Crop Classification Using MSCDN Classifier and Sparse Auto-Encoders with Non-Negativity Constraints for Multi-Temporal, Quad-Pol SAR Data

Accurate and reliable crop classification information is a significant data source for agricultural monitoring and food security evaluation research. It is well-known that polarimetric synthetic aperture radar (PolSAR) data provides ample information for crop classification. Moreover, multi-temporal...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 13; no. 14; p. 2749
Main Authors Zhang, Wei-Tao, Wang, Min, Guo, Jiao, Lou, Shun-Tian
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 13.07.2021
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs13142749

Cover

Abstract Accurate and reliable crop classification information is a significant data source for agricultural monitoring and food security evaluation research. It is well-known that polarimetric synthetic aperture radar (PolSAR) data provides ample information for crop classification. Moreover, multi-temporal PolSAR data can further increase classification accuracies since the crops show different external forms as they grow up. In this paper, we distinguish the crop types with multi-temporal PolSAR data. First, due to the “dimension disaster” of multi-temporal PolSAR data caused by excessive scattering parameters, a neural network of sparse auto-encoder with non-negativity constraint (NC-SAE) was employed to compress the data, yielding efficient features for accurate classification. Second, a novel crop discrimination network with multi-scale features (MSCDN) was constructed to improve the classification performance, which is proved to be superior to the popular classifiers of convolutional neural networks (CNN) and support vector machine (SVM). The performances of the proposed method were evaluated and compared with the traditional methods by using simulated Sentinel-1 data provided by European Space Agency (ESA). For the final classification results of the proposed method, its overall accuracy and kappa coefficient reaches 99.33% and 99.19%, respectively, which were almost 5% and 6% higher than the CNN method. The classification results indicate that the proposed methodology is promising for practical use in agricultural applications.
AbstractList Accurate and reliable crop classification information is a significant data source for agricultural monitoring and food security evaluation research. It is well-known that polarimetric synthetic aperture radar (PolSAR) data provides ample information for crop classification. Moreover, multi-temporal PolSAR data can further increase classification accuracies since the crops show different external forms as they grow up. In this paper, we distinguish the crop types with multi-temporal PolSAR data. First, due to the “dimension disaster” of multi-temporal PolSAR data caused by excessive scattering parameters, a neural network of sparse auto-encoder with non-negativity constraint (NC-SAE) was employed to compress the data, yielding efficient features for accurate classification. Second, a novel crop discrimination network with multi-scale features (MSCDN) was constructed to improve the classification performance, which is proved to be superior to the popular classifiers of convolutional neural networks (CNN) and support vector machine (SVM). The performances of the proposed method were evaluated and compared with the traditional methods by using simulated Sentinel-1 data provided by European Space Agency (ESA). For the final classification results of the proposed method, its overall accuracy and kappa coefficient reaches 99.33% and 99.19%, respectively, which were almost 5% and 6% higher than the CNN method. The classification results indicate that the proposed methodology is promising for practical use in agricultural applications.
Author Guo, Jiao
Zhang, Wei-Tao
Wang, Min
Lou, Shun-Tian
Author_xml – sequence: 1
  givenname: Wei-Tao
  orcidid: 0000-0003-3418-6512
  surname: Zhang
  fullname: Zhang, Wei-Tao
– sequence: 2
  givenname: Min
  surname: Wang
  fullname: Wang, Min
– sequence: 3
  givenname: Jiao
  surname: Guo
  fullname: Guo, Jiao
– sequence: 4
  givenname: Shun-Tian
  surname: Lou
  fullname: Lou, Shun-Tian
BookMark eNp9kc9u1DAQhy1UJMrSC09giQsCAo7tOMlxlRao1C5_tj1Hk2S8eOW1g-1Q7SPw1qRdVFCF8GUsz-ffWP6ekiPnHRLyPGdvhajZuxBzkUteyvoROeas5JnkNT_6a_-EnMS4ZfMSIq-ZPCY_m-BH2liI0WjTQzLe0eto3IZerpvT1X0LAwU30PUIISJdTslnZ673A4ZIb0z6RlfeZSvczAk_TNrTxruYAhiXItU-0MvJJpNd4W70Aewb-mWCIfvsLV0vv9JTSPCMPNZgI578rgty_f7sqvmYXXz6cN4sL7Je1DJlnHW8qLSuGeaAJUpW8ZJhNaAotOqGXOqeywIVFEzh0AssB5b3Sqii47JSYkHOD7mDh207BrODsG89mPbuwIdNCyGZ3mKrNUgcOp0XZS21Ep0sS66kAqUqkKKes14fsiY3wv4GrL0PzFl7K6X9I2WmXx7oMfjvE8bU7kzs0Vpw6KfY8vmRch4wy1mQFw_QrZ-Cm_-l5UUhy6JWFZ-pVweqDz7GgPr_09kDuDfpzvetJvuvK78A60S4Ow
CitedBy_id crossref_primary_10_32604_iasc_2023_029756
crossref_primary_10_3390_rs14102451
crossref_primary_10_4236_jcc_2024_129002
crossref_primary_10_1016_j_patcog_2023_109773
crossref_primary_10_1109_LGRS_2022_3207301
crossref_primary_10_3390_rs14163889
crossref_primary_10_3390_rs15010056
crossref_primary_10_1016_j_ijcce_2024_09_006
crossref_primary_10_3390_rs14061379
crossref_primary_10_1007_s11042_023_16113_2
crossref_primary_10_48084_etasr_6092
crossref_primary_10_1109_JSTARS_2023_3283011
crossref_primary_10_3390_rs16162908
crossref_primary_10_3390_rs15153859
Cites_doi 10.3390/rs9060573
10.1016/j.rse.2018.11.032
10.1016/j.cmpb.2017.02.013
10.1109/JSTARS.2014.2387374
10.1109/36.673687
10.1016/S2095-3119(19)62615-8
10.1080/10106049.2011.562309
10.1109/TGRS.2019.2922978
10.4308/hjb.25.3.126
10.1109/LGRS.2018.2799877
10.3390/rs11091088
10.1109/TNN.2002.804287
10.1007/s11769-011-0472-2
10.1007/978-3-319-16865-4_41
10.1109/TGRS.2018.2832054
10.1109/TGRS.2017.2768619
10.1109/ACCESS.2019.2927724
10.1126/science.290.5500.2323
10.1016/j.rse.2017.07.015
10.1109/36.485127
10.3390/rs10060907
10.1109/36.551935
10.1080/01431161.2019.1569791
10.1109/IGARSS.2012.6352738
10.1080/01431161.2016.1182663
10.1080/01431169408954244
10.1080/2150704X.2018.1430393
10.1007/s11442-015-1247-y
10.3390/rs11030242
10.1016/j.tibtech.2018.07.008
10.1016/j.compag.2015.05.001
10.3390/ijgi8020097
10.1080/01431161.2018.1437293
10.1109/ACCESS.2019.2939152
10.1109/TGRS.2015.2476352
10.1016/j.compag.2019.105093
10.1080/15481603.2019.1628412
10.1109/ACCESS.2020.3018868
10.1016/B978-0-12-709650-6.50020-1
10.1109/TGRS.2005.852084
10.3390/rs12020321
10.1109/IGARSS39084.2020.9324715
10.1109/JSTARS.2011.2106198
10.3390/rs10121984
10.1109/LGRS.2017.2681128
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
ADTOC
UNPAY
DOA
DOI 10.3390/rs13142749
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection (via ProQuest)
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
AGRICOLA
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals [Accès libre]
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Agriculture
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_ffa4edbf15794f63b4772646a668a439
10.3390/rs13142749
10_3390_rs13142749
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c394t-20b258ff90e1ae7e408270e8de35f6bd14fc245e6a506edc3e7d01c6365b24863
IEDL.DBID UNPAY
ISSN 2072-4292
IngestDate Fri Oct 03 12:31:22 EDT 2025
Sun Oct 26 03:01:20 EDT 2025
Thu Oct 02 03:59:30 EDT 2025
Fri Jul 25 09:30:35 EDT 2025
Thu Oct 16 04:31:01 EDT 2025
Thu Apr 24 22:58:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-20b258ff90e1ae7e408270e8de35f6bd14fc245e6a506edc3e7d01c6365b24863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3418-6512
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2072-4292/13/14/2749/pdf
PQID 2554759682
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_ffa4edbf15794f63b4772646a668a439
unpaywall_primary_10_3390_rs13142749
proquest_miscellaneous_2636472603
proquest_journals_2554759682
crossref_primary_10_3390_rs13142749
crossref_citationtrail_10_3390_rs13142749
PublicationCentury 2000
PublicationDate 20210713
PublicationDateYYYYMMDD 2021-07-13
PublicationDate_xml – month: 07
  year: 2021
  text: 20210713
  day: 13
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Yamaguchi (ref_33) 2005; 43
Demirci (ref_29) 2020; 8
Usman (ref_23) 2015; 25
ref_58
ref_12
ref_56
Tyczewska (ref_4) 2018; 36
ref_53
Chen (ref_52) 2018; 15
ref_17
Veloso (ref_20) 2017; 199
Zeyada (ref_39) 2016; 37
Whelen (ref_19) 2018; 9
Jafari (ref_15) 2015; 8
Picon (ref_38) 2019; 167
Guo (ref_42) 2018; 56
Huang (ref_57) 2017; 143
ref_22
ref_21
Lee (ref_27) 1994; 15
Doualk (ref_26) 2014; 2
Boryan (ref_2) 2011; 26
Yang (ref_41) 2019; 57
Freeman (ref_32) 1998; 36
Nurtyawan (ref_30) 2018; 25
Roweis (ref_51) 2000; 290
Bartlett (ref_48) 2002; 13
Zhou (ref_40) 2019; 56
Maghsoudi (ref_28) 2012; 19
Chen (ref_44) 2018; 39
Zhang (ref_10) 2011; 21
Li (ref_18) 2020; 87
ref_36
ref_35
Skriver (ref_14) 2011; 4
Zhong (ref_25) 2019; 221
Orynbaikyzy (ref_6) 2019; 40
Thenkabail (ref_5) 2016; 82
Tatsumi (ref_11) 2015; 115
Kim (ref_54) 2017; 56
Min (ref_46) 2015; 4
Cloude (ref_31) 1996; 34
Son (ref_37) 2018; 33
ref_47
Cloude (ref_34) 1997; 35
ref_45
Li (ref_16) 2019; 7
ref_43
ref_1
ref_3
Sabry (ref_13) 2015; 54
ref_49
Ren (ref_55) 2019; 7
ref_8
ref_7
Kussul (ref_9) 2017; 14
Zhang (ref_24) 2019; 18
References_xml – ident: ref_21
  doi: 10.3390/rs9060573
– volume: 4
  start-page: 186
  year: 2015
  ident: ref_46
  article-title: Relevant Component Locally Linear Embedding Dimension-ality Reduction for Gene Expression Data Analysis
  publication-title: Metall. Min. Ind.
– volume: 2
  start-page: 93
  year: 2014
  ident: ref_26
  article-title: Application of Statistical Methods and GIS for Downscaling and Mapping Crop Statistics Using Hypertemporal Remote Sensing
  publication-title: J. Stat. Sci. Appl.
– volume: 221
  start-page: 430
  year: 2019
  ident: ref_25
  article-title: Deep learning based multi-temporal crop classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.11.032
– volume: 143
  start-page: 67
  year: 2017
  ident: ref_57
  article-title: MSFCN-multiple supervised fully convolutional networks for the osteosar-coma segmentation of CT images
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2017.02.013
– volume: 8
  start-page: 3595
  year: 2015
  ident: ref_15
  article-title: A New Method for Land Cover Characterization and Classification of Polarimetric SAR Data Using Polarimetric Signatures
  publication-title: IEEE J. Sel. Top. Appl. Earth Observe. Remote Sens.
  doi: 10.1109/JSTARS.2014.2387374
– volume: 36
  start-page: 963
  year: 1998
  ident: ref_32
  article-title: A three-component scattering model for polarimetric SAR data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.673687
– volume: 18
  start-page: 2628
  year: 2019
  ident: ref_24
  article-title: Winter wheat identification by integrating spectral and temporal information derived from multi-resolution remote sensing data
  publication-title: J. Integr. Agric.
  doi: 10.1016/S2095-3119(19)62615-8
– volume: 26
  start-page: 341
  year: 2011
  ident: ref_2
  article-title: Monitoring US agriculture: The US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2011.562309
– ident: ref_1
– volume: 19
  start-page: 139
  year: 2012
  ident: ref_28
  article-title: Polarimetric classification of Boreal forest using nonparametric feature selection and multiple classifiers
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 57
  start-page: 8796
  year: 2019
  ident: ref_41
  article-title: CNN-Based Polarimetric Decomposition Feature Selection for PolSAR Image Clas-sification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2922978
– ident: ref_58
– volume: 25
  start-page: 126
  year: 2018
  ident: ref_30
  article-title: Satellite Imagery for Classification of Rice Growth Phase Using Freeman Decomposition in Indramayu, West Java, Indonesia
  publication-title: HAYATI J. Biosci.
  doi: 10.4308/hjb.25.3.126
– volume: 15
  start-page: 627
  year: 2018
  ident: ref_52
  article-title: PolSAR Image Classification Using Polarimetric-Feature-Driven Deep Convolutional Neural Network
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2799877
– ident: ref_7
  doi: 10.3390/rs11091088
– ident: ref_8
– volume: 13
  start-page: 1450
  year: 2002
  ident: ref_48
  article-title: Face recognition by independent component analysis
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2002.804287
– ident: ref_56
– volume: 21
  start-page: 322
  year: 2011
  ident: ref_10
  article-title: Crop classification using MODIS NDVI data denoised by wavelet: A case study in Hebei Plain, China
  publication-title: Chin. Geogr. Sci.
  doi: 10.1007/s11769-011-0472-2
– ident: ref_53
  doi: 10.1007/978-3-319-16865-4_41
– volume: 56
  start-page: 6111
  year: 2018
  ident: ref_42
  article-title: Crop Classification Based on Differential Characteristics of H/α Scattering Pa-rameters for Multitemporal Quad- and Dual-Polarization SAR Images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2832054
– volume: 56
  start-page: 1839
  year: 2017
  ident: ref_54
  article-title: Unsupervised Fine Land Classification Using Quaternion Autoencoder-Based Polarization Feature Extraction and Self-Organizing Mapping
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2768619
– volume: 7
  start-page: 92651
  year: 2019
  ident: ref_55
  article-title: Pulses Classification Based on Sparse Auto-Encoders Neural Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2927724
– volume: 87
  start-page: 102032
  year: 2020
  ident: ref_18
  article-title: Crop classification from full-year fully-polarimetric L-band UAVSAR time-series using the Random Forest algorithm
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 290
  start-page: 2323
  year: 2000
  ident: ref_51
  article-title: Nonlinear Dimensionality Reduction by Locally Linear Embedding
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– volume: 199
  start-page: 415
  year: 2017
  ident: ref_20
  article-title: Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.07.015
– volume: 34
  start-page: 498
  year: 1996
  ident: ref_31
  article-title: A review of target decomposition theorems in radar polarimetry
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.485127
– ident: ref_45
– ident: ref_47
  doi: 10.3390/rs10060907
– volume: 35
  start-page: 68
  year: 1997
  ident: ref_34
  article-title: An entropy based classification scheme for land applications of polarimetric SAR
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.551935
– volume: 40
  start-page: 6553
  year: 2019
  ident: ref_6
  article-title: Crop type classification using a combination of optical and radar remote sensing data: A review
  publication-title: Int. J. Remote. Sens.
  doi: 10.1080/01431161.2019.1569791
– ident: ref_22
  doi: 10.1109/IGARSS.2012.6352738
– volume: 37
  start-page: 2585
  year: 2016
  ident: ref_39
  article-title: Evaluation of the discrimination capability of full polarimetric SAR data for crop classification
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1182663
– volume: 15
  start-page: 2299
  year: 1994
  ident: ref_27
  article-title: Classification of multi-look polarimetric SAR imagery based on complex Wishart distribu-tion
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169408954244
– volume: 9
  start-page: 411
  year: 2018
  ident: ref_19
  article-title: Time-series classification of Sentinel-1 agricultural data over North Dakota
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2018.1430393
– volume: 82
  start-page: 773
  year: 2016
  ident: ref_5
  article-title: Assessing future risks to agricultural productivity, water resources and food security: How can remote sensing help?
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 25
  start-page: 1479
  year: 2015
  ident: ref_23
  article-title: Land use/land cover classification and its change detection using multi-temporal MODIS NDVI data
  publication-title: J. Geogr. Sci.
  doi: 10.1007/s11442-015-1247-y
– ident: ref_3
– ident: ref_36
  doi: 10.3390/rs11030242
– volume: 36
  start-page: 1219
  year: 2018
  ident: ref_4
  article-title: Towards Food Security: Current State and Future Pro-spects of Agrobiotechnology
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2018.07.008
– volume: 115
  start-page: 171
  year: 2015
  ident: ref_11
  article-title: Crop classification of upland fields using Random forest of time-series Landsat 7 ETM + data
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2015.05.001
– ident: ref_43
  doi: 10.3390/ijgi8020097
– volume: 39
  start-page: 2937
  year: 2018
  ident: ref_44
  article-title: A supervoxel-based vegetation classification via decomposition and modelling of full-waveform airborne laser scanning data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2018.1437293
– volume: 7
  start-page: 134677
  year: 2019
  ident: ref_16
  article-title: Temporal Attention Networks for Multitemporal Multisensor Crop Classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2939152
– volume: 33
  start-page: 587
  year: 2018
  ident: ref_37
  article-title: Assessment of Sentinel-1A data for rice crop classification using random for-ests and support vector machines
  publication-title: Geocarto Int.
– volume: 54
  start-page: 1170
  year: 2015
  ident: ref_13
  article-title: Terrain and Surface Modeling Using Polarimetric SAR Data Features
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2476352
– volume: 167
  start-page: 105093
  year: 2019
  ident: ref_38
  article-title: Crop conditional Convolutional Neural Networks for massive multi-crop plant disease classification over cell phone acquired images taken on real field conditions
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.105093
– ident: ref_50
– volume: 56
  start-page: 1170
  year: 2019
  ident: ref_40
  article-title: Long-short-term-memory-based crop classification using high-resolution optical images and multi-temporal SAR data
  publication-title: GIScience Remote Sens.
  doi: 10.1080/15481603.2019.1628412
– volume: 8
  start-page: 155926
  year: 2020
  ident: ref_29
  article-title: Interpretation and Analysis of Target Scattering From Fully-Polarized ISAR Images Using Pauli Decomposition Scheme for Target Recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3018868
– ident: ref_35
  doi: 10.1016/B978-0-12-709650-6.50020-1
– volume: 43
  start-page: 1699
  year: 2005
  ident: ref_33
  article-title: Four-component scattering model for polarimetric SAR image decom-position
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2005.852084
– ident: ref_17
  doi: 10.3390/rs12020321
– ident: ref_49
  doi: 10.1109/IGARSS39084.2020.9324715
– volume: 4
  start-page: 423
  year: 2011
  ident: ref_14
  article-title: Crop Classification Using Short-Revisit Multitemporal SAR Data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2011.2106198
– ident: ref_12
  doi: 10.3390/rs10121984
– volume: 14
  start-page: 778
  year: 2017
  ident: ref_9
  article-title: Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2681128
SSID ssj0000331904
Score 2.37503
Snippet Accurate and reliable crop classification information is a significant data source for agricultural monitoring and food security evaluation research. It is...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 2749
SubjectTerms Accuracy
Agriculture
Algorithms
Artificial neural networks
Classification
Classifiers
Coders
crop classification
crop discrimination network with multi-scale features (MSCDN)
Crops
Data compression
Decomposition
Food security
Neural networks
polarimetric synthetic aperture radar (PolSAR)
polarimetry
Principal components analysis
Radar polarimetry
Remote sensing
Satellites
sparse auto-encoder (AE)
Support vector machines
Synthetic aperture radar
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQL-WC-BShBRnRCxJW7fgjyXHZtqqQugK2lXqL7NiGQ5SssolQf0L_dcdOGrYSggvXeA62Z-yZF9vvIXRkmeXW64yE3Z8IbgqiuSsAqjifVoWHpBbeDl-s1PmV-HItr3ekvsKdsJEeeJy4Y--1cNZ4JiFyvOJGQD2ohNJK5Rqyadh9aV7sgKm4B3MILSpGPlIOuP642zLOBGCw4kEGikT9D6rL_aHZ6Jtfuq53Es3ZU_RkqhDxYuzZM_TINc_R_iRW_vPmBbpddu0GRzXLcM8nTi2OR__4Yr08Wc1NrsO6sXi9AfDq8GLoW3LahDfs3RaH_6941TZk5X5MChI4iHdGyYh-i6GWxfFxLrkcyavqT_jboC352tZ4vfiOT3SvX6Krs9PL5TmZFBVIxQvRw5Iwqcy9L6hj2mUuqE1n1OXWcemVsUz4KhXSKS2pcrbiLrOUVYoraVKRK_4K7TVt414jnFsqq5D-MgOgh3lDc5t6CxVbVWRcsgR9vJ_lsproxsMQ6hJgR_BI-dsjCfow225Gko0_Wn0OzpotAjF2_ADhUk7hUv4rXBJ0eO_qclqt2xJgVaA9VHmaoPdzM6yzcHiiG9cOYKMi076iPEFHc4j8pbtv_kd3D9DjNFyiCUye_BDt9d3g3kIV1Jt3MeDvAJAIA_0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1da9UwGA7z7GJ6ITqVVadE3I1gWNukaXshcnZ2xhBW5s4GuytpkxwvSlt7WmQ_wX9t3py0cyC7bQP9eL-T930ehI5kIKnUIibg_QmjRUoEVakpVZQOy1SboAazwxcZP79h32-j2x2UjbMw0FY5-kTrqGVTwh75sUl9AZqOJ-G39hcB1ig4XR0pNISjVpBfLcTYE7QbAjLWDO2eLLPLq2nXxadG5Xy2xSmlpt4_7jYBDZipzdIHkckC-D_IOveGuhV3v0VV_ROAzl6g5y5zxPOtqF-iHVXvo2fzdefQM9Q-2nOU5j_vXqE_i65pseW8hG4gKwBsGwTwxWpxmk23VIdFLfGqNSWuwvOhb8iyhkn3boNhlxZnTU0ytXY8ExgoPi2xRL_BJuPFdoSXXG8hrqov-McgJLlsKryaX-FT0YvX6OZseb04J453gZQ0Zb0xnCKMEq1TXwVCxQo4qWNfJVLRSPNCBkyXIYsUF5HPlSypiqUflJzyqAhZwukbNKubWh0gnEg_KiFIxoUpjQJd-IkMtTR5XZnGNAo89Hn853npQMnhE6rcFCcgn_xePh76NK1tt1Ac_111AqKbVgB8tr3QdOvcWWOutWBKFjqIjDvSnBbMFBmcccF5IkyK5qHDUfC5s-lNfq-BHvo43TbWCEcsolbNYNZwi8fPfeqho0lhHnndt48_6R16GkITDSB50kM067tBvTdZUF98cKr9F1jfBtc
  priority: 102
  providerName: ProQuest
Title Crop Classification Using MSCDN Classifier and Sparse Auto-Encoders with Non-Negativity Constraints for Multi-Temporal, Quad-Pol SAR Data
URI https://www.proquest.com/docview/2554759682
https://www.proquest.com/docview/2636472603
https://www.mdpi.com/2072-4292/13/14/2749/pdf
https://doaj.org/article/ffa4edbf15794f63b4772646a668a439
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals [Accès libre]
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCO Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ADMLS
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: 8FG
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB3R3UO58I0aKCsjekEiTRw7TnLc7gcVYqOl25XKKXJiuyBWySqbCJV_wL_GTrKBIoR6ipRMJEfjsec5M-8BnAgsiFA8sM3qb1OSRjYnMtJQRSovi5Te1Ezv8CJm52v64cq_6prVd11ZpYbiX5tF2nMDzzZ6Sg4mDqaORlCRsxXqAIbM16n3AIbreDn-bATk9qYtBSnRUN4pd5hgal66tek03Py3EsrDOt_ym-98s_ljb5k_hHg_qrak5NtpXaWn2Y-_CBvvPOxH8KDLMtG4nRaP4Z7Mn8BhJ3j-5eYp_JyUxRY1ipimVqhxD2rKB9BiNZnG_SNZIp4LtNpqACzRuK4Ke5abPvhyh8wZLoqL3I7ldadCgYwAaCM7Ue2QzodR0-BrX7YEWJt36FPNhb0sNmg1vkBTXvFnsJ7PLifndqfKYGckopUOq9TzQ6UiV2IuA2kUqwNXhkISX7FUYKoyj_qScd9lUmREBsLFGSPMTz0aMvIcBnmRyyNAoXD9zGyhQaqBE1apGwpPCZ31ZVFAfGzB273bkqyjLDefsEk0dDEuTn672II3ve22Jer4p9WZ8X5vYci1mxtFeZ10sZooxakUqcK-XqwUIynVEIRRxhkLuU7gLDjez52ki_hdoqGZoU5koWfB6_6xjlXzA4bnsqi1DWvY-plLLDjp59x_hvvibmYv4b5nSm0M3yc5hkFV1vKVzpWqdAQH4fz9CIbj6eLjSl_PZvHyYtScPIy66PkFsTATcg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Pb9MwFLfGdigcEAwQhQFGjAMS0ZLYcZLDhLq2U8fWaKydtFvmxHY5VElIUk39CHwpPhvPqZMxCe22a2zl33t-f-z3fj-E9oUjiFDct7T1tyhJQosTGUKqIpWbhgqcmu4dnkZsckm_X3lXW-hP2wujyypbm9gYapGneo_8AEJfDU3HAvdb8cvSrFH6dLWl0OCGWkEcNhBjprHjVK5vIIWrDk9GIO_Prns8ng8nlmEZsFIS0hrUJHG9QKnQlg6XvtQMzL4tAyGJp1giHKpSl3qScc9mUqRE-sJ2UkaYl7g0YATu-wjtUEJDSP52jsbR-UW3y2MTUHGbbnBRCQntg7JyiEMhFwzveMKGMOBOlNtbZQVf3_Dl8h-Hd_wMPTWRKh5sVOs52pLZLnoyWJQGrUPuop6hUP-5foF-D8u8wA3Hpq4-agSOm4IEPJ0NR1E3JEvMM4FnBaTUEg9WdW6NM91ZX1ZY7wrjKM-sSC4MrwXWlKINkUVdYYiwcdMybM03kFrLr_jHigvrPF_i2eACj3jNX6LLB5HAK7Sd5Zl8jXAgbC_VTtlPIBVzVGIHwlUC4sg09Inn9NGX9p_HqQFB15-wjCEZ0vKJb-XTR5-6ucUG-uO_s4606LoZGq67uZCXi9is_lgpTqVIlOOB-VOMJBSSGkYZZyzgEBL20V4r-NjYkCq-1fg--tgNw-rXRzo8k_kK5rAG_5_ZpI_2O4W553Xf3P-kD6g3mU_P4rOT6PQteuzqAh6NIkr20HZdruQ7iMDq5L1Rc4yuH3pl_QUv9EOX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VIlE4ICggUgosohyQsGJ712v7gFBIGlpKo0JaqTez9u6mh8gOjqMqj8Ar8XTMOI5LJdRbr_bKPzs_O7M7830Ae9rTXFsVOuT9HcHT2FHcxJiqGOtnscVFjXqHj0fy4Ex8PQ_ON-DPuheGyirXPrF21LrIaI-8i6EvQdPJyO_apiziZDD8NPvlEIMUnbSu6TRWKnJklpeYvs0_Hg5Q1u98f7h_2j9wGoYBJ-OxqFBFUj-IrI1d4ykTGmJfDl0TacMDK1PtCZv5IjBSBa40OuMm1K6XSS6D1BeR5PjcO3A3JBR36lIffmn3d1yOyu2KFSIq57HbLece9wRmgfG1NbCmCrgW324t8plaXqrp9J-lbvgIHjYxKuutlOoxbJh8Gx70JmWD02G2YashT79YPoHf_bKYsZpdk-qOalGzuhSBHY_7g1F7y5RM5ZqNZ5hMG9ZbVIWzn1NPfTlntB_MRkXujMykYbRgRCZaU1hUc4axNaubhZ3TFZjW9AP7vlDaOSmmbNz7wQaqUk_h7Fbm_xls5kVungOLtBtktByHKSZhnk3dSPtWYwSZxSEPvA68X895kjXw5_QL0wTTIJJPciWfDrxtx85WoB__HfWZRNeOIKDu-kJRTpLG7hNrlTA6tV6Ajs9KngpMZ6SQSspIYTDYgd214JPGe8yTK13vwJv2Nto9Heao3BQLHCNr5H_p8g7stQpzw-fu3Pym13AP7Sn5djg6egH3farcIfhQvgubVbkwLzH0qtJXtY4z-HnbRvUXVptBMQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZgeygX3qiBgozoBQk3cfxIcly2rSqkRoXtSuUUObFdEFES5SFU_gH_GjvxBooQ6jWZSI7G45kvmfk-AA4klkRqESF7-iNK8gQJohIDVZQOi0SbpGZnh89SfrqhHy7ZpRtW71xbpYHiX8dDOgyiEFk9JR8TH1PfIKjEb6S-C3Y4M6X3Auxs0vPlZysgtzWdKEiJgfJ-22GCqX3oRtIZuflvFJS7Q9WI6--iLP_ILScPQLpd1dRS8u1w6PPD4sdfhI23XvZDcN9VmXA5bYtH4I6qHoNdJ3j-5foJ-Llq6waOipi2V2h0DxzbB-DZenWUzrdUC0Ul4boxAFjB5dDX6Liyc_BtB-03XJjWFUrVlVOhgFYAdJSd6Dto6mE4Dviii4kAq3wHPw5CovO6hOvlJ3gkevEUbE6OL1anyKkyoIIktDdhlYcs1joJFBYqUlaxOgpULBVhmucSU12ElCkuWMCVLIiKZIALTjjLQxpz8gwsqrpSewDGMmCFTaFRboAT1nkQy1BLU_UVSUQY9sDbrduywlGW21coMwNdrIuz3y72wJvZtpmIOv5p9d56f7aw5Nrjhbq9ylysZloLqmSuMTOHleYkpwaCcMoF57EwBZwH9rd7J3MR32UGmlnqRB6HHng93zaxan_AiErVg7HhI1s_D4gHDuY995_lPr-d2QtwL7StNpbvk-yDRd8O6qWplfr8lYuQX-HzDmk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crop+Classification+Using+MSCDN+Classifier+and+Sparse+Auto-Encoders+with+Non-Negativity+Constraints+for+Multi-Temporal%2C+Quad-Pol+SAR+Data&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Wei-Tao%2C+Zhang&rft.au=Wang%2C+Min&rft.au=Guo%2C+Jiao&rft.au=Shun-Tian%2C+Lou&rft.date=2021-07-13&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=13&rft.issue=14&rft.spage=2749&rft_id=info:doi/10.3390%2Frs13142749&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon