ACCESS_2021_3108447 crossref_primary_10_1007_s10462_021_10052_w crossref_primary_10_3390_sym14091923 crossref_primary_10_1016_j_eswa_2018_08_045 crossref_primary_10_1109_LRA_2023_3241752 crossref_primary_10_3390_math12071049 crossref_primary_10_1016_j_jclepro_2019_119082 crossref_primary_10_1007_s11760_022_02375_0 crossref_primary_10_1002_ima_22468 crossref_primary_10_1016_j_eswa_2019_07_037 crossref_primary_10_1007_s00521_022_07718_z crossref_primary_10_1016_j_aej_2021_02_031 crossref_primary_10_1016_j_apenergy_2022_119033 crossref_primary_10_1016_j_asoc_2020_106157 crossref_primary_10_1109_ACCESS_2020_2990893 crossref_primary_10_1007_s10462_021_10086_0 crossref_primary_10_1007_s12065_024_01001_x crossref_primary_10_1016_j_eswa_2020_113844 crossref_primary_10_3390_electronics8101071 crossref_primary_10_1002_jnm_3019 crossref_primary_10_3390_rs11091134 crossref_primary_10_1007_s00500_021_06623_2 crossref_primary_10_1016_j_eswa_2020_113719 crossref_primary_10_1007_s41870_023_01606_y crossref_primary_10_1155_2022_4587880 crossref_primary_10_1007_s00521_020_04820_y crossref_primary_10_1016_j_eswa_2020_113617 crossref_primary_10_1142_S0219622021500425 crossref_primary_10_1155_2021_5289038 crossref_primary_10_3390_biomimetics10010047 crossref_primary_10_1016_j_ijleo_2023_170997 crossref_primary_10_3390_pr11020534 crossref_primary_10_1007_s13198_024_02669_1 crossref_primary_10_1186_s13638_021_02013_2 crossref_primary_10_1007_s00500_019_04315_6 crossref_primary_10_1093_jcde_qwaf014 crossref_primary_10_3233_JIFS_191747 crossref_primary_10_3390_math7050384 crossref_primary_10_3390_en14041008 crossref_primary_10_1007_s00202_024_02573_8 crossref_primary_10_1007_s10462_020_09933_3 crossref_primary_10_1016_j_bspc_2024_106631 crossref_primary_10_1109_ACCESS_2020_3005717 crossref_primary_10_1007_s10489_020_01722_3 crossref_primary_10_18517_ijods_1_2_82_98_2020 crossref_primary_10_1007_s40747_020_00200_0 crossref_primary_10_1016_j_jhydrol_2020_124989 crossref_primary_10_1093_jcde_qwad053 crossref_primary_10_1111_exsy_12717 crossref_primary_10_1016_j_eswa_2021_114901 crossref_primary_10_1088_1361_6501_ab0352 crossref_primary_10_1016_j_asej_2019_09_010 crossref_primary_10_3390_e23121637  | 
    
| Cites_doi | 10.1016/j.knosys.2015.07.006 10.1016/j.jocs.2013.07.001 10.1016/j.amc.2009.10.018 10.1016/j.eswa.2011.06.011 10.1016/j.engappai.2013.09.013 10.3390/e13040841 10.15282/ijets.5.2016.1.2.1041 10.1016/j.eswa.2013.10.059 10.1109/4235.585893 10.1016/0734-189X(85)90125-2 10.1016/j.amc.2006.06.057 10.1109/TAP.2013.2238654 10.1016/j.eswa.2013.05.041 10.1525/bio.2013.63.2.5 10.1016/j.eswa.2014.09.049 10.1016/j.swevo.2013.02.001 10.1109/TSMC.1979.4310076 10.1016/j.knosys.2015.12.022 10.1016/j.eswa.2016.08.046 10.1016/j.advengsoft.2016.01.008 10.1016/j.eswa.2012.04.078 10.1108/02644401011008577 10.1109/TIP.2003.819861 10.1016/j.cviu.2007.09.001 10.1016/j.asoc.2012.03.072 10.1007/s10489-016-0810-2 10.1155/2013/575414 10.1016/j.sigpro.2012.07.010 10.1016/j.eswa.2016.02.024  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2017 Elsevier Ltd Copyright Elsevier BV Oct 15, 2017  | 
    
| Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier BV Oct 15, 2017  | 
    
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1016/j.eswa.2017.04.023 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1873-6793 | 
    
| EndPage | 256 | 
    
| ExternalDocumentID | 10_1016_j_eswa_2017_04_023 S0957417417302671  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD AFXIZ AGCQF AGRNS JQ2 L7M L~C L~D SSH  | 
    
| ID | FETCH-LOGICAL-c394t-3a3be4652d1fd30c8ae3e65b6591afb5ec12b0f84e6ac8198058bbc8d691e02f3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0957-4174 | 
    
| IngestDate | Fri Jul 25 02:29:06 EDT 2025 Sat Oct 25 05:14:11 EDT 2025 Thu Apr 24 23:10:24 EDT 2025 Fri Feb 23 02:39:58 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Image segmentation Multilevel thresholding Moth-Flame Optimization (MFO) Whale Optimization Algorithm (WOA)  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c394t-3a3be4652d1fd30c8ae3e65b6591afb5ec12b0f84e6ac8198058bbc8d691e02f3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 1932177757 | 
    
| PQPubID | 2045477 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | proquest_journals_1932177757 crossref_citationtrail_10_1016_j_eswa_2017_04_023 crossref_primary_10_1016_j_eswa_2017_04_023 elsevier_sciencedirect_doi_10_1016_j_eswa_2017_04_023  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2017-10-15 | 
    
| PublicationDateYYYYMMDD | 2017-10-15 | 
    
| PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-15 day: 15  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | Expert systems with applications | 
    
| PublicationYear | 2017 | 
    
| Publisher | Elsevier Ltd Elsevier BV  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV  | 
    
| References | Touma (bib0022) 2016; 5 Erdmann, Wachs-Lopes, Gallão, Ribeiro, Rodrigues (bib0014) 2015 Horng (bib0020) 2010; 215 Otsu (bib0036) 1979; 9 Parmar, Pandya, Bhoye, Trivedi, Jangir, Ladumor (bib0038) 2016 Ghamisi, Couceiro, Benediktsson, Ferreira (bib0016) 2012; 39 Elsayed, Sarker, Essam (bib0013) 2014; 27 Hammouche, Diaf, Siarry (bib0019) 2008; 109 Martin, Fowlkes, Tal, Malik (bib0028) 2001; Vol. 2 Ye, Hu, Wang, Chen (bib0047) 2011 Kaveh, Ghazaan (bib0024) 2016 Pruthi, Gupta (bib0039) 2016 Yang (bib0046) 2014 Horng (bib0021) 2011; 38 Bhandari, Kumar, Singh (bib0007) 2015; 42 Mirjalili, Lewis (bib0031) 2016; 95 Kapur, Sahoo, Wong (bib0023) 1985; 29 Cherukuri, Rayapudi (bib0010) 2016; 5 Goldbogen, Friedlaender, Calambokidis, McKenna, Simon, Nowacek (bib0017) 2013; 63 Bayraktar, Komurcu, Bossard, Werner (bib0006) 2013; 61 Fayad, Hatt, Visvikis (bib0015) 2015; 56 Bhandari, Singh, Kumar, Singh (bib0008) 2014; 41 Ouadfel, Taleb-Ahmed (bib0037) 2016; 55 Zhang, Wu (bib0049) 2011; 13 Mirjalili (bib0029) 2015; 89 Oliva, Cuevas, Pajares, Zaldivar, Perez-Cisneros (bib0035) 2013; 2013 Sanyal, Chatterjee, Munshi (bib0041) 2011; 38 Chen, Zhou, Zhang, Dai, Chao, Shi (bib0009) 2016; 2016 Vikas, Nanda (bib0034) 2016 Dirami, Hammouche, Diaf, Siarry (bib0012) 2013; 93 Mirjalili (bib0030) 2016; 96 Akay (bib0004) 2013; 13 Li, Li, Liu (bib0026) 2016; 45 Kennedy, Eberhart (bib0040) 1995; Vol. 4(4) Agrawal, Panda, Bhuyan, Panigrahi (bib0003) 2013; 11 Agarwal, Singh, Kumar, Bhattacharya (bib0002) 2016; Vol. 2 Mlakar, Potočnik, Brest (bib0032) 2016; 65 Yin (bib0048) 2007; 184 Marciniak, Kowal, Filipczuk, Korbicz (bib0027) 2014 Wang, Bovik, Sheikh, Simoncelli (bib0043) 2004; 13 Cuevas, Cienfuegos, ZaldíVar, PéRez-Cisneros (bib0011) 2013; 40 Kaveh, Talatahari (bib0025) 2010; 27 Sarkar, Nayan, Kundu, Das, Chaudhuri (bib0042) 2013 Abd El-Aziz, Ewees, Hassanien (bib0001) 2016 Bakhshali, Shamsi (bib0005) 2014; 5 Naik, Gopal (bib0033) 2016; 5 Yang (bib0045) 2009 Guo, Li (bib0018) 2007 Wolpert, Macready (bib0044) 1997; 1 Wang (10.1016/j.eswa.2017.04.023_bib0043) 2004; 13 Vikas (10.1016/j.eswa.2017.04.023_bib0034) 2016 Chen (10.1016/j.eswa.2017.04.023_bib0009) 2016; 2016 Yang (10.1016/j.eswa.2017.04.023_bib0046) 2014 Goldbogen (10.1016/j.eswa.2017.04.023_bib0017) 2013; 63 Yang (10.1016/j.eswa.2017.04.023_bib0045) 2009 Naik (10.1016/j.eswa.2017.04.023_bib0033) 2016; 5 Abd El-Aziz (10.1016/j.eswa.2017.04.023_bib0001) 2016 Zhang (10.1016/j.eswa.2017.04.023_bib0049) 2011; 13 Kennedy (10.1016/j.eswa.2017.04.023_bib0040) 1995; Vol. 4(4) Cuevas (10.1016/j.eswa.2017.04.023_bib0011) 2013; 40 Horng (10.1016/j.eswa.2017.04.023_bib0021) 2011; 38 Ghamisi (10.1016/j.eswa.2017.04.023_bib0016) 2012; 39 Sanyal (10.1016/j.eswa.2017.04.023_bib0041) 2011; 38 Sarkar (10.1016/j.eswa.2017.04.023_bib0042) 2013 Agarwal (10.1016/j.eswa.2017.04.023_bib0002) 2016; Vol. 2 Parmar (10.1016/j.eswa.2017.04.023_bib0038) 2016 Wolpert (10.1016/j.eswa.2017.04.023_bib0044) 1997; 1 Bhandari (10.1016/j.eswa.2017.04.023_bib0007) 2015; 42 Bhandari (10.1016/j.eswa.2017.04.023_bib0008) 2014; 41 Touma (10.1016/j.eswa.2017.04.023_bib0022) 2016; 5 Mirjalili (10.1016/j.eswa.2017.04.023_bib0030) 2016; 96 Bakhshali (10.1016/j.eswa.2017.04.023_bib0005) 2014; 5 Mirjalili (10.1016/j.eswa.2017.04.023_bib0029) 2015; 89 Bayraktar (10.1016/j.eswa.2017.04.023_bib0006) 2013; 61 Martin (10.1016/j.eswa.2017.04.023_bib0028) 2001; Vol. 2 Fayad (10.1016/j.eswa.2017.04.023_bib0015) 2015; 56 Dirami (10.1016/j.eswa.2017.04.023_bib0012) 2013; 93 Akay (10.1016/j.eswa.2017.04.023_bib0004) 2013; 13 Li (10.1016/j.eswa.2017.04.023_bib0026) 2016; 45 Mlakar (10.1016/j.eswa.2017.04.023_bib0032) 2016; 65 Mirjalili (10.1016/j.eswa.2017.04.023_bib0031) 2016; 95 Agrawal (10.1016/j.eswa.2017.04.023_bib0003) 2013; 11 Cherukuri (10.1016/j.eswa.2017.04.023_bib0010) 2016; 5 Otsu (10.1016/j.eswa.2017.04.023_bib0036) 1979; 9 Kaveh (10.1016/j.eswa.2017.04.023_bib0025) 2010; 27 Elsayed (10.1016/j.eswa.2017.04.023_bib0013) 2014; 27 Horng (10.1016/j.eswa.2017.04.023_bib0020) 2010; 215 Hammouche (10.1016/j.eswa.2017.04.023_bib0019) 2008; 109 Ouadfel (10.1016/j.eswa.2017.04.023_bib0037) 2016; 55 Kaveh (10.1016/j.eswa.2017.04.023_bib0024) 2016 Marciniak (10.1016/j.eswa.2017.04.023_bib0027) 2014 Erdmann (10.1016/j.eswa.2017.04.023_bib0014) 2015 Yin (10.1016/j.eswa.2017.04.023_bib0048) 2007; 184 Kapur (10.1016/j.eswa.2017.04.023_bib0023) 1985; 29 Oliva (10.1016/j.eswa.2017.04.023_bib0035) 2013; 2013 Pruthi (10.1016/j.eswa.2017.04.023_bib0039) 2016 Guo (10.1016/j.eswa.2017.04.023_bib0018) 2007 Ye (10.1016/j.eswa.2017.04.023_bib0047) 2011  | 
    
| References_xml | – start-page: 491 year: 2016 end-page: 496 ident: bib0038 article-title: Optimal active and reactive power dispatch problem solution using moth-flame optimizer algorithm publication-title: Energy efficient technologies for sustainability (ICEETS), 2016 international conference on – volume: 63 start-page: 90 year: 2013 end-page: 100 ident: bib0017 article-title: Integrative approaches to the study of baleen whale diving behavior, feeding performance, and foraging ecology publication-title: BioScience – volume: 5 year: 2016 ident: bib0033 article-title: Particle swarm optimization (PSO) based k-means image segmentation algorithm publication-title: International Journal of Scientific Research – volume: 5 start-page: 251 year: 2014 end-page: 257 ident: bib0005 article-title: Segmentation of color lip images by optimal thresholding using bacterial foraging optimization (BFO) publication-title: Journal of Computational Science – volume: 41 start-page: 3538 year: 2014 end-page: 3560 ident: bib0008 article-title: Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using kapurs entropy publication-title: Expert Systems with Applications – start-page: 654 year: 2007 end-page: 658 ident: bib0018 article-title: Multilevel thresholding method for image segmentation based on an adaptive particle swarm optimization algorithm publication-title: Australasian joint conference on artificial intelligence – volume: Vol. 2 start-page: 416 year: 2001 end-page: 423 ident: bib0028 article-title: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics publication-title: Computer vision, 2001. ICCV 2001. Proceedings. Eighth IEEE international conference on – volume: 11 start-page: 16 year: 2013 end-page: 30 ident: bib0003 article-title: Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm publication-title: Swarm and Evolutionary Computation – volume: 38 start-page: 15489 year: 2011 end-page: 15498 ident: bib0041 article-title: An adaptive bacterial foraging algorithm for fuzzy entropy based image segmentation publication-title: Expert Systems with Applications – volume: 27 start-page: 155 year: 2010 end-page: 182 ident: bib0025 article-title: An improved ant colony optimization for constrained engineering design problems publication-title: Engineering Computations – volume: 29 start-page: 273 year: 1985 end-page: 285 ident: bib0023 article-title: A new method for gray-level picture thresholding using the entropy of the histogram publication-title: Computer vision, graphics, and image processing – start-page: 699 year: 2013 end-page: 706 ident: bib0042 article-title: A differential evolutionary multilevel segmentation of near infra-red images using renyis entropy publication-title: Proceedings of the international conference on frontiers of intelligent computing: Theory and applications (FICTA) – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: bib0031 article-title: The whale optimization algorithm publication-title: Advances in Engineering Software – start-page: 279 year: 2015 end-page: 295 ident: bib0014 article-title: A study of a firefly meta-heuristics for multithreshold image segmentation publication-title: Developments in medical image processing and computational vision – volume: 27 start-page: 57 year: 2014 end-page: 69 ident: bib0013 article-title: A new genetic algorithm for solving optimization problems publication-title: Engineering Applications of Artificial Intelligence – volume: 184 start-page: 503 year: 2007 end-page: 892 ident: bib0048 article-title: Multilevel minimum cross entropy threshold selection based on particle swarm optimization publication-title: Applied Mathematics and Computation – volume: 61 start-page: 2745 year: 2013 end-page: 2757 ident: bib0006 article-title: The wind driven optimization technique and its application in electromagnetics publication-title: IEEE Transactions on Antennas and Propagation – volume: Vol. 4(4) start-page: 1942 year: 1995 end-page: 1948 ident: bib0040 article-title: Particle swarm optimization publication-title: Neural Networks 1995. Proceedings., IEEE International Conference – volume: 65 start-page: 221 year: 2016 end-page: 232 ident: bib0032 article-title: A hybrid differential evolution for optimal multilevel image thresholding publication-title: Expert Systems with Applications – start-page: 301 year: 2014 end-page: 311 ident: bib0027 article-title: Swarm intelligence algorithms for multi-level image thresholding publication-title: Intelligent systems in technical and medical diagnostics – volume: 109 start-page: 163 year: 2008 end-page: 175 ident: bib0019 article-title: A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation publication-title: Computer Vision and Image Understanding – volume: 13 start-page: 841 year: 2011 end-page: 859 ident: bib0049 article-title: Optimal multi-level thresholding based on maximum tsallis entropy via an artificial bee colony approach publication-title: Entropy – volume: 38 start-page: 13785 year: 2011 end-page: 13791 ident: bib0021 article-title: Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation publication-title: Expert Systems with Applications – volume: 89 start-page: 228 year: 2015 end-page: 249 ident: bib0029 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowledge-Based Systems – volume: Vol. 2 start-page: 249 year: 2016 end-page: 259 ident: bib0002 article-title: Social spider algorithm employed multi-level thresholding segmentation approach publication-title: Proceedings of first international conference on information and communication technology for intelligent systems – start-page: 1 year: 2016 end-page: 21 ident: bib0001 article-title: Hybrid swarms optimization based image segmentation publication-title: Hybrid soft computing for image segmentation – volume: 56 start-page: 1745 year: 2015 ident: bib0015 article-title: Pet functional volume delineation using an ant colony segmentation approach publication-title: Journal of Nuclear Medicine – start-page: 1 year: 2016 end-page: 18 ident: bib0024 article-title: Enhanced whale optimization algorithm for sizing optimization of skeletal structures publication-title: Mechanics Based Design of Structures and Machines – start-page: 1 year: 2014 end-page: 26 ident: bib0046 article-title: Cuckoo search and firefly algorithm: Overview and analysis publication-title: Cuckoo search and firefly algorithm – volume: 5 year: 2016 ident: bib0010 article-title: A novel global MPP tracking of photovoltaic system based on whale optimization algorithm publication-title: International Journal of Renewable Energy Development – volume: 215 start-page: 3302 year: 2010 end-page: 3310 ident: bib0020 article-title: A multilevel image thresholding using the honey bee mating optimization publication-title: Applied Mathematics and Computation – volume: 5 start-page: 11 year: 2016 end-page: 18 ident: bib0022 article-title: Study of the economic dispatch problem on IEEE 30-bus system using whale optimization algorithm publication-title: International Journal of Engineering Technology and Sciences (IJETS) – start-page: 2470 year: 2016 end-page: 2476 ident: bib0034 article-title: Multi-objective moth flame optimization publication-title: Advances in computing, communications and informatics (ICACCI), 2016 international conference on – volume: 42 start-page: 1573 year: 2015 end-page: 1601 ident: bib0007 article-title: Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using kapur’s, otsu and tsallis functions publication-title: Expert Systems with Applications – volume: 2016 year: 2016 ident: bib0009 article-title: Multilevel image segmentation based on an improved firefly algorithm publication-title: Mathematical Problems in Engineering – volume: 40 start-page: 6374 year: 2013 end-page: 6384 ident: bib0011 article-title: A swarm optimization algorithm inspired in the behavior of the social-spider publication-title: Expert Systems with Applications – start-page: 169 year: 2009 end-page: 178 ident: bib0045 article-title: Firefly algorithms for multimodal optimization publication-title: International symposium on stochastic algorithms – volume: 45 start-page: 1166 year: 2016 end-page: 1178 ident: bib0026 article-title: A least squares support vector machine model optimized by moth-flame optimization algorithm for annual power load forecasting publication-title: Applied Intelligence – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: bib0044 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation – start-page: 1 year: 2011 end-page: 4 ident: bib0047 article-title: Automatic threshold selection based on artificial bee colony algorithm publication-title: Intelligent systems and applications (ISA), 2011 3rd international workshop on – volume: 93 start-page: 139 year: 2013 end-page: 153 ident: bib0012 article-title: Fast multilevel thresholding for image segmentation through a multiphase level set method publication-title: Signal Processing – start-page: 473 year: 2016 end-page: 480 ident: bib0039 article-title: Image segmentation using genetic algorithm and OTSU publication-title: Proceedings of fifth international conference on soft computing for problem solving – volume: 9 start-page: 62 year: 1979 end-page: 66 ident: bib0036 article-title: A threshold selection method from gray level histograms publication-title: IEEE Transactions on Systems, Man and Cybernetics – volume: 39 start-page: 12407 year: 2012 end-page: 12417 ident: bib0016 article-title: An efficient method for segmentation of images based on fractional calculus and natural selection publication-title: Expert Systems with Applications – volume: 96 start-page: 120 year: 2016 end-page: 133 ident: bib0030 article-title: Sca: A sine cosine algorithm for solving optimization problems publication-title: Knowledge-Based Systems – volume: 13 start-page: 3066 year: 2013 end-page: 3091 ident: bib0004 article-title: A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding publication-title: Applied Soft Computing – volume: 55 start-page: 566 year: 2016 end-page: 584 ident: bib0037 article-title: Social spiders optimization and flower pollination algorithm for multilevel image thresholding: A performance study publication-title: Expert Systems with Applications – volume: 2013 year: 2013 ident: bib0035 article-title: Multilevel thresholding segmentation based on harmony search optimization publication-title: Journal of Applied Mathematics – volume: 13 start-page: 600 year: 2004 end-page: 612 ident: bib0043 article-title: Image quality assessment: From error measurement to structural similarity publication-title: IEEE Transactions on Image Processing – volume: 89 start-page: 228 year: 2015 ident: 10.1016/j.eswa.2017.04.023_bib0029 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2015.07.006 – start-page: 473 year: 2016 ident: 10.1016/j.eswa.2017.04.023_bib0039 article-title: Image segmentation using genetic algorithm and OTSU – volume: 5 issue: 3 year: 2016 ident: 10.1016/j.eswa.2017.04.023_bib0010 article-title: A novel global MPP tracking of photovoltaic system based on whale optimization algorithm publication-title: International Journal of Renewable Energy Development – volume: 56 start-page: 1745 issue: supplement 3 year: 2015 ident: 10.1016/j.eswa.2017.04.023_bib0015 article-title: Pet functional volume delineation using an ant colony segmentation approach publication-title: Journal of Nuclear Medicine – start-page: 2470 year: 2016 ident: 10.1016/j.eswa.2017.04.023_bib0034 article-title: Multi-objective moth flame optimization – volume: 5 start-page: 251 issue: 2 year: 2014 ident: 10.1016/j.eswa.2017.04.023_bib0005 article-title: Segmentation of color lip images by optimal thresholding using bacterial foraging optimization (BFO) publication-title: Journal of Computational Science doi: 10.1016/j.jocs.2013.07.001 – start-page: 699 year: 2013 ident: 10.1016/j.eswa.2017.04.023_bib0042 article-title: A differential evolutionary multilevel segmentation of near infra-red images using renyis entropy – volume: Vol. 2 start-page: 416 year: 2001 ident: 10.1016/j.eswa.2017.04.023_bib0028 article-title: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics – start-page: 1 year: 2011 ident: 10.1016/j.eswa.2017.04.023_bib0047 article-title: Automatic threshold selection based on artificial bee colony algorithm – volume: 215 start-page: 3302 issue: 9 year: 2010 ident: 10.1016/j.eswa.2017.04.023_bib0020 article-title: A multilevel image thresholding using the honey bee mating optimization publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2009.10.018 – start-page: 1 year: 2014 ident: 10.1016/j.eswa.2017.04.023_bib0046 article-title: Cuckoo search and firefly algorithm: Overview and analysis – volume: 38 start-page: 15489 issue: 12 year: 2011 ident: 10.1016/j.eswa.2017.04.023_bib0041 article-title: An adaptive bacterial foraging algorithm for fuzzy entropy based image segmentation publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.06.011 – volume: 27 start-page: 57 year: 2014 ident: 10.1016/j.eswa.2017.04.023_bib0013 article-title: A new genetic algorithm for solving optimization problems publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2013.09.013 – volume: Vol. 4(4) start-page: 1942 year: 1995 ident: 10.1016/j.eswa.2017.04.023_bib0040 article-title: Particle swarm optimization – volume: 13 start-page: 841 issue: 4 year: 2011 ident: 10.1016/j.eswa.2017.04.023_bib0049 article-title: Optimal multi-level thresholding based on maximum tsallis entropy via an artificial bee colony approach publication-title: Entropy doi: 10.3390/e13040841 – volume: 5 start-page: 11 issue: 1 year: 2016 ident: 10.1016/j.eswa.2017.04.023_bib0022 article-title: Study of the economic dispatch problem on IEEE 30-bus system using whale optimization algorithm publication-title: International Journal of Engineering Technology and Sciences (IJETS) doi: 10.15282/ijets.5.2016.1.2.1041 – volume: 41 start-page: 3538 issue: 7 year: 2014 ident: 10.1016/j.eswa.2017.04.023_bib0008 article-title: Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using kapurs entropy publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.10.059 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.eswa.2017.04.023_bib0044 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.585893 – volume: 29 start-page: 273 issue: 3 year: 1985 ident: 10.1016/j.eswa.2017.04.023_bib0023 article-title: A new method for gray-level picture thresholding using the entropy of the histogram publication-title: Computer vision, graphics, and image processing doi: 10.1016/0734-189X(85)90125-2 – volume: 38 start-page: 13785 issue: 11 year: 2011 ident: 10.1016/j.eswa.2017.04.023_bib0021 article-title: Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation publication-title: Expert Systems with Applications – volume: 184 start-page: 503 year: 2007 ident: 10.1016/j.eswa.2017.04.023_bib0048 article-title: Multilevel minimum cross entropy threshold selection based on particle swarm optimization publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2006.06.057 – volume: 61 start-page: 2745 issue: 5 year: 2013 ident: 10.1016/j.eswa.2017.04.023_bib0006 article-title: The wind driven optimization technique and its application in electromagnetics publication-title: IEEE Transactions on Antennas and Propagation doi: 10.1109/TAP.2013.2238654 – volume: 40 start-page: 6374 issue: 16 year: 2013 ident: 10.1016/j.eswa.2017.04.023_bib0011 article-title: A swarm optimization algorithm inspired in the behavior of the social-spider publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.05.041 – volume: 63 start-page: 90 issue: 2 year: 2013 ident: 10.1016/j.eswa.2017.04.023_bib0017 article-title: Integrative approaches to the study of baleen whale diving behavior, feeding performance, and foraging ecology publication-title: BioScience doi: 10.1525/bio.2013.63.2.5 – volume: 42 start-page: 1573 issue: 3 year: 2015 ident: 10.1016/j.eswa.2017.04.023_bib0007 article-title: Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using kapur’s, otsu and tsallis functions publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2014.09.049 – start-page: 301 year: 2014 ident: 10.1016/j.eswa.2017.04.023_bib0027 article-title: Swarm intelligence algorithms for multi-level image thresholding – volume: 11 start-page: 16 year: 2013 ident: 10.1016/j.eswa.2017.04.023_bib0003 article-title: Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2013.02.001 – start-page: 279 year: 2015 ident: 10.1016/j.eswa.2017.04.023_bib0014 article-title: A study of a firefly meta-heuristics for multithreshold image segmentation – start-page: 654 year: 2007 ident: 10.1016/j.eswa.2017.04.023_bib0018 article-title: Multilevel thresholding method for image segmentation based on an adaptive particle swarm optimization algorithm – volume: 9 start-page: 62 issue: 1 year: 1979 ident: 10.1016/j.eswa.2017.04.023_bib0036 article-title: A threshold selection method from gray level histograms publication-title: IEEE Transactions on Systems, Man and Cybernetics doi: 10.1109/TSMC.1979.4310076 – volume: 96 start-page: 120 year: 2016 ident: 10.1016/j.eswa.2017.04.023_bib0030 article-title: Sca: A sine cosine algorithm for solving optimization problems publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2015.12.022 – start-page: 169 year: 2009 ident: 10.1016/j.eswa.2017.04.023_bib0045 article-title: Firefly algorithms for multimodal optimization – volume: 65 start-page: 221 year: 2016 ident: 10.1016/j.eswa.2017.04.023_bib0032 article-title: A hybrid differential evolution for optimal multilevel image thresholding publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.08.046 – start-page: 491 year: 2016 ident: 10.1016/j.eswa.2017.04.023_bib0038 article-title: Optimal active and reactive power dispatch problem solution using moth-flame optimizer algorithm – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.eswa.2017.04.023_bib0031 article-title: The whale optimization algorithm publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2016.01.008 – volume: 39 start-page: 12407 issue: 16 year: 2012 ident: 10.1016/j.eswa.2017.04.023_bib0016 article-title: An efficient method for segmentation of images based on fractional calculus and natural selection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.04.078 – volume: 5 issue: 1 year: 2016 ident: 10.1016/j.eswa.2017.04.023_bib0033 article-title: Particle swarm optimization (PSO) based k-means image segmentation algorithm publication-title: International Journal of Scientific Research – start-page: 1 year: 2016 ident: 10.1016/j.eswa.2017.04.023_bib0024 article-title: Enhanced whale optimization algorithm for sizing optimization of skeletal structures publication-title: Mechanics Based Design of Structures and Machines – volume: 27 start-page: 155 issue: 1 year: 2010 ident: 10.1016/j.eswa.2017.04.023_bib0025 article-title: An improved ant colony optimization for constrained engineering design problems publication-title: Engineering Computations doi: 10.1108/02644401011008577 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 10.1016/j.eswa.2017.04.023_bib0043 article-title: Image quality assessment: From error measurement to structural similarity publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2003.819861 – volume: 2016 year: 2016 ident: 10.1016/j.eswa.2017.04.023_bib0009 article-title: Multilevel image segmentation based on an improved firefly algorithm publication-title: Mathematical Problems in Engineering – volume: 109 start-page: 163 issue: 2 year: 2008 ident: 10.1016/j.eswa.2017.04.023_bib0019 article-title: A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation publication-title: Computer Vision and Image Understanding doi: 10.1016/j.cviu.2007.09.001 – volume: 13 start-page: 3066 issue: 6 year: 2013 ident: 10.1016/j.eswa.2017.04.023_bib0004 article-title: A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2012.03.072 – volume: 45 start-page: 1166 issue: 4 year: 2016 ident: 10.1016/j.eswa.2017.04.023_bib0026 article-title: A least squares support vector machine model optimized by moth-flame optimization algorithm for annual power load forecasting publication-title: Applied Intelligence doi: 10.1007/s10489-016-0810-2 – volume: Vol. 2 start-page: 249 year: 2016 ident: 10.1016/j.eswa.2017.04.023_bib0002 article-title: Social spider algorithm employed multi-level thresholding segmentation approach – volume: 2013 year: 2013 ident: 10.1016/j.eswa.2017.04.023_bib0035 article-title: Multilevel thresholding segmentation based on harmony search optimization publication-title: Journal of Applied Mathematics doi: 10.1155/2013/575414 – volume: 93 start-page: 139 issue: 1 year: 2013 ident: 10.1016/j.eswa.2017.04.023_bib0012 article-title: Fast multilevel thresholding for image segmentation through a multiphase level set method publication-title: Signal Processing doi: 10.1016/j.sigpro.2012.07.010 – volume: 55 start-page: 566 year: 2016 ident: 10.1016/j.eswa.2017.04.023_bib0037 article-title: Social spiders optimization and flower pollination algorithm for multilevel image thresholding: A performance study publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.02.024 – start-page: 1 year: 2016 ident: 10.1016/j.eswa.2017.04.023_bib0001 article-title: Hybrid swarms optimization based image segmentation  | 
    
| SSID | ssj0017007 | 
    
| Score | 2.6602504 | 
    
| Snippet | •Two metaheuristic algorithms (WOA and MFO) are used.•These algorithms are applied to multilevel thresholding image segmentation.•MFO and WOA are better than... Determining the optimal thresholding for image segmentation has got more attention in recent years since it has many applications. There are several methods...  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 242 | 
    
| SubjectTerms | Algorithms Digital imaging Fitness Image processing systems Image segmentation Moth-Flame Optimization (MFO) Multilevel Multilevel thresholding Optimization Thresholds Variance analysis Whale Optimization Algorithm (WOA)  | 
    
| Title | Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation | 
    
| URI | https://dx.doi.org/10.1016/j.eswa.2017.04.023 https://www.proquest.com/docview/1932177757  | 
    
| Volume | 83 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG-IXrz4bUSR9ODNTFbart2REAlqwIMSuTXbWj4MDAIz3vzbfd06EknkYLLLltdlee_193tL3wdCt00JpKBD7QH5ww9Kwo0Xw6bzfCOEkVxK7dva4V4_6A7Y05APK6hd1sLYtEqH_QWm52jtnjScNhvL6bTxCsEB0KG9qB2jlFewM2GnGNx_b9I8bPs5UfTbE56VdoUzRY6XWX_Z3kNE5O1Om_QvctqC6Zx7Osfo0AWNuFV81wmqmPQUHZUDGbDbn2do_D4BvMcvAANzV1-JW7PxYjXNJnMcpRr3wDBeB7xgSwpCV5znFs5sEhHOwMJrdzCFp3PAHLw247mrU0rP0aDz8Nbuem6SgpfQkGUejWhsWABWISNN_URGhpqAxwEPSTSKuUlIM_ZHkpkgSiBGkD6XcZxIHYTE-M0RvUB76SI1lwhrpsGsGoCAEmYYkQELEsKNkBwUyUQVkVKFKnFtxu20i5kq88k-lFW7smpXPlOg9iq626xZFk02dkrz0jLql6soYIGd62qlGZXbqGtl41cihODi6p-vvUYH9s7yGeE1tJetPs0NBCpZXM89sY72W4_P3f4P47zoKg | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGGDhjSgU8MCGQuPYjt2xqqgKtGUABJuVxO4DtWnVBrHx2zknTiUqwYCUKbGj6M73fXfKPRC6CiSQgm5oD8gfApSEGy8Go_N8I4SRXErt29rhXj_svLD7N_5WQa2yFsamVTrsLzA9R2t3p-6kWZ-Px_UncA6ADu1F7RglCIE2GQ-EjcBuvlZ5Hrb_nCga7gnPLneVM0WSl1l-2uZDROT9TgP6Gzut4XROPu09tOO8RtwsPmwfVUx6gHbLiQzYGeghGr6OAPDxI-DA1BVY4uZkOFuMs9EUR6nGPdCM14ZjsLYKfFecJxdObBYRzkDFS_dnCo-nADp4aYZTV6iUHqGX9u1zq-O5UQpeQhss82hEY8NCUAsZaOonMjLUhDwOeYNEg5ibhASxP5DMhFECToL0uYzjROqwQYwfDOgx2khnqTlBWDMNetWABJQww4gMWZgQboTkIEgmqoiUIlSJ6zNux11MVJlQ9q6s2JUVu_KZArFX0fVqz7zosvHnal5qRv04Kwpo4M99tVKNylnqUlkHlgghuDj952sv0VbnuddV3bv-wxnatk8suRFeQxvZ4sOcg9eSxRf5qfwGUnfpvw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Whale+Optimization+Algorithm+and+Moth-Flame+Optimization+for+multilevel+thresholding+image+segmentation&rft.jtitle=Expert+systems+with+applications&rft.au=Aziz%2C+Mohamed+Abd+El&rft.au=Ewees%2C+Ahmed+A.&rft.au=Hassanien%2C+Aboul+Ella&rft.date=2017-10-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=83&rft.spage=242&rft.epage=256&rft_id=info:doi/10.1016%2Fj.eswa.2017.04.023&rft.externalDocID=S0957417417302671 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |