Local Elliptic Regularity for the Dirichlet Fractional Laplacian
We prove the local elliptic regularity of weak solutions to the Dirichlet problem associated with the fractional Laplacian on an arbitrary bounded open set of . The key tool consists in analyzing carefully the elliptic equation satisfied by the solution locally, after cut-off, to later employ sharp...
Saved in:
Published in | Advanced nonlinear studies Vol. 17; no. 2; pp. 387 - 409 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
De Gruyter
01.05.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1536-1365 2169-0375 |
DOI | 10.1515/ans-2017-0014 |
Cover
Abstract | We prove the
local elliptic regularity of weak solutions to the Dirichlet problem associated with the fractional Laplacian on an arbitrary bounded open set of
. The key tool consists in analyzing carefully the elliptic equation satisfied by the solution locally, after cut-off, to later employ sharp regularity results in the whole space. We do it by two different methods. First working directly in the variational formulation of the elliptic problem and then employing the heat kernel representation of solutions. |
---|---|
AbstractList | We prove the
W
loc
2
s
,
p
${W_{{\mathrm{loc}}}^{2s,p}}$
local elliptic regularity of weak solutions to the Dirichlet problem associated with the fractional Laplacian on an arbitrary bounded open set of
ℝ
N
${\mathbb{R}^{N}}$
. The key tool consists in analyzing carefully the elliptic equation satisfied by the solution locally, after cut-off, to later employ sharp regularity results in the whole space. We do it by two different methods. First working directly in the variational formulation of the elliptic problem and then employing the heat kernel representation of solutions. We prove the local elliptic regularity of weak solutions to the Dirichlet problem associated with the fractional Laplacian on an arbitrary bounded open set of . The key tool consists in analyzing carefully the elliptic equation satisfied by the solution locally, after cut-off, to later employ sharp regularity results in the whole space. We do it by two different methods. First working directly in the variational formulation of the elliptic problem and then employing the heat kernel representation of solutions. We prove the Wloc2s,p${W_{{\mathrm{loc}}}^{2s,p}}$ local elliptic regularity of weak solutions to the Dirichlet problem associated with the fractional Laplacian on an arbitrary bounded open set of ℝN${\mathbb{R}^{N}}$. The key tool consists in analyzing carefully the elliptic equation satisfied by the solution locally, after cut-off, to later employ sharp regularity results in the whole space. We do it by two different methods. First working directly in the variational formulation of the elliptic problem and then employing the heat kernel representation of solutions. |
Author | Biccari, Umberto Warma, Mahamadi Zuazua, Enrique |
Author_xml | – sequence: 1 givenname: Umberto surname: Biccari fullname: Biccari, Umberto email: umberto.biccari@deusto.es organization: DeustoTech, University of Deusto, 48007 Bilbao, Basque Country; andFacultad de Ingeniería, Universidad de Deusto, Avda Universidades 24, 48007 Bilbao, Basque Country, Spain – sequence: 2 givenname: Mahamadi surname: Warma fullname: Warma, Mahamadi email: mahamadi.warma1@upr.edu organization: Department of Mathematics, College of Natural Sciences, University of Puerto Rico (Rio Piedras Campus), PO Box 70377, San Juan, PR 00936-8377, USA – sequence: 3 givenname: Enrique surname: Zuazua fullname: Zuazua, Enrique email: enrique.zuazua@deusto.es organization: DeustoTech, University of Deusto, 48007 Bilbao, Basque Country; andFacultad de Ingeniería, Universidad de Deusto, Avda Universidades 24, 48007 Bilbao, Basque Country; and Departamento de Matemáticas, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain |
BookMark | eNp1kE9rGzEQxUVIIW7qY-_7BTYd7ax2tfTS4DqJwRAo7VmM9ceWUVdGKxP87SvHzaU0OkiDeO8x7_eRXY9xtIx95nDHBRdfaJzqBnhfA_D2is0a3g01YC-u2YwL7GqOnbhh82naQznt0LRCzNi3ddQUqmUI_pC9rn7Y7TFQ8vlUuZiqvLPVd5-83gWbq4dEOvs4FsOaDoG0p_ET--AoTHb-971lvx6WPxdP9fr5cbW4X9cahzbXjUWJ2soOnZDcSC16IGewNQgGHPVyGLTtNBjRNeg4NIjo7OBMUXEgvGWrS66JtFeH5H9TOqlIXr1-xLRVlEqDYJVoZGegpXJtWrPhsu3BgZNgeqG1dSULL1k6xWlK1intM52b5UQ-KA7qzFQVpurMVJ2ZFlf9j-tti_f0Xy_6FwrZJmO36Xgqg9rHYyoMp__7eN-g7PEPucON0g |
CitedBy_id | crossref_primary_10_1051_cocv_2019003 crossref_primary_10_1016_j_na_2018_12_006 crossref_primary_10_1016_j_aim_2021_107692 crossref_primary_10_1007_s00208_021_02254_y crossref_primary_10_1007_s12220_019_00254_8 crossref_primary_10_1515_ans_2020_2114 crossref_primary_10_1016_j_camwa_2019_04_032 crossref_primary_10_1080_17476933_2021_1916923 crossref_primary_10_2140_tunis_2019_1_151 crossref_primary_10_1137_23M160061X crossref_primary_10_1007_s00013_019_01381_y crossref_primary_10_1016_j_camwa_2022_03_016 crossref_primary_10_1016_j_cnsns_2023_107469 crossref_primary_10_1016_j_sysconle_2021_105055 crossref_primary_10_1016_j_jde_2024_11_057 crossref_primary_10_1515_ans_2017_6020 crossref_primary_10_1007_s10440_022_00528_4 crossref_primary_10_3934_cpaa_2021071 crossref_primary_10_1016_j_na_2019_111642 crossref_primary_10_1016_j_aml_2022_108422 crossref_primary_10_1007_s00028_020_00609_7 crossref_primary_10_1515_acv_2024_0005 crossref_primary_10_1112_jlms_12974 crossref_primary_10_1007_s42493_022_00084_x crossref_primary_10_1090_memo_1393 crossref_primary_10_1007_s10440_021_00452_z crossref_primary_10_3934_eect_2021014 crossref_primary_10_1007_s13540_022_00018_2 crossref_primary_10_1080_00036811_2024_2426215 crossref_primary_10_1016_j_na_2018_10_016 crossref_primary_10_1137_21M146569X crossref_primary_10_1051_cocv_2019028 crossref_primary_10_1137_20M1335509 crossref_primary_10_1134_S0001434621090315 crossref_primary_10_3934_dcdss_2021027 crossref_primary_10_1088_1361_6420_ac9805 crossref_primary_10_1007_s00028_020_00567_0 crossref_primary_10_1016_j_na_2019_111730 crossref_primary_10_1137_18M117145X crossref_primary_10_1007_s13540_024_00359_0 crossref_primary_10_1007_s10231_024_01497_1 crossref_primary_10_1007_s42985_021_00144_1 crossref_primary_10_1007_s00526_022_02372_8 crossref_primary_10_1016_j_jde_2022_03_028 crossref_primary_10_1093_imamci_dny025 crossref_primary_10_1088_1361_6420_ab1299 crossref_primary_10_1007_s00208_024_02891_z crossref_primary_10_1002_nla_2399 crossref_primary_10_1016_j_jfa_2022_109829 crossref_primary_10_1016_j_matpur_2020_05_005 crossref_primary_10_11948_20220353 crossref_primary_10_1007_s41808_023_00239_3 crossref_primary_10_1007_s00208_022_02369_w crossref_primary_10_5802_smai_jcm_108 crossref_primary_10_1007_s00245_018_9530_9 crossref_primary_10_1186_s13662_018_1794_5 |
Cites_doi | 10.1103/PhysRevE.62.2213 10.1016/j.bulsci.2011.12.004 10.1016/j.aim.2014.09.018 10.1215/00127094-3476700 10.1080/03605302.2017.1295060 10.1007/BF02683325 10.1007/s00526-013-0653-1 10.1007/s00205-014-0740-2 10.1515/9781400883882 10.1007/978-3-662-03282-4 10.3934/dcds.2015.35.6031 10.1007/s10231-016-0586-3 10.1007/BF01174182 10.1142/S0219024904002463 10.1002/cpa.3160130308 10.1190/geo2013-0245.1 10.1007/s00220-014-2118-6 10.1007/978-3-642-25361-4_15 10.5186/aasfm.2015.4009 10.1016/j.matpur.2013.06.003 10.1017/S0308210512001783 10.1137/070698592 10.1142/9789814340595_0011 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1515/ans-2017-0014 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-0375 |
EndPage | 409 |
ExternalDocumentID | oai_doaj_org_article_5286d04a6d0b4db18470f0f80d75ccef 10_1515_ans_2017_0014 10_1515_ans_2017_0014172387 |
GrantInformation_xml | – fundername: U.S. Air Force grantid: FA9550-15-1-0027; FA9550-14-1-0214 – fundername: Ministerio de Economía y Competitividad grantid: MTM2014-52347 – fundername: Agence Nationale de la Recherche grantid: ICON |
GroupedDBID | 0R~ 23M 5GY AAGVJ AAJBH AAONY AAPJK AAQCX AAXCG ABAQN ABFKT ABJNI ABSOE ABYKJ ACEFL ACGFS ACMKP ACXLN ACZBO ADGQD ADJVZ AEICA AEKEB AENEX AEQDQ AERZL AFBDD AFCXV AFGNR AFYRI AHGSO AHVWV AIKXB AKXKS ALMA_UNASSIGNED_HOLDINGS ALUKF AMAVY ASYPN AZMOX BAKPI BBCWN BCIFA BLHJL CFGNV EBS EJD FSTRU GROUPED_DOAJ IY9 J9A M48 O9- P2P QD8 SLJYH WTRAM AAYXX CITATION |
ID | FETCH-LOGICAL-c394t-2e383ce863f581d8c570afd34d30d0fa7899ce6c0d5623f102333fe9fdafd10a3 |
IEDL.DBID | M48 |
ISSN | 1536-1365 |
IngestDate | Wed Aug 27 01:25:33 EDT 2025 Tue Jul 01 01:37:04 EDT 2025 Thu Apr 24 23:03:45 EDT 2025 Thu Jul 10 10:34:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-2e383ce863f581d8c570afd34d30d0fa7899ce6c0d5623f102333fe9fdafd10a3 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1515/ans-2017-0014 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5286d04a6d0b4db18470f0f80d75ccef crossref_citationtrail_10_1515_ans_2017_0014 crossref_primary_10_1515_ans_2017_0014 walterdegruyter_journals_10_1515_ans_2017_0014172387 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-01 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Advanced nonlinear studies |
PublicationYear | 2017 |
Publisher | De Gruyter |
Publisher_xml | – name: De Gruyter |
References | 2023033114152493673_j_ans-2017-0014_ref_013 2023033114152493673_j_ans-2017-0014_ref_012 2023033114152493673_j_ans-2017-0014_ref_011 2023033114152493673_j_ans-2017-0014_ref_033 2023033114152493673_j_ans-2017-0014_ref_010 2023033114152493673_j_ans-2017-0014_ref_032 2023033114152493673_j_ans-2017-0014_ref_031 2023033114152493673_j_ans-2017-0014_ref_030 2023033114152493673_j_ans-2017-0014_ref_019 2023033114152493673_j_ans-2017-0014_ref_018 2023033114152493673_j_ans-2017-0014_ref_017 2023033114152493673_j_ans-2017-0014_ref_016 2023033114152493673_j_ans-2017-0014_ref_015 2023033114152493673_j_ans-2017-0014_ref_014 2023033114152493673_j_ans-2017-0014_ref_002 2023033114152493673_j_ans-2017-0014_ref_024 2023033114152493673_j_ans-2017-0014_ref_001 2023033114152493673_j_ans-2017-0014_ref_023 2023033114152493673_j_ans-2017-0014_ref_022 2023033114152493673_j_ans-2017-0014_ref_021 2023033114152493673_j_ans-2017-0014_ref_020 2023033114152493673_j_ans-2017-0014_ref_009 2023033114152493673_j_ans-2017-0014_ref_008 2023033114152493673_j_ans-2017-0014_ref_007 2023033114152493673_j_ans-2017-0014_ref_029 2023033114152493673_j_ans-2017-0014_ref_006 2023033114152493673_j_ans-2017-0014_ref_028 2023033114152493673_j_ans-2017-0014_ref_005 2023033114152493673_j_ans-2017-0014_ref_027 2023033114152493673_j_ans-2017-0014_ref_004 2023033114152493673_j_ans-2017-0014_ref_026 2023033114152493673_j_ans-2017-0014_ref_003 2023033114152493673_j_ans-2017-0014_ref_025 |
References_xml | – ident: 2023033114152493673_j_ans-2017-0014_ref_005 doi: 10.1103/PhysRevE.62.2213 – ident: 2023033114152493673_j_ans-2017-0014_ref_009 – ident: 2023033114152493673_j_ans-2017-0014_ref_007 doi: 10.1016/j.bulsci.2011.12.004 – ident: 2023033114152493673_j_ans-2017-0014_ref_016 doi: 10.1016/j.aim.2014.09.018 – ident: 2023033114152493673_j_ans-2017-0014_ref_027 doi: 10.1215/00127094-3476700 – ident: 2023033114152493673_j_ans-2017-0014_ref_013 doi: 10.1080/03605302.2017.1295060 – ident: 2023033114152493673_j_ans-2017-0014_ref_023 doi: 10.1007/BF02683325 – ident: 2023033114152493673_j_ans-2017-0014_ref_003 – ident: 2023033114152493673_j_ans-2017-0014_ref_025 doi: 10.1007/s00526-013-0653-1 – ident: 2023033114152493673_j_ans-2017-0014_ref_030 – ident: 2023033114152493673_j_ans-2017-0014_ref_026 doi: 10.1007/s00205-014-0740-2 – ident: 2023033114152493673_j_ans-2017-0014_ref_029 doi: 10.1515/9781400883882 – ident: 2023033114152493673_j_ans-2017-0014_ref_017 – ident: 2023033114152493673_j_ans-2017-0014_ref_001 doi: 10.1007/978-3-662-03282-4 – ident: 2023033114152493673_j_ans-2017-0014_ref_015 – ident: 2023033114152493673_j_ans-2017-0014_ref_019 doi: 10.3934/dcds.2015.35.6031 – ident: 2023033114152493673_j_ans-2017-0014_ref_012 – ident: 2023033114152493673_j_ans-2017-0014_ref_006 doi: 10.1007/s10231-016-0586-3 – ident: 2023033114152493673_j_ans-2017-0014_ref_018 doi: 10.1007/BF01174182 – ident: 2023033114152493673_j_ans-2017-0014_ref_004 – ident: 2023033114152493673_j_ans-2017-0014_ref_020 doi: 10.1142/S0219024904002463 – ident: 2023033114152493673_j_ans-2017-0014_ref_002 – ident: 2023033114152493673_j_ans-2017-0014_ref_022 doi: 10.1002/cpa.3160130308 – ident: 2023033114152493673_j_ans-2017-0014_ref_033 doi: 10.1190/geo2013-0245.1 – ident: 2023033114152493673_j_ans-2017-0014_ref_008 doi: 10.1007/s00220-014-2118-6 – ident: 2023033114152493673_j_ans-2017-0014_ref_032 doi: 10.1007/978-3-642-25361-4_15 – ident: 2023033114152493673_j_ans-2017-0014_ref_011 doi: 10.5186/aasfm.2015.4009 – ident: 2023033114152493673_j_ans-2017-0014_ref_024 doi: 10.1016/j.matpur.2013.06.003 – ident: 2023033114152493673_j_ans-2017-0014_ref_028 doi: 10.1017/S0308210512001783 – ident: 2023033114152493673_j_ans-2017-0014_ref_031 – ident: 2023033114152493673_j_ans-2017-0014_ref_014 doi: 10.1137/070698592 – ident: 2023033114152493673_j_ans-2017-0014_ref_021 doi: 10.1142/9789814340595_0011 – ident: 2023033114152493673_j_ans-2017-0014_ref_010 |
SSID | ssj0000492455 |
Score | 2.4521317 |
Snippet | We prove the
local elliptic regularity of weak solutions to the Dirichlet problem associated with the fractional Laplacian on an arbitrary bounded open set of... We prove the W loc 2 s , p ${W_{{\mathrm{loc}}}^{2s,p}}$ local elliptic regularity of weak solutions to the Dirichlet problem associated with the fractional... We prove the Wloc2s,p${W_{{\mathrm{loc}}}^{2s,p}}$ local elliptic regularity of weak solutions to the Dirichlet problem associated with the fractional... |
SourceID | doaj crossref walterdegruyter |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 387 |
SubjectTerms | 35B65 35R11 35S05 Dirichlet Boundary Condition Fractional Laplacian Local Regularity Weak Solutions |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJ3soPrG-2IN4MnST7G52bz6wFKkexEJvYbMPH0iVmiL-e2eStFRRvHjJIUwezMzOzMfOfkPIkZPKOMDJUdBFGnEdq8hIwDzWB1lonRiV4dnh6xs5GPGrsRgvjfrCnrCaHrhWXE8kSjrGDVwK7goAJBkLLCjmMmHhjRh9mWZLYOqprnsTXo08hRWNRHtSNASbkL97kATAOyA8I0D4kpAq3v426bxXe9XO309nH-V8b7RKOf010mlqRXpW_-M6WfGTDdJeYhDcJKdDzEUUOy9g7Vt6W42Wx4F0FKpRCtUdhaD2aB_APLQ_rU8xwANDg81Y4BpbZNS_vLsYRM1QhMimmpdR4gFTWq9kGgTUmsqKjJngUu5S5lgwGQAo66VlDiubgMwMaRq8Dg6kYmbSbdKavEz8DqEySOVAh4wFyw2EG6e8joUVAaQ5N11yMtdMbhvGcBxc8ZwjcgBF5qDIHBWJnXG8S44X4q81VcZvgueo5oUQMlxXN8DueWP3_C-7dwn_ZqS8WX1vP381xvFq2e5_fHuPrNbug32P-6RVTmf-AGqTsjis3PATnuzgMA priority: 102 providerName: Directory of Open Access Journals |
Title | Local Elliptic Regularity for the Dirichlet Fractional Laplacian |
URI | https://www.degruyter.com/doi/10.1515/ans-2017-0014 https://doaj.org/article/5286d04a6d0b4db18470f0f80d75ccef |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTuQwEC2xXIYDYpkRzdLKAXGagNOxHeeA2ETTQsyMNNASt8jxwiLUQGgE_D1VThoYYG5ccogqi6rs8iu5_B7AqpVKW6yTY5-XaczzRMVaYs1jnJdlnne0yujs8K_fstfnh6fi9JVSqHHg3aelHelJ9aur9cfbpy2c8JtBvScRG5jTMdiYbQnvj8Nk2CqiLr4G6V_WQLjDgwYqTnFi3pOiYdz88IZ_VqhA5D8F0w9h89q6s-r-aTjaLA1rUHcGphvwGO3U0Z6FMTeYg6k3lILzsH1Ei1NErRiYDEz0N2jNk0JdhPA0QrgXYZa7MOcYr6hb1cca8IEjTd1ZOFa-Q7-7f7LXixuVhNikOR_GHYdFpnFKpl4g-FRGZEx7m3KbMsu8zrCiMk4aZgnqeKJqSFPvcm_RKmE6_QETg-uBW4BIeqmsMY4xb7jG_GOVyxNhhEdrznULfo48U5iGQpyULK4KKiXQkQU6siBHUqscb8Hai_lNzZ3xP8NdcvOLEVFehxvX1VnRzKBCdJS0jGu8lNyWWJlmzDOvmM0E_rNvAX8XpGI0mj7_akJ6a9niV3x7Cb7Vw4caIZdhYljduxUEK8OyDZM7vYPjP-1Q7LfDoHwG4zzphg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4HIAD4inGswfEiWrZmqbpjYcYAwZIPCRuVZrHQBob2joh_j12WyqeFy49VE5b2Yn9OXU-A-waIZXBPNl3cRr4PG5IXwnMebR1Io3jppIRnR2-vBLte37-EH5UE47Kskpju8PxW1YwpNbNQI9po6ziGsAIXEc3jvZFB0sQv_6YPfcmYVpIwTH_mj5sn95eVxstCIGbPO9-ioubOPdEWHJt_njQl9iUU_jPwfxr_tu6-qZP0ae1APMlbPQOCzsvwoTtL8HcJzLBZTjoUFjyqAgD3YD2bvIu89SbzkNg6iHQ89C_PelHtJTXGhYHGnBAR1FdFs6SFbhvndwdt_2yP4Kvg5hnftNieqmtFIELEXZKHUZMORNwEzDDnIowl9JWaGYI5DgiaQgCZ2NnUKrBVLAKU_1B366BJ5yQRmvLmNNcoecx0saNUIcOpTlXNdj_0EyiS_Jw6mHRSyiJQEUmqMiEFElFcrwGe5X4S8Ga8ZfgEam5EiKy6_zGYNhNyrWThE0pDOMKLyk3KeakEXPMSWaiEL_Z1YB_M1JSLsTR729tUKe1aP1_w3Zgpn132Uk6Z1cXGzBbTB4qgNyEqWw4tlsIUrJ0u5yG79DX4nI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BkRAcKlZR1hwQJ6K6jeM4N9ZSoCxikbhFjpeChFpUWiH-npkkRGW7cMkhGifOzHgWZ_wGYNsIqQzmyb6L08DncUP6SmDOo60TaRw3lYzo7PDFpWjf87OH8GHsFD-VVRrbHYzehzlCat309Yg2ykqsAfTAdTTjKF80sBTi11-Mm4QpIaRATZ_ab5_cXpX7LBgBN3nW_BTXNkHuibCA2vzxnC-uKUPwn4XqW_bXupzSmPNpzUG1iBq9_VzM8zBhewswO4YluAh7HfJKHtVgoBXQ3k3WZJ5a03kYl3oY53lo3p70IwrKaw3y8ww4oKOoLAuVZAnuW8d3h22_aI_g6yDmQ79pMbvUFj_ahRh1Sh1GTDkTcBMww5yKMJXSVmhmKMZxhNEQBM7GziBVg6lgGSq9fs-ugCeckEZry5jTXKHhMdLGjVCHDqk5VzXY_eRMogvscGph8ZxQDoGMTJCRCTGSauR4DXZK8pccNOMvwgNic0lEWNfZjf6gmxRLJwmbUhjGFV5SblJMSSPmmJPMRCHO2dWAfxNSUqzD19_f2qBGa9Hq_4ZtwfT1USvpnF6er8FMrjtU_rgOleFgZDcwRBmmm4UWfgCAauGY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+Elliptic+Regularity+for+the+Dirichlet+Fractional+Laplacian&rft.jtitle=Advanced+nonlinear+studies&rft.au=Biccari+Umberto&rft.au=Warma+Mahamadi&rft.au=Zuazua+Enrique&rft.date=2017-05-01&rft.pub=De+Gruyter&rft.issn=1536-1365&rft.eissn=2169-0375&rft.volume=17&rft.issue=2&rft.spage=387&rft.epage=409&rft_id=info:doi/10.1515%2Fans-2017-0014&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5286d04a6d0b4db18470f0f80d75ccef |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1365&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1365&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1365&client=summon |