Local Elliptic Regularity for the Dirichlet Fractional Laplacian

We prove the local elliptic regularity of weak solutions to the Dirichlet problem associated with the fractional Laplacian on an arbitrary bounded open set of . The key tool consists in analyzing carefully the elliptic equation satisfied by the solution locally, after cut-off, to later employ sharp...

Full description

Saved in:
Bibliographic Details
Published inAdvanced nonlinear studies Vol. 17; no. 2; pp. 387 - 409
Main Authors Biccari, Umberto, Warma, Mahamadi, Zuazua, Enrique
Format Journal Article
LanguageEnglish
Published De Gruyter 01.05.2017
Subjects
Online AccessGet full text
ISSN1536-1365
2169-0375
DOI10.1515/ans-2017-0014

Cover

Abstract We prove the local elliptic regularity of weak solutions to the Dirichlet problem associated with the fractional Laplacian on an arbitrary bounded open set of . The key tool consists in analyzing carefully the elliptic equation satisfied by the solution locally, after cut-off, to later employ sharp regularity results in the whole space. We do it by two different methods. First working directly in the variational formulation of the elliptic problem and then employing the heat kernel representation of solutions.
AbstractList We prove the W loc 2 ⁢ s , p ${W_{{\mathrm{loc}}}^{2s,p}}$ local elliptic regularity of weak solutions to the Dirichlet problem associated with the fractional Laplacian on an arbitrary bounded open set of ℝ N ${\mathbb{R}^{N}}$ . The key tool consists in analyzing carefully the elliptic equation satisfied by the solution locally, after cut-off, to later employ sharp regularity results in the whole space. We do it by two different methods. First working directly in the variational formulation of the elliptic problem and then employing the heat kernel representation of solutions.
We prove the local elliptic regularity of weak solutions to the Dirichlet problem associated with the fractional Laplacian on an arbitrary bounded open set of . The key tool consists in analyzing carefully the elliptic equation satisfied by the solution locally, after cut-off, to later employ sharp regularity results in the whole space. We do it by two different methods. First working directly in the variational formulation of the elliptic problem and then employing the heat kernel representation of solutions.
We prove the Wloc2⁢s,p${W_{{\mathrm{loc}}}^{2s,p}}$ local elliptic regularity of weak solutions to the Dirichlet problem associated with the fractional Laplacian on an arbitrary bounded open set of ℝN${\mathbb{R}^{N}}$. The key tool consists in analyzing carefully the elliptic equation satisfied by the solution locally, after cut-off, to later employ sharp regularity results in the whole space. We do it by two different methods. First working directly in the variational formulation of the elliptic problem and then employing the heat kernel representation of solutions.
Author Biccari, Umberto
Warma, Mahamadi
Zuazua, Enrique
Author_xml – sequence: 1
  givenname: Umberto
  surname: Biccari
  fullname: Biccari, Umberto
  email: umberto.biccari@deusto.es
  organization: DeustoTech, University of Deusto, 48007 Bilbao, Basque Country; andFacultad de Ingeniería, Universidad de Deusto, Avda Universidades 24, 48007 Bilbao, Basque Country, Spain
– sequence: 2
  givenname: Mahamadi
  surname: Warma
  fullname: Warma, Mahamadi
  email: mahamadi.warma1@upr.edu
  organization: Department of Mathematics, College of Natural Sciences, University of Puerto Rico (Rio Piedras Campus), PO Box 70377, San Juan, PR 00936-8377, USA
– sequence: 3
  givenname: Enrique
  surname: Zuazua
  fullname: Zuazua, Enrique
  email: enrique.zuazua@deusto.es
  organization: DeustoTech, University of Deusto, 48007 Bilbao, Basque Country; andFacultad de Ingeniería, Universidad de Deusto, Avda Universidades 24, 48007 Bilbao, Basque Country; and Departamento de Matemáticas, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
BookMark eNp1kE9rGzEQxUVIIW7qY-_7BTYd7ax2tfTS4DqJwRAo7VmM9ceWUVdGKxP87SvHzaU0OkiDeO8x7_eRXY9xtIx95nDHBRdfaJzqBnhfA_D2is0a3g01YC-u2YwL7GqOnbhh82naQznt0LRCzNi3ddQUqmUI_pC9rn7Y7TFQ8vlUuZiqvLPVd5-83gWbq4dEOvs4FsOaDoG0p_ET--AoTHb-971lvx6WPxdP9fr5cbW4X9cahzbXjUWJ2soOnZDcSC16IGewNQgGHPVyGLTtNBjRNeg4NIjo7OBMUXEgvGWrS66JtFeH5H9TOqlIXr1-xLRVlEqDYJVoZGegpXJtWrPhsu3BgZNgeqG1dSULL1k6xWlK1intM52b5UQ-KA7qzFQVpurMVJ2ZFlf9j-tti_f0Xy_6FwrZJmO36Xgqg9rHYyoMp__7eN-g7PEPucON0g
CitedBy_id crossref_primary_10_1051_cocv_2019003
crossref_primary_10_1016_j_na_2018_12_006
crossref_primary_10_1016_j_aim_2021_107692
crossref_primary_10_1007_s00208_021_02254_y
crossref_primary_10_1007_s12220_019_00254_8
crossref_primary_10_1515_ans_2020_2114
crossref_primary_10_1016_j_camwa_2019_04_032
crossref_primary_10_1080_17476933_2021_1916923
crossref_primary_10_2140_tunis_2019_1_151
crossref_primary_10_1137_23M160061X
crossref_primary_10_1007_s00013_019_01381_y
crossref_primary_10_1016_j_camwa_2022_03_016
crossref_primary_10_1016_j_cnsns_2023_107469
crossref_primary_10_1016_j_sysconle_2021_105055
crossref_primary_10_1016_j_jde_2024_11_057
crossref_primary_10_1515_ans_2017_6020
crossref_primary_10_1007_s10440_022_00528_4
crossref_primary_10_3934_cpaa_2021071
crossref_primary_10_1016_j_na_2019_111642
crossref_primary_10_1016_j_aml_2022_108422
crossref_primary_10_1007_s00028_020_00609_7
crossref_primary_10_1515_acv_2024_0005
crossref_primary_10_1112_jlms_12974
crossref_primary_10_1007_s42493_022_00084_x
crossref_primary_10_1090_memo_1393
crossref_primary_10_1007_s10440_021_00452_z
crossref_primary_10_3934_eect_2021014
crossref_primary_10_1007_s13540_022_00018_2
crossref_primary_10_1080_00036811_2024_2426215
crossref_primary_10_1016_j_na_2018_10_016
crossref_primary_10_1137_21M146569X
crossref_primary_10_1051_cocv_2019028
crossref_primary_10_1137_20M1335509
crossref_primary_10_1134_S0001434621090315
crossref_primary_10_3934_dcdss_2021027
crossref_primary_10_1088_1361_6420_ac9805
crossref_primary_10_1007_s00028_020_00567_0
crossref_primary_10_1016_j_na_2019_111730
crossref_primary_10_1137_18M117145X
crossref_primary_10_1007_s13540_024_00359_0
crossref_primary_10_1007_s10231_024_01497_1
crossref_primary_10_1007_s42985_021_00144_1
crossref_primary_10_1007_s00526_022_02372_8
crossref_primary_10_1016_j_jde_2022_03_028
crossref_primary_10_1093_imamci_dny025
crossref_primary_10_1088_1361_6420_ab1299
crossref_primary_10_1007_s00208_024_02891_z
crossref_primary_10_1002_nla_2399
crossref_primary_10_1016_j_jfa_2022_109829
crossref_primary_10_1016_j_matpur_2020_05_005
crossref_primary_10_11948_20220353
crossref_primary_10_1007_s41808_023_00239_3
crossref_primary_10_1007_s00208_022_02369_w
crossref_primary_10_5802_smai_jcm_108
crossref_primary_10_1007_s00245_018_9530_9
crossref_primary_10_1186_s13662_018_1794_5
Cites_doi 10.1103/PhysRevE.62.2213
10.1016/j.bulsci.2011.12.004
10.1016/j.aim.2014.09.018
10.1215/00127094-3476700
10.1080/03605302.2017.1295060
10.1007/BF02683325
10.1007/s00526-013-0653-1
10.1007/s00205-014-0740-2
10.1515/9781400883882
10.1007/978-3-662-03282-4
10.3934/dcds.2015.35.6031
10.1007/s10231-016-0586-3
10.1007/BF01174182
10.1142/S0219024904002463
10.1002/cpa.3160130308
10.1190/geo2013-0245.1
10.1007/s00220-014-2118-6
10.1007/978-3-642-25361-4_15
10.5186/aasfm.2015.4009
10.1016/j.matpur.2013.06.003
10.1017/S0308210512001783
10.1137/070698592
10.1142/9789814340595_0011
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1515/ans-2017-0014
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-0375
EndPage 409
ExternalDocumentID oai_doaj_org_article_5286d04a6d0b4db18470f0f80d75ccef
10_1515_ans_2017_0014
10_1515_ans_2017_0014172387
GrantInformation_xml – fundername: U.S. Air Force
  grantid: FA9550-15-1-0027; FA9550-14-1-0214
– fundername: Ministerio de Economía y Competitividad
  grantid: MTM2014-52347
– fundername: Agence Nationale de la Recherche
  grantid: ICON
GroupedDBID 0R~
23M
5GY
AAGVJ
AAJBH
AAONY
AAPJK
AAQCX
AAXCG
ABAQN
ABFKT
ABJNI
ABSOE
ABYKJ
ACEFL
ACGFS
ACMKP
ACXLN
ACZBO
ADGQD
ADJVZ
AEICA
AEKEB
AENEX
AEQDQ
AERZL
AFBDD
AFCXV
AFGNR
AFYRI
AHGSO
AHVWV
AIKXB
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ALUKF
AMAVY
ASYPN
AZMOX
BAKPI
BBCWN
BCIFA
BLHJL
CFGNV
EBS
EJD
FSTRU
GROUPED_DOAJ
IY9
J9A
M48
O9-
P2P
QD8
SLJYH
WTRAM
AAYXX
CITATION
ID FETCH-LOGICAL-c394t-2e383ce863f581d8c570afd34d30d0fa7899ce6c0d5623f102333fe9fdafd10a3
IEDL.DBID M48
ISSN 1536-1365
IngestDate Wed Aug 27 01:25:33 EDT 2025
Tue Jul 01 01:37:04 EDT 2025
Thu Apr 24 23:03:45 EDT 2025
Thu Jul 10 10:34:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-2e383ce863f581d8c570afd34d30d0fa7899ce6c0d5623f102333fe9fdafd10a3
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1515/ans-2017-0014
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_5286d04a6d0b4db18470f0f80d75ccef
crossref_citationtrail_10_1515_ans_2017_0014
crossref_primary_10_1515_ans_2017_0014
walterdegruyter_journals_10_1515_ans_2017_0014172387
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-01
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Advanced nonlinear studies
PublicationYear 2017
Publisher De Gruyter
Publisher_xml – name: De Gruyter
References 2023033114152493673_j_ans-2017-0014_ref_013
2023033114152493673_j_ans-2017-0014_ref_012
2023033114152493673_j_ans-2017-0014_ref_011
2023033114152493673_j_ans-2017-0014_ref_033
2023033114152493673_j_ans-2017-0014_ref_010
2023033114152493673_j_ans-2017-0014_ref_032
2023033114152493673_j_ans-2017-0014_ref_031
2023033114152493673_j_ans-2017-0014_ref_030
2023033114152493673_j_ans-2017-0014_ref_019
2023033114152493673_j_ans-2017-0014_ref_018
2023033114152493673_j_ans-2017-0014_ref_017
2023033114152493673_j_ans-2017-0014_ref_016
2023033114152493673_j_ans-2017-0014_ref_015
2023033114152493673_j_ans-2017-0014_ref_014
2023033114152493673_j_ans-2017-0014_ref_002
2023033114152493673_j_ans-2017-0014_ref_024
2023033114152493673_j_ans-2017-0014_ref_001
2023033114152493673_j_ans-2017-0014_ref_023
2023033114152493673_j_ans-2017-0014_ref_022
2023033114152493673_j_ans-2017-0014_ref_021
2023033114152493673_j_ans-2017-0014_ref_020
2023033114152493673_j_ans-2017-0014_ref_009
2023033114152493673_j_ans-2017-0014_ref_008
2023033114152493673_j_ans-2017-0014_ref_007
2023033114152493673_j_ans-2017-0014_ref_029
2023033114152493673_j_ans-2017-0014_ref_006
2023033114152493673_j_ans-2017-0014_ref_028
2023033114152493673_j_ans-2017-0014_ref_005
2023033114152493673_j_ans-2017-0014_ref_027
2023033114152493673_j_ans-2017-0014_ref_004
2023033114152493673_j_ans-2017-0014_ref_026
2023033114152493673_j_ans-2017-0014_ref_003
2023033114152493673_j_ans-2017-0014_ref_025
References_xml – ident: 2023033114152493673_j_ans-2017-0014_ref_005
  doi: 10.1103/PhysRevE.62.2213
– ident: 2023033114152493673_j_ans-2017-0014_ref_009
– ident: 2023033114152493673_j_ans-2017-0014_ref_007
  doi: 10.1016/j.bulsci.2011.12.004
– ident: 2023033114152493673_j_ans-2017-0014_ref_016
  doi: 10.1016/j.aim.2014.09.018
– ident: 2023033114152493673_j_ans-2017-0014_ref_027
  doi: 10.1215/00127094-3476700
– ident: 2023033114152493673_j_ans-2017-0014_ref_013
  doi: 10.1080/03605302.2017.1295060
– ident: 2023033114152493673_j_ans-2017-0014_ref_023
  doi: 10.1007/BF02683325
– ident: 2023033114152493673_j_ans-2017-0014_ref_003
– ident: 2023033114152493673_j_ans-2017-0014_ref_025
  doi: 10.1007/s00526-013-0653-1
– ident: 2023033114152493673_j_ans-2017-0014_ref_030
– ident: 2023033114152493673_j_ans-2017-0014_ref_026
  doi: 10.1007/s00205-014-0740-2
– ident: 2023033114152493673_j_ans-2017-0014_ref_029
  doi: 10.1515/9781400883882
– ident: 2023033114152493673_j_ans-2017-0014_ref_017
– ident: 2023033114152493673_j_ans-2017-0014_ref_001
  doi: 10.1007/978-3-662-03282-4
– ident: 2023033114152493673_j_ans-2017-0014_ref_015
– ident: 2023033114152493673_j_ans-2017-0014_ref_019
  doi: 10.3934/dcds.2015.35.6031
– ident: 2023033114152493673_j_ans-2017-0014_ref_012
– ident: 2023033114152493673_j_ans-2017-0014_ref_006
  doi: 10.1007/s10231-016-0586-3
– ident: 2023033114152493673_j_ans-2017-0014_ref_018
  doi: 10.1007/BF01174182
– ident: 2023033114152493673_j_ans-2017-0014_ref_004
– ident: 2023033114152493673_j_ans-2017-0014_ref_020
  doi: 10.1142/S0219024904002463
– ident: 2023033114152493673_j_ans-2017-0014_ref_002
– ident: 2023033114152493673_j_ans-2017-0014_ref_022
  doi: 10.1002/cpa.3160130308
– ident: 2023033114152493673_j_ans-2017-0014_ref_033
  doi: 10.1190/geo2013-0245.1
– ident: 2023033114152493673_j_ans-2017-0014_ref_008
  doi: 10.1007/s00220-014-2118-6
– ident: 2023033114152493673_j_ans-2017-0014_ref_032
  doi: 10.1007/978-3-642-25361-4_15
– ident: 2023033114152493673_j_ans-2017-0014_ref_011
  doi: 10.5186/aasfm.2015.4009
– ident: 2023033114152493673_j_ans-2017-0014_ref_024
  doi: 10.1016/j.matpur.2013.06.003
– ident: 2023033114152493673_j_ans-2017-0014_ref_028
  doi: 10.1017/S0308210512001783
– ident: 2023033114152493673_j_ans-2017-0014_ref_031
– ident: 2023033114152493673_j_ans-2017-0014_ref_014
  doi: 10.1137/070698592
– ident: 2023033114152493673_j_ans-2017-0014_ref_021
  doi: 10.1142/9789814340595_0011
– ident: 2023033114152493673_j_ans-2017-0014_ref_010
SSID ssj0000492455
Score 2.4521317
Snippet We prove the local elliptic regularity of weak solutions to the Dirichlet problem associated with the fractional Laplacian on an arbitrary bounded open set of...
We prove the W loc 2 ⁢ s , p ${W_{{\mathrm{loc}}}^{2s,p}}$ local elliptic regularity of weak solutions to the Dirichlet problem associated with the fractional...
We prove the Wloc2⁢s,p${W_{{\mathrm{loc}}}^{2s,p}}$ local elliptic regularity of weak solutions to the Dirichlet problem associated with the fractional...
SourceID doaj
crossref
walterdegruyter
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 387
SubjectTerms 35B65
35R11
35S05
Dirichlet Boundary Condition
Fractional Laplacian
Local Regularity
Weak Solutions
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJ3soPrG-2IN4MnST7G52bz6wFKkexEJvYbMPH0iVmiL-e2eStFRRvHjJIUwezMzOzMfOfkPIkZPKOMDJUdBFGnEdq8hIwDzWB1lonRiV4dnh6xs5GPGrsRgvjfrCnrCaHrhWXE8kSjrGDVwK7goAJBkLLCjmMmHhjRh9mWZLYOqprnsTXo08hRWNRHtSNASbkL97kATAOyA8I0D4kpAq3v426bxXe9XO309nH-V8b7RKOf010mlqRXpW_-M6WfGTDdJeYhDcJKdDzEUUOy9g7Vt6W42Wx4F0FKpRCtUdhaD2aB_APLQ_rU8xwANDg81Y4BpbZNS_vLsYRM1QhMimmpdR4gFTWq9kGgTUmsqKjJngUu5S5lgwGQAo66VlDiubgMwMaRq8Dg6kYmbSbdKavEz8DqEySOVAh4wFyw2EG6e8joUVAaQ5N11yMtdMbhvGcBxc8ZwjcgBF5qDIHBWJnXG8S44X4q81VcZvgueo5oUQMlxXN8DueWP3_C-7dwn_ZqS8WX1vP381xvFq2e5_fHuPrNbug32P-6RVTmf-AGqTsjis3PATnuzgMA
  priority: 102
  providerName: Directory of Open Access Journals
Title Local Elliptic Regularity for the Dirichlet Fractional Laplacian
URI https://www.degruyter.com/doi/10.1515/ans-2017-0014
https://doaj.org/article/5286d04a6d0b4db18470f0f80d75ccef
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTuQwEC2xXIYDYpkRzdLKAXGagNOxHeeA2ETTQsyMNNASt8jxwiLUQGgE_D1VThoYYG5ccogqi6rs8iu5_B7AqpVKW6yTY5-XaczzRMVaYs1jnJdlnne0yujs8K_fstfnh6fi9JVSqHHg3aelHelJ9aur9cfbpy2c8JtBvScRG5jTMdiYbQnvj8Nk2CqiLr4G6V_WQLjDgwYqTnFi3pOiYdz88IZ_VqhA5D8F0w9h89q6s-r-aTjaLA1rUHcGphvwGO3U0Z6FMTeYg6k3lILzsH1Ei1NErRiYDEz0N2jNk0JdhPA0QrgXYZa7MOcYr6hb1cca8IEjTd1ZOFa-Q7-7f7LXixuVhNikOR_GHYdFpnFKpl4g-FRGZEx7m3KbMsu8zrCiMk4aZgnqeKJqSFPvcm_RKmE6_QETg-uBW4BIeqmsMY4xb7jG_GOVyxNhhEdrznULfo48U5iGQpyULK4KKiXQkQU6siBHUqscb8Hai_lNzZ3xP8NdcvOLEVFehxvX1VnRzKBCdJS0jGu8lNyWWJlmzDOvmM0E_rNvAX8XpGI0mj7_akJ6a9niV3x7Cb7Vw4caIZdhYljduxUEK8OyDZM7vYPjP-1Q7LfDoHwG4zzphg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4HIAD4inGswfEiWrZmqbpjYcYAwZIPCRuVZrHQBob2joh_j12WyqeFy49VE5b2Yn9OXU-A-waIZXBPNl3cRr4PG5IXwnMebR1Io3jppIRnR2-vBLte37-EH5UE47Kskpju8PxW1YwpNbNQI9po6ziGsAIXEc3jvZFB0sQv_6YPfcmYVpIwTH_mj5sn95eVxstCIGbPO9-ioubOPdEWHJt_njQl9iUU_jPwfxr_tu6-qZP0ae1APMlbPQOCzsvwoTtL8HcJzLBZTjoUFjyqAgD3YD2bvIu89SbzkNg6iHQ89C_PelHtJTXGhYHGnBAR1FdFs6SFbhvndwdt_2yP4Kvg5hnftNieqmtFIELEXZKHUZMORNwEzDDnIowl9JWaGYI5DgiaQgCZ2NnUKrBVLAKU_1B366BJ5yQRmvLmNNcoecx0saNUIcOpTlXNdj_0EyiS_Jw6mHRSyiJQEUmqMiEFElFcrwGe5X4S8Ga8ZfgEam5EiKy6_zGYNhNyrWThE0pDOMKLyk3KeakEXPMSWaiEL_Z1YB_M1JSLsTR729tUKe1aP1_w3Zgpn132Uk6Z1cXGzBbTB4qgNyEqWw4tlsIUrJ0u5yG79DX4nI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BkRAcKlZR1hwQJ6K6jeM4N9ZSoCxikbhFjpeChFpUWiH-npkkRGW7cMkhGifOzHgWZ_wGYNsIqQzmyb6L08DncUP6SmDOo60TaRw3lYzo7PDFpWjf87OH8GHsFD-VVRrbHYzehzlCat309Yg2ykqsAfTAdTTjKF80sBTi11-Mm4QpIaRATZ_ab5_cXpX7LBgBN3nW_BTXNkHuibCA2vzxnC-uKUPwn4XqW_bXupzSmPNpzUG1iBq9_VzM8zBhewswO4YluAh7HfJKHtVgoBXQ3k3WZJ5a03kYl3oY53lo3p70IwrKaw3y8ww4oKOoLAuVZAnuW8d3h22_aI_g6yDmQ79pMbvUFj_ahRh1Sh1GTDkTcBMww5yKMJXSVmhmKMZxhNEQBM7GziBVg6lgGSq9fs-ugCeckEZry5jTXKHhMdLGjVCHDqk5VzXY_eRMogvscGph8ZxQDoGMTJCRCTGSauR4DXZK8pccNOMvwgNic0lEWNfZjf6gmxRLJwmbUhjGFV5SblJMSSPmmJPMRCHO2dWAfxNSUqzD19_f2qBGa9Hq_4ZtwfT1USvpnF6er8FMrjtU_rgOleFgZDcwRBmmm4UWfgCAauGY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+Elliptic+Regularity+for+the+Dirichlet+Fractional+Laplacian&rft.jtitle=Advanced+nonlinear+studies&rft.au=Biccari+Umberto&rft.au=Warma+Mahamadi&rft.au=Zuazua+Enrique&rft.date=2017-05-01&rft.pub=De+Gruyter&rft.issn=1536-1365&rft.eissn=2169-0375&rft.volume=17&rft.issue=2&rft.spage=387&rft.epage=409&rft_id=info:doi/10.1515%2Fans-2017-0014&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5286d04a6d0b4db18470f0f80d75ccef
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1365&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1365&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1365&client=summon