Sea Ice Thickness Estimation Based on Regression Neural Networks Using L-Band Microwave Radiometry Data from the FSSCat Mission

Several methods have been developed to provide polar maps of sea ice thickness (SIT) from L-band brightness temperature (TB) and altimetry data. Current process-based inversion methods to yield SIT fail to address the complex surface characteristics because sea ice is subject to strong seasonal dyna...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 13; no. 7; p. 1366
Main Authors Herbert, Christoph, Munoz-Martin, Joan Francesc, Llaveria, David, Pablos, Miriam, Camps, Adriano
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2021
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs13071366

Cover

Abstract Several methods have been developed to provide polar maps of sea ice thickness (SIT) from L-band brightness temperature (TB) and altimetry data. Current process-based inversion methods to yield SIT fail to address the complex surface characteristics because sea ice is subject to strong seasonal dynamics and ice-physical properties are often non-linearly related. Neural networks can be trained to find hidden links among large datasets and often perform better on convoluted problems for which traditional approaches miss out important relationships between the observations. The FSSCat mission launched on 3 September 2020, carries the Flexible Microwave Payload-2 (FMPL-2), which contains the first Reflected Global Navigation Satellite System (GNSS-R) and L-band radiometer on board a CubeSat—designed to provide TB data on global coverage for soil moisture retrieval, and sea ice applications. This work investigates a predictive regression neural network approach with the goal to infer SIT using FMPL-2 TB and ancillary data (sea ice concentration, surface temperature, and sea ice freeboard). Two models—covering thin ice up to 0.6 m and full-range thickness—were separately trained on Arctic data in a two-month period from mid-October to the beginning of December 2020, while using ground truth data derived from the Soil Moisture and Ocean Salinity (SMOS) and Cryosat-2 missions. The thin ice and the full-range models resulted in a mean absolute error of 6.5 cm and 23 cm, respectively. Both of the models allowed for one to produce weekly composites of Arctic maps, and monthly composites of Antarctic SIT were predicted based on the Arctic full-range model. This work presents the first results of the FSSCat mission over the polar regions. It reveals the benefits of neural networks for sea ice retrievals and demonstrates that moderate-cost CubeSat missions can provide valuable data for applications in Earth observation.
AbstractList Several methods have been developed to provide polar maps of sea ice thickness (SIT) from L-band brightness temperature (TB) and altimetry data. Current process-based inversion methods to yield SIT fail to address the complex surface characteristics because sea ice is subject to strong seasonal dynamics and ice-physical properties are often non-linearly related. Neural networks can be trained to find hidden links among large datasets and often perform better on convoluted problems for which traditional approaches miss out important relationships between the observations. The FSSCat mission launched on 3 September 2020, carries the Flexible Microwave Payload-2 (FMPL-2), which contains the first Reflected Global Navigation Satellite System (GNSS-R) and L-band radiometer on board a CubeSat—designed to provide TB data on global coverage for soil moisture retrieval, and sea ice applications. This work investigates a predictive regression neural network approach with the goal to infer SIT using FMPL-2 TB and ancillary data (sea ice concentration, surface temperature, and sea ice freeboard). Two models—covering thin ice up to 0.6 m and full-range thickness—were separately trained on Arctic data in a two-month period from mid-October to the beginning of December 2020, while using ground truth data derived from the Soil Moisture and Ocean Salinity (SMOS) and Cryosat-2 missions. The thin ice and the full-range models resulted in a mean absolute error of 6.5 cm and 23 cm, respectively. Both of the models allowed for one to produce weekly composites of Arctic maps, and monthly composites of Antarctic SIT were predicted based on the Arctic full-range model. This work presents the first results of the FSSCat mission over the polar regions. It reveals the benefits of neural networks for sea ice retrievals and demonstrates that moderate-cost CubeSat missions can provide valuable data for applications in Earth observation.
Several methods have been developed to provide polar maps of sea ice thickness (SIT) from L-band brightness temperature (T B ) and altimetry data. Current process-based inversion methods to yield SIT fail to address the complex surface characteristics because sea ice is subject to strong seasonal dynamics and ice-physical properties are often non-linearly related. Neural networks can be trained to find hidden links among large datasets and often perform better on convoluted problems for which traditional approaches miss out important relationships between the observations. The FSSCat mission launched on 3 September 2020, carries the Flexible Microwave Payload-2 (FMPL-2), which contains the first Reflected Global Navigation Satellite System (GNSS-R) and L-band radiometer on board a CubeSat—designed to provide T B data on global coverage for soil moisture retrieval, and sea ice applications. This work investigates a predictive regression neural network approach with the goal to infer SIT using FMPL-2 T B and ancillary data (sea ice concentration, surface temperature, and sea ice freeboard). Two models—covering thin ice up to 0.6 m and full-range thickness—were separately trained on Arctic data in a two-month period from mid-October to the beginning of December 2020, while using ground truth data derived from the Soil Moisture and Ocean Salinity (SMOS) and Cryosat-2 missions. The thin ice and the full-range models resulted in a mean absolute error of 6.5 cm and 23 cm, respectively. Both of the models allowed for one to produce weekly composites of Arctic maps, and monthly composites of Antarctic SIT were predicted based on the Arctic full-range model. This work presents the first results of the FSSCat mission over the polar regions. It reveals the benefits of neural networks for sea ice retrievals and demonstrates that moderate-cost CubeSat missions can provide valuable data for applications in Earth observation.
Author Camps, Adriano
Herbert, Christoph
Munoz-Martin, Joan Francesc
Pablos, Miriam
Llaveria, David
Author_xml – sequence: 1
  givenname: Christoph
  orcidid: 0000-0002-2578-8522
  surname: Herbert
  fullname: Herbert, Christoph
– sequence: 2
  givenname: Joan Francesc
  orcidid: 0000-0002-6441-6676
  surname: Munoz-Martin
  fullname: Munoz-Martin, Joan Francesc
– sequence: 3
  givenname: David
  orcidid: 0000-0002-4917-5798
  surname: Llaveria
  fullname: Llaveria, David
– sequence: 4
  givenname: Miriam
  orcidid: 0000-0003-2694-7107
  surname: Pablos
  fullname: Pablos, Miriam
– sequence: 5
  givenname: Adriano
  orcidid: 0000-0002-9514-4992
  surname: Camps
  fullname: Camps, Adriano
BookMark eNp9kU1vEzEQQFeoSJTSC7_AEhcEWvDX2t0jDW2JFEBq2vNq1p5NnW7Wqe0lyom_XidBgCqELzMaP7-RZ14WR4MfsCheM_pBiJp-DJEJqplQ6llxzKnmpeQ1P_orf1Gcxrik-QjBaiqPi59zBDI1SG7unLkfMEZyEZNbQXJ-IOcQ0ZKcXOMi5Ltd7RuOAfoc0saH-0huoxsWZFaew2DJV2eC38APJNdgnV9hClvyGRKQLvgVSXdILufzCaRM7nWviucd9BFPf8WT4vby4mbypZx9v5pOPs1KI2qZSob2zKJWlEultWDSQiuRKnvWdbQTCgG0EhKkrXVnqLS2Y9K0Go3SCloqTorpwWs9LJt1yD8M28aDa_YFHxYNhORMj43FSmrbVpaClrJmwLjpWmEZr6ADhOx6f3CNwxq2G-j730JGm90qmj-ryPTbA70O_mHEmJqViwb7Hgb0Y2y4EoopIWSd0TdP0KUfw5Dn0vCqolzriu2E7w5UHnWMAbv_d6dPYOPSfrkpgOv_9eQReaa2MA
CitedBy_id crossref_primary_10_1016_j_asr_2024_03_061
crossref_primary_10_1109_ACCESS_2024_3515215
crossref_primary_10_1109_TAES_2022_3219366
crossref_primary_10_1109_MGRS_2022_3219778
crossref_primary_10_1016_j_actaastro_2023_03_042
crossref_primary_10_1109_JSTARS_2024_3418429
crossref_primary_10_5194_tc_17_1053_2023
Cites_doi 10.1029/2020GL091285
10.5772/intechopen.90039
10.1145/361002.361007
10.3390/rs11232864
10.1029/93JC02058
10.1109/RSIP.2017.7958792
10.3390/rs13010121
10.1109/IGARSS.2018.8518405
10.1016/j.asr.2017.10.051
10.1038/nature14539
10.5194/tc-8-439-2014
10.1029/2018JC014408
10.1016/j.rse.2003.12.002
10.1029/GM068p0291
10.1016/j.asr.2005.07.027
10.5194/tc-9-269-2015
10.3390/rs12101645
10.1017/jog.2019.26
10.1109/ICNC.2012.6234704
10.1016/S0034-4257(96)00220-9
10.5194/tc-8-1607-2014
10.5194/tc-11-2059-2017
10.5194/tc-13-2421-2019
10.1175/2007JCLI1787.1
10.1063/pt.6.2.20211209a
10.1029/2012GL051000
10.1175/1520-0442(1999)012<1814:SDOASI>2.0.CO;2
10.5194/tc-7-1971-2013
10.1109/JSTARS.2020.2977959
10.1016/j.rse.2016.03.009
10.3390/rs9121305
10.1007/978-1-4614-6849-3
10.1029/2007JC004270
10.1109/IGARSS.2015.7327014
10.1002/grl.50193
10.5194/tc-8-997-2014
10.1029/2005GL023030
10.5194/tc-13-675-2019
10.1029/2012GL050916
10.3390/rs8090698
10.1109/JPROC.2009.2033096
10.1109/JPROC.2010.2043032
10.5194/tc-11-1607-2017
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
ADTOC
UNPAY
DOA
DOI 10.3390/rs13071366
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_de547db5d0a74491a12cfb3d125afaea
10.3390/rs13071366
10_3390_rs13071366
GeographicLocations Arctic region
Antarctic region
GeographicLocations_xml – name: Arctic region
– name: Antarctic region
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
C1A
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
IPNFZ
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RIG
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ADTOC
UNPAY
ID FETCH-LOGICAL-c394t-1ed8de76024677314dab4e06d8ff0f36eaa7634a4d97fc04ddf14cb7ec676ab03
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Fri Oct 03 12:51:14 EDT 2025
Sun Oct 26 04:10:24 EDT 2025
Thu Oct 02 09:21:59 EDT 2025
Fri Jul 25 09:29:51 EDT 2025
Thu Oct 16 04:42:41 EDT 2025
Thu Apr 24 22:57:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-1ed8de76024677314dab4e06d8ff0f36eaa7634a4d97fc04ddf14cb7ec676ab03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2694-7107
0000-0002-9514-4992
0000-0002-2578-8522
0000-0002-4917-5798
0000-0002-6441-6676
OpenAccessLink https://doaj.org/article/de547db5d0a74491a12cfb3d125afaea
PQID 2550277516
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_de547db5d0a74491a12cfb3d125afaea
unpaywall_primary_10_3390_rs13071366
proquest_miscellaneous_2636163349
proquest_journals_2550277516
crossref_primary_10_3390_rs13071366
crossref_citationtrail_10_3390_rs13071366
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Heygster (ref_15) 2019; 13
Kaleschke (ref_29) 2013; 7
Bentley (ref_41) 1975; 18
ref_57
ref_56
ref_55
ref_10
ref_54
ref_53
ref_52
Wingham (ref_16) 2006; 37
Ricker (ref_21) 2017; 11
ref_51
ref_18
Menashi (ref_45) 1993; 98
Tedesco (ref_28) 2004; 90
Chi (ref_27) 2017; 9
Font (ref_8) 2009; 98
LeCun (ref_50) 2015; 521
ref_24
ref_23
ref_22
ref_20
Warren (ref_47) 1999; 12
Laxon (ref_6) 2013; 40
Belchansky (ref_25) 2008; 21
ref_26
Huntemann (ref_14) 2014; 8
Kilic (ref_32) 2018; 123
Comiso (ref_43) 1997; 60
Guerreiro (ref_7) 2017; 11
ref_36
ref_35
ref_34
ref_33
ref_30
Kaleschke (ref_12) 2014; 8
ref_39
Capon (ref_38) 2020; 13
ref_37
Tilling (ref_19) 2018; 62
Steffen (ref_4) 1992; 68
Kaleschke (ref_13) 2016; 180
ref_46
ref_44
Donlon (ref_31) 2019; 13
ref_42
ref_40
ref_1
ref_2
Lindsay (ref_3) 2015; 9
ref_49
Gupta (ref_11) 2019; 65
ref_48
ref_5
Ricker (ref_17) 2014; 8
Kerr (ref_9) 2010; 98
References_xml – ident: ref_24
  doi: 10.1029/2020GL091285
– ident: ref_49
– ident: ref_55
– ident: ref_51
– ident: ref_35
  doi: 10.5772/intechopen.90039
– ident: ref_42
– ident: ref_1
– volume: 18
  start-page: 509
  year: 1975
  ident: ref_41
  article-title: Multidimensional binary search trees used for associative searching
  publication-title: Commun. ACM
  doi: 10.1145/361002.361007
– ident: ref_30
  doi: 10.3390/rs11232864
– volume: 98
  start-page: 22569
  year: 1993
  ident: ref_45
  article-title: Low-frequency passive-microwave observations of sea ice in the Weddell Sea
  publication-title: J. Geophys. Res. Ocean.
  doi: 10.1029/93JC02058
– ident: ref_23
  doi: 10.1109/RSIP.2017.7958792
– ident: ref_39
  doi: 10.3390/rs13010121
– ident: ref_56
– ident: ref_40
  doi: 10.1109/IGARSS.2018.8518405
– ident: ref_52
– volume: 62
  start-page: 1203
  year: 2018
  ident: ref_19
  article-title: Estimating Arctic sea ice thickness and volume using CryoSat-2 radar altimeter data
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2017.10.051
– ident: ref_48
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_50
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 8
  start-page: 439
  year: 2014
  ident: ref_14
  article-title: Empirical sea ice thickness retrieval during the freeze up period from SMOS high incident angle observations
  publication-title: Cryosphere
  doi: 10.5194/tc-8-439-2014
– volume: 123
  start-page: 7564
  year: 2018
  ident: ref_32
  article-title: Expected performances of the Copernicus Imaging Microwave Radiometer (CIMR) for an all-weather and high spatial resolution estimation of ocean and sea ice parameters
  publication-title: J. Geophys. Res. Ocean.
  doi: 10.1029/2018JC014408
– volume: 90
  start-page: 76
  year: 2004
  ident: ref_28
  article-title: Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2003.12.002
– volume: 68
  start-page: 291
  year: 1992
  ident: ref_4
  article-title: Considerations for microwave remote sensing of thin sea ice
  publication-title: Microw. Remote Sens. Sea Ice
  doi: 10.1029/GM068p0291
– volume: 37
  start-page: 841
  year: 2006
  ident: ref_16
  article-title: CryoSat: A mission to determine the fluctuations in Earth’s land and marine ice fields
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2005.07.027
– volume: 9
  start-page: 269
  year: 2015
  ident: ref_3
  article-title: Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations
  publication-title: Cryosphere
  doi: 10.5194/tc-9-269-2015
– ident: ref_57
  doi: 10.3390/rs12101645
– volume: 65
  start-page: 481
  year: 2019
  ident: ref_11
  article-title: On the retrieval of sea-ice thickness using SMOS polarization differences
  publication-title: J. Glaciol.
  doi: 10.1017/jog.2019.26
– ident: ref_26
  doi: 10.1109/ICNC.2012.6234704
– volume: 60
  start-page: 357
  year: 1997
  ident: ref_43
  article-title: Passive microwave algorithms for sea ice concentration: A comparison of two techniques
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00220-9
– volume: 8
  start-page: 1607
  year: 2014
  ident: ref_17
  article-title: Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation
  publication-title: Cryosphere
  doi: 10.5194/tc-8-1607-2014
– volume: 11
  start-page: 2059
  year: 2017
  ident: ref_7
  article-title: Comparison of CryoSat-2 and ENVISAT radar freeboard over Arctic sea ice: Toward an improved Envisat freeboard retrieval
  publication-title: Cryosphere
  doi: 10.5194/tc-11-2059-2017
– volume: 13
  start-page: 2421
  year: 2019
  ident: ref_31
  article-title: Estimating snow depth on Arctic sea ice using satellite microwave radiometry and a neural network
  publication-title: Cryosphere
  doi: 10.5194/tc-13-2421-2019
– ident: ref_34
– volume: 21
  start-page: 716
  year: 2008
  ident: ref_25
  article-title: Fluctuating Arctic sea ice thickness changes estimated by an in situ learned and empirically forced neural network model
  publication-title: J. Clim.
  doi: 10.1175/2007JCLI1787.1
– ident: ref_36
  doi: 10.1063/pt.6.2.20211209a
– ident: ref_2
  doi: 10.1029/2012GL051000
– volume: 12
  start-page: 1814
  year: 1999
  ident: ref_47
  article-title: Snow depth on Arctic sea ice
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(1999)012<1814:SDOASI>2.0.CO;2
– volume: 7
  start-page: 1971
  year: 2013
  ident: ref_29
  article-title: Snow thickness retrieval over thick Arctic sea ice using SMOS satellite data
  publication-title: Cryosphere
  doi: 10.5194/tc-7-1971-2013
– ident: ref_37
– volume: 13
  start-page: 1298
  year: 2020
  ident: ref_38
  article-title: The Flexible Microwave Payload-2: A SDR-Based GNSS-Reflectometer and L-Band Radiometer for CubeSats
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.2977959
– ident: ref_18
– ident: ref_44
– volume: 180
  start-page: 264
  year: 2016
  ident: ref_13
  article-title: SMOS sea ice product: Operational application and validation in the Barents Sea marginal ice zone
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.03.009
– volume: 9
  start-page: 1305
  year: 2017
  ident: ref_27
  article-title: Prediction of arctic sea ice concentration using a fully data driven deep neural network
  publication-title: Remote Sens.
  doi: 10.3390/rs9121305
– ident: ref_53
  doi: 10.1007/978-1-4614-6849-3
– ident: ref_5
  doi: 10.1029/2007JC004270
– ident: ref_20
  doi: 10.1109/IGARSS.2015.7327014
– ident: ref_33
– ident: ref_54
– volume: 40
  start-page: 732
  year: 2013
  ident: ref_6
  article-title: CryoSat-2 estimates of Arctic sea ice thickness and volume
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/grl.50193
– volume: 8
  start-page: 997
  year: 2014
  ident: ref_12
  article-title: SMOS-derived thin sea ice thickness: Algorithm baseline, product specifications and initial verification
  publication-title: Cryosphere
  doi: 10.5194/tc-8-997-2014
– ident: ref_46
  doi: 10.1029/2005GL023030
– volume: 13
  start-page: 675
  year: 2019
  ident: ref_15
  article-title: Combined SMAP-SMOS thin sea ice thickness retrieval
  publication-title: Cryosphere
  doi: 10.5194/tc-13-675-2019
– ident: ref_10
  doi: 10.1029/2012GL050916
– ident: ref_22
  doi: 10.3390/rs8090698
– volume: 98
  start-page: 649
  year: 2009
  ident: ref_8
  article-title: SMOS: The challenging sea surface salinity measurement from space
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2009.2033096
– volume: 98
  start-page: 666
  year: 2010
  ident: ref_9
  article-title: The SMOS mission: New tool for monitoring key elements ofthe global water cycle
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2010.2043032
– volume: 11
  start-page: 1607
  year: 2017
  ident: ref_21
  article-title: A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data
  publication-title: Cryosphere
  doi: 10.5194/tc-11-1607-2017
SSID ssj0000331904
Score 2.3515277
Snippet Several methods have been developed to provide polar maps of sea ice thickness (SIT) from L-band brightness temperature (TB) and altimetry data. Current...
