A Novel Weakly Supervised Remote Sensing Landslide Semantic Segmentation Method: Combining CAM and cycleGAN Algorithms
With the development of deep learning algorithms, more and more deep learning algorithms are being applied to remote sensing image classification, detection, and semantic segmentation. The landslide semantic segmentation of a remote sensing image based on deep learning mainly uses supervised learnin...
Saved in:
| Published in | Remote sensing (Basel, Switzerland) Vol. 14; no. 15; p. 3650 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.08.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2072-4292 2072-4292 |
| DOI | 10.3390/rs14153650 |
Cover
| Abstract | With the development of deep learning algorithms, more and more deep learning algorithms are being applied to remote sensing image classification, detection, and semantic segmentation. The landslide semantic segmentation of a remote sensing image based on deep learning mainly uses supervised learning, the accuracy of which depends on a large number of training data and high-quality data annotation. At this stage, high-quality data annotation often requires the investment of significant human effort. Therefore, the high cost of remote sensing landslide image data annotation greatly restricts the development of a landslide semantic segmentation algorithm. Aiming to resolve the problem of the high labeling cost of landslide semantic segmentation with a supervised learning method, we proposed a remote sensing landslide semantic segmentation with weakly supervised learning method combing class activation maps (CAMs) and cycle generative adversarial network (cycleGAN). In this method, we used the image level annotation data to replace pixel level annotation data as the training data. Firstly, the CAM method was used to determine the approximate position of the landslide area. Then, the cycleGAN method was used to generate the fake image without a landslide, and to make the difference with the real image to obtain the accurate segmentation of the landslide area. Finally, the pixel-level segmentation of the landslide area on remote sensing image was realized. We used mean intersection-over-union (mIOU) to evaluate the proposed method, and compared it with the method based on CAM, whose mIOU was 0.157, and we obtain better result with mIOU 0.237 on the same test dataset. Furthermore, we made a comparative experiment using the supervised learning method of a u-net network, and the mIOU result was 0.408. The experimental results show that it is feasible to realize landslide semantic segmentation in a remote sensing image by using weakly supervised learning. This method can greatly reduce the workload of data annotation. |
|---|---|
| AbstractList | With the development of deep learning algorithms, more and more deep learning algorithms are being applied to remote sensing image classification, detection, and semantic segmentation. The landslide semantic segmentation of a remote sensing image based on deep learning mainly uses supervised learning, the accuracy of which depends on a large number of training data and high-quality data annotation. At this stage, high-quality data annotation often requires the investment of significant human effort. Therefore, the high cost of remote sensing landslide image data annotation greatly restricts the development of a landslide semantic segmentation algorithm. Aiming to resolve the problem of the high labeling cost of landslide semantic segmentation with a supervised learning method, we proposed a remote sensing landslide semantic segmentation with weakly supervised learning method combing class activation maps (CAMs) and cycle generative adversarial network (cycleGAN). In this method, we used the image level annotation data to replace pixel level annotation data as the training data. Firstly, the CAM method was used to determine the approximate position of the landslide area. Then, the cycleGAN method was used to generate the fake image without a landslide, and to make the difference with the real image to obtain the accurate segmentation of the landslide area. Finally, the pixel-level segmentation of the landslide area on remote sensing image was realized. We used mean intersection-over-union (mIOU) to evaluate the proposed method, and compared it with the method based on CAM, whose mIOU was 0.157, and we obtain better result with mIOU 0.237 on the same test dataset. Furthermore, we made a comparative experiment using the supervised learning method of a u-net network, and the mIOU result was 0.408. The experimental results show that it is feasible to realize landslide semantic segmentation in a remote sensing image by using weakly supervised learning. This method can greatly reduce the workload of data annotation. |
| Author | Xu, Qiang Zhou, Yongxiu Wang, Honghui Yao, Guangle Yang, Ronghao Zhang, Xiaojuan |
| Author_xml | – sequence: 1 givenname: Yongxiu surname: Zhou fullname: Zhou, Yongxiu – sequence: 2 givenname: Honghui orcidid: 0000-0001-9257-2820 surname: Wang fullname: Wang, Honghui – sequence: 3 givenname: Ronghao orcidid: 0000-0002-3394-090X surname: Yang fullname: Yang, Ronghao – sequence: 4 givenname: Guangle surname: Yao fullname: Yao, Guangle – sequence: 5 givenname: Qiang surname: Xu fullname: Xu, Qiang – sequence: 6 givenname: Xiaojuan surname: Zhang fullname: Zhang, Xiaojuan |
| BookMark | eNp9kV9rFDEUxQepYK198RMEfBFlNf8mmfi2LNoWthWs4mPIZO5ss2aSNZlZ2W9vtiMqRcxLLpdzftxz79PqJMQAVfWc4DeMKfw2ZcJJzUSNH1WnFEu64FTRk7_qJ9V5zltcHmNEYX5a7ZfoJu7Bo69gvvkDup12kPYuQ4c-wRBHQLcQsgsbtDahy951x85gwuhsKTYDhNGMLgZ0DeNd7N6hVRxaF46O1fIaFROyB-vhYnmDln4Tkxvvhvysetwbn-H8139Wffnw_vPqcrH-eHG1Wq4Xlik-LoiiDFTdSWlA0NpSQ2ohgHNCZMs4CAO0BFbEEuhaBVSAVZz00DdMtl3LzqqrmdtFs9W75AaTDjoap-8bMW20SSWKB20KVdhGNk3TcqvqRglBQRnoleQNNIX1emZNYWcOP4z3v4EE6-MF9J8LFPXLWb1L8fsEedSDyxa8NwHilDWVpGGCS3oEv3gg3cYphbKXosJYlsiMFRWeVTbFnBP02rp59WMyzv97hlcPLP8Z-CfcT7Fe |
| CitedBy_id | crossref_primary_10_3390_rs17010147 crossref_primary_10_3390_rs16173119 crossref_primary_10_3390_rs15020531 crossref_primary_10_1007_s10346_023_02184_7 crossref_primary_10_1109_JSTARS_2024_3498865 crossref_primary_10_1109_JSTARS_2024_3354455 crossref_primary_10_3390_rs15041085 crossref_primary_10_1021_acs_analchem_3c01101 crossref_primary_10_3390_land13060835 crossref_primary_10_1016_j_isprsjprs_2023_12_009 crossref_primary_10_1109_TGRS_2024_3360268 crossref_primary_10_1080_17538947_2024_2328827 crossref_primary_10_3390_rs15204987 crossref_primary_10_1109_JSTARS_2024_3351277 crossref_primary_10_1109_TGRS_2023_3294817 crossref_primary_10_1007_s10462_024_10764_9 crossref_primary_10_1109_ACCESS_2024_3508881 crossref_primary_10_3390_rs16081344 crossref_primary_10_1109_TGRS_2023_3264232 crossref_primary_10_1007_s12040_024_02281_8 crossref_primary_10_1016_j_eswa_2025_127222 |
| Cites_doi | 10.1007/s12665-018-7712-z 10.1016/j.cageo.2021.104860 10.1109/JSTARS.2022.3188493 10.1016/j.cageo.2019.104388 10.1080/01431161.2019.1672904 10.1109/CVPR.2017.632 10.1109/CVPR.2016.319 10.3390/rs12223715 10.1007/978-3-319-24574-4_28 10.1109/CVPR.2016.90 10.3390/s18030821 10.1109/CVPR.2009.5206848 10.1109/ACCESS.2019.2935761 10.5194/egusphere-egu2020-11876 10.1007/978-3-319-10602-1_48 10.3390/rs13091772 10.1002/ett.3998 10.1109/ICCV.2017.244 10.1007/s10346-021-01694-6 10.1007/s10346-020-01353-2 10.1016/j.asoc.2018.05.018 10.3390/rs11020196 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7S9 L.6 ADTOC UNPAY DOA |
| DOI | 10.3390/rs14153650 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ : directory of open access journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_a4416c87888b4c9589662e9aef9748e8 10.3390/rs14153650 10_3390_rs14153650 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI 7S9 L.6 PUEGO ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c394t-1923e95d77ae625c2a1566e44117b34e6ae253691c1edb9e26ec941fef837bdb3 |
| IEDL.DBID | BENPR |
| ISSN | 2072-4292 |
| IngestDate | Tue Oct 14 19:05:36 EDT 2025 Sun Oct 26 03:32:05 EDT 2025 Fri Sep 05 07:01:05 EDT 2025 Fri Jul 25 09:31:58 EDT 2025 Thu Oct 16 04:24:55 EDT 2025 Thu Apr 24 23:00:26 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c394t-1923e95d77ae625c2a1566e44117b34e6ae253691c1edb9e26ec941fef837bdb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9257-2820 0000-0002-3394-090X |
| OpenAccessLink | https://www.proquest.com/docview/2700756633?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2700756633 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a4416c87888b4c9589662e9aef9748e8 unpaywall_primary_10_3390_rs14153650 proquest_miscellaneous_2718364728 proquest_journals_2700756633 crossref_citationtrail_10_3390_rs14153650 crossref_primary_10_3390_rs14153650 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Su (ref_13) 2022; 15 ref_14 ref_24 Bjelajac (ref_1) 2018; 77 ref_23 Mohan (ref_2) 2021; 32 ref_22 ref_10 ref_21 ref_20 Zhong (ref_4) 2020; 41 Cheng (ref_7) 2021; 18 ref_3 ref_18 ref_17 ref_16 ref_15 Du (ref_9) 2021; 155 Sameen (ref_5) 2019; 7 ref_8 Ji (ref_12) 2020; 17 Bo (ref_11) 2020; 135 ref_6 Goodfellow (ref_19) 2014; 27 |
| References_xml | – volume: 27 start-page: 2672 year: 2014 ident: ref_19 article-title: Generative Adversarial Nets publication-title: Adv. Neural Inf. Process Syst. – volume: 77 start-page: 519 year: 2018 ident: ref_1 article-title: Factors Triggering Landslide Occurrence on the Zemun Loess Plateau, Belgrade Area, Serbia publication-title: Environ. Earth Sci. doi: 10.1007/s12665-018-7712-z – ident: ref_8 – volume: 155 start-page: 104860 year: 2021 ident: ref_9 article-title: Landslide Susceptibility Prediction Based on Image Semantic Segmentation publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2021.104860 – volume: 15 start-page: 5623 year: 2022 ident: ref_13 article-title: Which CAM Is Better for Extracting Geographic Objects? A Perspective from Principles and Experiments publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2022.3188493 – volume: 135 start-page: 104388 year: 2020 ident: ref_11 article-title: Landslide Detection Based on Contour-Based Deep Learning Framework in Case of National Scale of Nepal in 2015 publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2019.104388 – volume: 41 start-page: 1555 year: 2020 ident: ref_4 article-title: Landslide Mapping with Remote Sensing: Challenges and Opportunities publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2019.1672904 – ident: ref_21 doi: 10.1109/CVPR.2017.632 – ident: ref_17 doi: 10.1109/CVPR.2016.319 – ident: ref_15 doi: 10.3390/rs12223715 – ident: ref_24 doi: 10.1007/978-3-319-24574-4_28 – ident: ref_18 doi: 10.1109/CVPR.2016.90 – ident: ref_6 doi: 10.3390/s18030821 – ident: ref_3 doi: 10.1109/CVPR.2009.5206848 – volume: 7 start-page: 114363 year: 2019 ident: ref_5 article-title: Landslide Detection Using Residual Networks and the Fusion of Spectral and Topographic Information publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2935761 – ident: ref_10 doi: 10.5194/egusphere-egu2020-11876 – ident: ref_16 doi: 10.1007/978-3-319-10602-1_48 – ident: ref_14 doi: 10.3390/rs13091772 – volume: 32 start-page: e3998 year: 2021 ident: ref_2 article-title: Review on Remote Sensing Methods for Landslide Detection Using Machine and Deep Learning publication-title: Trans. Emerg. Telecommun. Technol. doi: 10.1002/ett.3998 – ident: ref_20 doi: 10.1109/ICCV.2017.244 – volume: 18 start-page: 2751 year: 2021 ident: ref_7 article-title: A Small Attentional YOLO Model for Landslide Detection from Satellite Remote Sensing Images publication-title: Landslides doi: 10.1007/s10346-021-01694-6 – volume: 17 start-page: 1337 year: 2020 ident: ref_12 article-title: Landslide Detection from an Open Satellite Imagery and Digital Elevation Model Dataset Using Attention Boosted Convolutional Neural Networks publication-title: Landslides doi: 10.1007/s10346-020-01353-2 – ident: ref_23 doi: 10.1016/j.asoc.2018.05.018 – ident: ref_22 doi: 10.3390/rs11020196 |
| SSID | ssj0000331904 |
| Score | 2.4675868 |
| Snippet | With the development of deep learning algorithms, more and more deep learning algorithms are being applied to remote sensing image classification, detection,... |
| SourceID | doaj unpaywall proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 3650 |
| SubjectTerms | Accuracy Algorithms Annotations CAM Classification cycleGAN data collection Datasets Deep learning Generative adversarial networks humans image analysis Image annotation Image classification Image processing Image segmentation landslide semantic segmentation Landslides Landslides & mudslides Learning algorithms Machine learning Pixels Remote sensing Semantic segmentation Semantics Training weakly supervised learning |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEF4hLvRSFWjVlIcWwYWDRez1a7mZiIBQkwMUlZu1j3GIcJwoD1D-PTNrE1IJtZferPV4vfp2ducb7c4MYyeqiNq-UoknZRJ5oY1TTxWx9lIrIDBFUAQufXGvH1_fhzcP0cNaqS-6E1anB66BO1Nor2OTkqemQyOjFPl5AFJBgUw4BRfm207lmjPl9mCBqtUO63ykAv36s-nMR1slYgqwX7NALlH_H-xya1FN1PJFleWaoel-YZ8bhsizemTbbAOqHbbVFCt_XO6y54z3x89Q8t-gnsolv1tMaMHPwPJbQOSB39Gt9GrAf1Icbzm01DJCCIcGHwajJtyo4j1XPvqc46agXaEI3sl6HD_iZon_vsr6PCsH4-lw_jiafWX33ctfnWuvKZ_gGSHDuUfcDWRkk0QBejkmUOSrAeLpJ1qEECsIEBDpGx-slhDEYGToF1Cg06qtFt_YZjWu4Dvj0si2NAlSBeRXaaykxg7QEUqsjTQSnBY7fYM0N01ucSpxUeboYxD8-Tv8LXa8kp3UGTU-lLqgmVlJUBZs14C6kTe6kf9LN1ps_21e82ZpznI6aU8QCCFa7Gj1GhcVnZSoCsYLksGdjhLrYxcnK334y3B__I_h7rFPAQVXuOuF-2xzPl3AAVKeuT502v0KPzH8ZA priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegexgvfCMKAxmxFx6yNM6neUFhYkyIVohRMZ4if1y6amlStUlR-eu5S9OyIYSQeLOci-Pk7PPv55zvGDtUeTjwlIodKePQCWyUOCqPtJNYH4TJRS7a8MXDUXQ6Dj6ch-dXTvGTWyVS8WlrpMUgFg7lU3K9wPVC10c44c5t_mbV7SV5USgRoYQiusn2sBwNemxvPPqUfqOcctu7N1FJfWT37mLp4YpF7Vxbh9pw_dcw5n5TztX6uyqKK8vNyR2mth3deJlcHjW1PjI_fovh-D9vcpfd7rAoTzeD5x67AeV9tt-lRb9YP2CrlI-qFRT8K6jLYs3PmjmZliVY_hlQx8DPyP-9nPCPdGK4mFqqmaGypgYLk1l3sKnkwzZR9WuO5ke3KSn4cTrkeBM3a3z2-3TE02JSLab1xWz5kI1P3n05PnW6RA2O8WVQO4QSQYY2jhUgnzJCESsERFperP0AIgUCP7r0jAdWSxARGBl4OeRIj7XV_iPWK6sSHjMujRxIEyMoQSSXREpqbAApV2xtqBFK9dmrrdoy00Uxp2QaRYZshlSc_VJxn73cyc43sTv-KPWWtL-ToHjbbUW1mGTd9M0UvktkEtov0IGRYYIsUYBUkCMfSyDps4Pt2Mk6I7DM6J9-jB_C9_vsxe4yTl_6J6NKqBqSQZtKIfyxicPdmPtLd5_8m9hTdkvQQY3WVfGA9epFA88QPtX6eTdDfgI1ABKf priority: 102 providerName: Unpaywall |
| Title | A Novel Weakly Supervised Remote Sensing Landslide Semantic Segmentation Method: Combining CAM and cycleGAN Algorithms |
| URI | https://www.proquest.com/docview/2700756633 https://www.proquest.com/docview/2718364728 https://www.mdpi.com/2072-4292/14/15/3650/pdf?version=1659923526 https://doaj.org/article/a4416c87888b4c9589662e9aef9748e8 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ : directory of open access journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: 8FG dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF61yaFcEE-RUqJF9MLBavz2IiHklqYVaqyqIaKcrH2M0wrHDnkU5d8z49hukVBvib3xOrO7s9-3u_MNY4cy8we2lKElROhbngkiS2aBsiLjgqMzJ3Mq-eJREpxPvG_X_vUOS5pYGDpW2fjEylGbUtMa-RFtkIaIPVz3y_y3RVmjaHe1SaEh69QK5nMlMbbLug4pY3VY9_g0ubxqV10GLna5gbfVKXWR7x8tljbOYW5AgfcPZqZKwP8f1Lm3LuZy80fm-YMJaPiMPa2RI4-3Tf2c7UDxgu3VScxvNi_ZXcyT8g5y_gPkr3zDx-s5OYIlGH4F2CLAx3RavZjyC4rvzW8NXZmhaW81fpjO6jCkgo-qtNKfODoLVSWQ4CfxiOOPuN5g3WdxwuN8itZZ3cyWr9hkePr95Nyq0ypY2hXeyiJMB8I3YSgB2Y92JHE4QFxkh8r1IJDgoEGErW0wSoATgBaenUGGZFYZ5b5mnaIs4A3jQouB0CFCCMRdUSCFwgcgQQqN8RUCnx772Jg01bXmOKW-yFPkHmT-9N78PfahLTvfKm38t9QxtUxbgtSxqwvlYprWgy2V-F8CHRG7V54WfoSczgEhIUP2FEHUYwdNu6b1kF2m9x2sx963t3Gw0Q6KLKBcUxn0gCS4j484bPvDI6-7_3hNb9kTh8IpqgOFB6yzWqzhHYKcleqz3Wh41mfd-OvoYtyv-3G_WjLAb5PkMv75F85IADM |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swELcYPHQv0z61DrZ5GnvYQ0QT58uT0FQYrIw2mvjQeAuOfSmINO2aFtR_bn_b7tIkMGnijbfIcZzEdz7_frbvjrFNlXodW6nAkjLwLNf4oaVSP7FCI8DRqZM6ZfjiQeT3Tt0fZ97ZCvtT-8LQscraJpaG2ow1rZFv0QZpgNhDiK-T3xZljaLd1TqFhqpSK5jtMsRY5dhxCIsbpHDF9sE3lPcnx9nfO9ntWVWWAUsL6c4sgjggPRMECpAMaEcRpQGECXaQCBd8BY4nfGlrG0wiwfFBS9dOIUVul5hEYLuP2JorXInkb21nL_p51KzydASqeMddxkUVQna2poWNc6bwydH_zkxYJgz4B-W25vlELW5Ult2Z8PafsicVUuXdpWo9YyuQP2etKmn6xeIFu-7yaHwNGf8F6ipb8OP5hAxPAYYfAWoA8GM6HZ8PeZ_8ibNLQyUjFOWlxovhqHJ7yvmgTGP9haNxSsqEFXy3O-D4ENcLfPf3bsS72RClMbsYFS_Z6YN08Cu2mo9zeM241LIjdYCQBXFe6CuZYANIyAJjvASBVpt9rrs01lWMc0q1kcXIdaj749vub7OPTd3JMrLHf2vtkGSaGhSNuywYT4dxNbhjhf_i65BWExJXSy9EDumAVJAiWwshbLONWq5xZSKK-Fah2-xDcxsHN-3YqBzGc6qDFpcC_GMTm40-3PO5b-5_03vW6p0M-nH_IDpcZ48dcuUoDzNusNXZdA5vEWDNkneVFnN2_tAD5y-iwzfu |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSgXxFMsFDCiHDhEm9h5GQmh0LJtaXeFKBW9BceZbCuyybKPVvlr_DpmsklaJNRbb5EzcZKZ8fgb2zPD2JbOPNvROrCUCjzLTf3Q0pmfWGEqQZhMZKJOXzwc-XvH7pcT72SN_WljYehYZWsTa0OdlobWyPu0QRog9pCynzXHIr7uDD5Of1tUQYp2WttyGisVOYDqAt23-Yf9HZT1WyEGn79v71lNhQHLSOUuLII3oLw0CDSgI2CEJncGECI4QSJd8DUIT_rKMQ6kiQLhg1Guk0GGfl2SJhL7vcVuB5TFnaLUB7vd-o4tUbltd5URVUpl92dzB2dL6VOI_5U5sC4V8A--3VgWU11d6Dy_MtUN7rN7DUbl0UqpHrA1KB6yjaZc-mn1iJ1HfFSeQ85_gP6VV_xoOSWTM4eUfwOUPfAjOhdfjPkhRRLnZym1TFCIZwYvxpMm4Kngw7qA9XuOZimpS1Xw7WjI8SFuKnz3bjTiUT5G3i9OJ_PH7PhG2PuErRdlAU8ZV0bZygQIVhDhhb5WCXaArliQpl6CEKvH3rUsjU2T3ZyKbOQxejnE_viS_T32pqOdrnJ6_JfqE0mmo6A83HVDORvHzbCONf6Lb0JaR0hco7wQvUcBSkOGfloIYY9ttnKNG-Mwjy9Vucded7dxWNNejS6gXBIN2lpK7Y9dbHX6cM3nPrv-Ta_YHRwu8eH-6OA5uysohqM-xbjJ1hezJbxAZLVIXtYqzNnPmx4zfwEYzDWI |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegexgvfCMKAxmxFx6yNM6neUFhYkyIVohRMZ4if1y6amlStUlR-eu5S9OyIYSQeLOci-Pk7PPv55zvGDtUeTjwlIodKePQCWyUOCqPtJNYH4TJRS7a8MXDUXQ6Dj6ch-dXTvGTWyVS8WlrpMUgFg7lU3K9wPVC10c44c5t_mbV7SV5USgRoYQiusn2sBwNemxvPPqUfqOcctu7N1FJfWT37mLp4YpF7Vxbh9pw_dcw5n5TztX6uyqKK8vNyR2mth3deJlcHjW1PjI_fovh-D9vcpfd7rAoTzeD5x67AeV9tt-lRb9YP2CrlI-qFRT8K6jLYs3PmjmZliVY_hlQx8DPyP-9nPCPdGK4mFqqmaGypgYLk1l3sKnkwzZR9WuO5ke3KSn4cTrkeBM3a3z2-3TE02JSLab1xWz5kI1P3n05PnW6RA2O8WVQO4QSQYY2jhUgnzJCESsERFperP0AIgUCP7r0jAdWSxARGBl4OeRIj7XV_iPWK6sSHjMujRxIEyMoQSSXREpqbAApV2xtqBFK9dmrrdoy00Uxp2QaRYZshlSc_VJxn73cyc43sTv-KPWWtL-ToHjbbUW1mGTd9M0UvktkEtov0IGRYYIsUYBUkCMfSyDps4Pt2Mk6I7DM6J9-jB_C9_vsxe4yTl_6J6NKqBqSQZtKIfyxicPdmPtLd5_8m9hTdkvQQY3WVfGA9epFA88QPtX6eTdDfgI1ABKf |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Weakly+Supervised+Remote+Sensing+Landslide+Semantic+Segmentation+Method%3A+Combining+CAM+and+cycleGAN+Algorithms&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Zhou%2C+Yongxiu&rft.au=Wang%2C+Honghui&rft.au=Yang%2C+Ronghao&rft.au=Yao%2C+Guangle&rft.date=2022-08-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=14&rft.issue=15&rft_id=info:doi/10.3390%2Frs14153650&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |