Sea Ice Thickness Estimation Based on Regression Neural Networks Using L-Band Microwave Radiometry Data from the FSSCat Mission
Several methods have been developed to provide polar maps of sea ice thickness (SIT) from L-band brightness temperature (TB) and altimetry data. Current process-based inversion methods to yield SIT fail to address the complex surface characteristics because sea ice is subject to strong seasonal dyna...
        Saved in:
      
    
          | Published in | Remote sensing (Basel, Switzerland) Vol. 13; no. 7; p. 1366 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.04.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2072-4292 2072-4292  | 
| DOI | 10.3390/rs13071366 | 
Cover
| Abstract | Several methods have been developed to provide polar maps of sea ice thickness (SIT) from L-band brightness temperature (TB) and altimetry data. Current process-based inversion methods to yield SIT fail to address the complex surface characteristics because sea ice is subject to strong seasonal dynamics and ice-physical properties are often non-linearly related. Neural networks can be trained to find hidden links among large datasets and often perform better on convoluted problems for which traditional approaches miss out important relationships between the observations. The FSSCat mission launched on 3 September 2020, carries the Flexible Microwave Payload-2 (FMPL-2), which contains the first Reflected Global Navigation Satellite System (GNSS-R) and L-band radiometer on board a CubeSat—designed to provide TB data on global coverage for soil moisture retrieval, and sea ice applications. This work investigates a predictive regression neural network approach with the goal to infer SIT using FMPL-2 TB and ancillary data (sea ice concentration, surface temperature, and sea ice freeboard). Two models—covering thin ice up to 0.6 m and full-range thickness—were separately trained on Arctic data in a two-month period from mid-October to the beginning of December 2020, while using ground truth data derived from the Soil Moisture and Ocean Salinity (SMOS) and Cryosat-2 missions. The thin ice and the full-range models resulted in a mean absolute error of 6.5 cm and 23 cm, respectively. Both of the models allowed for one to produce weekly composites of Arctic maps, and monthly composites of Antarctic SIT were predicted based on the Arctic full-range model. This work presents the first results of the FSSCat mission over the polar regions. It reveals the benefits of neural networks for sea ice retrievals and demonstrates that moderate-cost CubeSat missions can provide valuable data for applications in Earth observation. | 
    
|---|---|
| AbstractList | Several methods have been developed to provide polar maps of sea ice thickness (SIT) from L-band brightness temperature (TB) and altimetry data. Current process-based inversion methods to yield SIT fail to address the complex surface characteristics because sea ice is subject to strong seasonal dynamics and ice-physical properties are often non-linearly related. Neural networks can be trained to find hidden links among large datasets and often perform better on convoluted problems for which traditional approaches miss out important relationships between the observations. The FSSCat mission launched on 3 September 2020, carries the Flexible Microwave Payload-2 (FMPL-2), which contains the first Reflected Global Navigation Satellite System (GNSS-R) and L-band radiometer on board a CubeSat—designed to provide TB data on global coverage for soil moisture retrieval, and sea ice applications. This work investigates a predictive regression neural network approach with the goal to infer SIT using FMPL-2 TB and ancillary data (sea ice concentration, surface temperature, and sea ice freeboard). Two models—covering thin ice up to 0.6 m and full-range thickness—were separately trained on Arctic data in a two-month period from mid-October to the beginning of December 2020, while using ground truth data derived from the Soil Moisture and Ocean Salinity (SMOS) and Cryosat-2 missions. The thin ice and the full-range models resulted in a mean absolute error of 6.5 cm and 23 cm, respectively. Both of the models allowed for one to produce weekly composites of Arctic maps, and monthly composites of Antarctic SIT were predicted based on the Arctic full-range model. This work presents the first results of the FSSCat mission over the polar regions. It reveals the benefits of neural networks for sea ice retrievals and demonstrates that moderate-cost CubeSat missions can provide valuable data for applications in Earth observation. Several methods have been developed to provide polar maps of sea ice thickness (SIT) from L-band brightness temperature (T B ) and altimetry data. Current process-based inversion methods to yield SIT fail to address the complex surface characteristics because sea ice is subject to strong seasonal dynamics and ice-physical properties are often non-linearly related. Neural networks can be trained to find hidden links among large datasets and often perform better on convoluted problems for which traditional approaches miss out important relationships between the observations. The FSSCat mission launched on 3 September 2020, carries the Flexible Microwave Payload-2 (FMPL-2), which contains the first Reflected Global Navigation Satellite System (GNSS-R) and L-band radiometer on board a CubeSat—designed to provide T B data on global coverage for soil moisture retrieval, and sea ice applications. This work investigates a predictive regression neural network approach with the goal to infer SIT using FMPL-2 T B and ancillary data (sea ice concentration, surface temperature, and sea ice freeboard). Two models—covering thin ice up to 0.6 m and full-range thickness—were separately trained on Arctic data in a two-month period from mid-October to the beginning of December 2020, while using ground truth data derived from the Soil Moisture and Ocean Salinity (SMOS) and Cryosat-2 missions. The thin ice and the full-range models resulted in a mean absolute error of 6.5 cm and 23 cm, respectively. Both of the models allowed for one to produce weekly composites of Arctic maps, and monthly composites of Antarctic SIT were predicted based on the Arctic full-range model. This work presents the first results of the FSSCat mission over the polar regions. It reveals the benefits of neural networks for sea ice retrievals and demonstrates that moderate-cost CubeSat missions can provide valuable data for applications in Earth observation.  | 
    
| Author | Camps, Adriano Herbert, Christoph Munoz-Martin, Joan Francesc Pablos, Miriam Llaveria, David  | 
    
| Author_xml | – sequence: 1 givenname: Christoph orcidid: 0000-0002-2578-8522 surname: Herbert fullname: Herbert, Christoph – sequence: 2 givenname: Joan Francesc orcidid: 0000-0002-6441-6676 surname: Munoz-Martin fullname: Munoz-Martin, Joan Francesc – sequence: 3 givenname: David orcidid: 0000-0002-4917-5798 surname: Llaveria fullname: Llaveria, David – sequence: 4 givenname: Miriam orcidid: 0000-0003-2694-7107 surname: Pablos fullname: Pablos, Miriam – sequence: 5 givenname: Adriano orcidid: 0000-0002-9514-4992 surname: Camps fullname: Camps, Adriano  | 
    
| BookMark | eNp9kU1vEzEQQFeoSJTSC7_AEhcEWvDX2t0jDW2JFEBq2vNq1p5NnW7Wqe0lyom_XidBgCqELzMaP7-RZ14WR4MfsCheM_pBiJp-DJEJqplQ6llxzKnmpeQ1P_orf1Gcxrik-QjBaiqPi59zBDI1SG7unLkfMEZyEZNbQXJ-IOcQ0ZKcXOMi5Ltd7RuOAfoc0saH-0huoxsWZFaew2DJV2eC38APJNdgnV9hClvyGRKQLvgVSXdILufzCaRM7nWviucd9BFPf8WT4vby4mbypZx9v5pOPs1KI2qZSob2zKJWlEultWDSQiuRKnvWdbQTCgG0EhKkrXVnqLS2Y9K0Go3SCloqTorpwWs9LJt1yD8M28aDa_YFHxYNhORMj43FSmrbVpaClrJmwLjpWmEZr6ADhOx6f3CNwxq2G-j730JGm90qmj-ryPTbA70O_mHEmJqViwb7Hgb0Y2y4EoopIWSd0TdP0KUfw5Dn0vCqolzriu2E7w5UHnWMAbv_d6dPYOPSfrkpgOv_9eQReaa2MA | 
    
| CitedBy_id | crossref_primary_10_1016_j_asr_2024_03_061 crossref_primary_10_1109_ACCESS_2024_3515215 crossref_primary_10_1109_TAES_2022_3219366 crossref_primary_10_1109_MGRS_2022_3219778 crossref_primary_10_1016_j_actaastro_2023_03_042 crossref_primary_10_1109_JSTARS_2024_3418429 crossref_primary_10_5194_tc_17_1053_2023  | 
    
| Cites_doi | 10.1029/2020GL091285 10.5772/intechopen.90039 10.1145/361002.361007 10.3390/rs11232864 10.1029/93JC02058 10.1109/RSIP.2017.7958792 10.3390/rs13010121 10.1109/IGARSS.2018.8518405 10.1016/j.asr.2017.10.051 10.1038/nature14539 10.5194/tc-8-439-2014 10.1029/2018JC014408 10.1016/j.rse.2003.12.002 10.1029/GM068p0291 10.1016/j.asr.2005.07.027 10.5194/tc-9-269-2015 10.3390/rs12101645 10.1017/jog.2019.26 10.1109/ICNC.2012.6234704 10.1016/S0034-4257(96)00220-9 10.5194/tc-8-1607-2014 10.5194/tc-11-2059-2017 10.5194/tc-13-2421-2019 10.1175/2007JCLI1787.1 10.1063/pt.6.2.20211209a 10.1029/2012GL051000 10.1175/1520-0442(1999)012<1814:SDOASI>2.0.CO;2 10.5194/tc-7-1971-2013 10.1109/JSTARS.2020.2977959 10.1016/j.rse.2016.03.009 10.3390/rs9121305 10.1007/978-1-4614-6849-3 10.1029/2007JC004270 10.1109/IGARSS.2015.7327014 10.1002/grl.50193 10.5194/tc-8-997-2014 10.1029/2005GL023030 10.5194/tc-13-675-2019 10.1029/2012GL050916 10.3390/rs8090698 10.1109/JPROC.2009.2033096 10.1109/JPROC.2010.2043032 10.5194/tc-11-1607-2017  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/rs13071366 | 
    
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography | 
    
| EISSN | 2072-4292 | 
    
| ExternalDocumentID | oai_doaj_org_article_de547db5d0a74491a12cfb3d125afaea 10.3390/rs13071366 10_3390_rs13071366  | 
    
| GeographicLocations | Arctic region Antarctic region  | 
    
| GeographicLocations_xml | – name: Arctic region – name: Antarctic region  | 
    
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR C1A CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO IPNFZ ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RIG TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c394t-1ed8de76024677314dab4e06d8ff0f36eaa7634a4d97fc04ddf14cb7ec676ab03 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 2072-4292 | 
    
| IngestDate | Fri Oct 03 12:51:14 EDT 2025 Sun Oct 26 04:10:24 EDT 2025 Thu Oct 02 09:21:59 EDT 2025 Fri Jul 25 09:29:51 EDT 2025 Thu Oct 16 04:42:41 EDT 2025 Thu Apr 24 22:57:58 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 7 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c394t-1ed8de76024677314dab4e06d8ff0f36eaa7634a4d97fc04ddf14cb7ec676ab03 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0003-2694-7107 0000-0002-9514-4992 0000-0002-2578-8522 0000-0002-4917-5798 0000-0002-6441-6676  | 
    
| OpenAccessLink | https://doaj.org/article/de547db5d0a74491a12cfb3d125afaea | 
    
| PQID | 2550277516 | 
    
| PQPubID | 2032338 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_de547db5d0a74491a12cfb3d125afaea unpaywall_primary_10_3390_rs13071366 proquest_miscellaneous_2636163349 proquest_journals_2550277516 crossref_primary_10_3390_rs13071366 crossref_citationtrail_10_3390_rs13071366  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-04-01 | 
    
| PublicationDateYYYYMMDD | 2021-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Remote sensing (Basel, Switzerland) | 
    
| PublicationYear | 2021 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Heygster (ref_15) 2019; 13 Kaleschke (ref_29) 2013; 7 Bentley (ref_41) 1975; 18 ref_57 ref_56 ref_55 ref_10 ref_54 ref_53 ref_52 Wingham (ref_16) 2006; 37 Ricker (ref_21) 2017; 11 ref_51 ref_18 Menashi (ref_45) 1993; 98 Tedesco (ref_28) 2004; 90 Chi (ref_27) 2017; 9 Font (ref_8) 2009; 98 LeCun (ref_50) 2015; 521 ref_24 ref_23 ref_22 ref_20 Warren (ref_47) 1999; 12 Laxon (ref_6) 2013; 40 Belchansky (ref_25) 2008; 21 ref_26 Huntemann (ref_14) 2014; 8 Kilic (ref_32) 2018; 123 Comiso (ref_43) 1997; 60 Guerreiro (ref_7) 2017; 11 ref_36 ref_35 ref_34 ref_33 ref_30 Kaleschke (ref_12) 2014; 8 ref_39 Capon (ref_38) 2020; 13 ref_37 Tilling (ref_19) 2018; 62 Steffen (ref_4) 1992; 68 Kaleschke (ref_13) 2016; 180 ref_46 ref_44 Donlon (ref_31) 2019; 13 ref_42 ref_40 ref_1 ref_2 Lindsay (ref_3) 2015; 9 ref_49 Gupta (ref_11) 2019; 65 ref_48 ref_5 Ricker (ref_17) 2014; 8 Kerr (ref_9) 2010; 98  | 
    
| References_xml | – ident: ref_24 doi: 10.1029/2020GL091285 – ident: ref_49 – ident: ref_55 – ident: ref_51 – ident: ref_35 doi: 10.5772/intechopen.90039 – ident: ref_42 – ident: ref_1 – volume: 18 start-page: 509 year: 1975 ident: ref_41 article-title: Multidimensional binary search trees used for associative searching publication-title: Commun. ACM doi: 10.1145/361002.361007 – ident: ref_30 doi: 10.3390/rs11232864 – volume: 98 start-page: 22569 year: 1993 ident: ref_45 article-title: Low-frequency passive-microwave observations of sea ice in the Weddell Sea publication-title: J. Geophys. Res. Ocean. doi: 10.1029/93JC02058 – ident: ref_23 doi: 10.1109/RSIP.2017.7958792 – ident: ref_39 doi: 10.3390/rs13010121 – ident: ref_56 – ident: ref_40 doi: 10.1109/IGARSS.2018.8518405 – ident: ref_52 – volume: 62 start-page: 1203 year: 2018 ident: ref_19 article-title: Estimating Arctic sea ice thickness and volume using CryoSat-2 radar altimeter data publication-title: Adv. Space Res. doi: 10.1016/j.asr.2017.10.051 – ident: ref_48 – volume: 521 start-page: 436 year: 2015 ident: ref_50 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 8 start-page: 439 year: 2014 ident: ref_14 article-title: Empirical sea ice thickness retrieval during the freeze up period from SMOS high incident angle observations publication-title: Cryosphere doi: 10.5194/tc-8-439-2014 – volume: 123 start-page: 7564 year: 2018 ident: ref_32 article-title: Expected performances of the Copernicus Imaging Microwave Radiometer (CIMR) for an all-weather and high spatial resolution estimation of ocean and sea ice parameters publication-title: J. Geophys. Res. Ocean. doi: 10.1029/2018JC014408 – volume: 90 start-page: 76 year: 2004 ident: ref_28 article-title: Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2003.12.002 – volume: 68 start-page: 291 year: 1992 ident: ref_4 article-title: Considerations for microwave remote sensing of thin sea ice publication-title: Microw. Remote Sens. Sea Ice doi: 10.1029/GM068p0291 – volume: 37 start-page: 841 year: 2006 ident: ref_16 article-title: CryoSat: A mission to determine the fluctuations in Earth’s land and marine ice fields publication-title: Adv. Space Res. doi: 10.1016/j.asr.2005.07.027 – volume: 9 start-page: 269 year: 2015 ident: ref_3 article-title: Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations publication-title: Cryosphere doi: 10.5194/tc-9-269-2015 – ident: ref_57 doi: 10.3390/rs12101645 – volume: 65 start-page: 481 year: 2019 ident: ref_11 article-title: On the retrieval of sea-ice thickness using SMOS polarization differences publication-title: J. Glaciol. doi: 10.1017/jog.2019.26 – ident: ref_26 doi: 10.1109/ICNC.2012.6234704 – volume: 60 start-page: 357 year: 1997 ident: ref_43 article-title: Passive microwave algorithms for sea ice concentration: A comparison of two techniques publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00220-9 – volume: 8 start-page: 1607 year: 2014 ident: ref_17 article-title: Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation publication-title: Cryosphere doi: 10.5194/tc-8-1607-2014 – volume: 11 start-page: 2059 year: 2017 ident: ref_7 article-title: Comparison of CryoSat-2 and ENVISAT radar freeboard over Arctic sea ice: Toward an improved Envisat freeboard retrieval publication-title: Cryosphere doi: 10.5194/tc-11-2059-2017 – volume: 13 start-page: 2421 year: 2019 ident: ref_31 article-title: Estimating snow depth on Arctic sea ice using satellite microwave radiometry and a neural network publication-title: Cryosphere doi: 10.5194/tc-13-2421-2019 – ident: ref_34 – volume: 21 start-page: 716 year: 2008 ident: ref_25 article-title: Fluctuating Arctic sea ice thickness changes estimated by an in situ learned and empirically forced neural network model publication-title: J. Clim. doi: 10.1175/2007JCLI1787.1 – ident: ref_36 doi: 10.1063/pt.6.2.20211209a – ident: ref_2 doi: 10.1029/2012GL051000 – volume: 12 start-page: 1814 year: 1999 ident: ref_47 article-title: Snow depth on Arctic sea ice publication-title: J. Clim. doi: 10.1175/1520-0442(1999)012<1814:SDOASI>2.0.CO;2 – volume: 7 start-page: 1971 year: 2013 ident: ref_29 article-title: Snow thickness retrieval over thick Arctic sea ice using SMOS satellite data publication-title: Cryosphere doi: 10.5194/tc-7-1971-2013 – ident: ref_37 – volume: 13 start-page: 1298 year: 2020 ident: ref_38 article-title: The Flexible Microwave Payload-2: A SDR-Based GNSS-Reflectometer and L-Band Radiometer for CubeSats publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2020.2977959 – ident: ref_18 – ident: ref_44 – volume: 180 start-page: 264 year: 2016 ident: ref_13 article-title: SMOS sea ice product: Operational application and validation in the Barents Sea marginal ice zone publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.03.009 – volume: 9 start-page: 1305 year: 2017 ident: ref_27 article-title: Prediction of arctic sea ice concentration using a fully data driven deep neural network publication-title: Remote Sens. doi: 10.3390/rs9121305 – ident: ref_53 doi: 10.1007/978-1-4614-6849-3 – ident: ref_5 doi: 10.1029/2007JC004270 – ident: ref_20 doi: 10.1109/IGARSS.2015.7327014 – ident: ref_33 – ident: ref_54 – volume: 40 start-page: 732 year: 2013 ident: ref_6 article-title: CryoSat-2 estimates of Arctic sea ice thickness and volume publication-title: Geophys. Res. Lett. doi: 10.1002/grl.50193 – volume: 8 start-page: 997 year: 2014 ident: ref_12 article-title: SMOS-derived thin sea ice thickness: Algorithm baseline, product specifications and initial verification publication-title: Cryosphere doi: 10.5194/tc-8-997-2014 – ident: ref_46 doi: 10.1029/2005GL023030 – volume: 13 start-page: 675 year: 2019 ident: ref_15 article-title: Combined SMAP-SMOS thin sea ice thickness retrieval publication-title: Cryosphere doi: 10.5194/tc-13-675-2019 – ident: ref_10 doi: 10.1029/2012GL050916 – ident: ref_22 doi: 10.3390/rs8090698 – volume: 98 start-page: 649 year: 2009 ident: ref_8 article-title: SMOS: The challenging sea surface salinity measurement from space publication-title: Proc. IEEE doi: 10.1109/JPROC.2009.2033096 – volume: 98 start-page: 666 year: 2010 ident: ref_9 article-title: The SMOS mission: New tool for monitoring key elements ofthe global water cycle publication-title: Proc. IEEE doi: 10.1109/JPROC.2010.2043032 – volume: 11 start-page: 1607 year: 2017 ident: ref_21 article-title: A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data publication-title: Cryosphere doi: 10.5194/tc-11-1607-2017  | 
    
| SSID | ssj0000331904 | 
    
| Score | 2.3515277 | 
    
| Snippet | Several methods have been developed to provide polar maps of sea ice thickness (SIT) from L-band brightness temperature (TB) and altimetry data. Current... Several methods have been developed to provide polar maps of sea ice thickness (SIT) from L-band brightness temperature (T B ) and altimetry data. Current...  | 
    
| SourceID | doaj unpaywall proquest crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 1366 | 
    
| SubjectTerms | Algorithms Altimetry Antarctic region Arctic region Brightness temperature Composite materials Cubesat CubeSats data collection Estimates Freeboard Global navigation satellite system global positioning systems Growth models Ice Ice cover Ice thickness Meteorological satellites Microwave radiometers microwave radiometry Missions Neural networks Payloads Physical properties Polar environments predictive regression neural networks Radiometers Radiometry Salinity Sea ice sea ice thickness Seasonal variations Soil investigations Soil moisture Soil Moisture and Ocean Salinity satellite soil water Surface properties Surface temperature Thickness  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF6V9FAuiKcwFLSIXjhYXXs3u_GhQqQkKohGKGml3qzx7rhFRE5InFY58deZ9Ssgod4se7S2PO_dmW8YOxokxlIYZEObkwQrIFVMyAiS4iGizoRNwCeK5xN9dqm-XvWv9tik7YXxZZWtTawMtVtYv0d-TKGvP27sR_rj8lfop0b509V2hAY0oxXcSQUx9oDtxx4Zq8f2h6PJ92m36yIkiZxQNU6ppHz_eLUmK06ZWgWTuPNMFYD_P1HnwaZYwvYO5vO_HND4MXvURI78U83qJ2wPi6fsoBlifrN9xn7PEPgXi_zi5of96U0YH5EC172JfEjuynG6mOJ1XftacI_MQUtO6lLwNa_qB_i3cAiF4-e-VO8ObpFPwfkm_XK15Z-hBO5bUjgFjnw8m51CSZTVcs_Z5Xh0cXoWNvMVQisTVYYRuoFDo8lNa2NkpBxkCoV2gzwXudQIQNZHgXKJya1QzuWRsplBq42GTMgXrFcsCnzJuIml11_KTsjdoYQssyCVFkmsHdJLAvah_bepbcDH_QyMeUpJiOdDuuNDwN53tMsacuO_VEPPoo7Cw2RXNxar67TRutRhXxmX9Z0Ao1QSQRTbPJOOojrIASFghy2D00Z31-lO0gL2rntMWuePUqDAxYZotNQUyUqVBOyoE4x7PvfV_W96zR7GvlimKgk6ZL1ytcE3FO2U2dtGhP8ABFwAWA priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELagexgvjJ9a2UBG7IWHrEns2M0TWseqgViF1lUaT-FiX7ZpVVq16abywr_OOXELQwgh8RJFycVJ5LvvvkvOd4ztdVNtiAaZwBSkwRLIFFMCQTI8RFR5aFJwgeLJQB2P5Mfz5Nz3OZ37tEoKxa9qkI5DHQeun1InEh1NG6U6U1u8u_Gfkhw3T8mhxvI-21AJkfEW2xgNPh98cS3lVhc3RUkFBfed2ZwgW7tx7rihulr_HYq5uSinsLyF8fgXb9PfYl9Xz9kkmVzvL6p833z7rYTjf7zII_bQM1F-0KjOY3YPyyds0zdFv1w-Zd-HCPyDQX52eWWuHSTyIwKEZq0j75H7s5x2TvGiyaUtuav0QUMOmtTyOa_zEfinoAel5Scu9e8WbpCfgnWL_qvZkr-HCrhb4sKJiPL-cHgIFUnWwz1jo_7R2eFx4Ps1BEaksgoitF2LWpHbV1qLSFrIJYbKdosiLIRCAEIzCdKmujChtLaIpMk1GqUV5KF4zlrlpMRtxnUsHB5QtEPuEwXkuQEhVZjGyiLdpM3erqYvM76YueupMc4oqHFTnf2c6jZ7s5adNiU8_ijVc1qwlnBlt-sDk9lF5q04s5hIbfPEhqClTCOIYlPkwhJLhAIQ2mx3pUOZx4J5RkGb-1GeRHSP1-vTZMXu1wyUOFmQjBKKmLGQaZvtrXXvL4_74t_EdtiD2CXh1KlGu6xVzRb4klhUlb_ylvIDjIYXhw priority: 102 providerName: Unpaywall  | 
    
| Title | Sea Ice Thickness Estimation Based on Regression Neural Networks Using L-Band Microwave Radiometry Data from the FSSCat Mission | 
    
| URI | https://www.proquest.com/docview/2550277516 https://www.proquest.com/docview/2636163349 https://www.mdpi.com/2072-4292/13/7/1366/pdf?version=1617939724 https://doaj.org/article/de547db5d0a74491a12cfb3d125afaea  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 13 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: 8FG dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLdgHMZl4lN0jMqIXThES2rXjo_t1jLQWk3tKo1T9Gy_bIgqm9qUqSf-dZ6TrCsSggunfD3Flt-3_Px7jB2mRjsKg1zkcpJgCaSKhowgKR4iKhs7AyFRHI3V6Ux-uexebrX6CjVhNTxwvXBHHrtSe9v1MWgpTQJJx-VWeHLMkANWoVGcmq1kqrLBgkQrljUeqaC8_mixJGtNGVkFh_jggSqg_t-iy91VcQvrO5jPtxzN8BnbayJE3qtn9pw9wuIF222alV-vX7KfUwT-2SG_uP7mvgdTxQekqPUZRN4nt-Q53Uzwqq5xLXhA4KBfjuuS7yWv6gT4WdSHwvNRKMm7gx_IJ-DDYfxyseYnUAIPR084BYh8OJ0eQ0mU1e9esdlwcHF8GjV9FCInjCyjBH3qUStyx0prkUgPVmKsfJrncS4UApCVkSC90bmLpfd5Ip3V6JRWYGPxmu0UNwW-YVx3RNBTykLIraEAax0IqWLTUR5pkBb7eL-2mWtAxkOvi3lGyUbgQ_bAhxb7sKG9raE1_kjVDyzaUAQ47OoFCUnWCEn2LyFpsYN7BmeNji4zSqbCBnY3oTHebz6TdoUtEyjwZkU0SiiKWIU0LXa4EYy_THf_f0z3LXvaCaUzVYHQAdspFyt8R7FPadvscTr81GZPeiejsyld-4Px-aRdCT89zcbnva-_AJ_VCY8 | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGdigXxKcIG2DEOHCIlsSu0xwmRLdWLWsr1HbSbuHFftkQVdq1KVVP_Gf8bTwnaQsS2m23KHmyI79v-_n3GDtuRKGmMEi7OiUJlkCqGJERJMVDRJV4OgKbKPYHqnMpv1zVr_bY781dGFtWubGJhaE2U233yE8o9LXHjXVffZrdurZrlD1d3bTQgKq1gjktIMaqix0XuF5RCrc47Z4Tvz8EQbs1Puu4VZcBV4tI5q6PpmEwVOSsVBgKXxpIJHrKNNLUS4VCANJBCdJEYao9aUzqS52EqFWoIPEEjfuAHUghI0r-DpqtwdfhdpfHEyTinixxUYWIvJP5grwGZYYFLOPOExYNA_6JcmvLbAbrFUwmfzm89mP2qIpU-edStJ6wPcyeslrVNP1m_Yz9GiHwrkY-vvmuf1iTyVtkMMq7kLxJ7tFwehjidVlrm3GLBEJDDsrS8wUv6hV4z21CZnjflgau4CfyIRgLCpDP1_wccuD2CgynQJW3R6MzyImyGO45u7yXlX7B9rNphi8ZDwNh7QVlQ-ReUUCSaBBSeVGgDNIkDvu4WdtYV2DntufGJKakx_Ih3vHBYe-3tLMS4uO_VE3Loi2FheUuXkzn13Gl5bHBugxNUjcehFJGPviBThNhKIqEFBAcdrRhcFzZikW8k2yHvdt-Ji23RzeQ4XRJNEooipxJxhx2vBWMO3731d0zvWW1zrjfi3vdwcUhexjYQp2iHOmI7efzJb6mSCtP3lTizNm3-9agP47MPp4 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkBgviE9RGGDEeOAhahK7dvOAEF0XVrZVaN2kvYWLfdkQVVralKpP_F_8dZyTNAUJ7W1vUXKyI9_X7-zzHWN73UgbgkHGMxlJsARSxYiMICkeIqrUNxG4QPFkqA7P5eeLzsUW-72-C-PSKtc2sTTUdmLcHnmboK87buwEqp3VaRFf-vGH6Q_PdZByJ63rdhqViBzhaknh2_z9oE-8fhuG8cHZ_qFXdxjwjIhk4QVouxa1IkeltBaBtJBK9JXtZpmfCYUApH8SpI10ZnxpbRZIk2o0SitIfUHj3mK3tavi7m6px5-a_R1fkHD7sqqIKkTkt2dz8hcUE5YFGTc-sGwV8A--3VnkU1gtYTz-y9XF99m9GqPyj5VQPWBbmD9kO3W79KvVI_ZrhMAHBvnZ1Tfz3RlLfkCmoroFyXvkGC2nh1O8rLJsc-5qgNCQwyrpfM7LTAV-7PUgt_zEJQUu4SfyU7CuHEAxW_E-FMDd5RdOEJXHo9E-FERZDveYnd_IOj9h2_kkx6eM61A4S0FxEDlWFJCmBoRUfhQqizRJi71br21i6jLnrtvGOKFwx_Eh2fChxd40tNOquMd_qXqORQ2FK8hdvpjMLpNavxOLHalt2rE-aCmjAILQZKmwhB8hA4QW210zOKmtxDzZyHSLvW4-k367QxvIcbIgGiUUYWYhoxbbawTjmt99dv1Mr9gd0pvkeDA8es7uhi5Dp8xD2mXbxWyBLwhiFenLUpY5-3rTyvMH5bs8OA | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELagexgvjJ9a2UBG7IWHrEns2M0TWseqgViF1lUaT-FiX7ZpVVq16abywr_OOXELQwgh8RJFycVJ5LvvvkvOd4ztdVNtiAaZwBSkwRLIFFMCQTI8RFR5aFJwgeLJQB2P5Mfz5Nz3OZ37tEoKxa9qkI5DHQeun1InEh1NG6U6U1u8u_Gfkhw3T8mhxvI-21AJkfEW2xgNPh98cS3lVhc3RUkFBfed2ZwgW7tx7rihulr_HYq5uSinsLyF8fgXb9PfYl9Xz9kkmVzvL6p833z7rYTjf7zII_bQM1F-0KjOY3YPyyds0zdFv1w-Zd-HCPyDQX52eWWuHSTyIwKEZq0j75H7s5x2TvGiyaUtuav0QUMOmtTyOa_zEfinoAel5Scu9e8WbpCfgnWL_qvZkr-HCrhb4sKJiPL-cHgIFUnWwz1jo_7R2eFx4Ps1BEaksgoitF2LWpHbV1qLSFrIJYbKdosiLIRCAEIzCdKmujChtLaIpMk1GqUV5KF4zlrlpMRtxnUsHB5QtEPuEwXkuQEhVZjGyiLdpM3erqYvM76YueupMc4oqHFTnf2c6jZ7s5adNiU8_ijVc1qwlnBlt-sDk9lF5q04s5hIbfPEhqClTCOIYlPkwhJLhAIQ2mx3pUOZx4J5RkGb-1GeRHSP1-vTZMXu1wyUOFmQjBKKmLGQaZvtrXXvL4_74t_EdtiD2CXh1KlGu6xVzRb4klhUlb_ylvIDjIYXhw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sea+Ice+Thickness+Estimation+Based+on+Regression+Neural+Networks+Using+L-Band+Microwave+Radiometry+Data+from+the+FSSCat+Mission&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Christoph+Herbert&rft.au=Joan+Francesc+Munoz-Martin&rft.au=David+Llaveria&rft.au=Miriam+Pablos&rft.date=2021-04-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=13&rft.issue=7&rft.spage=1366&rft_id=info:doi/10.3390%2Frs13071366&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_de547db5d0a74491a12cfb3d125afaea | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |