Dynamic Stochastic Blockmodels for Time-Evolving Social Networks
Significant efforts have gone into the development of statistical models for analyzing data in the form of networks, such as social networks. Most existing work has focused on modeling static networks, which represent either a single time snapshot or an aggregate view over time. There has been recen...
Saved in:
| Published in | IEEE journal of selected topics in signal processing Vol. 8; no. 4; pp. 552 - 562 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.08.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-4553 1941-0484 |
| DOI | 10.1109/JSTSP.2014.2310294 |
Cover
| Abstract | Significant efforts have gone into the development of statistical models for analyzing data in the form of networks, such as social networks. Most existing work has focused on modeling static networks, which represent either a single time snapshot or an aggregate view over time. There has been recent interest in statistical modeling of dynamic networks, which are observed at multiple points in time and offer a richer representation of many complex phenomena. In this paper, we present a state-space model for dynamic networks that extends the well-known stochastic blockmodel for static networks to the dynamic setting. We fit the model in a near-optimal manner using an extended Kalman filter (EKF) augmented with a local search. We demonstrate that the EKF-based algorithm performs competitively with a state-of-the-art algorithm based on Markov chain Monte Carlo sampling but is significantly less computationally demanding. |
|---|---|
| AbstractList | Significant efforts have gone into the development of statistical models for analyzing data in the form of networks, such as social networks. Most existing work has focused on modeling static networks, which represent either a single time snapshot or an aggregate view over time. There has been recent interest in statistical modeling of dynamic networks, which are observed at multiple points in time and offer a richer representation of many complex phenomena. In this paper, we present a state-space model for dynamic networks that extends the well-known stochastic blockmodel for static networks to the dynamic setting. We fit the model in a near-optimal manner using an extended Kalman filter (EKF) augmented with a local search. We demonstrate that the EKF-based algorithm performs competitively with a state-of-the-art algorithm based on Markov chain Monte Carlo sampling but is significantly less computationally demanding. |
| Author | Hero, Alfred O. Xu, Kevin S. |
| Author_xml | – sequence: 1 givenname: Kevin S. surname: Xu fullname: Xu, Kevin S. email: kevinxu@outlook.com organization: Technicolor Palo Alto Research Center, Palo Alto, CA, USA – sequence: 2 givenname: Alfred O. surname: Hero fullname: Hero, Alfred O. email: hero@umich.edu organization: Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA |
| BookMark | eNp9kMtOwzAQRS1UJNrCD8AmEhs2KX4m9g4o5aUKkJJ95Do2uE3iYqdF_XtSWrHogtVcac4Zje4A9BrXaADOERwhBMX1S5Zn7yMMER1hgiAW9Aj0kaAohpTT3jYTHFPGyAkYhDCHkKUJon1wc79pZG1VlLVOfcrQdvGucmpRu1JXITLOR7mtdTxZu2ptm48oc8rKKnrV7bfzi3AKjo2sgj7bzyHIHyb5-Cmevj0-j2-nsSKCtjERM8YVo5oTRYWUCTPMiHJm1EwIU4qSppQRKEoDu8XMGFXiMtEqLQ2CXJMhuNqdXXr3tdKhLWoblK4q2Wi3CgViTCSc0xR16OUBOncr33TPdRRNMeYYJh3Fd5TyLgSvTaFsK1vrmtZLWxUIFttmi99mi22zxb7ZTsUH6tLbWvrN_9LFTrJa6z8hSRknnJEf3lOHKQ |
| CODEN | IJSTGY |
