dynamic Bayesian network data fusion algorithm for estimating leaf area index using time-series data from in situ measurement to remote sensing observations
Leaf area index (LAI) products retrieved from remote sensing observations have been widely used in the fields of ecosphere, atmosphere etc. However, because satellite-observed images are captured instantaneously and sometimes screened by cloud, some current LAI products are inherently discontinuous...
Saved in:
| Published in | International journal of remote sensing Vol. 33; no. 4; pp. 1106 - 1125 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Abingdon
Taylor & Francis
20.02.2012
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1366-5901 0143-1161 1366-5901 |
| DOI | 10.1080/01431161.2010.550642 |
Cover
| Abstract | Leaf area index (LAI) products retrieved from remote sensing observations have been widely used in the fields of ecosphere, atmosphere etc. However, because satellite-observed images are captured instantaneously and sometimes screened by cloud, some current LAI products are inherently discontinuous in time and their accuracy may not meet the needs of users well. To solve these problems, we proposed a dynamic Bayesian network (DBN)-based data fusion algorithm that integrates dynamic crop growth information, a canopy reflectance (CR) model and remote sensing observations from the perspective of Bayesian probability. Using the proposed algorithm, LAI was estimated using data sets from both field measurements for winter wheat in Beijing, China, and MODIS reflectance data at two American flux tower sites. Results showed good agreement between the LAI estimated by the DBN-based data fusion method and the true ground LAI, with a correlation coefficient of (R) 0.95 and 0.96, respectively, and a corresponding root mean square error (RMSE) of 0.35 and 0.49, respectively. In addition, the LAI estimated by the DBN-based data fusion method formed a continuous time series and was consistent with the variety law of vegetation growth at both plot and flux tower site scales. It has been demonstrated that the proposed DBN-based data fusion algorithm has the potential to be used to accurately estimate LAI and to fill the temporal gap by integrating information from multiple sources. |
|---|---|
| AbstractList | Leaf area index (LAI) products retrieved from remote sensing observations have been widely used in the fields of ecosphere, atmosphere etc. However, because satellite-observed images are captured instantaneously and sometimes screened by cloud, some current LAI products are inherently discontinuous in time and their accuracy may not meet the needs of users well. To solve these problems, we proposed a dynamic Bayesian network (DBN)-based data fusion algorithm that integrates dynamic crop growth information, a canopy reflectance (CR) model and remote sensing observations from the perspective of Bayesian probability. Using the proposed algorithm, LAI was estimated using data sets from both field measurements for winter wheat in Beijing, China, and MODIS reflectance data at two American flux tower sites. Results showed good agreement between the LAI estimated by the DBN-based data fusion method and the true ground LAI, with a correlation coefficient of (R) 0.95 and 0.96, respectively, and a corresponding root mean square error (RMSE) of 0.35 and 0.49, respectively. In addition, the LAI estimated by the DBN-based data fusion method formed a continuous time series and was consistent with the variety law of vegetation growth at both plot and flux tower site scales. It has been demonstrated that the proposed DBN-based data fusion algorithm has the potential to be used to accurately estimate LAI and to fill the temporal gap by integrating information from multiple sources. |
| Author | Qu, Yonghua Zhang, Yuzhen Wang, Jindi |
| Author_xml | – sequence: 1 fullname: Qu, Yonghua – sequence: 2 fullname: Zhang, Yuzhen – sequence: 3 fullname: Wang, Jindi |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25511256$$DView record in Pascal Francis |
| BookMark | eNqFUU1v1DAQjVAr0Q_-ARK-IHFJ8Ufs3XBBUFFAqsQBerYmyXgxJHaxHdr9L_zYzjZbhLj0NOPxe08z7x1XByEGrKrngp8JvuavuWiUEEacSU4jrblp5JPqSChjat1ycfBP_7Q6zvkH59ys9Oqo-jNsA0y-Z-9hi9lDYAHLTUw_2QAFmJuzj4HBuInJl-8TczExzMVPUHzYsBHBMUgIzIcBbxnBaUrfWGdMHvNeJsWJECz7MrMJIc8JJwyFlcioiwVZxnDPjR0Rf5N6DPm0OnQwZny2ryfV1cWHb-ef6ssvHz-fv7use9U2pVYNaO4cOi0bp_kau641wMHpQe0cwUE2Uqve0Mv1UimDVE3XDtgNa43qpHq16F6n-Gum8-zkc4_jCAHjnK0ku8hAuVoT9OUeCrmH0SUIvc_2OpEjaWul1kJIbQjXLLg-xZwTur8Qwe0uNPsQmt2taJfQiPbmP1rvy70ZJYEfHyO_Xcg-UEwTUIzjYAtsx5geFlWPKLxYFBxEC5tEhKuvBGjofr7iLVd3rUS-Eg |
| CODEN | IJSEDK |
| CitedBy_id | crossref_primary_10_3390_s17071593 crossref_primary_10_1016_j_rse_2016_02_019 crossref_primary_10_1109_JSTARS_2013_2259472 crossref_primary_10_1109_TGRS_2016_2604007 crossref_primary_10_3390_app13064005 crossref_primary_10_3390_rs16234441 crossref_primary_10_1016_j_envsoft_2023_105835 crossref_primary_10_3390_rs70404604 crossref_primary_10_1080_2150704X_2016_1154219 crossref_primary_10_3390_rs12182934 crossref_primary_10_1016_j_isprsjprs_2015_05_005 crossref_primary_10_3390_rs70100195 crossref_primary_10_1016_j_rse_2012_08_015 crossref_primary_10_1016_j_compag_2021_106667 crossref_primary_10_1016_j_eja_2016_04_007 crossref_primary_10_1016_j_spasta_2019_100393 crossref_primary_10_1109_JSTARS_2013_2289931 crossref_primary_10_1016_j_compag_2017_12_007 crossref_primary_10_3390_ijgi9110665 crossref_primary_10_1109_JSTARS_2018_2818286 |
| Cites_doi | 10.1109/TGRS.2005.848412 10.1046/j.1365-2486.2000.00362.x 10.1016/j.geoderma.2007.04.021 10.1046/j.1365-2486.1998.t01-1-00168.x 10.1016/j.rse.2007.07.008 10.1016/S0025-5564(02)00096-2 10.1002/qj.49711247414 10.1016/S0168-1923(01)00234-9 10.1177/0309133307084626 10.1016/j.physd.2006.08.023 10.1111/j.1365-2486.2005.00930.x 10.1016/j.rse.2004.06.005 10.1029/2008JG000781. 10.1016/S0034-4257(03)00094-4 10.2136/sssaj2002.0988 10.1016/j.rse.2004.04.009 10.1016/0034-4257(84)90057-9 10.1016/0034-4257(92)90072-R 10.1007/BF02703729 10.1029/97JD01107 10.1016/j.rse.2008.01.026 10.1016/j.jmarsys.2007.01.007 10.1016/S0034-4257(00)00139-5 10.1016/j.rse.2007.03.031 10.1016/0034-4257(90)90100-Z 10.1016/0034-4257(83)90055-X 10.1109/TGRS.2007.902426 10.1080/00031305.1983.10483087 10.1109/ASSPCC.2000.882463 10.1016/j.physd.2006.09.017 10.1080/01431160802036268 |
| ContentType | Journal Article |
| Copyright | Copyright Taylor & Francis Group, LLC 2012 2015 INIST-CNRS |
| Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2012 – notice: 2015 INIST-CNRS |
| DBID | FBQ AAYXX CITATION IQODW 7S9 L.6 |
| DOI | 10.1080/01431161.2010.550642 |
| DatabaseName | AGRIS CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1366-5901 |
| EndPage | 1125 |
| ExternalDocumentID | 25511256 10_1080_01431161_2010_550642 550642 US201400107090 |
| GeographicLocations | China Beijing China Far East Asia |
| GeographicLocations_xml | – name: China |
| GroupedDBID | -~X .7F .DC .QJ 07I 0BK 1TA 29J 30N 4.4 4B5 5GY 5VS 6TJ AAAVI AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABFMO ABHAV ABJNI ABJVF ABLIJ ABLJU ABPEM ABPTK ABQHQ ABRLO ABTAH ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ACTTO ADCVX ADGTB ADXEU ADXPE AEGYZ AEHZU AEISY AENEX AEOZL AEPSL AEXLP AEYOC AEZBV AFION AFKVX AFOLD AFWLO AGBLW AGDLA AGMYJ AGVKY AGWUF AHDLD AI. AIDBO AIJEM AIRXU AJWEG AKBVH AKHJE AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU ALRRR ALXIB AQRUH AVBZW AWYRJ BGSSV BLEHA BWMZZ C0- C5H CAG CCCUG CE4 COF CS3 CYRSC DAOYK DEXXA DGEBU DKSSO DU5 EBS EJD E~A E~B F5P FBQ FETWF FUNRP FVPDL G8K HF~ H~9 IFELN IPNFZ J.P KYCEM L8C LJTGL M4Z NUSFT OPCYK P2P RIG RNANH ROSJB RTWRZ S-T SNACF TAJZE TAP TEN TFL TFT TFW TN5 TNC TQWBC TTHFI TWF UAO UB6 UPT UT5 UU3 V1K VH1 VOH ZGOLN ZY4 ~02 ~S~ 0R~ AAGDL AAHBH AAHIA ABPAQ ABUFD AFRVT AHDZW AIYEW AQTUD H13 TASJS TBQAZ TDBHL TUROJ AAYXX CITATION ABDPE ADYSH AFBWG AKMBP IQODW 7S9 L.6 |
| ID | FETCH-LOGICAL-c394t-34a50ffef524f508ebb96a0af5d32010ed24253c6320fc2336e0fc6b9debd85e3 |
| ISSN | 1366-5901 0143-1161 |
| IngestDate | Fri Sep 05 17:24:06 EDT 2025 Mon Jul 21 09:14:59 EDT 2025 Thu Apr 24 23:10:57 EDT 2025 Wed Oct 01 02:59:34 EDT 2025 Mon Oct 20 23:47:08 EDT 2025 Wed Dec 27 19:14:04 EST 2023 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | atmosphere algorithms Discontinuous User data accuracy clouds Image Information Field currents dynamics Bayes network Cultivated plant Plant production satellites Dynamic characteristic Time series remote sensing biosphere Measurement in situ Data fusion growth Problem Leaf area index |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c394t-34a50ffef524f508ebb96a0af5d32010ed24253c6320fc2336e0fc6b9debd85e3 |
| Notes | http://dx.doi.org/10.1080/01431161.2010.550642 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2000136278 |
| PQPubID | 24069 |
| PageCount | 20 |
| ParticipantIDs | crossref_primary_10_1080_01431161_2010_550642 pascalfrancis_primary_25511256 proquest_miscellaneous_2000136278 crossref_citationtrail_10_1080_01431161_2010_550642 informaworld_taylorfrancis_310_1080_01431161_2010_550642 fao_agris_US201400107090 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20120220 |
| PublicationDateYYYYMMDD | 2012-02-20 |
| PublicationDate_xml | – month: 02 year: 2012 text: 20120220 day: 20 |
| PublicationDecade | 2010 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | International journal of remote sensing |
| PublicationYear | 2012 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | CIT0030 CIT0010 CIT0031 CIT0034 CIT0011 CIT0033 Murphy K.P. (CIT0028) 2002 CIT0014 CIT0036 CIT0013 CIT0035 CIT0016 CIT0038 CIT0015 CIT0037 CIT0018 CIT0017 CIT0019 Law B. (CIT0022) 2008 CIT0041 CIT0040 CIT0001 CIT0023 Punska O. (CIT0029) 1999 Kuusk A. (CIT0021) 1985; 3 CIT0003 CIT0025 CIT0002 Zhong-Hui Lin (CIT0024) 2003; 11 CIT0005 Knyazikhin Y. (CIT0020) 1999 CIT0004 CIT0026 CIT0007 CIT0006 CIT0009 CIT0008 |
| References_xml | – ident: CIT0019 doi: 10.1109/TGRS.2005.848412 – ident: CIT0001 doi: 10.1046/j.1365-2486.2000.00362.x – ident: CIT0002 doi: 10.1016/j.geoderma.2007.04.021 – ident: CIT0009 doi: 10.1046/j.1365-2486.1998.t01-1-00168.x – ident: CIT0011 doi: 10.1016/j.rse.2007.07.008 – ident: CIT0035 doi: 10.1016/S0025-5564(02)00096-2 – volume: 11 start-page: 69 year: 2003 ident: CIT0024 publication-title: Chinese Journal of Eco-Agriculture – ident: CIT0025 doi: 10.1002/qj.49711247414 – volume-title: MODIS Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation Absorbed by Vegetation (FPAR) Product (MOD15) Algorithm year: 1999 ident: CIT0020 – ident: CIT0038 doi: 10.1016/S0168-1923(01)00234-9 – ident: CIT0023 doi: 10.1177/0309133307084626 – ident: CIT0013 doi: 10.1016/j.physd.2006.08.023 – ident: CIT0018 doi: 10.1111/j.1365-2486.2005.00930.x – ident: CIT0026 doi: 10.1016/j.rse.2004.06.005 – ident: CIT0034 doi: 10.1029/2008JG000781. – volume-title: inference and learning. PhD thesis year: 2002 ident: CIT0028 – ident: CIT0005 doi: 10.1016/S0034-4257(03)00094-4 – ident: CIT0033 doi: 10.2136/sssaj2002.0988 – ident: CIT0008 doi: 10.1016/j.rse.2004.04.009 – ident: CIT0036 doi: 10.1016/0034-4257(84)90057-9 – ident: CIT0016 doi: 10.1016/0034-4257(92)90072-R – volume-title: Bayesian approaches to multi-sensor data fusion year: 1999 ident: CIT0029 – ident: CIT0003 doi: 10.1007/BF02703729 – ident: CIT0004 doi: 10.1029/97JD01107 – ident: CIT0017 doi: 10.1016/j.rse.2008.01.026 – ident: CIT0006 doi: 10.1016/j.jmarsys.2007.01.007 – ident: CIT0014 doi: 10.1016/S0034-4257(00)00139-5 – ident: CIT0030 doi: 10.1016/j.rse.2007.03.031 – ident: CIT0015 doi: 10.1016/0034-4257(90)90100-Z – ident: CIT0010 doi: 10.1016/0034-4257(83)90055-X – volume: 3 start-page: 645 year: 1985 ident: CIT0021 publication-title: Soviet Journal of Remote Sensing – ident: CIT0041 doi: 10.1109/TGRS.2007.902426 – ident: CIT0007 doi: 10.1080/00031305.1983.10483087 – ident: CIT0037 doi: 10.1109/ASSPCC.2000.882463 – ident: CIT0040 doi: 10.1016/j.physd.2006.09.017 – volume-title: Terrestrial Carbon Observations: Protocols for Vegetation Sampling and Data Submission year: 2008 ident: CIT0022 – ident: CIT0031 doi: 10.1080/01431160802036268 |
| SSID | ssj0006757 |
| Score | 2.145476 |
| Snippet | Leaf area index (LAI) products retrieved from remote sensing observations have been widely used in the fields of ecosphere, atmosphere etc. However, because... |
| SourceID | proquest pascalfrancis crossref informaworld fao |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1106 |
| SubjectTerms | algorithms Animal, plant and microbial ecology Applied geophysics Biological and medical sciences canopy China correlation data collection Earth sciences Earth, ocean, space Exact sciences and technology Fundamental and applied biological sciences. Psychology General aspects. Techniques Internal geophysics leaf area index moderate resolution imaging spectroradiometer probability reflectance remote sensing Teledetection and vegetation maps time series analysis vegetation winter wheat |
| Title | dynamic Bayesian network data fusion algorithm for estimating leaf area index using time-series data from in situ measurement to remote sensing observations |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01431161.2010.550642 https://www.proquest.com/docview/2000136278 |
| Volume | 33 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1366-5901 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006757 issn: 1366-5901 databaseCode: AHDZW dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1366-5901 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006757 issn: 1366-5901 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECUc59Beiq6IuwQs0JvAgFoo2Ud3NQK0l8ZI2osgiaRjIJECSzo0H9P_6V91RqQWp0ba9CLLskRRnkfOcDTzhpA3oLLTNJEB41xyFoSBZGmkOIuUnGV8mnlSo0P_85dwsQyOz8TZaPRrELVUV-lRdr0zr-R_pArHQK6YJXsHyXaNwgHYB_nCFiQM23-S8dyRpqC88zb5oZp0yNyEdTsY-enoumyijS9WxWZdnV8afm8Y1Gim5issGaGdZIPJkkia6NSN4wDLzTPsvyptM5iCss6dcl3VzmXvVES7FfaKSjklxsFj_HTaeXnLod277Xgc0FVsX9-7YRvVUOSr87rTG51v-1t9fd5nsJ3ao8f49n3oxMBoEI95fMuv6TPXNbzsR8rMxX4YMkyNHU7WhjXDgjIYzLxgxoQDLQ5mpNipIWxIJdwPb2di-wSy9nm9RmyjAG4oyi580W15VW0rMbYSm1b2yL4HCoaPyf588f77aWcWwMrM5O7bJ23zOJHofUdvtuykPZ0UN7h0MYg3KWEca1OA5Q9bojGQTh6SB3ZlQ-cGpo_ISOWPyb1PynKiPyE_59TClbZwpRauFHFGDVxpB1cK_aA9XCnClSJcaQNX2sCVDuBqmwG4whkU4UoHcKVVQQ3cqIUbHcL1KVl-_HDybsFseRCW-bOgYn6QCK610sILNKwzVJrOwoQnWkgf_0glcTntZyF805nn-6GCzzCdSZXKqVD-MzLOi1wdEIosdJEbuZmIeCClB2axECms9l2NJSv5hPitMOLMcudjCZeL-DYoTAjrrroy3DF_Of8A5BwnK1Dv8fKrh84P-DXiM-jAdCj8uGrceVb0sX97q4dbQOm64glcbIlwQl63yIlBt-ALwyRXRV1iiVqkdPSi6fM7PsoLcr8f5i_JuNrU6hVY71V6aMfFb0FJ6x8 |
| linkProvider | Library Specific Holdings |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgHMoFype6QMsgcU3xxnGyORZEtS3tXuhK3Cw7trdVdxO0SQ7lx_BbmYmThRYBEpySKLEdO-PxzOT5DWNvcMk2Rtsk4tzyKEkTG5nM8ShzNi_4pIitp4D-2SydzpOTz3JAE9Y9rJJ8aB-IIjpdTZObgtEDJO4tcdKN0VQJyCxJnGuohe9JtPUpiYHgs40yRns47JgmJk4sMuye-00tN1anu15XtxhMCTqpaxw9H9Je_KLBu2Xp6CEzQ4cCGuXqoG3MQfH1Ftfjf_V4hz3ojVY4DFL2iN1x5WO23edPv7h-wr4dgg2p7eGdvna0MRPKADAHwqCCbykqB3q5qNaXzcUKsLNABB9kMJcLWDrtQaMBCx19IxAcfwGU-D6iOeLqvpp1tcInoL5sWlj9CG9CUwGeVY2DmhD5WLYym3hz_ZTNjz6cv59GfeaHqBB50kQi0ZJ777yME48mpDMmTzXXXlpBI-AseUqiSPHKF7EQqcNjanLrjJ1IJ56xrbIq3S4DIhhDl3VcyIwn1qKHyaU06MiNPWUj5CMmhi-uip4WnbJzLNV4YE_tx15RyyqM_YhFm1JfAi3IX57fRWFSeoGaW80_xeTX4t2M5_gCk58lTDVdpKaXLyX-XOv-DWncvAr6iWhHy3TEXg_iqVBt0L8gXbqqrSn7KLH1xdnk-b-3_4ptT8_PTtXp8ezjC3Yf78Tdbn_-km0169btob3WmP1uRn4HJ7QxDw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSMCFd9XlUQaJq4s3iZPNsTxW5bVCgpV6s-zY3lbsJtUmObQ_pr-VmThZ2iJAgtNmldiJnfF4ZvLNN4y9xC3bGG0TLoQVPEkTy03mBM-czQsxKSLrKaD_eZYezJMPh_LwQhY_wSrJh_aBKKLT1bS4T6wfEHGviJJujJZKAGZJolxDJXwjpY9ilMQhZhtdjOZwSJgmIk5sMiTP_aaXS5vTda-rKwSmhJzUNU6eD1UvflHg3a40vcv0MJ4ARvm-1zZmrzi7QvX4PwO-x-70JivsBxm7z6658gG71VdPPzp9yM73wYbC9vBanzpKy4QywMuBEKjgW4rJgV4uqvVxc7QCHCsQvQeZy-UClk570Gi-QkfeCATGXwCVvee0Qlzdd7OuVngF1MdNC6ufwU1oKsCjqnFQEx4f21ZmE22uH7H59N23Nwe8r_vAizhPGh4nWgrvnZdR4tGAdMbkqRbaSxvTDDhLflJcpPjPF1Ecpw5_U5NbZ-xEunibbZVV6XYYEL0YOqzjQmYisRb9SyGlQTdu7KkWoRixeHjhquhJ0ak2x1KNB-7Ufu4V3VmFuR8xvml1EkhB_nL9DsqS0gvU22r-NSKvFs9mIscHmFwUMNV0cZpevFT85153Lwnj5lHQS0QrWqYj9mKQToVKg74E6dJVbU21R4mrL8omj__9_s_ZzS9vp-rT-9nHJ-w2noi6VH_xlG0169Y9Q2OtMbvdevwBNKMvsw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic+Bayesian+network+data+fusion+algorithm+for+estimating+leaf+area+index+using+time-series+data+from+in+situ+measurement+to+remote+sensing+observations&rft.jtitle=International+journal+of+remote+sensing&rft.au=Qu%2C+Yonghua&rft.au=Zhang%2C+Yuzhen&rft.au=Wang%2C+Jindi&rft.date=2012-02-20&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=33&rft.issue=4&rft.spage=1106&rft.epage=1125&rft_id=info:doi/10.1080%2F01431161.2010.550642&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01431161_2010_550642 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1366-5901&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1366-5901&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1366-5901&client=summon |