Stability Analysis of the Modified Levenberg-Marquardt Algorithm for the Artificial Neural Network Training

The Levenberg-Marquardt and Newton are two algorithms that use the Hessian for the artificial neural network learning. In this article, we propose a modified Levenberg-Marquardt algorithm for the artificial neural network learning containing the training and testing stages. The modified Levenberg-Ma...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 32; no. 8; pp. 3510 - 3524
Main Author Rubio, Jose de Jesus
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2020.3015200

Cover

Abstract The Levenberg-Marquardt and Newton are two algorithms that use the Hessian for the artificial neural network learning. In this article, we propose a modified Levenberg-Marquardt algorithm for the artificial neural network learning containing the training and testing stages. The modified Levenberg-Marquardt algorithm is based on the Levenberg-Marquardt and Newton algorithms but with the following two differences to assure the error stability and weights boundedness: 1) there is a singularity point in the learning rates of the Levenberg-Marquardt and Newton algorithms, while there is not a singularity point in the learning rate of the modified Levenberg-Marquardt algorithm and 2) the Levenberg-Marquardt and Newton algorithms have three different learning rates, while the modified Levenberg-Marquardt algorithm only has one learning rate. The error stability and weights boundedness of the modified Levenberg-Marquardt algorithm are assured based on the Lyapunov technique. We compare the artificial neural network learning with the modified Levenberg-Marquardt, Levenberg-Marquardt, Newton, and stable gradient algorithms for the learning of the electric and brain signals data set.
AbstractList The Levenberg-Marquardt and Newton are two algorithms that use the Hessian for the artificial neural network learning. In this article, we propose a modified Levenberg-Marquardt algorithm for the artificial neural network learning containing the training and testing stages. The modified Levenberg-Marquardt algorithm is based on the Levenberg-Marquardt and Newton algorithms but with the following two differences to assure the error stability and weights boundedness: 1) there is a singularity point in the learning rates of the Levenberg-Marquardt and Newton algorithms, while there is not a singularity point in the learning rate of the modified Levenberg-Marquardt algorithm and 2) the Levenberg-Marquardt and Newton algorithms have three different learning rates, while the modified Levenberg-Marquardt algorithm only has one learning rate. The error stability and weights boundedness of the modified Levenberg-Marquardt algorithm are assured based on the Lyapunov technique. We compare the artificial neural network learning with the modified Levenberg-Marquardt, Levenberg-Marquardt, Newton, and stable gradient algorithms for the learning of the electric and brain signals data set.
The Levenberg-Marquardt and Newton are two algorithms that use the Hessian for the artificial neural network learning. In this article, we propose a modified Levenberg-Marquardt algorithm for the artificial neural network learning containing the training and testing stages. The modified Levenberg-Marquardt algorithm is based on the Levenberg-Marquardt and Newton algorithms but with the following two differences to assure the error stability and weights boundedness: 1) there is a singularity point in the learning rates of the Levenberg-Marquardt and Newton algorithms, while there is not a singularity point in the learning rate of the modified Levenberg-Marquardt algorithm and 2) the Levenberg-Marquardt and Newton algorithms have three different learning rates, while the modified Levenberg-Marquardt algorithm only has one learning rate. The error stability and weights boundedness of the modified Levenberg-Marquardt algorithm are assured based on the Lyapunov technique. We compare the artificial neural network learning with the modified Levenberg-Marquardt, Levenberg-Marquardt, Newton, and stable gradient algorithms for the learning of the electric and brain signals data set.The Levenberg-Marquardt and Newton are two algorithms that use the Hessian for the artificial neural network learning. In this article, we propose a modified Levenberg-Marquardt algorithm for the artificial neural network learning containing the training and testing stages. The modified Levenberg-Marquardt algorithm is based on the Levenberg-Marquardt and Newton algorithms but with the following two differences to assure the error stability and weights boundedness: 1) there is a singularity point in the learning rates of the Levenberg-Marquardt and Newton algorithms, while there is not a singularity point in the learning rate of the modified Levenberg-Marquardt algorithm and 2) the Levenberg-Marquardt and Newton algorithms have three different learning rates, while the modified Levenberg-Marquardt algorithm only has one learning rate. The error stability and weights boundedness of the modified Levenberg-Marquardt algorithm are assured based on the Lyapunov technique. We compare the artificial neural network learning with the modified Levenberg-Marquardt, Levenberg-Marquardt, Newton, and stable gradient algorithms for the learning of the electric and brain signals data set.
Author Rubio, Jose de Jesus
Author_xml – sequence: 1
  givenname: Jose de Jesus
  orcidid: 0000-0002-2005-5979
  surname: Rubio
  fullname: Rubio, Jose de Jesus
  email: rubio.josedejesus@gmail.com
  organization: Sección de Estudios de Posgrado e Investigación, Esime Azcapotzalco, Instituto Politécnico Nacional, Ciudad de México, Mexico
BookMark eNp9kcFO3DAQhq2KqlDKC7QXS730ku3YsRP7uEIUKi3bA1upt8hJxoshG4PtgPbt8e4iDhzqy_jw_TOj-T6To9GPSMhXBjPGQP9cLZeLmxkHDrMSmOQAH8gJZxUveKnU0du__ndMzmK8g_wqkJXQn8hxyRVoLeoTcn-TTOsGl7Z0PpphG12k3tJ0i_Ta98467OkCn3BsMayLaxMeJxP6ROfD2geXbjfU-rDH5yFlvHNmoEucwr6kZx_u6SoYN7px_YV8tGaIePZaT8nfXxer86ti8efy9_l8UXSlFqlgkimFBi1oK7Rgpq1Ur4Hn3eu2N13XgsFSaWitVlWvhe4qFAiWQysEt-Up-XHo-xD844QxNRsXOxwGM6KfYsNFKSVXSkJGv79D7_wU8iEyJWWta1VJnSl-oLrgYwxom4fgNiZsGwbNzkazt9HsbDSvNnJIvQt1Lpnk_JjyPYb_R78dog4R32ZpVmd_VfkCDpuYXQ
CODEN ITNNAL
CitedBy_id crossref_primary_10_1016_j_neunet_2023_01_039
crossref_primary_10_1155_2022_8585978
crossref_primary_10_3390_polym15132813
crossref_primary_10_1007_s11664_023_10897_7
crossref_primary_10_1016_j_tws_2024_112289
crossref_primary_10_1016_j_ins_2022_09_038
crossref_primary_10_1007_s10489_021_02905_2
crossref_primary_10_1016_j_ins_2022_08_060
crossref_primary_10_1016_j_clon_2023_11_031
crossref_primary_10_1109_TFUZZ_2022_3171844
crossref_primary_10_3390_app11146269
crossref_primary_10_1016_j_matdes_2022_110880
crossref_primary_10_1016_j_engappai_2023_106812
crossref_primary_10_1109_TITS_2022_3192574
crossref_primary_10_1007_s00180_024_01457_6
crossref_primary_10_1007_s00521_021_05727_y
crossref_primary_10_1016_j_engappai_2023_106138
crossref_primary_10_1016_j_ins_2022_07_090
crossref_primary_10_1109_ACCESS_2020_3035896
crossref_primary_10_1007_s00484_024_02763_w
crossref_primary_10_1186_s12885_023_10875_6
crossref_primary_10_1007_s00521_022_08047_x
crossref_primary_10_1177_09544070221126021
crossref_primary_10_3233_JIFS_212824
crossref_primary_10_1186_s12871_023_02021_3
crossref_primary_10_1007_s11227_021_04045_3
crossref_primary_10_1016_j_future_2023_11_012
crossref_primary_10_1016_j_ins_2022_12_053
crossref_primary_10_1016_j_asoc_2021_108258
crossref_primary_10_1016_j_neucom_2022_06_118
crossref_primary_10_1080_01496395_2025_2452425
crossref_primary_10_1007_s12145_022_00869_6
crossref_primary_10_1088_1755_1315_1348_1_012046
crossref_primary_10_1016_j_engappai_2022_105132
crossref_primary_10_3390_en17225525
crossref_primary_10_1016_j_eswa_2022_118120
crossref_primary_10_1007_s11042_022_12630_8
crossref_primary_10_1016_j_ins_2023_119506
crossref_primary_10_1080_02652048_2024_2437362
crossref_primary_10_1007_s11053_024_10367_9
crossref_primary_10_1016_j_energy_2023_128470
crossref_primary_10_3390_en14227632
crossref_primary_10_1007_s12555_020_0902_y
crossref_primary_10_1016_j_eswa_2022_116982
crossref_primary_10_1155_2021_5124841
crossref_primary_10_1007_s11227_021_04269_3
crossref_primary_10_1109_JESTIE_2021_3095018
crossref_primary_10_1016_j_ins_2022_10_018
crossref_primary_10_1016_j_eswa_2022_117837
crossref_primary_10_1109_TII_2024_3413325
crossref_primary_10_1007_s40747_021_00567_8
crossref_primary_10_3390_coatings14121587
crossref_primary_10_1007_s00521_021_06253_7
crossref_primary_10_1109_TMECH_2022_3174510
crossref_primary_10_1016_j_ins_2022_11_159
crossref_primary_10_1002_srin_202200694
crossref_primary_10_3390_ma16247683
crossref_primary_10_1038_s41598_024_62629_4
crossref_primary_10_1016_j_engappai_2024_109133
crossref_primary_10_1177_09544070221133967
crossref_primary_10_1109_TED_2021_3077206
crossref_primary_10_1016_j_asoc_2024_111458
crossref_primary_10_1061_JMCEE7_MTENG_17430
crossref_primary_10_1109_TCSII_2023_3335140
crossref_primary_10_1007_s11270_025_07778_6
crossref_primary_10_1016_j_ins_2022_09_027
crossref_primary_10_1016_j_neucom_2024_127246
crossref_primary_10_1109_JSEN_2023_3277483
crossref_primary_10_1364_AO_470907
crossref_primary_10_1016_j_optlaseng_2022_107225
crossref_primary_10_1109_TIE_2022_3219106
crossref_primary_10_1007_s00521_021_06203_3
crossref_primary_10_1016_j_ins_2023_119725
crossref_primary_10_1007_s12667_023_00634_8
crossref_primary_10_1016_j_dsp_2022_103796
crossref_primary_10_1007_s10462_024_10802_6
crossref_primary_10_1111_exsy_13454
crossref_primary_10_1109_TEC_2024_3401483
crossref_primary_10_1016_j_eswa_2022_117499
crossref_primary_10_3389_fpubh_2022_892789
crossref_primary_10_1016_j_eswa_2023_121633
crossref_primary_10_1016_j_energy_2025_135396
crossref_primary_10_1177_00405175241235400
crossref_primary_10_1038_s41598_022_04943_3
crossref_primary_10_1007_s00170_024_14980_z
crossref_primary_10_1016_j_measurement_2024_116293
crossref_primary_10_1007_s13369_022_07377_1
crossref_primary_10_1364_OE_522516
crossref_primary_10_1016_j_jestch_2024_101816
crossref_primary_10_1007_s12530_021_09383_4
crossref_primary_10_1109_TFUZZ_2021_3113560
crossref_primary_10_1109_TCSII_2022_3206792
crossref_primary_10_1016_j_matcom_2024_11_012
crossref_primary_10_1007_s12555_021_0392_6
crossref_primary_10_1007_s11227_022_04439_x
crossref_primary_10_3390_math10244730
crossref_primary_10_1016_j_engappai_2024_108979
crossref_primary_10_1007_s11042_022_12502_1
crossref_primary_10_1007_s10489_022_04276_8
crossref_primary_10_1016_j_jprocont_2023_103158
crossref_primary_10_3390_metrology4020019
crossref_primary_10_1007_s11053_022_10034_x
crossref_primary_10_1016_j_ins_2023_03_143
crossref_primary_10_1016_j_saa_2024_124678
crossref_primary_10_1016_j_biortech_2025_132291
crossref_primary_10_1155_2021_6665509
crossref_primary_10_1016_j_neucom_2024_127437
crossref_primary_10_3390_polym16172423
crossref_primary_10_3390_computation9100109
crossref_primary_10_1007_s00521_021_05833_x
crossref_primary_10_1007_s00500_022_07678_5
crossref_primary_10_1016_j_isci_2024_109093
crossref_primary_10_1007_s00521_021_06169_2
crossref_primary_10_1002_rob_22144
crossref_primary_10_1007_s10489_022_04082_2
crossref_primary_10_1016_j_eswa_2022_117065
crossref_primary_10_1080_00102202_2024_2435303
crossref_primary_10_1155_2022_5106942
crossref_primary_10_3390_app14114416
crossref_primary_10_1016_j_ymssp_2024_111509
crossref_primary_10_1109_TNNLS_2021_3093700
crossref_primary_10_1038_s41598_024_58630_6
crossref_primary_10_1109_TBME_2022_3202751
crossref_primary_10_1007_s10853_024_10178_6
crossref_primary_10_1016_j_neucom_2025_129400
crossref_primary_10_1007_s00521_021_05791_4
crossref_primary_10_1016_j_jmst_2022_05_010
crossref_primary_10_1080_09540091_2022_2026295
Cites_doi 10.1016/j.neucom.2016.08.109
10.1016/j.asoc.2015.04.013
10.1016/j.jfranklin.2016.10.002
10.1016/j.jfranklin.2017.02.033
10.1007/s00521-017-3156-8
10.1162/neco.1992.4.4.494
10.1016/j.neucom.2016.09.109
10.1016/j.jfranklin.2016.03.005
10.1142/S0129065791000212
10.1007/s00521-014-1763-1
10.1016/j.ins.2017.07.020
10.3233/JIFS-169460
10.1049/ip-cta:20030204
10.1007/BF02551274
10.1109/TII.2017.2777460
10.1016/j.asoc.2015.09.051
10.1049/iet-smt.2012.0138
10.1109/ACCESS.2018.2810190
10.1016/j.asoc.2015.01.045
10.3390/app10124239
10.1016/j.ins.2017.09.059
10.1016/j.asoc.2016.05.030
10.3233/JIFS-17899
10.1007/s00500-019-03775-0
10.1016/j.neucom.2015.08.124
10.1016/j.jfranklin.2017.06.006
10.1016/j.neucom.2015.01.107
10.3233/JIFS-181014
10.1109/TNN.2010.2098481
10.1016/j.neucom.2017.09.079
10.1109/TNNLS.2018.2846775
10.1016/j.neucom.2016.08.150
10.1007/s00521-016-2667-z
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2020.3015200
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 3524
ExternalDocumentID 10_1109_TNNLS_2020_3015200
9170566
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c394t-15188eaef09f4941ab68d9025647bdaccb0ae3890bf986d949c6e4e0f20b442f3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Sat Sep 27 20:39:58 EDT 2025
Mon Jun 30 02:27:59 EDT 2025
Thu Apr 24 23:04:16 EDT 2025
Wed Oct 01 00:44:53 EDT 2025
Wed Aug 27 02:39:34 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-15188eaef09f4941ab68d9025647bdaccb0ae3890bf986d949c6e4e0f20b442f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2005-5979
PMID 32809947
PQID 2557978659
PQPubID 85436
PageCount 15
ParticipantIDs proquest_miscellaneous_2435528850
crossref_citationtrail_10_1109_TNNLS_2020_3015200
ieee_primary_9170566
proquest_journals_2557978659
crossref_primary_10_1109_TNNLS_2020_3015200
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ash (ref29) 1972
ref34
ref12
ref15
ref36
ref14
ref31
ref33
ref11
ref32
ref10
ref2
ref1
ref17
bishop (ref27) 1990
ref16
ref19
ref18
lv (ref8) 2018; 14
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref7
ref9
ref4
ref3
ref6
ref5
jang (ref30) 1996
References_xml – ident: ref33
  doi: 10.1016/j.neucom.2016.08.109
– year: 1972
  ident: ref29
  publication-title: Real Analysis and Probability
– ident: ref23
  doi: 10.1016/j.asoc.2015.04.013
– ident: ref20
  doi: 10.1016/j.jfranklin.2016.10.002
– ident: ref4
  doi: 10.1016/j.jfranklin.2017.02.033
– ident: ref9
  doi: 10.1007/s00521-017-3156-8
– ident: ref25
  doi: 10.1162/neco.1992.4.4.494
– ident: ref22
  doi: 10.1016/j.neucom.2016.09.109
– ident: ref21
  doi: 10.1016/j.jfranklin.2016.03.005
– ident: ref26
  doi: 10.1142/S0129065791000212
– ident: ref1
  doi: 10.1007/s00521-014-1763-1
– ident: ref10
  doi: 10.1016/j.ins.2017.07.020
– ident: ref18
  doi: 10.3233/JIFS-169460
– ident: ref32
  doi: 10.1049/ip-cta:20030204
– ident: ref28
  doi: 10.1007/BF02551274
– volume: 14
  start-page: 3436
  year: 2018
  ident: ref8
  article-title: Levenberg-arquardt backpropagation training of multilayer neural networks for state estimation of a safety-critical cyber-physical system
  publication-title: IEEE Trans Ind Informat
  doi: 10.1109/TII.2017.2777460
– year: 1996
  ident: ref30
  publication-title: Neuro-Fuzzy and Soft Computing
– start-page: 749
  year: 1990
  ident: ref27
  article-title: Curvature-driven smoothing in feedforward networks
  publication-title: Proc Seattle Int Joint Conf Neural Netw (IJCNN)
– ident: ref12
  doi: 10.1016/j.asoc.2015.09.051
– ident: ref36
  doi: 10.1049/iet-smt.2012.0138
– ident: ref13
  doi: 10.1109/ACCESS.2018.2810190
– ident: ref5
  doi: 10.1016/j.asoc.2015.01.045
– ident: ref35
  doi: 10.3390/app10124239
– ident: ref19
  doi: 10.1016/j.ins.2017.09.059
– ident: ref16
  doi: 10.1016/j.asoc.2016.05.030
– ident: ref7
  doi: 10.3233/JIFS-17899
– ident: ref2
  doi: 10.1007/s00500-019-03775-0
– ident: ref15
  doi: 10.1016/j.neucom.2015.08.124
– ident: ref24
  doi: 10.1016/j.jfranklin.2017.06.006
– ident: ref17
  doi: 10.1016/j.neucom.2015.01.107
– ident: ref3
  doi: 10.3233/JIFS-181014
– ident: ref31
  doi: 10.1109/TNN.2010.2098481
– ident: ref6
  doi: 10.1016/j.neucom.2017.09.079
– ident: ref11
  doi: 10.1109/TNNLS.2018.2846775
– ident: ref34
  doi: 10.1016/j.neucom.2016.08.150
– ident: ref14
  doi: 10.1007/s00521-016-2667-z
SSID ssj0000605649
Score 2.6723194
Snippet The Levenberg-Marquardt and Newton are two algorithms that use the Hessian for the artificial neural network learning. In this article, we propose a modified...
The Levenberg–Marquardt and Newton are two algorithms that use the Hessian for the artificial neural network learning. In this article, we propose a modified...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3510
SubjectTerms Algorithms
Artificial neural networks
Biological neural networks
Cost function
Error stability
Learning
Levenberg–Marquardt
Machine learning
Neural networks
Newton
Prediction algorithms
Singularities
Stability analysis
Testing
Training
weights boundedness
Title Stability Analysis of the Modified Levenberg-Marquardt Algorithm for the Artificial Neural Network Training
URI https://ieeexplore.ieee.org/document/9170566
https://www.proquest.com/docview/2557978659
https://www.proquest.com/docview/2435528850
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BB8SlvIq6La1ciVvrxes4TnxEqAhV7F5YpL1FflIEbGCbPbS_vmPnoaqtKk6JlEniaMaZb-yZbwBOSmcQd-uCMmc1FVpLakzGKLfCBYTnweSxGnk6k5c34usiX2zA56EWxnufks_8OJ6mvXxX23VcKjtVkftFyk3YLErZ1moN6ykMcblMaJdPJKc8KxZ9jQxTp_PZ7Ooao0GOQSo6QDSNHdjOeIn4KDZW-c0lpR4rf_2Yk7e52IVpP842yeR-vG7M2P78g8LxpR-yB6862EnOWjvZhw2_PIDdvqUD6Wb4Idwj-Ezpsj9IT1dC6kAQJZJp7e4CAlZyFUmfYloYnerVczSxhpw93Naru-bbI0EQnMTjq1p2ChIJQNIhZZyTedeV4jXcXHyZn1_Srh8DtZkSDZ1E8javfWAqCCUm2sjSxW1KKQrjtLWGaY8AiJmgSumUUFZ64VngzAjBQ3YEW8t66d8AybQrOA9cGGOE8h79pEQArWUIhcqNHMGkV0llO7Ly2DPjoUpBC1NV0mgVNVp1Gh3Bp-Gep5aq47_Sh1Evg2SnkhEc95qvutn8vcKwq8BoW-ZqBB-HyzgP4-aKXvp6jTKIO3Neljl7--8nv4MdHvNhUvLgMWw1q7V_j4CmMR-SJf8CbnfxEw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIkEvFCiIhQJG4gbeeh3HiY8Volpgsxe20t4iP0vVsoEle4Bfz9h5CAFCnBIpk8TRjDPf2DPfALwsnUHcrQvKnNVUaC2pMRmj3AoXEJ4Hk8dq5Gop5-fi_Tpf78HrsRbGe5-Sz_w0nqa9fNfYXVwqO1GR-0XKG3AzF0LkXbXWuKLCEJnLhHf5THLKs2I9VMkwdbJaLhcfMR7kGKaiC0TjOIBbGS8RIcXWKr84pdRl5Y9fc_I3Z4dQDSPt0kyuprvWTO2P30gc__dT7sKdHniS085S7sGe39yHw6GpA-nn-BFcIfxMCbPfyUBYQppAECeSqnGXASErWUTap5gYRiu9_RqNrCWn1xfN9rL99JkgDE7i8VUdPwWJFCDpkHLOyarvS_EAzs_ert7Mad-RgdpMiZbOIn2b1z4wFYQSM21k6eJGpRSFcdpaw7RHCMRMUKV0SigrvfAscGaE4CF7CPubZuMfAcm0KzgPXBhjhPIePaVECK1lCIXKjZzAbFBJbXu68tg147pOYQtTddJoHTVa9xqdwKvxni8dWcc_pY-iXkbJXiUTOB40X_fz-VuNgVeB8bbM1QRejJdxJsbtFb3xzQ5lEHnmvCxz9vjvT34Ot-eralEv3i0_PIEDHrNjUirhMey3251_ivCmNc-SVf8EMzn0YA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+Analysis+of+the+Modified+Levenberg-Marquardt+Algorithm+for+the+Artificial+Neural+Network+Training&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Rubio%2C+Jose+de+Jesus&rft.date=2021-08-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=32&rft.issue=8&rft.spage=3510&rft.epage=3524&rft_id=info:doi/10.1109%2FTNNLS.2020.3015200&rft_id=info%3Apmid%2F32809947&rft.externalDocID=9170566
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon