Crop Classification Using MSCDN Classifier and Sparse Auto-Encoders with Non-Negativity Constraints for Multi-Temporal, Quad-Pol SAR Data
Accurate and reliable crop classification information is a significant data source for agricultural monitoring and food security evaluation research. It is well-known that polarimetric synthetic aperture radar (PolSAR) data provides ample information for crop classification. Moreover, multi-temporal...
        Saved in:
      
    
          | Published in | Remote sensing (Basel, Switzerland) Vol. 13; no. 14; p. 2749 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        13.07.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2072-4292 2072-4292  | 
| DOI | 10.3390/rs13142749 | 
Cover
| Abstract | Accurate and reliable crop classification information is a significant data source for agricultural monitoring and food security evaluation research. It is well-known that polarimetric synthetic aperture radar (PolSAR) data provides ample information for crop classification. Moreover, multi-temporal PolSAR data can further increase classification accuracies since the crops show different external forms as they grow up. In this paper, we distinguish the crop types with multi-temporal PolSAR data. First, due to the “dimension disaster” of multi-temporal PolSAR data caused by excessive scattering parameters, a neural network of sparse auto-encoder with non-negativity constraint (NC-SAE) was employed to compress the data, yielding efficient features for accurate classification. Second, a novel crop discrimination network with multi-scale features (MSCDN) was constructed to improve the classification performance, which is proved to be superior to the popular classifiers of convolutional neural networks (CNN) and support vector machine (SVM). The performances of the proposed method were evaluated and compared with the traditional methods by using simulated Sentinel-1 data provided by European Space Agency (ESA). For the final classification results of the proposed method, its overall accuracy and kappa coefficient reaches 99.33% and 99.19%, respectively, which were almost 5% and 6% higher than the CNN method. The classification results indicate that the proposed methodology is promising for practical use in agricultural applications. | 
    
|---|---|
| AbstractList | Accurate and reliable crop classification information is a significant data source for agricultural monitoring and food security evaluation research. It is well-known that polarimetric synthetic aperture radar (PolSAR) data provides ample information for crop classification. Moreover, multi-temporal PolSAR data can further increase classification accuracies since the crops show different external forms as they grow up. In this paper, we distinguish the crop types with multi-temporal PolSAR data. First, due to the “dimension disaster” of multi-temporal PolSAR data caused by excessive scattering parameters, a neural network of sparse auto-encoder with non-negativity constraint (NC-SAE) was employed to compress the data, yielding efficient features for accurate classification. Second, a novel crop discrimination network with multi-scale features (MSCDN) was constructed to improve the classification performance, which is proved to be superior to the popular classifiers of convolutional neural networks (CNN) and support vector machine (SVM). The performances of the proposed method were evaluated and compared with the traditional methods by using simulated Sentinel-1 data provided by European Space Agency (ESA). For the final classification results of the proposed method, its overall accuracy and kappa coefficient reaches 99.33% and 99.19%, respectively, which were almost 5% and 6% higher than the CNN method. The classification results indicate that the proposed methodology is promising for practical use in agricultural applications. | 
    
| Author | Guo, Jiao Zhang, Wei-Tao Wang, Min Lou, Shun-Tian  | 
    
| Author_xml | – sequence: 1 givenname: Wei-Tao orcidid: 0000-0003-3418-6512 surname: Zhang fullname: Zhang, Wei-Tao – sequence: 2 givenname: Min surname: Wang fullname: Wang, Min – sequence: 3 givenname: Jiao surname: Guo fullname: Guo, Jiao – sequence: 4 givenname: Shun-Tian surname: Lou fullname: Lou, Shun-Tian  | 
    
| BookMark | eNp9kc9u1DAQhy1UJMrSC09giQsCAo7tOMlxlRao1C5_tj1Hk2S8eOW1g-1Q7SPw1qRdVFCF8GUsz-ffWP6ekiPnHRLyPGdvhajZuxBzkUteyvoROeas5JnkNT_6a_-EnMS4ZfMSIq-ZPCY_m-BH2liI0WjTQzLe0eto3IZerpvT1X0LAwU30PUIISJdTslnZ673A4ZIb0z6RlfeZSvczAk_TNrTxruYAhiXItU-0MvJJpNd4W70Aewb-mWCIfvsLV0vv9JTSPCMPNZgI578rgty_f7sqvmYXXz6cN4sL7Je1DJlnHW8qLSuGeaAJUpW8ZJhNaAotOqGXOqeywIVFEzh0AssB5b3Sqii47JSYkHOD7mDh207BrODsG89mPbuwIdNCyGZ3mKrNUgcOp0XZS21Ep0sS66kAqUqkKKes14fsiY3wv4GrL0PzFl7K6X9I2WmXx7oMfjvE8bU7kzs0Vpw6KfY8vmRch4wy1mQFw_QrZ-Cm_-l5UUhy6JWFZ-pVweqDz7GgPr_09kDuDfpzvetJvuvK78A60S4Ow | 
    
| CitedBy_id | crossref_primary_10_32604_iasc_2023_029756 crossref_primary_10_3390_rs14102451 crossref_primary_10_4236_jcc_2024_129002 crossref_primary_10_1016_j_patcog_2023_109773 crossref_primary_10_1109_LGRS_2022_3207301 crossref_primary_10_3390_rs14163889 crossref_primary_10_3390_rs15010056 crossref_primary_10_1016_j_ijcce_2024_09_006 crossref_primary_10_3390_rs14061379 crossref_primary_10_1007_s11042_023_16113_2 crossref_primary_10_48084_etasr_6092 crossref_primary_10_1109_JSTARS_2023_3283011 crossref_primary_10_3390_rs16162908 crossref_primary_10_3390_rs15153859  | 
    
| Cites_doi | 10.3390/rs9060573 10.1016/j.rse.2018.11.032 10.1016/j.cmpb.2017.02.013 10.1109/JSTARS.2014.2387374 10.1109/36.673687 10.1016/S2095-3119(19)62615-8 10.1080/10106049.2011.562309 10.1109/TGRS.2019.2922978 10.4308/hjb.25.3.126 10.1109/LGRS.2018.2799877 10.3390/rs11091088 10.1109/TNN.2002.804287 10.1007/s11769-011-0472-2 10.1007/978-3-319-16865-4_41 10.1109/TGRS.2018.2832054 10.1109/TGRS.2017.2768619 10.1109/ACCESS.2019.2927724 10.1126/science.290.5500.2323 10.1016/j.rse.2017.07.015 10.1109/36.485127 10.3390/rs10060907 10.1109/36.551935 10.1080/01431161.2019.1569791 10.1109/IGARSS.2012.6352738 10.1080/01431161.2016.1182663 10.1080/01431169408954244 10.1080/2150704X.2018.1430393 10.1007/s11442-015-1247-y 10.3390/rs11030242 10.1016/j.tibtech.2018.07.008 10.1016/j.compag.2015.05.001 10.3390/ijgi8020097 10.1080/01431161.2018.1437293 10.1109/ACCESS.2019.2939152 10.1109/TGRS.2015.2476352 10.1016/j.compag.2019.105093 10.1080/15481603.2019.1628412 10.1109/ACCESS.2020.3018868 10.1016/B978-0-12-709650-6.50020-1 10.1109/TGRS.2005.852084 10.3390/rs12020321 10.1109/IGARSS39084.2020.9324715 10.1109/JSTARS.2011.2106198 10.3390/rs10121984 10.1109/LGRS.2017.2681128  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/rs13142749 | 
    
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection (via ProQuest) Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Open Access Full Text  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | CrossRef AGRICOLA Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals [Accès libre] url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography Agriculture  | 
    
| EISSN | 2072-4292 | 
    
| ExternalDocumentID | oai_doaj_org_article_ffa4edbf15794f63b4772646a668a439 10.3390/rs13142749 10_3390_rs13142749  | 
    
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO ADTOC C1A IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c394t-20b258ff90e1ae7e408270e8de35f6bd14fc245e6a506edc3e7d01c6365b24863 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2072-4292 | 
    
| IngestDate | Fri Oct 03 12:31:22 EDT 2025 Sun Oct 26 03:01:20 EDT 2025 Thu Oct 02 03:59:30 EDT 2025 Fri Jul 25 09:30:35 EDT 2025 Thu Oct 16 04:31:01 EDT 2025 Thu Apr 24 22:58:34 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 14 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c394t-20b258ff90e1ae7e408270e8de35f6bd14fc245e6a506edc3e7d01c6365b24863 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0003-3418-6512 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2072-4292/13/14/2749/pdf | 
    
| PQID | 2554759682 | 
    
| PQPubID | 2032338 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ffa4edbf15794f63b4772646a668a439 unpaywall_primary_10_3390_rs13142749 proquest_miscellaneous_2636472603 proquest_journals_2554759682 crossref_primary_10_3390_rs13142749 crossref_citationtrail_10_3390_rs13142749  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20210713 | 
    
| PublicationDateYYYYMMDD | 2021-07-13 | 
    
| PublicationDate_xml | – month: 07 year: 2021 text: 20210713 day: 13  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Remote sensing (Basel, Switzerland) | 
    
| PublicationYear | 2021 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | ref_50 Yamaguchi (ref_33) 2005; 43 Demirci (ref_29) 2020; 8 Usman (ref_23) 2015; 25 ref_58 ref_12 ref_56 Tyczewska (ref_4) 2018; 36 ref_53 Chen (ref_52) 2018; 15 ref_17 Veloso (ref_20) 2017; 199 Zeyada (ref_39) 2016; 37 Whelen (ref_19) 2018; 9 Jafari (ref_15) 2015; 8 Picon (ref_38) 2019; 167 Guo (ref_42) 2018; 56 Huang (ref_57) 2017; 143 ref_22 ref_21 Lee (ref_27) 1994; 15 Doualk (ref_26) 2014; 2 Boryan (ref_2) 2011; 26 Yang (ref_41) 2019; 57 Freeman (ref_32) 1998; 36 Nurtyawan (ref_30) 2018; 25 Roweis (ref_51) 2000; 290 Bartlett (ref_48) 2002; 13 Zhou (ref_40) 2019; 56 Maghsoudi (ref_28) 2012; 19 Chen (ref_44) 2018; 39 Zhang (ref_10) 2011; 21 Li (ref_18) 2020; 87 ref_36 ref_35 Skriver (ref_14) 2011; 4 Zhong (ref_25) 2019; 221 Orynbaikyzy (ref_6) 2019; 40 Thenkabail (ref_5) 2016; 82 Tatsumi (ref_11) 2015; 115 Kim (ref_54) 2017; 56 Min (ref_46) 2015; 4 Cloude (ref_31) 1996; 34 Son (ref_37) 2018; 33 ref_47 Cloude (ref_34) 1997; 35 ref_45 Li (ref_16) 2019; 7 ref_43 ref_1 ref_3 Sabry (ref_13) 2015; 54 ref_49 Ren (ref_55) 2019; 7 ref_8 ref_7 Kussul (ref_9) 2017; 14 Zhang (ref_24) 2019; 18  | 
    
| References_xml | – ident: ref_21 doi: 10.3390/rs9060573 – volume: 4 start-page: 186 year: 2015 ident: ref_46 article-title: Relevant Component Locally Linear Embedding Dimension-ality Reduction for Gene Expression Data Analysis publication-title: Metall. Min. Ind. – volume: 2 start-page: 93 year: 2014 ident: ref_26 article-title: Application of Statistical Methods and GIS for Downscaling and Mapping Crop Statistics Using Hypertemporal Remote Sensing publication-title: J. Stat. Sci. Appl. – volume: 221 start-page: 430 year: 2019 ident: ref_25 article-title: Deep learning based multi-temporal crop classification publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.11.032 – volume: 143 start-page: 67 year: 2017 ident: ref_57 article-title: MSFCN-multiple supervised fully convolutional networks for the osteosar-coma segmentation of CT images publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2017.02.013 – volume: 8 start-page: 3595 year: 2015 ident: ref_15 article-title: A New Method for Land Cover Characterization and Classification of Polarimetric SAR Data Using Polarimetric Signatures publication-title: IEEE J. Sel. Top. Appl. Earth Observe. Remote Sens. doi: 10.1109/JSTARS.2014.2387374 – volume: 36 start-page: 963 year: 1998 ident: ref_32 article-title: A three-component scattering model for polarimetric SAR data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.673687 – volume: 18 start-page: 2628 year: 2019 ident: ref_24 article-title: Winter wheat identification by integrating spectral and temporal information derived from multi-resolution remote sensing data publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(19)62615-8 – volume: 26 start-page: 341 year: 2011 ident: ref_2 article-title: Monitoring US agriculture: The US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program publication-title: Geocarto Int. doi: 10.1080/10106049.2011.562309 – ident: ref_1 – volume: 19 start-page: 139 year: 2012 ident: ref_28 article-title: Polarimetric classification of Boreal forest using nonparametric feature selection and multiple classifiers publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 57 start-page: 8796 year: 2019 ident: ref_41 article-title: CNN-Based Polarimetric Decomposition Feature Selection for PolSAR Image Clas-sification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2922978 – ident: ref_58 – volume: 25 start-page: 126 year: 2018 ident: ref_30 article-title: Satellite Imagery for Classification of Rice Growth Phase Using Freeman Decomposition in Indramayu, West Java, Indonesia publication-title: HAYATI J. Biosci. doi: 10.4308/hjb.25.3.126 – volume: 15 start-page: 627 year: 2018 ident: ref_52 article-title: PolSAR Image Classification Using Polarimetric-Feature-Driven Deep Convolutional Neural Network publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2018.2799877 – ident: ref_7 doi: 10.3390/rs11091088 – ident: ref_8 – volume: 13 start-page: 1450 year: 2002 ident: ref_48 article-title: Face recognition by independent component analysis publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2002.804287 – ident: ref_56 – volume: 21 start-page: 322 year: 2011 ident: ref_10 article-title: Crop classification using MODIS NDVI data denoised by wavelet: A case study in Hebei Plain, China publication-title: Chin. Geogr. Sci. doi: 10.1007/s11769-011-0472-2 – ident: ref_53 doi: 10.1007/978-3-319-16865-4_41 – volume: 56 start-page: 6111 year: 2018 ident: ref_42 article-title: Crop Classification Based on Differential Characteristics of H/α Scattering Pa-rameters for Multitemporal Quad- and Dual-Polarization SAR Images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2832054 – volume: 56 start-page: 1839 year: 2017 ident: ref_54 article-title: Unsupervised Fine Land Classification Using Quaternion Autoencoder-Based Polarization Feature Extraction and Self-Organizing Mapping publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2768619 – volume: 7 start-page: 92651 year: 2019 ident: ref_55 article-title: Pulses Classification Based on Sparse Auto-Encoders Neural Networks publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2927724 – volume: 87 start-page: 102032 year: 2020 ident: ref_18 article-title: Crop classification from full-year fully-polarimetric L-band UAVSAR time-series using the Random Forest algorithm publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 290 start-page: 2323 year: 2000 ident: ref_51 article-title: Nonlinear Dimensionality Reduction by Locally Linear Embedding publication-title: Science doi: 10.1126/science.290.5500.2323 – volume: 199 start-page: 415 year: 2017 ident: ref_20 article-title: Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.07.015 – volume: 34 start-page: 498 year: 1996 ident: ref_31 article-title: A review of target decomposition theorems in radar polarimetry publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.485127 – ident: ref_45 – ident: ref_47 doi: 10.3390/rs10060907 – volume: 35 start-page: 68 year: 1997 ident: ref_34 article-title: An entropy based classification scheme for land applications of polarimetric SAR publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.551935 – volume: 40 start-page: 6553 year: 2019 ident: ref_6 article-title: Crop type classification using a combination of optical and radar remote sensing data: A review publication-title: Int. J. Remote. Sens. doi: 10.1080/01431161.2019.1569791 – ident: ref_22 doi: 10.1109/IGARSS.2012.6352738 – volume: 37 start-page: 2585 year: 2016 ident: ref_39 article-title: Evaluation of the discrimination capability of full polarimetric SAR data for crop classification publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2016.1182663 – volume: 15 start-page: 2299 year: 1994 ident: ref_27 article-title: Classification of multi-look polarimetric SAR imagery based on complex Wishart distribu-tion publication-title: Int. J. Remote Sens. doi: 10.1080/01431169408954244 – volume: 9 start-page: 411 year: 2018 ident: ref_19 article-title: Time-series classification of Sentinel-1 agricultural data over North Dakota publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2018.1430393 – volume: 82 start-page: 773 year: 2016 ident: ref_5 article-title: Assessing future risks to agricultural productivity, water resources and food security: How can remote sensing help? publication-title: Photogramm. Eng. Remote Sens. – volume: 25 start-page: 1479 year: 2015 ident: ref_23 article-title: Land use/land cover classification and its change detection using multi-temporal MODIS NDVI data publication-title: J. Geogr. Sci. doi: 10.1007/s11442-015-1247-y – ident: ref_3 – ident: ref_36 doi: 10.3390/rs11030242 – volume: 36 start-page: 1219 year: 2018 ident: ref_4 article-title: Towards Food Security: Current State and Future Pro-spects of Agrobiotechnology publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2018.07.008 – volume: 115 start-page: 171 year: 2015 ident: ref_11 article-title: Crop classification of upland fields using Random forest of time-series Landsat 7 ETM + data publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2015.05.001 – ident: ref_43 doi: 10.3390/ijgi8020097 – volume: 39 start-page: 2937 year: 2018 ident: ref_44 article-title: A supervoxel-based vegetation classification via decomposition and modelling of full-waveform airborne laser scanning data publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2018.1437293 – volume: 7 start-page: 134677 year: 2019 ident: ref_16 article-title: Temporal Attention Networks for Multitemporal Multisensor Crop Classification publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2939152 – volume: 33 start-page: 587 year: 2018 ident: ref_37 article-title: Assessment of Sentinel-1A data for rice crop classification using random for-ests and support vector machines publication-title: Geocarto Int. – volume: 54 start-page: 1170 year: 2015 ident: ref_13 article-title: Terrain and Surface Modeling Using Polarimetric SAR Data Features publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2015.2476352 – volume: 167 start-page: 105093 year: 2019 ident: ref_38 article-title: Crop conditional Convolutional Neural Networks for massive multi-crop plant disease classification over cell phone acquired images taken on real field conditions publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.105093 – ident: ref_50 – volume: 56 start-page: 1170 year: 2019 ident: ref_40 article-title: Long-short-term-memory-based crop classification using high-resolution optical images and multi-temporal SAR data publication-title: GIScience Remote Sens. doi: 10.1080/15481603.2019.1628412 – volume: 8 start-page: 155926 year: 2020 ident: ref_29 article-title: Interpretation and Analysis of Target Scattering From Fully-Polarized ISAR Images Using Pauli Decomposition Scheme for Target Recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3018868 – ident: ref_35 doi: 10.1016/B978-0-12-709650-6.50020-1 – volume: 43 start-page: 1699 year: 2005 ident: ref_33 article-title: Four-component scattering model for polarimetric SAR image decom-position publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2005.852084 – ident: ref_17 doi: 10.3390/rs12020321 – ident: ref_49 doi: 10.1109/IGARSS39084.2020.9324715 – volume: 4 start-page: 423 year: 2011 ident: ref_14 article-title: Crop Classification Using Short-Revisit Multitemporal SAR Data publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2011.2106198 – ident: ref_12 doi: 10.3390/rs10121984 – volume: 14 start-page: 778 year: 2017 ident: ref_9 article-title: Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2681128  | 
    
| SSID | ssj0000331904 | 
    
| Score | 2.37503 | 
    
| Snippet | Accurate and reliable crop classification information is a significant data source for agricultural monitoring and food security evaluation research. It is... | 
    
| SourceID | doaj unpaywall proquest crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 2749 | 
    
| SubjectTerms | Accuracy Agriculture Algorithms Artificial neural networks Classification Classifiers Coders crop classification crop discrimination network with multi-scale features (MSCDN) Crops Data compression Decomposition Food security Neural networks polarimetric synthetic aperture radar (PolSAR) polarimetry Principal components analysis Radar polarimetry Remote sensing Satellites sparse auto-encoder (AE) Support vector machines Synthetic aperture radar  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQL-WC-BShBRnRCxJW7fgjyXHZtqqQugK2lXqL7NiGQ5SssolQf0L_dcdOGrYSggvXeA62Z-yZF9vvIXRkmeXW64yE3Z8IbgqiuSsAqjifVoWHpBbeDl-s1PmV-HItr3ekvsKdsJEeeJy4Y--1cNZ4JiFyvOJGQD2ohNJK5Rqyadh9aV7sgKm4B3MILSpGPlIOuP642zLOBGCw4kEGikT9D6rL_aHZ6Jtfuq53Es3ZU_RkqhDxYuzZM_TINc_R_iRW_vPmBbpddu0GRzXLcM8nTi2OR__4Yr08Wc1NrsO6sXi9AfDq8GLoW3LahDfs3RaH_6941TZk5X5MChI4iHdGyYh-i6GWxfFxLrkcyavqT_jboC352tZ4vfiOT3SvX6Krs9PL5TmZFBVIxQvRw5Iwqcy9L6hj2mUuqE1n1OXWcemVsUz4KhXSKS2pcrbiLrOUVYoraVKRK_4K7TVt414jnFsqq5D-MgOgh3lDc5t6CxVbVWRcsgR9vJ_lsproxsMQ6hJgR_BI-dsjCfow225Gko0_Wn0OzpotAjF2_ADhUk7hUv4rXBJ0eO_qclqt2xJgVaA9VHmaoPdzM6yzcHiiG9cOYKMi076iPEFHc4j8pbtv_kd3D9DjNFyiCUye_BDt9d3g3kIV1Jt3MeDvAJAIA_0 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1da9UwGA7z7GJ6ITqVVadE3I1gWNukaXshcnZ2xhBW5s4GuytpkxwvSlt7WmQ_wX9t3py0cyC7bQP9eL-T930ehI5kIKnUIibg_QmjRUoEVakpVZQOy1SboAazwxcZP79h32-j2x2UjbMw0FY5-kTrqGVTwh75sUl9AZqOJ-G39hcB1ig4XR0pNISjVpBfLcTYE7QbAjLWDO2eLLPLq2nXxadG5Xy2xSmlpt4_7jYBDZipzdIHkckC-D_IOveGuhV3v0VV_ROAzl6g5y5zxPOtqF-iHVXvo2fzdefQM9Q-2nOU5j_vXqE_i65pseW8hG4gKwBsGwTwxWpxmk23VIdFLfGqNSWuwvOhb8iyhkn3boNhlxZnTU0ytXY8ExgoPi2xRL_BJuPFdoSXXG8hrqov-McgJLlsKryaX-FT0YvX6OZseb04J453gZQ0Zb0xnCKMEq1TXwVCxQo4qWNfJVLRSPNCBkyXIYsUF5HPlSypiqUflJzyqAhZwukbNKubWh0gnEg_KiFIxoUpjQJd-IkMtTR5XZnGNAo89Hn853npQMnhE6rcFCcgn_xePh76NK1tt1Ac_111AqKbVgB8tr3QdOvcWWOutWBKFjqIjDvSnBbMFBmcccF5IkyK5qHDUfC5s-lNfq-BHvo43TbWCEcsolbNYNZwi8fPfeqho0lhHnndt48_6R16GkITDSB50kM067tBvTdZUF98cKr9F1jfBtc priority: 102 providerName: ProQuest  | 
    
| Title | Crop Classification Using MSCDN Classifier and Sparse Auto-Encoders with Non-Negativity Constraints for Multi-Temporal, Quad-Pol SAR Data | 
    
| URI | https://www.proquest.com/docview/2554759682 https://www.proquest.com/docview/2636472603 https://www.mdpi.com/2072-4292/13/14/2749/pdf https://doaj.org/article/ffa4edbf15794f63b4772646a668a439  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 13 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals [Accès libre] customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCO Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: 8FG dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB3R3UO58I0aKCsjekEiTRw7TnLc7gcVYqOl25XKKXJiuyBWySqbCJV_wL_GTrKBIoR6ipRMJEfjsec5M-8BnAgsiFA8sM3qb1OSRjYnMtJQRSovi5Te1Ezv8CJm52v64cq_6prVd11ZpYbiX5tF2nMDzzZ6Sg4mDqaORlCRsxXqAIbM16n3AIbreDn-bATk9qYtBSnRUN4pd5hgal66tek03Py3EsrDOt_ym-98s_ljb5k_hHg_qrak5NtpXaWn2Y-_CBvvPOxH8KDLMtG4nRaP4Z7Mn8BhJ3j-5eYp_JyUxRY1ipimVqhxD2rKB9BiNZnG_SNZIp4LtNpqACzRuK4Ke5abPvhyh8wZLoqL3I7ldadCgYwAaCM7Ue2QzodR0-BrX7YEWJt36FPNhb0sNmg1vkBTXvFnsJ7PLifndqfKYGckopUOq9TzQ6UiV2IuA2kUqwNXhkISX7FUYKoyj_qScd9lUmREBsLFGSPMTz0aMvIcBnmRyyNAoXD9zGyhQaqBE1apGwpPCZ31ZVFAfGzB273bkqyjLDefsEk0dDEuTn672II3ve22Jer4p9WZ8X5vYci1mxtFeZ10sZooxakUqcK-XqwUIynVEIRRxhkLuU7gLDjez52ki_hdoqGZoU5koWfB6_6xjlXzA4bnsqi1DWvY-plLLDjp59x_hvvibmYv4b5nSm0M3yc5hkFV1vKVzpWqdAQH4fz9CIbj6eLjSl_PZvHyYtScPIy66PkFsTATcg | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Pb9MwFLfGdigcEAwQhQFGjAMS0ZLYcZLDhLq2U8fWaKydtFvmxHY5VElIUk39CHwpPhvPqZMxCe22a2zl33t-f-z3fj-E9oUjiFDct7T1tyhJQosTGUKqIpWbhgqcmu4dnkZsckm_X3lXW-hP2wujyypbm9gYapGneo_8AEJfDU3HAvdb8cvSrFH6dLWl0OCGWkEcNhBjprHjVK5vIIWrDk9GIO_Prns8ng8nlmEZsFIS0hrUJHG9QKnQlg6XvtQMzL4tAyGJp1giHKpSl3qScc9mUqRE-sJ2UkaYl7g0YATu-wjtUEJDSP52jsbR-UW3y2MTUHGbbnBRCQntg7JyiEMhFwzveMKGMOBOlNtbZQVf3_Dl8h-Hd_wMPTWRKh5sVOs52pLZLnoyWJQGrUPuop6hUP-5foF-D8u8wA3Hpq4-agSOm4IEPJ0NR1E3JEvMM4FnBaTUEg9WdW6NM91ZX1ZY7wrjKM-sSC4MrwXWlKINkUVdYYiwcdMybM03kFrLr_jHigvrPF_i2eACj3jNX6LLB5HAK7Sd5Zl8jXAgbC_VTtlPIBVzVGIHwlUC4sg09Inn9NGX9p_HqQFB15-wjCEZ0vKJb-XTR5-6ucUG-uO_s4606LoZGq67uZCXi9is_lgpTqVIlOOB-VOMJBSSGkYZZyzgEBL20V4r-NjYkCq-1fg--tgNw-rXRzo8k_kK5rAG_5_ZpI_2O4W553Xf3P-kD6g3mU_P4rOT6PQteuzqAh6NIkr20HZdruQ7iMDq5L1Rc4yuH3pl_QUv9EOX | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VIlE4ICggUgosohyQsGJ712v7gFBIGlpKo0JaqTez9u6mh8gOjqMqj8Ar8XTMOI5LJdRbr_bKPzs_O7M7830Ae9rTXFsVOuT9HcHT2FHcxJiqGOtnscVFjXqHj0fy4Ex8PQ_ON-DPuheGyirXPrF21LrIaI-8i6EvQdPJyO_apiziZDD8NPvlEIMUnbSu6TRWKnJklpeYvs0_Hg5Q1u98f7h_2j9wGoYBJ-OxqFBFUj-IrI1d4ykTGmJfDl0TacMDK1PtCZv5IjBSBa40OuMm1K6XSS6D1BeR5PjcO3A3JBR36lIffmn3d1yOyu2KFSIq57HbLece9wRmgfG1NbCmCrgW324t8plaXqrp9J-lbvgIHjYxKuutlOoxbJh8Gx70JmWD02G2YashT79YPoHf_bKYsZpdk-qOalGzuhSBHY_7g1F7y5RM5ZqNZ5hMG9ZbVIWzn1NPfTlntB_MRkXujMykYbRgRCZaU1hUc4axNaubhZ3TFZjW9AP7vlDaOSmmbNz7wQaqUk_h7Fbm_xls5kVungOLtBtktByHKSZhnk3dSPtWYwSZxSEPvA68X895kjXw5_QL0wTTIJJPciWfDrxtx85WoB__HfWZRNeOIKDu-kJRTpLG7hNrlTA6tV6Ajs9KngpMZ6SQSspIYTDYgd214JPGe8yTK13vwJv2Nto9Heao3BQLHCNr5H_p8g7stQpzw-fu3Pym13AP7Sn5djg6egH3farcIfhQvgubVbkwLzH0qtJXtY4z-HnbRvUXVptBMQ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZgeygX3qiBgozoBQk3cfxIcly2rSqkRoXtSuUUObFdEFES5SFU_gH_GjvxBooQ6jWZSI7G45kvmfk-AA4klkRqESF7-iNK8gQJohIDVZQOi0SbpGZnh89SfrqhHy7ZpRtW71xbpYHiX8dDOgyiEFk9JR8TH1PfIKjEb6S-C3Y4M6X3Auxs0vPlZysgtzWdKEiJgfJ-22GCqX3oRtIZuflvFJS7Q9WI6--iLP_ILScPQLpd1dRS8u1w6PPD4sdfhI23XvZDcN9VmXA5bYtH4I6qHoNdJ3j-5foJ-Llq6waOipi2V2h0DxzbB-DZenWUzrdUC0Ul4boxAFjB5dDX6Liyc_BtB-03XJjWFUrVlVOhgFYAdJSd6Dto6mE4Dviii4kAq3wHPw5CovO6hOvlJ3gkevEUbE6OL1anyKkyoIIktDdhlYcs1joJFBYqUlaxOgpULBVhmucSU12ElCkuWMCVLIiKZIALTjjLQxpz8gwsqrpSewDGMmCFTaFRboAT1nkQy1BLU_UVSUQY9sDbrduywlGW21coMwNdrIuz3y72wJvZtpmIOv5p9d56f7aw5Nrjhbq9ylysZloLqmSuMTOHleYkpwaCcMoF57EwBZwH9rd7J3MR32UGmlnqRB6HHng93zaxan_AiErVg7HhI1s_D4gHDuY995_lPr-d2QtwL7StNpbvk-yDRd8O6qWplfr8lYuQX-HzDmk | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crop+Classification+Using+MSCDN+Classifier+and+Sparse+Auto-Encoders+with+Non-Negativity+Constraints+for+Multi-Temporal%2C+Quad-Pol+SAR+Data&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Wei-Tao%2C+Zhang&rft.au=Wang%2C+Min&rft.au=Guo%2C+Jiao&rft.au=Shun-Tian%2C+Lou&rft.date=2021-07-13&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=13&rft.issue=14&rft.spage=2749&rft_id=info:doi/10.3390%2Frs13142749&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |