A Novel Weakly Supervised Remote Sensing Landslide Semantic Segmentation Method: Combining CAM and cycleGAN Algorithms

With the development of deep learning algorithms, more and more deep learning algorithms are being applied to remote sensing image classification, detection, and semantic segmentation. The landslide semantic segmentation of a remote sensing image based on deep learning mainly uses supervised learnin...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 14; no. 15; p. 3650
Main Authors Zhou, Yongxiu, Wang, Honghui, Yang, Ronghao, Yao, Guangle, Xu, Qiang, Zhang, Xiaojuan
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2022
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs14153650

Cover

Abstract With the development of deep learning algorithms, more and more deep learning algorithms are being applied to remote sensing image classification, detection, and semantic segmentation. The landslide semantic segmentation of a remote sensing image based on deep learning mainly uses supervised learning, the accuracy of which depends on a large number of training data and high-quality data annotation. At this stage, high-quality data annotation often requires the investment of significant human effort. Therefore, the high cost of remote sensing landslide image data annotation greatly restricts the development of a landslide semantic segmentation algorithm. Aiming to resolve the problem of the high labeling cost of landslide semantic segmentation with a supervised learning method, we proposed a remote sensing landslide semantic segmentation with weakly supervised learning method combing class activation maps (CAMs) and cycle generative adversarial network (cycleGAN). In this method, we used the image level annotation data to replace pixel level annotation data as the training data. Firstly, the CAM method was used to determine the approximate position of the landslide area. Then, the cycleGAN method was used to generate the fake image without a landslide, and to make the difference with the real image to obtain the accurate segmentation of the landslide area. Finally, the pixel-level segmentation of the landslide area on remote sensing image was realized. We used mean intersection-over-union (mIOU) to evaluate the proposed method, and compared it with the method based on CAM, whose mIOU was 0.157, and we obtain better result with mIOU 0.237 on the same test dataset. Furthermore, we made a comparative experiment using the supervised learning method of a u-net network, and the mIOU result was 0.408. The experimental results show that it is feasible to realize landslide semantic segmentation in a remote sensing image by using weakly supervised learning. This method can greatly reduce the workload of data annotation.
AbstractList With the development of deep learning algorithms, more and more deep learning algorithms are being applied to remote sensing image classification, detection, and semantic segmentation. The landslide semantic segmentation of a remote sensing image based on deep learning mainly uses supervised learning, the accuracy of which depends on a large number of training data and high-quality data annotation. At this stage, high-quality data annotation often requires the investment of significant human effort. Therefore, the high cost of remote sensing landslide image data annotation greatly restricts the development of a landslide semantic segmentation algorithm. Aiming to resolve the problem of the high labeling cost of landslide semantic segmentation with a supervised learning method, we proposed a remote sensing landslide semantic segmentation with weakly supervised learning method combing class activation maps (CAMs) and cycle generative adversarial network (cycleGAN). In this method, we used the image level annotation data to replace pixel level annotation data as the training data. Firstly, the CAM method was used to determine the approximate position of the landslide area. Then, the cycleGAN method was used to generate the fake image without a landslide, and to make the difference with the real image to obtain the accurate segmentation of the landslide area. Finally, the pixel-level segmentation of the landslide area on remote sensing image was realized. We used mean intersection-over-union (mIOU) to evaluate the proposed method, and compared it with the method based on CAM, whose mIOU was 0.157, and we obtain better result with mIOU 0.237 on the same test dataset. Furthermore, we made a comparative experiment using the supervised learning method of a u-net network, and the mIOU result was 0.408. The experimental results show that it is feasible to realize landslide semantic segmentation in a remote sensing image by using weakly supervised learning. This method can greatly reduce the workload of data annotation.
Author Xu, Qiang
Zhou, Yongxiu
Wang, Honghui
Yao, Guangle
Yang, Ronghao
Zhang, Xiaojuan
Author_xml – sequence: 1
  givenname: Yongxiu
  surname: Zhou
  fullname: Zhou, Yongxiu
– sequence: 2
  givenname: Honghui
  orcidid: 0000-0001-9257-2820
  surname: Wang
  fullname: Wang, Honghui
– sequence: 3
  givenname: Ronghao
  orcidid: 0000-0002-3394-090X
  surname: Yang
  fullname: Yang, Ronghao
– sequence: 4
  givenname: Guangle
  surname: Yao
  fullname: Yao, Guangle
– sequence: 5
  givenname: Qiang
  surname: Xu
  fullname: Xu, Qiang
– sequence: 6
  givenname: Xiaojuan
  surname: Zhang
  fullname: Zhang, Xiaojuan
BookMark eNp9kV9rFDEUxQepYK198RMEfBFlNf8mmfi2LNoWthWs4mPIZO5ss2aSNZlZ2W9vtiMqRcxLLpdzftxz79PqJMQAVfWc4DeMKfw2ZcJJzUSNH1WnFEu64FTRk7_qJ9V5zltcHmNEYX5a7ZfoJu7Bo69gvvkDup12kPYuQ4c-wRBHQLcQsgsbtDahy951x85gwuhsKTYDhNGMLgZ0DeNd7N6hVRxaF46O1fIaFROyB-vhYnmDln4Tkxvvhvysetwbn-H8139Wffnw_vPqcrH-eHG1Wq4Xlik-LoiiDFTdSWlA0NpSQ2ohgHNCZMs4CAO0BFbEEuhaBVSAVZz00DdMtl3LzqqrmdtFs9W75AaTDjoap-8bMW20SSWKB20KVdhGNk3TcqvqRglBQRnoleQNNIX1emZNYWcOP4z3v4EE6-MF9J8LFPXLWb1L8fsEedSDyxa8NwHilDWVpGGCS3oEv3gg3cYphbKXosJYlsiMFRWeVTbFnBP02rp59WMyzv97hlcPLP8Z-CfcT7Fe
CitedBy_id crossref_primary_10_3390_rs17010147
crossref_primary_10_3390_rs16173119
crossref_primary_10_3390_rs15020531
crossref_primary_10_1007_s10346_023_02184_7
crossref_primary_10_1109_JSTARS_2024_3498865
crossref_primary_10_1109_JSTARS_2024_3354455
crossref_primary_10_3390_rs15041085
crossref_primary_10_1021_acs_analchem_3c01101
crossref_primary_10_3390_land13060835
crossref_primary_10_1016_j_isprsjprs_2023_12_009
crossref_primary_10_1109_TGRS_2024_3360268
crossref_primary_10_1080_17538947_2024_2328827
crossref_primary_10_3390_rs15204987
crossref_primary_10_1109_JSTARS_2024_3351277
crossref_primary_10_1109_TGRS_2023_3294817
crossref_primary_10_1007_s10462_024_10764_9
crossref_primary_10_1109_ACCESS_2024_3508881
crossref_primary_10_3390_rs16081344
crossref_primary_10_1109_TGRS_2023_3264232
crossref_primary_10_1007_s12040_024_02281_8
crossref_primary_10_1016_j_eswa_2025_127222
Cites_doi 10.1007/s12665-018-7712-z
10.1016/j.cageo.2021.104860
10.1109/JSTARS.2022.3188493
10.1016/j.cageo.2019.104388
10.1080/01431161.2019.1672904
10.1109/CVPR.2017.632
10.1109/CVPR.2016.319
10.3390/rs12223715
10.1007/978-3-319-24574-4_28
10.1109/CVPR.2016.90
10.3390/s18030821
10.1109/CVPR.2009.5206848
10.1109/ACCESS.2019.2935761
10.5194/egusphere-egu2020-11876
10.1007/978-3-319-10602-1_48
10.3390/rs13091772
10.1002/ett.3998
10.1109/ICCV.2017.244
10.1007/s10346-021-01694-6
10.1007/s10346-020-01353-2
10.1016/j.asoc.2018.05.018
10.3390/rs11020196
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7S9
L.6
ADTOC
UNPAY
DOA
DOI 10.3390/rs14153650
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ : directory of open access journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_a4416c87888b4c9589662e9aef9748e8
10.3390/rs14153650
10_3390_rs14153650
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
7S9
L.6
PUEGO
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c394t-1923e95d77ae625c2a1566e44117b34e6ae253691c1edb9e26ec941fef837bdb3
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Tue Oct 14 19:05:36 EDT 2025
Sun Oct 26 03:32:05 EDT 2025
Fri Sep 05 07:01:05 EDT 2025
Fri Jul 25 09:31:58 EDT 2025
Thu Oct 16 04:24:55 EDT 2025
Thu Apr 24 23:00:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-1923e95d77ae625c2a1566e44117b34e6ae253691c1edb9e26ec941fef837bdb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9257-2820
0000-0002-3394-090X
OpenAccessLink https://www.proquest.com/docview/2700756633?pq-origsite=%requestingapplication%&accountid=15518
PQID 2700756633
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_a4416c87888b4c9589662e9aef9748e8
unpaywall_primary_10_3390_rs14153650
proquest_miscellaneous_2718364728
proquest_journals_2700756633
crossref_citationtrail_10_3390_rs14153650
crossref_primary_10_3390_rs14153650
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Su (ref_13) 2022; 15
ref_14
ref_24
Bjelajac (ref_1) 2018; 77
ref_23
Mohan (ref_2) 2021; 32
ref_22
ref_10
ref_21
ref_20
Zhong (ref_4) 2020; 41
Cheng (ref_7) 2021; 18
ref_3
ref_18
ref_17
ref_16
ref_15
Du (ref_9) 2021; 155
Sameen (ref_5) 2019; 7
ref_8
Ji (ref_12) 2020; 17
Bo (ref_11) 2020; 135
ref_6
Goodfellow (ref_19) 2014; 27
References_xml – volume: 27
  start-page: 2672
  year: 2014
  ident: ref_19
  article-title: Generative Adversarial Nets
  publication-title: Adv. Neural Inf. Process Syst.
– volume: 77
  start-page: 519
  year: 2018
  ident: ref_1
  article-title: Factors Triggering Landslide Occurrence on the Zemun Loess Plateau, Belgrade Area, Serbia
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-018-7712-z
– ident: ref_8
– volume: 155
  start-page: 104860
  year: 2021
  ident: ref_9
  article-title: Landslide Susceptibility Prediction Based on Image Semantic Segmentation
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2021.104860
– volume: 15
  start-page: 5623
  year: 2022
  ident: ref_13
  article-title: Which CAM Is Better for Extracting Geographic Objects? A Perspective from Principles and Experiments
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2022.3188493
– volume: 135
  start-page: 104388
  year: 2020
  ident: ref_11
  article-title: Landslide Detection Based on Contour-Based Deep Learning Framework in Case of National Scale of Nepal in 2015
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2019.104388
– volume: 41
  start-page: 1555
  year: 2020
  ident: ref_4
  article-title: Landslide Mapping with Remote Sensing: Challenges and Opportunities
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2019.1672904
– ident: ref_21
  doi: 10.1109/CVPR.2017.632
– ident: ref_17
  doi: 10.1109/CVPR.2016.319
– ident: ref_15
  doi: 10.3390/rs12223715
– ident: ref_24
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref_18
  doi: 10.1109/CVPR.2016.90
– ident: ref_6
  doi: 10.3390/s18030821
– ident: ref_3
  doi: 10.1109/CVPR.2009.5206848
– volume: 7
  start-page: 114363
  year: 2019
  ident: ref_5
  article-title: Landslide Detection Using Residual Networks and the Fusion of Spectral and Topographic Information
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2935761
– ident: ref_10
  doi: 10.5194/egusphere-egu2020-11876
– ident: ref_16
  doi: 10.1007/978-3-319-10602-1_48
– ident: ref_14
  doi: 10.3390/rs13091772
– volume: 32
  start-page: e3998
  year: 2021
  ident: ref_2
  article-title: Review on Remote Sensing Methods for Landslide Detection Using Machine and Deep Learning
  publication-title: Trans. Emerg. Telecommun. Technol.
  doi: 10.1002/ett.3998
– ident: ref_20
  doi: 10.1109/ICCV.2017.244
– volume: 18
  start-page: 2751
  year: 2021
  ident: ref_7
  article-title: A Small Attentional YOLO Model for Landslide Detection from Satellite Remote Sensing Images
  publication-title: Landslides
  doi: 10.1007/s10346-021-01694-6
– volume: 17
  start-page: 1337
  year: 2020
  ident: ref_12
  article-title: Landslide Detection from an Open Satellite Imagery and Digital Elevation Model Dataset Using Attention Boosted Convolutional Neural Networks
  publication-title: Landslides
  doi: 10.1007/s10346-020-01353-2
– ident: ref_23
  doi: 10.1016/j.asoc.2018.05.018
– ident: ref_22
  doi: 10.3390/rs11020196
SSID ssj0000331904
Score 2.4675868
Snippet With the development of deep learning algorithms, more and more deep learning algorithms are being applied to remote sensing image classification, detection,...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 3650
SubjectTerms Accuracy
Algorithms
Annotations
CAM
Classification
cycleGAN
data collection
Datasets
Deep learning
Generative adversarial networks
humans
image analysis
Image annotation
Image classification
Image processing
Image segmentation
landslide semantic segmentation
Landslides
Landslides & mudslides
Learning algorithms
Machine learning
Pixels
Remote sensing
Semantic segmentation
Semantics
Training
weakly supervised learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEF4hLvRSFWjVlIcWwYWDRez1a7mZiIBQkwMUlZu1j3GIcJwoD1D-PTNrE1IJtZferPV4vfp2ducb7c4MYyeqiNq-UoknZRJ5oY1TTxWx9lIrIDBFUAQufXGvH1_fhzcP0cNaqS-6E1anB66BO1Nor2OTkqemQyOjFPl5AFJBgUw4BRfm207lmjPl9mCBqtUO63ykAv36s-nMR1slYgqwX7NALlH_H-xya1FN1PJFleWaoel-YZ8bhsizemTbbAOqHbbVFCt_XO6y54z3x89Q8t-gnsolv1tMaMHPwPJbQOSB39Gt9GrAf1Icbzm01DJCCIcGHwajJtyo4j1XPvqc46agXaEI3sl6HD_iZon_vsr6PCsH4-lw_jiafWX33ctfnWuvKZ_gGSHDuUfcDWRkk0QBejkmUOSrAeLpJ1qEECsIEBDpGx-slhDEYGToF1Cg06qtFt_YZjWu4Dvj0si2NAlSBeRXaaykxg7QEUqsjTQSnBY7fYM0N01ucSpxUeboYxD8-Tv8LXa8kp3UGTU-lLqgmVlJUBZs14C6kTe6kf9LN1ps_21e82ZpznI6aU8QCCFa7Gj1GhcVnZSoCsYLksGdjhLrYxcnK334y3B__I_h7rFPAQVXuOuF-2xzPl3AAVKeuT502v0KPzH8ZA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegexgvfCMKAxmxFx6yNM6neUFhYkyIVohRMZ4if1y6amlStUlR-eu5S9OyIYSQeLOci-Pk7PPv55zvGDtUeTjwlIodKePQCWyUOCqPtJNYH4TJRS7a8MXDUXQ6Dj6ch-dXTvGTWyVS8WlrpMUgFg7lU3K9wPVC10c44c5t_mbV7SV5USgRoYQiusn2sBwNemxvPPqUfqOcctu7N1FJfWT37mLp4YpF7Vxbh9pw_dcw5n5TztX6uyqKK8vNyR2mth3deJlcHjW1PjI_fovh-D9vcpfd7rAoTzeD5x67AeV9tt-lRb9YP2CrlI-qFRT8K6jLYs3PmjmZliVY_hlQx8DPyP-9nPCPdGK4mFqqmaGypgYLk1l3sKnkwzZR9WuO5ke3KSn4cTrkeBM3a3z2-3TE02JSLab1xWz5kI1P3n05PnW6RA2O8WVQO4QSQYY2jhUgnzJCESsERFperP0AIgUCP7r0jAdWSxARGBl4OeRIj7XV_iPWK6sSHjMujRxIEyMoQSSXREpqbAApV2xtqBFK9dmrrdoy00Uxp2QaRYZshlSc_VJxn73cyc43sTv-KPWWtL-ToHjbbUW1mGTd9M0UvktkEtov0IGRYYIsUYBUkCMfSyDps4Pt2Mk6I7DM6J9-jB_C9_vsxe4yTl_6J6NKqBqSQZtKIfyxicPdmPtLd5_8m9hTdkvQQY3WVfGA9epFA88QPtX6eTdDfgI1ABKf
  priority: 102
  providerName: Unpaywall
Title A Novel Weakly Supervised Remote Sensing Landslide Semantic Segmentation Method: Combining CAM and cycleGAN Algorithms
URI https://www.proquest.com/docview/2700756633
https://www.proquest.com/docview/2718364728
https://www.mdpi.com/2072-4292/14/15/3650/pdf?version=1659923526
https://doaj.org/article/a4416c87888b4c9589662e9aef9748e8
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ : directory of open access journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ADMLS
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: 8FG
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF61yaFcEE-RUqJF9MLBavz2IiHklqYVaqyqIaKcrH2M0wrHDnkU5d8z49hukVBvib3xOrO7s9-3u_MNY4cy8we2lKElROhbngkiS2aBsiLjgqMzJ3Mq-eJREpxPvG_X_vUOS5pYGDpW2fjEylGbUtMa-RFtkIaIPVz3y_y3RVmjaHe1SaEh69QK5nMlMbbLug4pY3VY9_g0ubxqV10GLna5gbfVKXWR7x8tljbOYW5AgfcPZqZKwP8f1Lm3LuZy80fm-YMJaPiMPa2RI4-3Tf2c7UDxgu3VScxvNi_ZXcyT8g5y_gPkr3zDx-s5OYIlGH4F2CLAx3RavZjyC4rvzW8NXZmhaW81fpjO6jCkgo-qtNKfODoLVSWQ4CfxiOOPuN5g3WdxwuN8itZZ3cyWr9hkePr95Nyq0ypY2hXeyiJMB8I3YSgB2Y92JHE4QFxkh8r1IJDgoEGErW0wSoATgBaenUGGZFYZ5b5mnaIs4A3jQouB0CFCCMRdUSCFwgcgQQqN8RUCnx772Jg01bXmOKW-yFPkHmT-9N78PfahLTvfKm38t9QxtUxbgtSxqwvlYprWgy2V-F8CHRG7V54WfoSczgEhIUP2FEHUYwdNu6b1kF2m9x2sx963t3Gw0Q6KLKBcUxn0gCS4j484bPvDI6-7_3hNb9kTh8IpqgOFB6yzWqzhHYKcleqz3Wh41mfd-OvoYtyv-3G_WjLAb5PkMv75F85IADM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swELcYPHQv0z61DrZ5GnvYQ0QT58uT0FQYrIw2mvjQeAuOfSmINO2aFtR_bn_b7tIkMGnijbfIcZzEdz7_frbvjrFNlXodW6nAkjLwLNf4oaVSP7FCI8DRqZM6ZfjiQeT3Tt0fZ97ZCvtT-8LQscraJpaG2ow1rZFv0QZpgNhDiK-T3xZljaLd1TqFhqpSK5jtMsRY5dhxCIsbpHDF9sE3lPcnx9nfO9ntWVWWAUsL6c4sgjggPRMECpAMaEcRpQGECXaQCBd8BY4nfGlrG0wiwfFBS9dOIUVul5hEYLuP2JorXInkb21nL_p51KzydASqeMddxkUVQna2poWNc6bwydH_zkxYJgz4B-W25vlELW5Ult2Z8PafsicVUuXdpWo9YyuQP2etKmn6xeIFu-7yaHwNGf8F6ipb8OP5hAxPAYYfAWoA8GM6HZ8PeZ_8ibNLQyUjFOWlxovhqHJ7yvmgTGP9haNxSsqEFXy3O-D4ENcLfPf3bsS72RClMbsYFS_Z6YN08Cu2mo9zeM241LIjdYCQBXFe6CuZYANIyAJjvASBVpt9rrs01lWMc0q1kcXIdaj749vub7OPTd3JMrLHf2vtkGSaGhSNuywYT4dxNbhjhf_i65BWExJXSy9EDumAVJAiWwshbLONWq5xZSKK-Fah2-xDcxsHN-3YqBzGc6qDFpcC_GMTm40-3PO5b-5_03vW6p0M-nH_IDpcZ48dcuUoDzNusNXZdA5vEWDNkneVFnN2_tAD5y-iwzfu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSgXxFMsFDCiHDhEm9h5GQmh0LJtaXeFKBW9BceZbCuyybKPVvlr_DpmsklaJNRbb5EzcZKZ8fgb2zPD2JbOPNvROrCUCjzLTf3Q0pmfWGEqQZhMZKJOXzwc-XvH7pcT72SN_WljYehYZWsTa0OdlobWyPu0QRog9pCynzXHIr7uDD5Of1tUQYp2WttyGisVOYDqAt23-Yf9HZT1WyEGn79v71lNhQHLSOUuLII3oLw0CDSgI2CEJncGECI4QSJd8DUIT_rKMQ6kiQLhg1Guk0GGfl2SJhL7vcVuB5TFnaLUB7vd-o4tUbltd5URVUpl92dzB2dL6VOI_5U5sC4V8A--3VgWU11d6Dy_MtUN7rN7DUbl0UqpHrA1KB6yjaZc-mn1iJ1HfFSeQ85_gP6VV_xoOSWTM4eUfwOUPfAjOhdfjPkhRRLnZym1TFCIZwYvxpMm4Kngw7qA9XuOZimpS1Xw7WjI8SFuKnz3bjTiUT5G3i9OJ_PH7PhG2PuErRdlAU8ZV0bZygQIVhDhhb5WCXaArliQpl6CEKvH3rUsjU2T3ZyKbOQxejnE_viS_T32pqOdrnJ6_JfqE0mmo6A83HVDORvHzbCONf6Lb0JaR0hco7wQvUcBSkOGfloIYY9ttnKNG-Mwjy9Vucded7dxWNNejS6gXBIN2lpK7Y9dbHX6cM3nPrv-Ta_YHRwu8eH-6OA5uysohqM-xbjJ1hezJbxAZLVIXtYqzNnPmx4zfwEYzDWI
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegexgvfCMKAxmxFx6yNM6neUFhYkyIVohRMZ4if1y6amlStUlR-eu5S9OyIYSQeLOci-Pk7PPv55zvGDtUeTjwlIodKePQCWyUOCqPtJNYH4TJRS7a8MXDUXQ6Dj6ch-dXTvGTWyVS8WlrpMUgFg7lU3K9wPVC10c44c5t_mbV7SV5USgRoYQiusn2sBwNemxvPPqUfqOcctu7N1FJfWT37mLp4YpF7Vxbh9pw_dcw5n5TztX6uyqKK8vNyR2mth3deJlcHjW1PjI_fovh-D9vcpfd7rAoTzeD5x67AeV9tt-lRb9YP2CrlI-qFRT8K6jLYs3PmjmZliVY_hlQx8DPyP-9nPCPdGK4mFqqmaGypgYLk1l3sKnkwzZR9WuO5ke3KSn4cTrkeBM3a3z2-3TE02JSLab1xWz5kI1P3n05PnW6RA2O8WVQO4QSQYY2jhUgnzJCESsERFperP0AIgUCP7r0jAdWSxARGBl4OeRIj7XV_iPWK6sSHjMujRxIEyMoQSSXREpqbAApV2xtqBFK9dmrrdoy00Uxp2QaRYZshlSc_VJxn73cyc43sTv-KPWWtL-ToHjbbUW1mGTd9M0UvktkEtov0IGRYYIsUYBUkCMfSyDps4Pt2Mk6I7DM6J9-jB_C9_vsxe4yTl_6J6NKqBqSQZtKIfyxicPdmPtLd5_8m9hTdkvQQY3WVfGA9epFA88QPtX6eTdDfgI1ABKf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Weakly+Supervised+Remote+Sensing+Landslide+Semantic+Segmentation+Method%3A+Combining+CAM+and+cycleGAN+Algorithms&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Zhou%2C+Yongxiu&rft.au=Wang%2C+Honghui&rft.au=Yang%2C+Ronghao&rft.au=Yao%2C+Guangle&rft.date=2022-08-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=14&rft.issue=15&rft_id=info:doi/10.3390%2Frs14153650&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon