dynamic Bayesian network data fusion algorithm for estimating leaf area index using time-series data from in situ measurement to remote sensing observations

Leaf area index (LAI) products retrieved from remote sensing observations have been widely used in the fields of ecosphere, atmosphere etc. However, because satellite-observed images are captured instantaneously and sometimes screened by cloud, some current LAI products are inherently discontinuous...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of remote sensing Vol. 33; no. 4; pp. 1106 - 1125
Main Authors Qu, Yonghua, Zhang, Yuzhen, Wang, Jindi
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 20.02.2012
Subjects
Online AccessGet full text
ISSN1366-5901
0143-1161
1366-5901
DOI10.1080/01431161.2010.550642

Cover

Abstract Leaf area index (LAI) products retrieved from remote sensing observations have been widely used in the fields of ecosphere, atmosphere etc. However, because satellite-observed images are captured instantaneously and sometimes screened by cloud, some current LAI products are inherently discontinuous in time and their accuracy may not meet the needs of users well. To solve these problems, we proposed a dynamic Bayesian network (DBN)-based data fusion algorithm that integrates dynamic crop growth information, a canopy reflectance (CR) model and remote sensing observations from the perspective of Bayesian probability. Using the proposed algorithm, LAI was estimated using data sets from both field measurements for winter wheat in Beijing, China, and MODIS reflectance data at two American flux tower sites. Results showed good agreement between the LAI estimated by the DBN-based data fusion method and the true ground LAI, with a correlation coefficient of (R) 0.95 and 0.96, respectively, and a corresponding root mean square error (RMSE) of 0.35 and 0.49, respectively. In addition, the LAI estimated by the DBN-based data fusion method formed a continuous time series and was consistent with the variety law of vegetation growth at both plot and flux tower site scales. It has been demonstrated that the proposed DBN-based data fusion algorithm has the potential to be used to accurately estimate LAI and to fill the temporal gap by integrating information from multiple sources.
AbstractList Leaf area index (LAI) products retrieved from remote sensing observations have been widely used in the fields of ecosphere, atmosphere etc. However, because satellite-observed images are captured instantaneously and sometimes screened by cloud, some current LAI products are inherently discontinuous in time and their accuracy may not meet the needs of users well. To solve these problems, we proposed a dynamic Bayesian network (DBN)-based data fusion algorithm that integrates dynamic crop growth information, a canopy reflectance (CR) model and remote sensing observations from the perspective of Bayesian probability. Using the proposed algorithm, LAI was estimated using data sets from both field measurements for winter wheat in Beijing, China, and MODIS reflectance data at two American flux tower sites. Results showed good agreement between the LAI estimated by the DBN-based data fusion method and the true ground LAI, with a correlation coefficient of (R) 0.95 and 0.96, respectively, and a corresponding root mean square error (RMSE) of 0.35 and 0.49, respectively. In addition, the LAI estimated by the DBN-based data fusion method formed a continuous time series and was consistent with the variety law of vegetation growth at both plot and flux tower site scales. It has been demonstrated that the proposed DBN-based data fusion algorithm has the potential to be used to accurately estimate LAI and to fill the temporal gap by integrating information from multiple sources.
Author Qu, Yonghua
Zhang, Yuzhen
Wang, Jindi
Author_xml – sequence: 1
  fullname: Qu, Yonghua
– sequence: 2
  fullname: Zhang, Yuzhen
– sequence: 3
  fullname: Wang, Jindi
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25511256$$DView record in Pascal Francis
BookMark eNqFUU1v1DAQjVAr0Q_-ARK-IHFJ8Ufs3XBBUFFAqsQBerYmyXgxJHaxHdr9L_zYzjZbhLj0NOPxe08z7x1XByEGrKrngp8JvuavuWiUEEacSU4jrblp5JPqSChjat1ycfBP_7Q6zvkH59ys9Oqo-jNsA0y-Z-9hi9lDYAHLTUw_2QAFmJuzj4HBuInJl-8TczExzMVPUHzYsBHBMUgIzIcBbxnBaUrfWGdMHvNeJsWJECz7MrMJIc8JJwyFlcioiwVZxnDPjR0Rf5N6DPm0OnQwZny2ryfV1cWHb-ef6ssvHz-fv7use9U2pVYNaO4cOi0bp_kau641wMHpQe0cwUE2Uqve0Mv1UimDVE3XDtgNa43qpHq16F6n-Gum8-zkc4_jCAHjnK0ku8hAuVoT9OUeCrmH0SUIvc_2OpEjaWul1kJIbQjXLLg-xZwTur8Qwe0uNPsQmt2taJfQiPbmP1rvy70ZJYEfHyO_Xcg-UEwTUIzjYAtsx5geFlWPKLxYFBxEC5tEhKuvBGjofr7iLVd3rUS-Eg
CODEN IJSEDK
CitedBy_id crossref_primary_10_3390_s17071593
crossref_primary_10_1016_j_rse_2016_02_019
crossref_primary_10_1109_JSTARS_2013_2259472
crossref_primary_10_1109_TGRS_2016_2604007
crossref_primary_10_3390_app13064005
crossref_primary_10_3390_rs16234441
crossref_primary_10_1016_j_envsoft_2023_105835
crossref_primary_10_3390_rs70404604
crossref_primary_10_1080_2150704X_2016_1154219
crossref_primary_10_3390_rs12182934
crossref_primary_10_1016_j_isprsjprs_2015_05_005
crossref_primary_10_3390_rs70100195
crossref_primary_10_1016_j_rse_2012_08_015
crossref_primary_10_1016_j_compag_2021_106667
crossref_primary_10_1016_j_eja_2016_04_007
crossref_primary_10_1016_j_spasta_2019_100393
crossref_primary_10_1109_JSTARS_2013_2289931
crossref_primary_10_1016_j_compag_2017_12_007
crossref_primary_10_3390_ijgi9110665
crossref_primary_10_1109_JSTARS_2018_2818286
Cites_doi 10.1109/TGRS.2005.848412
10.1046/j.1365-2486.2000.00362.x
10.1016/j.geoderma.2007.04.021
10.1046/j.1365-2486.1998.t01-1-00168.x
10.1016/j.rse.2007.07.008
10.1016/S0025-5564(02)00096-2
10.1002/qj.49711247414
10.1016/S0168-1923(01)00234-9
10.1177/0309133307084626
10.1016/j.physd.2006.08.023
10.1111/j.1365-2486.2005.00930.x
10.1016/j.rse.2004.06.005
10.1029/2008JG000781.
10.1016/S0034-4257(03)00094-4
10.2136/sssaj2002.0988
10.1016/j.rse.2004.04.009
10.1016/0034-4257(84)90057-9
10.1016/0034-4257(92)90072-R
10.1007/BF02703729
10.1029/97JD01107
10.1016/j.rse.2008.01.026
10.1016/j.jmarsys.2007.01.007
10.1016/S0034-4257(00)00139-5
10.1016/j.rse.2007.03.031
10.1016/0034-4257(90)90100-Z
10.1016/0034-4257(83)90055-X
10.1109/TGRS.2007.902426
10.1080/00031305.1983.10483087
10.1109/ASSPCC.2000.882463
10.1016/j.physd.2006.09.017
10.1080/01431160802036268
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2012
2015 INIST-CNRS
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2012
– notice: 2015 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7S9
L.6
DOI 10.1080/01431161.2010.550642
DatabaseName AGRIS
CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1366-5901
EndPage 1125
ExternalDocumentID 25511256
10_1080_01431161_2010_550642
550642
US201400107090
GeographicLocations China
Beijing China
Far East
Asia
GeographicLocations_xml – name: China
GroupedDBID -~X
.7F
.DC
.QJ
07I
0BK
1TA
29J
30N
4.4
4B5
5GY
5VS
6TJ
AAAVI
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABFMO
ABHAV
ABJNI
ABJVF
ABLIJ
ABLJU
ABPEM
ABPTK
ABQHQ
ABRLO
ABTAH
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ACTTO
ADCVX
ADGTB
ADXEU
ADXPE
AEGYZ
AEHZU
AEISY
AENEX
AEOZL
AEPSL
AEXLP
AEYOC
AEZBV
AFION
AFKVX
AFOLD
AFWLO
AGBLW
AGDLA
AGMYJ
AGVKY
AGWUF
AHDLD
AI.
AIDBO
AIJEM
AIRXU
AJWEG
AKBVH
AKHJE
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRRR
ALXIB
AQRUH
AVBZW
AWYRJ
BGSSV
BLEHA
BWMZZ
C0-
C5H
CAG
CCCUG
CE4
COF
CS3
CYRSC
DAOYK
DEXXA
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
F5P
FBQ
FETWF
FUNRP
FVPDL
G8K
HF~
H~9
IFELN
IPNFZ
J.P
KYCEM
L8C
LJTGL
M4Z
NUSFT
OPCYK
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TAJZE
TAP
TEN
TFL
TFT
TFW
TN5
TNC
TQWBC
TTHFI
TWF
UAO
UB6
UPT
UT5
UU3
V1K
VH1
VOH
ZGOLN
ZY4
~02
~S~
0R~
AAGDL
AAHBH
AAHIA
ABPAQ
ABUFD
AFRVT
AHDZW
AIYEW
AQTUD
H13
TASJS
TBQAZ
TDBHL
TUROJ
AAYXX
CITATION
ABDPE
ADYSH
AFBWG
AKMBP
IQODW
7S9
L.6
ID FETCH-LOGICAL-c394t-34a50ffef524f508ebb96a0af5d32010ed24253c6320fc2336e0fc6b9debd85e3
ISSN 1366-5901
0143-1161
IngestDate Fri Sep 05 17:24:06 EDT 2025
Mon Jul 21 09:14:59 EDT 2025
Thu Apr 24 23:10:57 EDT 2025
Wed Oct 01 02:59:34 EDT 2025
Mon Oct 20 23:47:08 EDT 2025
Wed Dec 27 19:14:04 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords atmosphere
algorithms
Discontinuous
User
data
accuracy
clouds
Image
Information
Field
currents
dynamics
Bayes network
Cultivated plant
Plant production
satellites
Dynamic characteristic
Time series
remote sensing
biosphere
Measurement in situ
Data fusion
growth
Problem
Leaf area index
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c394t-34a50ffef524f508ebb96a0af5d32010ed24253c6320fc2336e0fc6b9debd85e3
Notes http://dx.doi.org/10.1080/01431161.2010.550642
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2000136278
PQPubID 24069
PageCount 20
ParticipantIDs crossref_primary_10_1080_01431161_2010_550642
pascalfrancis_primary_25511256
proquest_miscellaneous_2000136278
crossref_citationtrail_10_1080_01431161_2010_550642
informaworld_taylorfrancis_310_1080_01431161_2010_550642
fao_agris_US201400107090
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20120220
PublicationDateYYYYMMDD 2012-02-20
PublicationDate_xml – month: 02
  year: 2012
  text: 20120220
  day: 20
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of remote sensing
PublicationYear 2012
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References CIT0030
CIT0010
CIT0031
CIT0034
CIT0011
CIT0033
Murphy K.P. (CIT0028) 2002
CIT0014
CIT0036
CIT0013
CIT0035
CIT0016
CIT0038
CIT0015
CIT0037
CIT0018
CIT0017
CIT0019
Law B. (CIT0022) 2008
CIT0041
CIT0040
CIT0001
CIT0023
Punska O. (CIT0029) 1999
Kuusk A. (CIT0021) 1985; 3
CIT0003
CIT0025
CIT0002
Zhong-Hui Lin (CIT0024) 2003; 11
CIT0005
Knyazikhin Y. (CIT0020) 1999
CIT0004
CIT0026
CIT0007
CIT0006
CIT0009
CIT0008
References_xml – ident: CIT0019
  doi: 10.1109/TGRS.2005.848412
– ident: CIT0001
  doi: 10.1046/j.1365-2486.2000.00362.x
– ident: CIT0002
  doi: 10.1016/j.geoderma.2007.04.021
– ident: CIT0009
  doi: 10.1046/j.1365-2486.1998.t01-1-00168.x
– ident: CIT0011
  doi: 10.1016/j.rse.2007.07.008
– ident: CIT0035
  doi: 10.1016/S0025-5564(02)00096-2
– volume: 11
  start-page: 69
  year: 2003
  ident: CIT0024
  publication-title: Chinese Journal of Eco-Agriculture
– ident: CIT0025
  doi: 10.1002/qj.49711247414
– volume-title: MODIS Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation Absorbed by Vegetation (FPAR) Product (MOD15) Algorithm
  year: 1999
  ident: CIT0020
– ident: CIT0038
  doi: 10.1016/S0168-1923(01)00234-9
– ident: CIT0023
  doi: 10.1177/0309133307084626
– ident: CIT0013
  doi: 10.1016/j.physd.2006.08.023
– ident: CIT0018
  doi: 10.1111/j.1365-2486.2005.00930.x
– ident: CIT0026
  doi: 10.1016/j.rse.2004.06.005
– ident: CIT0034
  doi: 10.1029/2008JG000781.
– volume-title: inference and learning. PhD thesis
  year: 2002
  ident: CIT0028
– ident: CIT0005
  doi: 10.1016/S0034-4257(03)00094-4
– ident: CIT0033
  doi: 10.2136/sssaj2002.0988
– ident: CIT0008
  doi: 10.1016/j.rse.2004.04.009
– ident: CIT0036
  doi: 10.1016/0034-4257(84)90057-9
– ident: CIT0016
  doi: 10.1016/0034-4257(92)90072-R
– volume-title: Bayesian approaches to multi-sensor data fusion
  year: 1999
  ident: CIT0029
– ident: CIT0003
  doi: 10.1007/BF02703729
– ident: CIT0004
  doi: 10.1029/97JD01107
– ident: CIT0017
  doi: 10.1016/j.rse.2008.01.026
– ident: CIT0006
  doi: 10.1016/j.jmarsys.2007.01.007
– ident: CIT0014
  doi: 10.1016/S0034-4257(00)00139-5
– ident: CIT0030
  doi: 10.1016/j.rse.2007.03.031
– ident: CIT0015
  doi: 10.1016/0034-4257(90)90100-Z
– ident: CIT0010
  doi: 10.1016/0034-4257(83)90055-X
– volume: 3
  start-page: 645
  year: 1985
  ident: CIT0021
  publication-title: Soviet Journal of Remote Sensing
– ident: CIT0041
  doi: 10.1109/TGRS.2007.902426
– ident: CIT0007
  doi: 10.1080/00031305.1983.10483087
– ident: CIT0037
  doi: 10.1109/ASSPCC.2000.882463
– ident: CIT0040
  doi: 10.1016/j.physd.2006.09.017
– volume-title: Terrestrial Carbon Observations: Protocols for Vegetation Sampling and Data Submission
  year: 2008
  ident: CIT0022
– ident: CIT0031
  doi: 10.1080/01431160802036268
SSID ssj0006757
Score 2.145476
Snippet Leaf area index (LAI) products retrieved from remote sensing observations have been widely used in the fields of ecosphere, atmosphere etc. However, because...
SourceID proquest
pascalfrancis
crossref
informaworld
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1106
SubjectTerms algorithms
Animal, plant and microbial ecology
Applied geophysics
Biological and medical sciences
canopy
China
correlation
data collection
Earth sciences
Earth, ocean, space
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
Internal geophysics
leaf area index
moderate resolution imaging spectroradiometer
probability
reflectance
remote sensing
Teledetection and vegetation maps
time series analysis
vegetation
winter wheat
Title dynamic Bayesian network data fusion algorithm for estimating leaf area index using time-series data from in situ measurement to remote sensing observations
URI https://www.tandfonline.com/doi/abs/10.1080/01431161.2010.550642
https://www.proquest.com/docview/2000136278
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1366-5901
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006757
  issn: 1366-5901
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1366-5901
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006757
  issn: 1366-5901
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECUc59Beiq6IuwQs0JvAgFoo2Ud3NQK0l8ZI2osgiaRjIJECSzo0H9P_6V91RqQWp0ba9CLLskRRnkfOcDTzhpA3oLLTNJEB41xyFoSBZGmkOIuUnGV8mnlSo0P_85dwsQyOz8TZaPRrELVUV-lRdr0zr-R_pArHQK6YJXsHyXaNwgHYB_nCFiQM23-S8dyRpqC88zb5oZp0yNyEdTsY-enoumyijS9WxWZdnV8afm8Y1Gim5issGaGdZIPJkkia6NSN4wDLzTPsvyptM5iCss6dcl3VzmXvVES7FfaKSjklxsFj_HTaeXnLod277Xgc0FVsX9-7YRvVUOSr87rTG51v-1t9fd5nsJ3ao8f49n3oxMBoEI95fMuv6TPXNbzsR8rMxX4YMkyNHU7WhjXDgjIYzLxgxoQDLQ5mpNipIWxIJdwPb2di-wSy9nm9RmyjAG4oyi580W15VW0rMbYSm1b2yL4HCoaPyf588f77aWcWwMrM5O7bJ23zOJHofUdvtuykPZ0UN7h0MYg3KWEca1OA5Q9bojGQTh6SB3ZlQ-cGpo_ISOWPyb1PynKiPyE_59TClbZwpRauFHFGDVxpB1cK_aA9XCnClSJcaQNX2sCVDuBqmwG4whkU4UoHcKVVQQ3cqIUbHcL1KVl-_HDybsFseRCW-bOgYn6QCK610sILNKwzVJrOwoQnWkgf_0glcTntZyF805nn-6GCzzCdSZXKqVD-MzLOi1wdEIosdJEbuZmIeCClB2axECms9l2NJSv5hPitMOLMcudjCZeL-DYoTAjrrroy3DF_Of8A5BwnK1Dv8fKrh84P-DXiM-jAdCj8uGrceVb0sX97q4dbQOm64glcbIlwQl63yIlBt-ALwyRXRV1iiVqkdPSi6fM7PsoLcr8f5i_JuNrU6hVY71V6aMfFb0FJ6x8
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgHMoFype6QMsgcU3xxnGyORZEtS3tXuhK3Cw7trdVdxO0SQ7lx_BbmYmThRYBEpySKLEdO-PxzOT5DWNvcMk2Rtsk4tzyKEkTG5nM8ShzNi_4pIitp4D-2SydzpOTz3JAE9Y9rJJ8aB-IIjpdTZObgtEDJO4tcdKN0VQJyCxJnGuohe9JtPUpiYHgs40yRns47JgmJk4sMuye-00tN1anu15XtxhMCTqpaxw9H9Je_KLBu2Xp6CEzQ4cCGuXqoG3MQfH1Ftfjf_V4hz3ojVY4DFL2iN1x5WO23edPv7h-wr4dgg2p7eGdvna0MRPKADAHwqCCbykqB3q5qNaXzcUKsLNABB9kMJcLWDrtQaMBCx19IxAcfwGU-D6iOeLqvpp1tcInoL5sWlj9CG9CUwGeVY2DmhD5WLYym3hz_ZTNjz6cv59GfeaHqBB50kQi0ZJ777yME48mpDMmTzXXXlpBI-AseUqiSPHKF7EQqcNjanLrjJ1IJ56xrbIq3S4DIhhDl3VcyIwn1qKHyaU06MiNPWUj5CMmhi-uip4WnbJzLNV4YE_tx15RyyqM_YhFm1JfAi3IX57fRWFSeoGaW80_xeTX4t2M5_gCk58lTDVdpKaXLyX-XOv-DWncvAr6iWhHy3TEXg_iqVBt0L8gXbqqrSn7KLH1xdnk-b-3_4ptT8_PTtXp8ezjC3Yf78Tdbn_-km0169btob3WmP1uRn4HJ7QxDw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSMCFd9XlUQaJq4s3iZPNsTxW5bVCgpV6s-zY3lbsJtUmObQ_pr-VmThZ2iJAgtNmldiJnfF4ZvLNN4y9xC3bGG0TLoQVPEkTy03mBM-czQsxKSLrKaD_eZYezJMPh_LwQhY_wSrJh_aBKKLT1bS4T6wfEHGviJJujJZKAGZJolxDJXwjpY9ilMQhZhtdjOZwSJgmIk5sMiTP_aaXS5vTda-rKwSmhJzUNU6eD1UvflHg3a40vcv0MJ4ARvm-1zZmrzi7QvX4PwO-x-70JivsBxm7z6658gG71VdPPzp9yM73wYbC9vBanzpKy4QywMuBEKjgW4rJgV4uqvVxc7QCHCsQvQeZy-UClk570Gi-QkfeCATGXwCVvee0Qlzdd7OuVngF1MdNC6ufwU1oKsCjqnFQEx4f21ZmE22uH7H59N23Nwe8r_vAizhPGh4nWgrvnZdR4tGAdMbkqRbaSxvTDDhLflJcpPjPF1Ecpw5_U5NbZ-xEunibbZVV6XYYEL0YOqzjQmYisRb9SyGlQTdu7KkWoRixeHjhquhJ0ak2x1KNB-7Ufu4V3VmFuR8xvml1EkhB_nL9DsqS0gvU22r-NSKvFs9mIscHmFwUMNV0cZpevFT85153Lwnj5lHQS0QrWqYj9mKQToVKg74E6dJVbU21R4mrL8omj__9_s_ZzS9vp-rT-9nHJ-w2noi6VH_xlG0169Y9Q2OtMbvdevwBNKMvsw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic+Bayesian+network+data+fusion+algorithm+for+estimating+leaf+area+index+using+time-series+data+from+in+situ+measurement+to+remote+sensing+observations&rft.jtitle=International+journal+of+remote+sensing&rft.au=Qu%2C+Yonghua&rft.au=Zhang%2C+Yuzhen&rft.au=Wang%2C+Jindi&rft.date=2012-02-20&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=33&rft.issue=4&rft.spage=1106&rft.epage=1125&rft_id=info:doi/10.1080%2F01431161.2010.550642&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01431161_2010_550642
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1366-5901&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1366-5901&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1366-5901&client=summon