| CitedBy_id | crossref_primary_10_1093_biomet_asy016 crossref_primary_10_1371_journal_pone_0188655 crossref_primary_10_1016_j_dsp_2021_103192 crossref_primary_10_1007_s11634_022_00492_9 crossref_primary_10_1021_acs_jctc_2c00454 crossref_primary_10_1214_19_EJS1533 crossref_primary_10_1016_j_physrep_2021_10_005 crossref_primary_10_1002_sta4_459 crossref_primary_10_1016_j_knosys_2020_105740 crossref_primary_10_1080_10618600_2021_2003204 crossref_primary_10_1093_biomet_asz068 crossref_primary_10_1103_PhysRevE_106_044306 crossref_primary_10_1007_s00607_022_01131_z crossref_primary_10_1002_asmb_2354 crossref_primary_10_1093_bioinformatics_btad592 crossref_primary_10_1111_rssb_12200 crossref_primary_10_1007_s10618_021_00784_2 crossref_primary_10_1016_j_patcog_2019_04_022 crossref_primary_10_1145_3365537 crossref_primary_10_1016_j_neucom_2016_02_031 crossref_primary_10_1214_18_SS121 crossref_primary_10_1109_TNSE_2021_3067665 crossref_primary_10_1214_23_AOAS1870 crossref_primary_10_1109_TMI_2020_3030047 crossref_primary_10_1109_TSP_2015_2510971 crossref_primary_10_1016_j_csda_2022_107627 crossref_primary_10_3389_fpsyg_2021_773289 crossref_primary_10_1214_16_AOAS971 crossref_primary_10_1002_wics_1651 crossref_primary_10_1214_24_AOS2441 crossref_primary_10_1016_j_ins_2023_119376 crossref_primary_10_1109_TNSE_2023_3337281 crossref_primary_10_1137_19M1268380 crossref_primary_10_1007_s13278_024_01274_1 crossref_primary_10_1109_TKDE_2021_3104155 crossref_primary_10_1016_j_trc_2022_103556 crossref_primary_10_1093_jrsssa_qnad028 crossref_primary_10_1145_3172867 crossref_primary_10_1002_sta4_594 crossref_primary_10_1080_00224065_2018_1507558 crossref_primary_10_1016_j_socnet_2022_12_003 crossref_primary_10_1214_19_EJS1624 crossref_primary_10_1080_01621459_2022_2054817 crossref_primary_10_1214_21_EJS1969 crossref_primary_10_1103_PhysRevE_92_042807 crossref_primary_10_1080_24725854_2020_1861390 crossref_primary_10_1093_comnet_cnaa027 crossref_primary_10_1214_19_EJS1588 crossref_primary_10_1007_s11222_017_9788_9 crossref_primary_10_1109_ACCESS_2020_2996595 crossref_primary_10_1177_1471082X20963254 crossref_primary_10_1111_rssc_12387 crossref_primary_10_1214_16_AOAS993 crossref_primary_10_1214_18_AOS1751 crossref_primary_10_1109_TIT_2024_3471953 crossref_primary_10_1109_OJSP_2021_3051453 crossref_primary_10_1016_j_jnca_2018_02_011 crossref_primary_10_1109_TSP_2015_2437841 crossref_primary_10_1017_nws_2019_10 crossref_primary_10_1007_s10260_023_00712_2 crossref_primary_10_1080_01621459_2021_1924178 crossref_primary_10_1016_j_eswa_2021_114650 crossref_primary_10_1016_j_socnet_2018_03_004 crossref_primary_10_1109_TSIPN_2017_2731123 crossref_primary_10_1111_jtsa_12677 crossref_primary_10_1088_1742_5468_ab7754 crossref_primary_10_1007_s11222_020_09947_5 crossref_primary_10_1080_08982112_2018_1501063 crossref_primary_10_3390_math11071573 crossref_primary_10_3390_e23050502 crossref_primary_10_1103_PhysRevE_105_054311 crossref_primary_10_1073_pnas_1718449115 crossref_primary_10_1214_20_AOS1953 crossref_primary_10_1016_j_pmcj_2020_101231 crossref_primary_10_1109_TSIPN_2021_3052047 crossref_primary_10_1038_s41598_023_29443_w crossref_primary_10_1109_TNNLS_2022_3149285 crossref_primary_10_1016_j_jmva_2019_104540 crossref_primary_10_1016_j_physa_2020_124897 crossref_primary_10_1016_j_ejor_2019_07_024 crossref_primary_10_1007_s11042_019_08046_6 crossref_primary_10_1080_00224065_2024_2310843 crossref_primary_10_1080_01621459_2019_1677242 crossref_primary_10_1145_3713076 crossref_primary_10_1007_s11222_017_9775_1 crossref_primary_10_1103_PhysRevX_6_031005 crossref_primary_10_1109_TR_2023_3234907 crossref_primary_10_1088_1742_5468_aaeb44 crossref_primary_10_1016_j_eswa_2022_116660 crossref_primary_10_1016_j_patrec_2019_05_008 crossref_primary_10_1109_TSIPN_2019_2942176 crossref_primary_10_1103_PhysRevE_103_052307 crossref_primary_10_1109_ACCESS_2021_3082932 crossref_primary_10_1109_ACCESS_2020_3008708 crossref_primary_10_1002_rnc_4392 crossref_primary_10_1109_TSP_2018_2830312 crossref_primary_10_3390_math11173670 crossref_primary_10_1109_JPROC_2018_2804318 crossref_primary_10_1016_j_neucom_2017_09_013 crossref_primary_10_1109_TSIPN_2016_2555799 crossref_primary_10_1214_22_EJS1986 crossref_primary_10_1109_TNSE_2024_3520130 crossref_primary_10_1038_s41467_017_00148_9 crossref_primary_10_1073_pnas_1606295113 crossref_primary_10_1017_nws_2018_19 crossref_primary_10_1016_j_inffus_2020_05_009 crossref_primary_10_1214_24_AOAS1942 crossref_primary_10_1016_j_patrec_2020_07_014 crossref_primary_10_1002_sta4_381 crossref_primary_10_1002_asmb_2369 crossref_primary_10_1007_s11634_024_00583_9 crossref_primary_10_1016_j_csda_2018_01_010 crossref_primary_10_1017_nws_2021_21 crossref_primary_10_1016_j_knosys_2024_112110 crossref_primary_10_1016_j_neunet_2023_05_048 |
| Cites_doi | 10.1002/asi.20591 10.1109/ICASSP.2010.5494930 10.1214/12-AOS1036 10.1109/ASONAM.2010.17 10.1103/PhysRevE.69.026113 10.1109/TSP.2011.2172431 10.1207/s15366359mea0301_3 10.1007/BF01908075 10.1103/PhysRevE.83.016107 10.1002/0471221546 10.1109/ICASSP.2012.6288775 10.1145/1731011.1731020 10.1109/SSP.2012.6319636 10.1126/science.1184819 10.1080/01621459.2012.699795 10.1093/acprof:oso/9780199641178.001.0001 10.1561/2200000005 10.1109/SSP.2011.5967747 10.1198/016214501753208735 10.1111/rssb.12013 10.1007/978-3-642-37210-0_22 10.1109/TSP.2013.2238935 10.1145/1273496.1273537 10.1016/0378-8733(83)90021-7 10.1007/s10994-010-5214-7 10.1145/1217299.1217301 10.1198/1061860032742 10.1007/s11203-011-9058-y 10.1214/11-AOS887 10.1214/09-AOAS311 10.1016/j.csda.2010.05.020 10.1007/s10588-005-5378-z 10.1073/pnas.0900282106 10.1007/s10618-012-0302-x 10.1145/1117454.1117459 10.1109/JSTSP.2012.2233712 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD H8D L7M |
| DOI | 10.1109/JSTSP.2014.2310294 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0484 |
| EndPage | 562 |
| ExternalDocumentID | 3379577421 10_1109_JSTSP_2014_2310294 6758385 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada; Natural Sciences and Engineering Research Council of Canada funderid: 10.13039/501100000038 – fundername: Army Research Office; Army Research Office grantid: W911NF-12-1-0443 funderid: 10.13039/100000183 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL RIA RIE RNS AAYXX CITATION 7SP 8FD H8D L7M RIG |
| ID | FETCH-LOGICAL-c394t-39b58c54e83c49aa65f5f9dbfcb99fd9d4745309df0f5fbffcd2d6ec7df108e3 |
| IEDL.DBID | RIE |
| ISSN | 1932-4553 |
| IngestDate | Sun Sep 28 08:50:14 EDT 2025 Mon Jun 30 10:19:18 EDT 2025 Thu Apr 24 23:04:29 EDT 2025 Wed Oct 01 03:34:35 EDT 2025 Wed Aug 27 08:31:01 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c394t-39b58c54e83c49aa65f5f9dbfcb99fd9d4745309df0f5fbffcd2d6ec7df108e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| PQID | 1547228206 |
| PQPubID | 75721 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1109_JSTSP_2014_2310294 proquest_journals_1547228206 crossref_citationtrail_10_1109_JSTSP_2014_2310294 ieee_primary_6758385 proquest_miscellaneous_1559688471 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-08-01 |
| PublicationDateYYYYMMDD | 2014-08-01 |
| PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE journal of selected topics in signal processing |
| PublicationTitleAbbrev | JSTSP |
| PublicationYear | 2014 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref37 ref15 ref14 ref31 ref30 ref11 mucha (ref10) 2010; 328 (ref45) 2007 nelson (ref34) 2000 ref2 ref39 ref17 ref38 katz (ref8) 2005; 3 ref19 ref18 russell (ref33) 2003 priebe (ref16) 2009 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ghahramani (ref36) 1998; 11 ref21 ref43 wan (ref35) 1996 ref28 ref27 xu (ref1) 2013 sarkar (ref24) 2007 ref7 ljung (ref32) 1999 ref9 ref4 ho (ref29) 2011 ref3 ref6 ref5 ref40 |
| References_xml | – year: 1999 ident: ref32 publication-title: System Identification Theory for the User – ident: ref42 doi: 10.1002/asi.20591 – ident: ref2 doi: 10.1109/ICASSP.2010.5494930 – year: 2007 ident: ref24 article-title: A latent space approach to dynamic embedding of co-occurrence data publication-title: Proc 11th Int Conf Artif Intell Statist – ident: ref19 doi: 10.1214/12-AOS1036 – ident: ref11 doi: 10.1109/ASONAM.2010.17 – ident: ref38 doi: 10.1103/PhysRevE.69.026113 – ident: ref37 doi: 10.1109/TSP.2011.2172431 – volume: 3 start-page: 24 year: 2005 ident: ref8 article-title: Scale-independent bibliometric indicators publication-title: Measurement Interdisciplinary Research and Perspectives doi: 10.1207/s15366359mea0301_3 – ident: ref39 doi: 10.1007/BF01908075 – ident: ref17 doi: 10.1103/PhysRevE.83.016107 – year: 2007 ident: ref45 publication-title: ?ENRON The Smartest Guys in the Room?Enron Timeline ? – ident: ref14 doi: 10.1002/0471221546 – ident: ref4 doi: 10.1109/ICASSP.2012.6288775 – ident: ref41 doi: 10.1145/1731011.1731020 – ident: ref3 doi: 10.1109/SSP.2012.6319636 – volume: 328 start-page: 876 year: 2010 ident: ref10 article-title: Community structure in time-dependent, multiscale, and multiplex networks publication-title: Science doi: 10.1126/science.1184819 – ident: ref21 doi: 10.1080/01621459.2012.699795 – ident: ref31 doi: 10.1093/acprof:oso/9780199641178.001.0001 – year: 2000 ident: ref34 publication-title: Nonlinear Estimation and Modeling of Noisy Time-series by Dual Kalman Filtering Methods – ident: ref7 doi: 10.1561/2200000005 – ident: ref44 doi: 10.1109/SSP.2011.5967747 – ident: ref18 doi: 10.1198/016214501753208735 – ident: ref27 doi: 10.1111/rssb.12013 – start-page: 201 year: 2013 ident: ref1 article-title: Dynamic stochastic blockmodels: Statistical models for time-evolving networks publication-title: Proc 6th Int Conf Soc Comput Behav -Cult Model Predict doi: 10.1007/978-3-642-37210-0_22 – year: 2009 ident: ref16 publication-title: ?Scan statistics on Enron graphs ? – ident: ref5 doi: 10.1109/TSP.2013.2238935 – ident: ref22 doi: 10.1145/1273496.1273537 – ident: ref13 doi: 10.1016/0378-8733(83)90021-7 – ident: ref30 doi: 10.1007/s10994-010-5214-7 – ident: ref9 doi: 10.1145/1217299.1217301 – ident: ref43 doi: 10.1198/1061860032742 – start-page: 793 year: 1996 ident: ref35 article-title: Dual Kalman filtering methods for nonlinear prediction, smoothing, and estimation publication-title: Adv Neural Inf Process Syst – ident: ref26 doi: 10.1007/s11203-011-9058-y – ident: ref20 doi: 10.1214/11-AOS887 – ident: ref28 doi: 10.1214/09-AOAS311 – ident: ref25 doi: 10.1016/j.csda.2010.05.020 – ident: ref15 doi: 10.1007/s10588-005-5378-z – volume: 11 year: 1998 ident: ref36 article-title: Learning nonlinear dynamical systems using an EM algorithm publication-title: Adv Neural Inf Process Syst – start-page: 342 year: 2011 ident: ref29 article-title: Evolving cluster mixed-membership blockmodel for time-varying networks publication-title: Proc 11th Int Conf Artif Intell Statist – ident: ref40 doi: 10.1073/pnas.0900282106 – year: 2003 ident: ref33 publication-title: Artificial Intelligence A Modern Approach – ident: ref12 doi: 10.1007/s10618-012-0302-x – ident: ref23 doi: 10.1145/1117454.1117459 – ident: ref6 doi: 10.1109/JSTSP.2012.2233712 |
| SSID | ssj0057614 |
| Score | 2.517222 |
| Snippet | Significant efforts have gone into the development of statistical models for analyzing data in the form of networks, such as social networks. Most existing... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 552 |
| SubjectTerms | Algorithms Approximation methods Blocking Covariance matrices dynamic network Dynamics extended Kalman filter Heuristic algorithms Inference algorithms Kalman filters Markov analysis Monte Carlo methods Monte Carlo simulation Networks on-line estimation Searching Social networks State-space social network model Stochastic processes Stochasticity Vectors |
| Title | Dynamic Stochastic Blockmodels for Time-Evolving Social Networks |
| URI | https://ieeexplore.ieee.org/document/6758385 https://www.proquest.com/docview/1547228206 https://www.proquest.com/docview/1559688471 |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0057614 issn: 1932-4553 databaseCode: RIE dateStart: 20070101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFH6MnvTgNop1o4I3zZg2Sdvc3BFhBmFG8FbSLAjKjDidi7_evC6DG-KtkJX3kve-5m0ARzEVVkuXEU0VIzwylnilwIgrdOS1HwpEDHDuD5LbB373KB47cDKPhbHWVs5ntoeflS3fTPQMn8pOEdyyTCzAQpoldaxWK3U9bI4aC3JMuBCsDZCh8tQf8eE9enHxHqKZWPIvSqiqqvJDFFf65WYV-u3OareS596sLHr6_VvSxv9ufQ1WGqAZntcnYx06drwBy5_SD3bh7KouRx8Oy4l-UpixObzwyu25Ko8zDT2eDTFEhFx7GYYPD2EdzBsOat_x6SaMbq5Hl7ekqahANJO8JEwWItOC24xpLpVKhBNOmsLpQkpnpOEpF4xK46hvKJzTJjaJ1alxEc0s24LF8WRstyFUsdBKKZdGfoj181KrEqMNyzyi4gUNIGopnOsm2zgWvXjJq78OKvOKKzlyJW-4EsDxfMxrnWvjz95dJPO8Z0PhAPZaRubNdZzmHiemcYyp6gM4nDf7i4TWETW2kxn2ETLJUFnv_D7zLizh-rX33x4slm8zu-8RSVkcVEfxA_C73X4 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZSwMxEB48HtQHb7GeK_imqdlNst28eVOPFsEKvi3ZHAhKK3b74q83s0fxQnxbyMGQmcx8m7kA9iMqrJYuIZoqRnhoLPFGgRGX6dBbP1SImODc6cbtB379KB4n4HCcC2OtLYLPbBM_C1--GegRPpUdIbhliZiEacE5F2W2Vq13PXAOKx9yRLgQrE6RofLIC_n9HcZx8SbimUjyL2ao6KvyQxkXFuZyATo1bWVgyXNzlGdN_f6tbON_iV-E-QpqBielbCzBhO0vw9ynAoQrcHxeNqQP7vOBflJYszk49ebtuWiQMww8og0wSYRceC2GTw9Bmc4bdMvo8eEq9C4vemdtUvVUIJpJnhMmM5FowW3CNJdKxcIJJ03mdCalM9LwFheMSuOoH8ic0yYysdUt40KaWLYGU_1B365DoCKhlVKuFfol1u9LrYqNNizxmIpntAFhfcKpruqNY9uLl7T476AyLbiSIlfSiisNOBiveS2rbfw5ewWPeTyzOuEGbNWMTKsLOUw9UmxFERarb8DeeNhfJfSPqL4djHCOkHGC5nrj9513Yabd69ymt1fdm02YRVrKWMAtmMrfRnbb45M82ynE8gOwa-DL |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Stochastic+Blockmodels+for+Time-Evolving+Social+Networks&rft.jtitle=IEEE+journal+of+selected+topics+in+signal+processing&rft.au=Xu%2C+Kevin+S.&rft.au=Hero%2C+Alfred+O.&rft.date=2014-08-01&rft.issn=1932-4553&rft.eissn=1941-0484&rft.volume=8&rft.issue=4&rft.spage=552&rft.epage=562&rft_id=info:doi/10.1109%2FJSTSP.2014.2310294&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTSP_2014_2310294 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4553&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4553&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4553&client=summon |