Several methods have been developed to provide polar maps of sea ice thickness (SIT) from L-band brightness temperature (T B ) and altimetry data. Current...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1366
SubjectTerms Algorithms
Altimetry
Antarctic region
Arctic region
Brightness temperature
Composite materials
Cubesat
CubeSats
data collection
Estimates
Freeboard
Global navigation satellite system
global positioning systems
Growth models
Ice
Ice cover
Ice thickness
Meteorological satellites
Microwave radiometers
microwave radiometry
Missions
Neural networks
Payloads
Physical properties
Polar environments
predictive regression neural networks
Radiometers
Radiometry
Salinity
Sea ice
sea ice thickness
Seasonal variations
Soil investigations
Soil moisture
Soil Moisture and Ocean Salinity satellite
soil water
Surface properties
Surface temperature
Thickness
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF6V9FAuiKcwFLSIXjhYXXs3u_GhQqQkKohGKGml3qzx7rhFRE5InFY58deZ9Ssgod4se7S2PO_dmW8YOxokxlIYZEObkwQrIFVMyAiS4iGizoRNwCeK5xN9dqm-XvWv9tik7YXxZZWtTawMtVtYv0d-TKGvP27sR_rj8lfop0b509V2hAY0oxXcSQUx9oDtxx4Zq8f2h6PJ92m36yIkiZxQNU6ppHz_eLUmK06ZWgWTuPNMFYD_P1HnwaZYwvYO5vO_HND4MXvURI78U83qJ2wPi6fsoBlifrN9xn7PEPgXi_zi5of96U0YH5EC172JfEjuynG6mOJ1XftacI_MQUtO6lLwNa_qB_i3cAiF4-e-VO8ObpFPwfkm_XK15Z-hBO5bUjgFjnw8m51CSZTVcs_Z5Xh0cXoWNvMVQisTVYYRuoFDo8lNa2NkpBxkCoV2gzwXudQIQNZHgXKJya1QzuWRsplBq42GTMgXrFcsCnzJuIml11_KTsjdoYQssyCVFkmsHdJLAvah_bepbcDH_QyMeUpJiOdDuuNDwN53tMsacuO_VEPPoo7Cw2RXNxar67TRutRhXxmX9Z0Ao1QSQRTbPJOOojrIASFghy2D00Z31-lO0gL2rntMWuePUqDAxYZotNQUyUqVBOyoE4x7PvfV_W96zR7GvlimKgk6ZL1ytcE3FO2U2dtGhP8ABFwAWA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELagexgvjJ9a2UBG7IWHrEns2M0TWseqgViF1lUaT-FiX7ZpVVq16abywr_OOXELQwgh8RJFycVJ5LvvvkvOd4ztdVNtiAaZwBSkwRLIFFMCQTI8RFR5aFJwgeLJQB2P5Mfz5Nz3OZ37tEoKxa9qkI5DHQeun1InEh1NG6U6U1u8u_Gfkhw3T8mhxvI-21AJkfEW2xgNPh98cS3lVhc3RUkFBfed2ZwgW7tx7rihulr_HYq5uSinsLyF8fgXb9PfYl9Xz9kkmVzvL6p833z7rYTjf7zII_bQM1F-0KjOY3YPyyds0zdFv1w-Zd-HCPyDQX52eWWuHSTyIwKEZq0j75H7s5x2TvGiyaUtuav0QUMOmtTyOa_zEfinoAel5Scu9e8WbpCfgnWL_qvZkr-HCrhb4sKJiPL-cHgIFUnWwz1jo_7R2eFx4Ps1BEaksgoitF2LWpHbV1qLSFrIJYbKdosiLIRCAEIzCdKmujChtLaIpMk1GqUV5KF4zlrlpMRtxnUsHB5QtEPuEwXkuQEhVZjGyiLdpM3erqYvM76YueupMc4oqHFTnf2c6jZ7s5adNiU8_ijVc1qwlnBlt-sDk9lF5q04s5hIbfPEhqClTCOIYlPkwhJLhAIQ2mx3pUOZx4J5RkGb-1GeRHSP1-vTZMXu1wyUOFmQjBKKmLGQaZvtrXXvL4_74t_EdtiD2CXh1KlGu6xVzRb4klhUlb_ylvIDjIYXhw
  priority: 102
  providerName: Unpaywall
Title Sea Ice Thickness Estimation Based on Regression Neural Networks Using L-Band Microwave Radiometry Data from the FSSCat Mission
URI https://www.proquest.com/docview/2550277516
https://www.proquest.com/docview/2636163349
https://www.mdpi.com/2072-4292/13/7/1366/pdf?version=1617939724
https://doaj.org/article/de547db5d0a74491a12cfb3d125afaea
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ADMLS
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: 8FG
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLdgHMZl4lN0jMqIXThES2rXjo_t1jLQWk3tKo1T9Gy_bIgqm9qUqSf-dZ6TrCsSggunfD3Flt-3_Px7jB2mRjsKg1zkcpJgCaSKhowgKR4iKhs7AyFRHI3V6Ux-uexebrX6CjVhNTxwvXBHHrtSe9v1MWgpTQJJx-VWeHLMkANWoVGcmq1kqrLBgkQrljUeqaC8_mixJGtNGVkFh_jggSqg_t-iy91VcQvrO5jPtxzN8BnbayJE3qtn9pw9wuIF222alV-vX7KfUwT-2SG_uP7mvgdTxQekqPUZRN4nt-Q53Uzwqq5xLXhA4KBfjuuS7yWv6gT4WdSHwvNRKMm7gx_IJ-DDYfxyseYnUAIPR084BYh8OJ0eQ0mU1e9esdlwcHF8GjV9FCInjCyjBH3qUStyx0prkUgPVmKsfJrncS4UApCVkSC90bmLpfd5Ip3V6JRWYGPxmu0UNwW-YVx3RNBTykLIraEAax0IqWLTUR5pkBb7eL-2mWtAxkOvi3lGyUbgQ_bAhxb7sKG9raE1_kjVDyzaUAQ47OoFCUnWCEn2LyFpsYN7BmeNji4zSqbCBnY3oTHebz6TdoUtEyjwZkU0SiiKWIU0LXa4EYy_THf_f0z3LXvaCaUzVYHQAdspFyt8R7FPadvscTr81GZPeiejsyld-4Px-aRdCT89zcbnva-_AJ_VCY8
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGdigXxKcIG2DEOHCIlsSu0xwmRLdWLWsr1HbSbuHFftkQVdq1KVVP_Gf8bTwnaQsS2m23KHmyI79v-_n3GDtuRKGmMEi7OiUJlkCqGJERJMVDRJV4OgKbKPYHqnMpv1zVr_bY781dGFtWubGJhaE2U233yE8o9LXHjXVffZrdurZrlD1d3bTQgKq1gjktIMaqix0XuF5RCrc47Z4Tvz8EQbs1Puu4VZcBV4tI5q6PpmEwVOSsVBgKXxpIJHrKNNLUS4VCANJBCdJEYao9aUzqS52EqFWoIPEEjfuAHUghI0r-DpqtwdfhdpfHEyTinixxUYWIvJP5grwGZYYFLOPOExYNA_6JcmvLbAbrFUwmfzm89mP2qIpU-edStJ6wPcyeslrVNP1m_Yz9GiHwrkY-vvmuf1iTyVtkMMq7kLxJ7tFwehjidVlrm3GLBEJDDsrS8wUv6hV4z21CZnjflgau4CfyIRgLCpDP1_wccuD2CgynQJW3R6MzyImyGO45u7yXlX7B9rNphi8ZDwNh7QVlQ-ReUUCSaBBSeVGgDNIkDvu4WdtYV2DntufGJKakx_Ih3vHBYe-3tLMS4uO_VE3Loi2FheUuXkzn13Gl5bHBugxNUjcehFJGPviBThNhKIqEFBAcdrRhcFzZikW8k2yHvdt-Ji23RzeQ4XRJNEooipxJxhx2vBWMO3731d0zvWW1zrjfi3vdwcUhexjYQp2iHOmI7efzJb6mSCtP3lTizNm3-9agP47MPp4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkBgviE9RGGDEeOAhahK7dvOAEF0XVrZVaN2kvYWLfdkQVVralKpP_F_8dZyTNAUJ7W1vUXKyI9_X7-zzHWN73UgbgkHGMxlJsARSxYiMICkeIqrUNxG4QPFkqA7P5eeLzsUW-72-C-PSKtc2sTTUdmLcHnmboK87buwEqp3VaRFf-vGH6Q_PdZByJ63rdhqViBzhaknh2_z9oE-8fhuG8cHZ_qFXdxjwjIhk4QVouxa1IkeltBaBtJBK9JXtZpmfCYUApH8SpI10ZnxpbRZIk2o0SitIfUHj3mK3tavi7m6px5-a_R1fkHD7sqqIKkTkt2dz8hcUE5YFGTc-sGwV8A--3VnkU1gtYTz-y9XF99m9GqPyj5VQPWBbmD9kO3W79KvVI_ZrhMAHBvnZ1Tfz3RlLfkCmoroFyXvkGC2nh1O8rLJsc-5qgNCQwyrpfM7LTAV-7PUgt_zEJQUu4SfyU7CuHEAxW_E-FMDd5RdOEJXHo9E-FERZDveYnd_IOj9h2_kkx6eM61A4S0FxEDlWFJCmBoRUfhQqizRJi71br21i6jLnrtvGOKFwx_Eh2fChxd40tNOquMd_qXqORQ2FK8hdvpjMLpNavxOLHalt2rE-aCmjAILQZKmwhB8hA4QW210zOKmtxDzZyHSLvW4-k367QxvIcbIgGiUUYWYhoxbbawTjmt99dv1Mr9gd0pvkeDA8es7uhi5Dp8xD2mXbxWyBLwhiFenLUpY5-3rTyvMH5bs8OA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELagexgvjJ9a2UBG7IWHrEns2M0TWseqgViF1lUaT-FiX7ZpVVq16abywr_OOXELQwgh8RJFycVJ5LvvvkvOd4ztdVNtiAaZwBSkwRLIFFMCQTI8RFR5aFJwgeLJQB2P5Mfz5Nz3OZ37tEoKxa9qkI5DHQeun1InEh1NG6U6U1u8u_Gfkhw3T8mhxvI-21AJkfEW2xgNPh98cS3lVhc3RUkFBfed2ZwgW7tx7rihulr_HYq5uSinsLyF8fgXb9PfYl9Xz9kkmVzvL6p833z7rYTjf7zII_bQM1F-0KjOY3YPyyds0zdFv1w-Zd-HCPyDQX52eWWuHSTyIwKEZq0j75H7s5x2TvGiyaUtuav0QUMOmtTyOa_zEfinoAel5Scu9e8WbpCfgnWL_qvZkr-HCrhb4sKJiPL-cHgIFUnWwz1jo_7R2eFx4Ps1BEaksgoitF2LWpHbV1qLSFrIJYbKdosiLIRCAEIzCdKmujChtLaIpMk1GqUV5KF4zlrlpMRtxnUsHB5QtEPuEwXkuQEhVZjGyiLdpM3erqYvM76YueupMc4oqHFTnf2c6jZ7s5adNiU8_ijVc1qwlnBlt-sDk9lF5q04s5hIbfPEhqClTCOIYlPkwhJLhAIQ2mx3pUOZx4J5RkGb-1GeRHSP1-vTZMXu1wyUOFmQjBKKmLGQaZvtrXXvL4_74t_EdtiD2CXh1KlGu6xVzRb4klhUlb_ylvIDjIYXhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sea+Ice+Thickness+Estimation+Based+on+Regression+Neural+Networks+Using+L-Band+Microwave+Radiometry+Data+from+the+FSSCat+Mission&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Christoph+Herbert&rft.au=Joan+Francesc+Munoz-Martin&rft.au=David+Llaveria&rft.au=Miriam+Pablos&rft.date=2021-04-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=13&rft.issue=7&rft.spage=1366&rft_id=info:doi/10.3390%2Frs13071366&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_de547db5d0a74491a12cfb3d125afaea
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon