Dynamic Stochastic Blockmodels for Time-Evolving Social Networks

Significant efforts have gone into the development of statistical models for analyzing data in the form of networks, such as social networks. Most existing work has focused on modeling static networks, which represent either a single time snapshot or an aggregate view over time. There has been recen...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in signal processing Vol. 8; no. 4; pp. 552 - 562
Main Authors Xu, Kevin S., Hero, Alfred O.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1932-4553
1941-0484
DOI10.1109/JSTSP.2014.2310294

Cover

Abstract Significant efforts have gone into the development of statistical models for analyzing data in the form of networks, such as social networks. Most existing work has focused on modeling static networks, which represent either a single time snapshot or an aggregate view over time. There has been recent interest in statistical modeling of dynamic networks, which are observed at multiple points in time and offer a richer representation of many complex phenomena. In this paper, we present a state-space model for dynamic networks that extends the well-known stochastic blockmodel for static networks to the dynamic setting. We fit the model in a near-optimal manner using an extended Kalman filter (EKF) augmented with a local search. We demonstrate that the EKF-based algorithm performs competitively with a state-of-the-art algorithm based on Markov chain Monte Carlo sampling but is significantly less computationally demanding.
AbstractList Significant efforts have gone into the development of statistical models for analyzing data in the form of networks, such as social networks. Most existing work has focused on modeling static networks, which represent either a single time snapshot or an aggregate view over time. There has been recent interest in statistical modeling of dynamic networks, which are observed at multiple points in time and offer a richer representation of many complex phenomena. In this paper, we present a state-space model for dynamic networks that extends the well-known stochastic blockmodel for static networks to the dynamic setting. We fit the model in a near-optimal manner using an extended Kalman filter (EKF) augmented with a local search. We demonstrate that the EKF-based algorithm performs competitively with a state-of-the-art algorithm based on Markov chain Monte Carlo sampling but is significantly less computationally demanding.
Author Hero, Alfred O.
Xu, Kevin S.
Author_xml – sequence: 1
  givenname: Kevin S.
  surname: Xu
  fullname: Xu, Kevin S.
  email: kevinxu@outlook.com
  organization: Technicolor Palo Alto Research Center, Palo Alto, CA, USA
– sequence: 2
  givenname: Alfred O.
  surname: Hero
  fullname: Hero, Alfred O.
  email: hero@umich.edu
  organization: Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
BookMark eNp9kMtOwzAQRS1UJNrCD8AmEhs2KX4m9g4o5aUKkJJ95Do2uE3iYqdF_XtSWrHogtVcac4Zje4A9BrXaADOERwhBMX1S5Zn7yMMER1hgiAW9Aj0kaAohpTT3jYTHFPGyAkYhDCHkKUJon1wc79pZG1VlLVOfcrQdvGucmpRu1JXITLOR7mtdTxZu2ptm48oc8rKKnrV7bfzi3AKjo2sgj7bzyHIHyb5-Cmevj0-j2-nsSKCtjERM8YVo5oTRYWUCTPMiHJm1EwIU4qSppQRKEoDu8XMGFXiMtEqLQ2CXJMhuNqdXXr3tdKhLWoblK4q2Wi3CgViTCSc0xR16OUBOncr33TPdRRNMeYYJh3Fd5TyLgSvTaFsK1vrmtZLWxUIFttmi99mi22zxb7ZTsUH6tLbWvrN_9LFTrJa6z8hSRknnJEf3lOHKQ
CODEN IJSTGY
CitedBy_id crossref_primary_10_1093_biomet_asy016
crossref_primary_10_1371_journal_pone_0188655
crossref_primary_10_1016_j_dsp_2021_103192
crossref_primary_10_1007_s11634_022_00492_9
crossref_primary_10_1021_acs_jctc_2c00454
crossref_primary_10_1214_19_EJS1533
crossref_primary_10_1016_j_physrep_2021_10_005
crossref_primary_10_1002_sta4_459
crossref_primary_10_1016_j_knosys_2020_105740
crossref_primary_10_1080_10618600_2021_2003204
crossref_primary_10_1093_biomet_asz068
crossref_primary_10_1103_PhysRevE_106_044306
crossref_primary_10_1007_s00607_022_01131_z
crossref_primary_10_1002_asmb_2354
crossref_primary_10_1093_bioinformatics_btad592
crossref_primary_10_1111_rssb_12200
crossref_primary_10_1007_s10618_021_00784_2
crossref_primary_10_1016_j_patcog_2019_04_022
crossref_primary_10_1145_3365537
crossref_primary_10_1016_j_neucom_2016_02_031
crossref_primary_10_1214_18_SS121
crossref_primary_10_1109_TNSE_2021_3067665
crossref_primary_10_1214_23_AOAS1870
crossref_primary_10_1109_TMI_2020_3030047
crossref_primary_10_1109_TSP_2015_2510971
crossref_primary_10_1016_j_csda_2022_107627
crossref_primary_10_3389_fpsyg_2021_773289
crossref_primary_10_1214_16_AOAS971
crossref_primary_10_1002_wics_1651
crossref_primary_10_1214_24_AOS2441
crossref_primary_10_1016_j_ins_2023_119376
crossref_primary_10_1109_TNSE_2023_3337281
crossref_primary_10_1137_19M1268380
crossref_primary_10_1007_s13278_024_01274_1
crossref_primary_10_1109_TKDE_2021_3104155
crossref_primary_10_1016_j_trc_2022_103556
crossref_primary_10_1093_jrsssa_qnad028
crossref_primary_10_1145_3172867
crossref_primary_10_1002_sta4_594
crossref_primary_10_1080_00224065_2018_1507558
crossref_primary_10_1016_j_socnet_2022_12_003
crossref_primary_10_1214_19_EJS1624
crossref_primary_10_1080_01621459_2022_2054817
crossref_primary_10_1214_21_EJS1969
crossref_primary_10_1103_PhysRevE_92_042807
crossref_primary_10_1080_24725854_2020_1861390
crossref_primary_10_1093_comnet_cnaa027
crossref_primary_10_1214_19_EJS1588
crossref_primary_10_1007_s11222_017_9788_9
crossref_primary_10_1109_ACCESS_2020_2996595
crossref_primary_10_1177_1471082X20963254
crossref_primary_10_1111_rssc_12387
crossref_primary_10_1214_16_AOAS993
crossref_primary_10_1214_18_AOS1751
crossref_primary_10_1109_TIT_2024_3471953
crossref_primary_10_1109_OJSP_2021_3051453
crossref_primary_10_1016_j_jnca_2018_02_011
crossref_primary_10_1109_TSP_2015_2437841
crossref_primary_10_1017_nws_2019_10
crossref_primary_10_1007_s10260_023_00712_2
crossref_primary_10_1080_01621459_2021_1924178
crossref_primary_10_1016_j_eswa_2021_114650
crossref_primary_10_1016_j_socnet_2018_03_004
crossref_primary_10_1109_TSIPN_2017_2731123
crossref_primary_10_1111_jtsa_12677
crossref_primary_10_1088_1742_5468_ab7754
crossref_primary_10_1007_s11222_020_09947_5
crossref_primary_10_1080_08982112_2018_1501063
crossref_primary_10_3390_math11071573
crossref_primary_10_3390_e23050502
crossref_primary_10_1103_PhysRevE_105_054311
crossref_primary_10_1073_pnas_1718449115
crossref_primary_10_1214_20_AOS1953
crossref_primary_10_1016_j_pmcj_2020_101231
crossref_primary_10_1109_TSIPN_2021_3052047
crossref_primary_10_1038_s41598_023_29443_w
crossref_primary_10_1109_TNNLS_2022_3149285
crossref_primary_10_1016_j_jmva_2019_104540
crossref_primary_10_1016_j_physa_2020_124897
crossref_primary_10_1016_j_ejor_2019_07_024
crossref_primary_10_1007_s11042_019_08046_6
crossref_primary_10_1080_00224065_2024_2310843
crossref_primary_10_1080_01621459_2019_1677242
crossref_primary_10_1145_3713076
crossref_primary_10_1007_s11222_017_9775_1
crossref_primary_10_1103_PhysRevX_6_031005
crossref_primary_10_1109_TR_2023_3234907
crossref_primary_10_1088_1742_5468_aaeb44
crossref_primary_10_1016_j_eswa_2022_116660
crossref_primary_10_1016_j_patrec_2019_05_008
crossref_primary_10_1109_TSIPN_2019_2942176
crossref_primary_10_1103_PhysRevE_103_052307
crossref_primary_10_1109_ACCESS_2021_3082932
crossref_primary_10_1109_ACCESS_2020_3008708
crossref_primary_10_1002_rnc_4392
crossref_primary_10_1109_TSP_2018_2830312
crossref_primary_10_3390_math11173670
crossref_primary_10_1109_JPROC_2018_2804318
crossref_primary_10_1016_j_neucom_2017_09_013
crossref_primary_10_1109_TSIPN_2016_2555799
crossref_primary_10_1214_22_EJS1986
crossref_primary_10_1109_TNSE_2024_3520130
crossref_primary_10_1038_s41467_017_00148_9
crossref_primary_10_1073_pnas_1606295113
crossref_primary_10_1017_nws_2018_19
crossref_primary_10_1016_j_inffus_2020_05_009
crossref_primary_10_1214_24_AOAS1942
crossref_primary_10_1016_j_patrec_2020_07_014
crossref_primary_10_1002_sta4_381
crossref_primary_10_1002_asmb_2369
crossref_primary_10_1007_s11634_024_00583_9
crossref_primary_10_1016_j_csda_2018_01_010
crossref_primary_10_1017_nws_2021_21
crossref_primary_10_1016_j_knosys_2024_112110
crossref_primary_10_1016_j_neunet_2023_05_048
Cites_doi 10.1002/asi.20591
10.1109/ICASSP.2010.5494930
10.1214/12-AOS1036
10.1109/ASONAM.2010.17
10.1103/PhysRevE.69.026113
10.1109/TSP.2011.2172431
10.1207/s15366359mea0301_3
10.1007/BF01908075
10.1103/PhysRevE.83.016107
10.1002/0471221546
10.1109/ICASSP.2012.6288775
10.1145/1731011.1731020
10.1109/SSP.2012.6319636
10.1126/science.1184819
10.1080/01621459.2012.699795
10.1093/acprof:oso/9780199641178.001.0001
10.1561/2200000005
10.1109/SSP.2011.5967747
10.1198/016214501753208735
10.1111/rssb.12013
10.1007/978-3-642-37210-0_22
10.1109/TSP.2013.2238935
10.1145/1273496.1273537
10.1016/0378-8733(83)90021-7
10.1007/s10994-010-5214-7
10.1145/1217299.1217301
10.1198/1061860032742
10.1007/s11203-011-9058-y
10.1214/11-AOS887
10.1214/09-AOAS311
10.1016/j.csda.2010.05.020
10.1007/s10588-005-5378-z
10.1073/pnas.0900282106
10.1007/s10618-012-0302-x
10.1145/1117454.1117459
10.1109/JSTSP.2012.2233712
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
H8D
L7M
DOI 10.1109/JSTSP.2014.2310294
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0484
EndPage 562
ExternalDocumentID 3379577421
10_1109_JSTSP_2014_2310294
6758385
Genre orig-research
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada; Natural Sciences and Engineering Research Council of Canada
  funderid: 10.13039/501100000038
– fundername: Army Research Office; Army Research Office
  grantid: W911NF-12-1-0443
  funderid: 10.13039/100000183
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
7SP
8FD
H8D
L7M
RIG
ID FETCH-LOGICAL-c394t-39b58c54e83c49aa65f5f9dbfcb99fd9d4745309df0f5fbffcd2d6ec7df108e3
IEDL.DBID RIE
ISSN 1932-4553
IngestDate Sun Sep 28 08:50:14 EDT 2025
Mon Jun 30 10:19:18 EDT 2025
Thu Apr 24 23:04:29 EDT 2025
Wed Oct 01 03:34:35 EDT 2025
Wed Aug 27 08:31:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-39b58c54e83c49aa65f5f9dbfcb99fd9d4745309df0f5fbffcd2d6ec7df108e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1547228206
PQPubID 75721
PageCount 11
ParticipantIDs crossref_primary_10_1109_JSTSP_2014_2310294
proquest_journals_1547228206
crossref_citationtrail_10_1109_JSTSP_2014_2310294
ieee_primary_6758385
proquest_miscellaneous_1559688471
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal of selected topics in signal processing
PublicationTitleAbbrev JSTSP
PublicationYear 2014
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref37
ref15
ref14
ref31
ref30
ref11
mucha (ref10) 2010; 328
(ref45) 2007
nelson (ref34) 2000
ref2
ref39
ref17
ref38
katz (ref8) 2005; 3
ref19
ref18
russell (ref33) 2003
priebe (ref16) 2009
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ghahramani (ref36) 1998; 11
ref21
ref43
wan (ref35) 1996
ref28
ref27
xu (ref1) 2013
sarkar (ref24) 2007
ref7
ljung (ref32) 1999
ref9
ref4
ho (ref29) 2011
ref3
ref6
ref5
ref40
References_xml – year: 1999
  ident: ref32
  publication-title: System Identification Theory for the User
– ident: ref42
  doi: 10.1002/asi.20591
– ident: ref2
  doi: 10.1109/ICASSP.2010.5494930
– year: 2007
  ident: ref24
  article-title: A latent space approach to dynamic embedding of co-occurrence data
  publication-title: Proc 11th Int Conf Artif Intell Statist
– ident: ref19
  doi: 10.1214/12-AOS1036
– ident: ref11
  doi: 10.1109/ASONAM.2010.17
– ident: ref38
  doi: 10.1103/PhysRevE.69.026113
– ident: ref37
  doi: 10.1109/TSP.2011.2172431
– volume: 3
  start-page: 24
  year: 2005
  ident: ref8
  article-title: Scale-independent bibliometric indicators
  publication-title: Measurement Interdisciplinary Research and Perspectives
  doi: 10.1207/s15366359mea0301_3
– ident: ref39
  doi: 10.1007/BF01908075
– ident: ref17
  doi: 10.1103/PhysRevE.83.016107
– year: 2007
  ident: ref45
  publication-title: ?ENRON The Smartest Guys in the Room?Enron Timeline ?
– ident: ref14
  doi: 10.1002/0471221546
– ident: ref4
  doi: 10.1109/ICASSP.2012.6288775
– ident: ref41
  doi: 10.1145/1731011.1731020
– ident: ref3
  doi: 10.1109/SSP.2012.6319636
– volume: 328
  start-page: 876
  year: 2010
  ident: ref10
  article-title: Community structure in time-dependent, multiscale, and multiplex networks
  publication-title: Science
  doi: 10.1126/science.1184819
– ident: ref21
  doi: 10.1080/01621459.2012.699795
– ident: ref31
  doi: 10.1093/acprof:oso/9780199641178.001.0001
– year: 2000
  ident: ref34
  publication-title: Nonlinear Estimation and Modeling of Noisy Time-series by Dual Kalman Filtering Methods
– ident: ref7
  doi: 10.1561/2200000005
– ident: ref44
  doi: 10.1109/SSP.2011.5967747
– ident: ref18
  doi: 10.1198/016214501753208735
– ident: ref27
  doi: 10.1111/rssb.12013
– start-page: 201
  year: 2013
  ident: ref1
  article-title: Dynamic stochastic blockmodels: Statistical models for time-evolving networks
  publication-title: Proc 6th Int Conf Soc Comput Behav -Cult Model Predict
  doi: 10.1007/978-3-642-37210-0_22
– year: 2009
  ident: ref16
  publication-title: ?Scan statistics on Enron graphs ?
– ident: ref5
  doi: 10.1109/TSP.2013.2238935
– ident: ref22
  doi: 10.1145/1273496.1273537
– ident: ref13
  doi: 10.1016/0378-8733(83)90021-7
– ident: ref30
  doi: 10.1007/s10994-010-5214-7
– ident: ref9
  doi: 10.1145/1217299.1217301
– ident: ref43
  doi: 10.1198/1061860032742
– start-page: 793
  year: 1996
  ident: ref35
  article-title: Dual Kalman filtering methods for nonlinear prediction, smoothing, and estimation
  publication-title: Adv Neural Inf Process Syst
– ident: ref26
  doi: 10.1007/s11203-011-9058-y
– ident: ref20
  doi: 10.1214/11-AOS887
– ident: ref28
  doi: 10.1214/09-AOAS311
– ident: ref25
  doi: 10.1016/j.csda.2010.05.020
– ident: ref15
  doi: 10.1007/s10588-005-5378-z
– volume: 11
  year: 1998
  ident: ref36
  article-title: Learning nonlinear dynamical systems using an EM algorithm
  publication-title: Adv Neural Inf Process Syst
– start-page: 342
  year: 2011
  ident: ref29
  article-title: Evolving cluster mixed-membership blockmodel for time-varying networks
  publication-title: Proc 11th Int Conf Artif Intell Statist
– ident: ref40
  doi: 10.1073/pnas.0900282106
– year: 2003
  ident: ref33
  publication-title: Artificial Intelligence A Modern Approach
– ident: ref12
  doi: 10.1007/s10618-012-0302-x
– ident: ref23
  doi: 10.1145/1117454.1117459
– ident: ref6
  doi: 10.1109/JSTSP.2012.2233712
SSID ssj0057614
Score 2.517222
Snippet Significant efforts have gone into the development of statistical models for analyzing data in the form of networks, such as social networks. Most existing...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 552
SubjectTerms Algorithms
Approximation methods
Blocking
Covariance matrices
dynamic network
Dynamics
extended Kalman filter
Heuristic algorithms
Inference algorithms
Kalman filters
Markov analysis
Monte Carlo methods
Monte Carlo simulation
Networks
on-line estimation
Searching
Social networks
State-space social network model
Stochastic processes
Stochasticity
Vectors
Title Dynamic Stochastic Blockmodels for Time-Evolving Social Networks
URI https://ieeexplore.ieee.org/document/6758385
https://www.proquest.com/docview/1547228206
https://www.proquest.com/docview/1559688471
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057614
  issn: 1932-4553
  databaseCode: RIE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFH6MnvTgNop1o4I3zZg2Sdvc3BFhBmFG8FbSLAjKjDidi7_evC6DG-KtkJX3kve-5m0ARzEVVkuXEU0VIzwylnilwIgrdOS1HwpEDHDuD5LbB373KB47cDKPhbHWVs5ntoeflS3fTPQMn8pOEdyyTCzAQpoldaxWK3U9bI4aC3JMuBCsDZCh8tQf8eE9enHxHqKZWPIvSqiqqvJDFFf65WYV-u3OareS596sLHr6_VvSxv9ufQ1WGqAZntcnYx06drwBy5_SD3bh7KouRx8Oy4l-UpixObzwyu25Ko8zDT2eDTFEhFx7GYYPD2EdzBsOat_x6SaMbq5Hl7ekqahANJO8JEwWItOC24xpLpVKhBNOmsLpQkpnpOEpF4xK46hvKJzTJjaJ1alxEc0s24LF8WRstyFUsdBKKZdGfoj181KrEqMNyzyi4gUNIGopnOsm2zgWvXjJq78OKvOKKzlyJW-4EsDxfMxrnWvjz95dJPO8Z0PhAPZaRubNdZzmHiemcYyp6gM4nDf7i4TWETW2kxn2ETLJUFnv_D7zLizh-rX33x4slm8zu-8RSVkcVEfxA_C73X4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZSwMxEB48HtQHb7GeK_imqdlNst28eVOPFsEKvi3ZHAhKK3b74q83s0fxQnxbyMGQmcx8m7kA9iMqrJYuIZoqRnhoLPFGgRGX6dBbP1SImODc6cbtB379KB4n4HCcC2OtLYLPbBM_C1--GegRPpUdIbhliZiEacE5F2W2Vq13PXAOKx9yRLgQrE6RofLIC_n9HcZx8SbimUjyL2ao6KvyQxkXFuZyATo1bWVgyXNzlGdN_f6tbON_iV-E-QpqBielbCzBhO0vw9ynAoQrcHxeNqQP7vOBflJYszk49ebtuWiQMww8og0wSYRceC2GTw9Bmc4bdMvo8eEq9C4vemdtUvVUIJpJnhMmM5FowW3CNJdKxcIJJ03mdCalM9LwFheMSuOoH8ic0yYysdUt40KaWLYGU_1B365DoCKhlVKuFfol1u9LrYqNNizxmIpntAFhfcKpruqNY9uLl7T476AyLbiSIlfSiisNOBiveS2rbfw5ewWPeTyzOuEGbNWMTKsLOUw9UmxFERarb8DeeNhfJfSPqL4djHCOkHGC5nrj9513Yabd69ymt1fdm02YRVrKWMAtmMrfRnbb45M82ynE8gOwa-DL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Stochastic+Blockmodels+for+Time-Evolving+Social+Networks&rft.jtitle=IEEE+journal+of+selected+topics+in+signal+processing&rft.au=Xu%2C+Kevin+S.&rft.au=Hero%2C+Alfred+O.&rft.date=2014-08-01&rft.issn=1932-4553&rft.eissn=1941-0484&rft.volume=8&rft.issue=4&rft.spage=552&rft.epage=562&rft_id=info:doi/10.1109%2FJSTSP.2014.2310294&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTSP_2014_2310294
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4553&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4553&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4553&client=summon