Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition
The aim of this research is to develop new intelligent prediction models for estimating the tunnel boring machine performance (TBM) by means of the rate pf penetration (PR). To obtain this aim, the Pahang-Selangor Raw Water Transfer (PSRWT) tunnel in Malaysia was investigated and the data collected...
Saved in:
| Published in | Tunnelling and underground space technology Vol. 63; pp. 29 - 43 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Elsevier Ltd
01.03.2017
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0886-7798 1878-4364 |
| DOI | 10.1016/j.tust.2016.12.009 |
Cover
| Abstract | The aim of this research is to develop new intelligent prediction models for estimating the tunnel boring machine performance (TBM) by means of the rate pf penetration (PR). To obtain this aim, the Pahang-Selangor Raw Water Transfer (PSRWT) tunnel in Malaysia was investigated and the data collected along the tunnel and generated in the laboratory via rock tests to be used for the proposed models. In order to develop relevant models, rock properties including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), rock quality designation (RQD), rock mass rating (RMR), weathering zone (WZ), and also machine parameters including thrust force (TF) and revolution per minute (RPM) were obtained and then, the dataset composed of both rock and machine parameters were established. After that, using the established database consisting of 1286 datasets, two hybrid intelligent systems namely particle swarm optimization (PSO)-artificial neural network (ANN) and imperialism competitive algorithm (ICA)-ANN and also simple ANN model were developed for predicting the TBM penetration rate. Further, developed models were compared and the best model was chosen among them. To compare the obtained results from the models, several performance indices i.e. coefficient of determination (R2), root mean square error (RMSE) and variance account for (VAF) were computed. It is found that the hybrid models including ICA-ANN and PSO-ANN having determination coefficients of 0.912 and 0.905 respectively for testing data as that of the simple ANN model are 0.666. More, the RMSE (0.034; 0.035) and VAF (90.338; 91.194) of hybrid models are also higher than these of simple ANN model (0.071; 66.148) respectively. Concluding remark is that the hybrid intelligent models are superior in comparison with simple ANN technique. |
|---|---|
| AbstractList | The aim of this research is to develop new intelligent prediction models for estimating the tunnel boring machine performance (TBM) by means of the rate pf penetration (PR). To obtain this aim, the Pahang-Selangor Raw Water Transfer (PSRWT) tunnel in Malaysia was investigated and the data collected along the tunnel and generated in the laboratory via rock tests to be used for the proposed models. In order to develop relevant models, rock properties including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), rock quality designation (RQD), rock mass rating (RMR), weathering zone (WZ), and also machine parameters including thrust force (TF) and revolution per minute (RPM) were obtained and then, the dataset composed of both rock and machine parameters were established. After that, using the established database consisting of 1286 datasets, two hybrid intelligent systems namely particle swarm optimization (PSO)-artificial neural network (ANN) and imperialism competitive algorithm (ICA)-ANN and also simple ANN model were developed for predicting the TBM penetration rate. Further, developed models were compared and the best model was chosen among them. To compare the obtained results from the models, several performance indices i.e. coefficient of determination (R2), root mean square error (RMSE) and variance account for (VAF) were computed. It is found that the hybrid models including ICA-ANN and PSO-ANN having determination coefficients of 0.912 and 0.905 respectively for testing data as that of the simple ANN model are 0.666. More, the RMSE (0.034; 0.035) and VAF (90.338; 91.194) of hybrid models are also higher than these of simple ANN model (0.071; 66.148) respectively. Concluding remark is that the hybrid intelligent models are superior in comparison with simple ANN technique The aim of this research is to develop new intelligent prediction models for estimating the tunnel boring machine performance (TBM) by means of the rate pf penetration (PR). To obtain this aim, the Pahang-Selangor Raw Water Transfer (PSRWT) tunnel in Malaysia was investigated and the data collected along the tunnel and generated in the laboratory via rock tests to be used for the proposed models. In order to develop relevant models, rock properties including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), rock quality designation (RQD), rock mass rating (RMR), weathering zone (WZ), and also machine parameters including thrust force (TF) and revolution per minute (RPM) were obtained and then, the dataset composed of both rock and machine parameters were established. After that, using the established database consisting of 1286 datasets, two hybrid intelligent systems namely particle swarm optimization (PSO)-artificial neural network (ANN) and imperialism competitive algorithm (ICA)-ANN and also simple ANN model were developed for predicting the TBM penetration rate. Further, developed models were compared and the best model was chosen among them. To compare the obtained results from the models, several performance indices i.e. coefficient of determination (R2), root mean square error (RMSE) and variance account for (VAF) were computed. It is found that the hybrid models including ICA-ANN and PSO-ANN having determination coefficients of 0.912 and 0.905 respectively for testing data as that of the simple ANN model are 0.666. More, the RMSE (0.034; 0.035) and VAF (90.338; 91.194) of hybrid models are also higher than these of simple ANN model (0.071; 66.148) respectively. Concluding remark is that the hybrid intelligent models are superior in comparison with simple ANN technique. |
| Author | Yagiz, Saffet Narita, Nobuya Armaghani, Danial Jahed Narayanasamy, Mogana Sundaram Mohamad, Edy Tonnizam |
| Author_xml | – sequence: 1 givenname: Danial Jahed surname: Armaghani fullname: Armaghani, Danial Jahed email: danialarmaghani@gmail.com organization: Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, UTM, Skudai, Johor, Malaysia – sequence: 2 givenname: Edy Tonnizam surname: Mohamad fullname: Mohamad, Edy Tonnizam email: edy@utm.my organization: Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, UTM, Skudai, Johor, Malaysia – sequence: 3 givenname: Mogana Sundaram surname: Narayanasamy fullname: Narayanasamy, Mogana Sundaram email: mogana.sundaram@aurecongroup.com organization: AURECON Pty Ltd., Brisbane, Australia – sequence: 4 givenname: Nobuya surname: Narita fullname: Narita, Nobuya email: hnarita@tepsco.com.my organization: Tokyo Electric Power Services Co., Ltd. (TEPSCO), Japan – sequence: 5 givenname: Saffet surname: Yagiz fullname: Yagiz, Saffet email: syagiz@pau.edu.tr organization: Department of Geological Engineering, Engineering Faculty, Pamukkale University, 20020 Denizli, Turkey |
| BookMark | eNp9kEtPwzAMgCM0JMbgD3CKxLklSV-JxIU3SENc4BylqQsZXVKSbBL_npRx4rCTLdufLX_HaGadBYTOKMkpofXFKo-bEHOW8pyynBBxgOaUNzwri7qcoTnhvM6aRvAjdBzCihBSMSbmSN_CFgY3rsFG7Hr88d1602FjIwyDeZ-qa9fBEHDvPB49dEZHY9_x6_UzHsFC9CoaZ3EKkDD8oXyHvdOfWDvbmal3gg57NQQ4_YsL9HZ_93rzmC1fHp5urpaZLkQZM8pYXdV9VaqmbgtB6wIoNEIR2nLWFlRBV_aKqarUpaKKtKCLtmpr3mvSC8KKBTrf7R29-9pAiHLlNt6mk5KKqiCioZynKb6b0t6F4KGX2sTfH9IrZpCUyEmpXMlJqZyUSspkUppQ9g8dvVkr_70futxBSSJsDXgZtAGrk0kPOsrOmX34DyPrk-A |
| CitedBy_id | crossref_primary_10_1007_s00366_019_00808_y crossref_primary_10_1007_s00500_018_3253_3 crossref_primary_10_3390_su13169245 crossref_primary_10_3390_su131910541 crossref_primary_10_1007_s11053_020_09770_9 crossref_primary_10_1007_s11356_022_20518_1 crossref_primary_10_1016_j_prostr_2019_08_122 crossref_primary_10_1007_s00366_018_0648_9 crossref_primary_10_1007_s10064_018_1349_8 crossref_primary_10_1016_j_prostr_2019_08_123 crossref_primary_10_1088_1755_1315_861_7_072044 crossref_primary_10_3390_app11041922 crossref_primary_10_1007_s00366_019_00701_8 crossref_primary_10_1016_j_measurement_2019_05_069 crossref_primary_10_1007_s00366_018_0625_3 crossref_primary_10_1016_j_autcon_2022_104457 crossref_primary_10_1038_s41598_022_09947_7 crossref_primary_10_3390_eng4020087 crossref_primary_10_1007_s00603_023_03582_y crossref_primary_10_1007_s40996_022_00972_0 crossref_primary_10_1016_j_tust_2022_104757 crossref_primary_10_3390_su12062229 crossref_primary_10_1016_j_autcon_2019_102928 crossref_primary_10_3390_app9040780 crossref_primary_10_1016_j_physa_2019_124046 crossref_primary_10_1016_j_petlm_2022_04_002 crossref_primary_10_1016_j_asoc_2020_106204 crossref_primary_10_3390_buildings12060772 crossref_primary_10_1016_j_tust_2024_105745 crossref_primary_10_1007_s00521_021_06217_x crossref_primary_10_1007_s40948_022_00496_x crossref_primary_10_3390_app9245458 crossref_primary_10_3390_app122211480 crossref_primary_10_1016_j_conbuildmat_2024_135369 crossref_primary_10_1016_j_eswa_2021_115490 crossref_primary_10_1080_17486025_2021_1928765 crossref_primary_10_1007_s11831_020_09524_z crossref_primary_10_1016_j_asoc_2022_108997 crossref_primary_10_1016_j_tust_2019_04_014 crossref_primary_10_1002_cpe_6157 crossref_primary_10_1016_j_ghm_2023_11_004 crossref_primary_10_1007_s11053_020_09794_1 crossref_primary_10_1016_j_measurement_2024_114563 crossref_primary_10_1016_j_undsp_2024_11_004 crossref_primary_10_1016_j_compgeo_2024_106294 crossref_primary_10_1007_s12613_019_1937_z crossref_primary_10_1007_s00366_019_00932_9 crossref_primary_10_1038_s41598_024_64276_1 crossref_primary_10_1007_s12517_020_05305_x crossref_primary_10_1007_s10706_018_0706_5 crossref_primary_10_3934_era_2023288 crossref_primary_10_1007_s10064_017_1116_2 crossref_primary_10_3390_buildings14041173 crossref_primary_10_1016_j_measurement_2021_109720 crossref_primary_10_1016_j_tust_2022_104979 crossref_primary_10_1016_j_ijrmms_2021_104988 crossref_primary_10_1007_s00521_022_07214_4 crossref_primary_10_1007_s13369_020_04787_x crossref_primary_10_1007_s42107_023_00925_6 crossref_primary_10_1016_j_undsp_2021_04_003 crossref_primary_10_1007_s00366_019_00726_z crossref_primary_10_3390_su14105938 crossref_primary_10_1080_01496395_2019_1565773 crossref_primary_10_3390_app10155187 crossref_primary_10_1016_j_gsf_2019_12_003 crossref_primary_10_1016_j_petrol_2020_108125 crossref_primary_10_1007_s11053_019_09611_4 crossref_primary_10_1007_s00366_019_00752_x crossref_primary_10_1007_s00603_022_02868_x crossref_primary_10_1007_s10706_022_02178_7 crossref_primary_10_3390_app10061904 crossref_primary_10_1007_s00366_020_01159_9 crossref_primary_10_3390_app10072364 crossref_primary_10_1007_s11440_022_01596_4 crossref_primary_10_1007_s12665_019_8163_x crossref_primary_10_1016_j_future_2021_01_014 crossref_primary_10_5004_dwt_2021_27386 crossref_primary_10_1007_s11440_022_01498_5 crossref_primary_10_1088_1742_6596_2185_1_012062 crossref_primary_10_1007_s10064_022_03047_6 crossref_primary_10_1016_j_aei_2020_101097 crossref_primary_10_1007_s10064_019_01538_7 crossref_primary_10_3390_app10041486 crossref_primary_10_3390_math11204237 crossref_primary_10_1007_s11440_021_01228_3 crossref_primary_10_3390_ma15134582 crossref_primary_10_3390_math11010106 crossref_primary_10_1016_j_tust_2020_103595 crossref_primary_10_3390_ma15155287 crossref_primary_10_1007_s00366_019_00707_2 crossref_primary_10_1016_j_tust_2020_103593 crossref_primary_10_1016_j_jrmge_2021_09_004 crossref_primary_10_1016_j_trgeo_2022_100895 crossref_primary_10_1007_s10064_023_03095_6 crossref_primary_10_3390_math10234523 crossref_primary_10_1080_0305215X_2021_1919100 crossref_primary_10_1007_s00366_020_01225_2 crossref_primary_10_1016_j_engappai_2020_104015 crossref_primary_10_1038_s41598_023_40903_1 crossref_primary_10_1007_s42452_020_03767_y crossref_primary_10_3390_buildings12070919 crossref_primary_10_1002_minf_202200026 crossref_primary_10_32604_cmes_2023_029938 crossref_primary_10_1016_j_autcon_2022_104386 crossref_primary_10_1016_j_dche_2023_100128 crossref_primary_10_1016_j_scp_2024_101894 crossref_primary_10_3233_JIFS_232989 crossref_primary_10_1007_s41062_021_00579_w crossref_primary_10_1038_s41598_023_49033_0 crossref_primary_10_1016_j_tust_2022_104728 crossref_primary_10_1016_j_tust_2022_104605 crossref_primary_10_1007_s00366_017_0526_x crossref_primary_10_3390_app9245372 crossref_primary_10_3390_ma15093309 crossref_primary_10_1007_s13762_022_04170_3 crossref_primary_10_1007_s13369_023_08360_0 crossref_primary_10_1007_s00366_017_0541_y crossref_primary_10_1016_S1003_6326_21_65615_7 crossref_primary_10_33271_mining14_02_075 crossref_primary_10_2174_18748368_v16_2201120 crossref_primary_10_3390_app132011435 crossref_primary_10_1007_s10706_022_02086_w crossref_primary_10_3390_app10020472 crossref_primary_10_1016_j_tust_2023_105315 crossref_primary_10_1007_s12205_022_0128_z crossref_primary_10_1007_s11053_019_09470_z crossref_primary_10_1007_s00603_021_02723_5 crossref_primary_10_2174_18748368_v16_e2201120 crossref_primary_10_2174_1874836802014010298 crossref_primary_10_1007_s10706_017_0380_z crossref_primary_10_3389_feart_2024_1518844 crossref_primary_10_1016_j_cmpb_2019_105016 crossref_primary_10_1007_s10064_021_02527_5 crossref_primary_10_1016_j_soildyn_2020_106390 crossref_primary_10_1007_s11053_021_09899_1 crossref_primary_10_1016_j_petrol_2018_12_013 crossref_primary_10_1109_ACCESS_2018_2821190 crossref_primary_10_1016_j_trgeo_2023_101169 crossref_primary_10_1007_s10706_020_01213_9 crossref_primary_10_1007_s10462_024_10772_9 crossref_primary_10_1016_j_compgeo_2023_105557 crossref_primary_10_1016_j_jrmge_2019_01_002 crossref_primary_10_3390_app13169459 crossref_primary_10_1007_s00366_019_00711_6 crossref_primary_10_1016_j_autcon_2019_102860 crossref_primary_10_1038_s41598_024_79588_5 crossref_primary_10_2113_2021_2467126 crossref_primary_10_1038_s41598_022_19301_6 crossref_primary_10_3389_feart_2025_1542291 crossref_primary_10_1007_s00500_021_06005_8 crossref_primary_10_1016_j_asoc_2020_106904 crossref_primary_10_1007_s12517_022_09665_4 crossref_primary_10_3390_app10051761 crossref_primary_10_3390_ma12223708 crossref_primary_10_1177_1464419320907432 crossref_primary_10_1016_j_tust_2020_103383 crossref_primary_10_32604_cmes_2022_017792 crossref_primary_10_32604_cmes_2024_052210 crossref_primary_10_1038_s41598_024_65351_3 crossref_primary_10_1016_j_measurement_2020_108127 crossref_primary_10_1007_s00366_019_00855_5 crossref_primary_10_1007_s00366_018_0642_2 crossref_primary_10_1007_s12665_024_11539_9 crossref_primary_10_3390_app9142788 crossref_primary_10_1007_s13369_019_04134_9 crossref_primary_10_1007_s11053_020_09697_1 crossref_primary_10_1016_j_autcon_2018_03_030 crossref_primary_10_1016_j_undsp_2022_11_002 crossref_primary_10_3390_app9132630 crossref_primary_10_3390_su142013420 crossref_primary_10_1007_s00603_020_02226_9 crossref_primary_10_1016_j_conbuildmat_2021_124450 crossref_primary_10_1016_j_kscej_2024_100077 crossref_primary_10_1016_j_earscirev_2022_103991 crossref_primary_10_3390_app9183715 crossref_primary_10_1016_j_trgeo_2020_100446 crossref_primary_10_1142_S0218001418590188 crossref_primary_10_1007_s11440_021_01319_1 crossref_primary_10_1016_j_gsf_2020_09_020 crossref_primary_10_1016_j_applthermaleng_2025_125604 crossref_primary_10_1007_s00521_021_06600_8 crossref_primary_10_1016_j_eswa_2022_118303 crossref_primary_10_3390_math10244637 crossref_primary_10_1016_j_measurement_2021_109545 crossref_primary_10_3390_app10175734 crossref_primary_10_3390_en15082907 crossref_primary_10_1007_s10921_020_00725_x crossref_primary_10_1007_s00366_019_00849_3 crossref_primary_10_3390_jmse9010071 crossref_primary_10_1680_jsmic_20_00011 crossref_primary_10_1016_j_advengsoft_2021_103009 crossref_primary_10_1007_s00521_020_04803_z crossref_primary_10_1016_j_flowmeasinst_2021_102108 crossref_primary_10_1007_s10462_024_10836_w crossref_primary_10_1080_17499518_2024_2422493 crossref_primary_10_1007_s10706_023_02516_3 crossref_primary_10_1007_s00366_019_00754_9 crossref_primary_10_1016_j_tust_2025_106496 crossref_primary_10_1016_j_jrmge_2021_05_010 crossref_primary_10_1007_s10064_019_01626_8 crossref_primary_10_1016_j_tust_2022_104497 crossref_primary_10_1007_s13369_020_04683_4 crossref_primary_10_1016_j_eng_2024_11_037 crossref_primary_10_1016_j_undsp_2020_01_003 crossref_primary_10_17491_jgsi_2025_174077 crossref_primary_10_1061_IJGNAI_GMENG_7738 crossref_primary_10_1016_j_cie_2022_108251 crossref_primary_10_1016_j_petrol_2019_02_045 crossref_primary_10_1007_s00366_017_0520_3 crossref_primary_10_1016_j_trgeo_2021_100627 crossref_primary_10_1016_j_conbuildmat_2022_127668 crossref_primary_10_1016_j_tust_2021_104183 crossref_primary_10_1007_s12145_021_00736_w crossref_primary_10_1016_j_heliyon_2024_e33174 crossref_primary_10_1016_j_cemconres_2020_106167 crossref_primary_10_3390_app12104854 crossref_primary_10_1007_s00366_018_0600_z crossref_primary_10_1007_s11053_019_09519_z crossref_primary_10_1061_AJRUA6_RUENG_1451 crossref_primary_10_1007_s12665_022_10436_3 crossref_primary_10_3390_app10051691 crossref_primary_10_1016_j_undsp_2020_05_008 crossref_primary_10_1007_s12145_019_00381_4 crossref_primary_10_1016_j_undsp_2020_05_005 crossref_primary_10_1016_j_tust_2018_05_023 crossref_primary_10_1016_j_undsp_2020_05_002 crossref_primary_10_3390_su132212797 crossref_primary_10_46464_tdad_1033302 crossref_primary_10_1007_s11709_022_0908_z crossref_primary_10_1007_s11053_020_09714_3 crossref_primary_10_1093_jcde_qwab004 crossref_primary_10_3389_feart_2023_1135948 crossref_primary_10_1016_j_tust_2024_105906 crossref_primary_10_1007_s00366_018_0596_4 crossref_primary_10_1007_s10706_017_0356_z crossref_primary_10_1016_j_engappai_2020_103783 crossref_primary_10_1007_s00366_020_01241_2 crossref_primary_10_3390_app12105019 crossref_primary_10_1016_j_tust_2020_103620 crossref_primary_10_1007_s11053_020_09676_6 crossref_primary_10_1016_j_undsp_2019_12_001 crossref_primary_10_1007_s00366_019_00770_9 crossref_primary_10_1016_j_measurement_2019_106870 crossref_primary_10_1016_j_tust_2021_104054 crossref_primary_10_1002_suco_202200023 crossref_primary_10_1007_s11709_022_0823_3 crossref_primary_10_3390_ma15103500 crossref_primary_10_1007_s42107_022_00495_z crossref_primary_10_1109_ACCESS_2020_3041032 crossref_primary_10_3390_app9214554 crossref_primary_10_1016_j_cscm_2022_e01323 crossref_primary_10_1016_j_conbuildmat_2022_128737 crossref_primary_10_3390_app142311394 crossref_primary_10_1007_s11053_019_09532_2 crossref_primary_10_3846_jcem_2021_15853 crossref_primary_10_1016_j_cscm_2023_e01985 crossref_primary_10_1016_j_geoen_2024_213247 crossref_primary_10_2174_1874836802014010237 crossref_primary_10_3390_electronics11071045 crossref_primary_10_1007_s11053_019_09605_2 crossref_primary_10_1016_j_jrmge_2023_02_014 crossref_primary_10_1007_s12205_023_1286_3 crossref_primary_10_1016_j_engappai_2024_108985 crossref_primary_10_1016_j_jer_2024_05_009 crossref_primary_10_1016_j_asoc_2023_111174 crossref_primary_10_1155_2022_6156210 crossref_primary_10_1016_j_trgeo_2021_100652 crossref_primary_10_1007_s10706_017_0432_4 crossref_primary_10_1016_j_trgeo_2020_100497 crossref_primary_10_1016_j_iot_2023_100853 crossref_primary_10_1016_j_trgeo_2020_100372 crossref_primary_10_1016_j_jclepro_2023_138673 crossref_primary_10_3390_mining2040034 crossref_primary_10_1007_s11600_024_01320_8 crossref_primary_10_1016_j_tust_2023_105249 crossref_primary_10_1080_10916466_2021_2003386 crossref_primary_10_1038_s41598_022_08864_z crossref_primary_10_3390_math10193432 crossref_primary_10_1177_16878132231159971 crossref_primary_10_1016_j_tust_2020_103520 crossref_primary_10_1016_j_trgeo_2022_100819 crossref_primary_10_3390_app13052878 crossref_primary_10_1007_s00366_018_0672_9 crossref_primary_10_1016_j_tust_2020_103636 crossref_primary_10_1016_j_jrmge_2021_06_015 crossref_primary_10_1007_s10712_021_09638_4 crossref_primary_10_1016_j_tust_2022_104448 crossref_primary_10_1016_j_jrmge_2023_06_015 crossref_primary_10_1177_1687814021998831 crossref_primary_10_1016_j_jrmge_2023_06_010 crossref_primary_10_1109_ACCESS_2019_2952649 crossref_primary_10_1007_s00603_025_04451_6 crossref_primary_10_3390_math10203875 crossref_primary_10_1002_dug2_12082 crossref_primary_10_1007_s00366_020_01217_2 crossref_primary_10_1016_j_cscm_2024_e04053 crossref_primary_10_1016_j_measurement_2018_05_049 crossref_primary_10_1007_s00366_020_00997_x crossref_primary_10_1007_s12517_021_08319_1 crossref_primary_10_1038_s41598_020_76569_2 crossref_primary_10_1155_2019_7198962 crossref_primary_10_1007_s12517_024_11878_8 crossref_primary_10_3390_ma15124193 crossref_primary_10_1155_2021_2621931 crossref_primary_10_1007_s42107_023_00699_x crossref_primary_10_1007_s41062_019_0234_z crossref_primary_10_1016_j_cemconres_2021_106449 crossref_primary_10_1007_s00366_019_00715_2 crossref_primary_10_1016_j_rineng_2024_102437 crossref_primary_10_32604_cmes_2023_025993 crossref_primary_10_3389_feart_2023_1105610 crossref_primary_10_1016_j_eswa_2024_123701 crossref_primary_10_1007_s12665_018_7293_x crossref_primary_10_1109_ACCESS_2020_3004995 crossref_primary_10_3390_su141911944 crossref_primary_10_1016_j_measurement_2019_107244 crossref_primary_10_5004_dwt_2021_27184 crossref_primary_10_1016_j_measurement_2019_06_007 crossref_primary_10_1016_j_conbuildmat_2025_140628 crossref_primary_10_1016_j_ijrmms_2024_105728 crossref_primary_10_1007_s00366_017_0545_7 crossref_primary_10_1108_MLAG_06_2024_0004 crossref_primary_10_1007_s40891_021_00299_2 |
| Cites_doi | 10.1016/j.tust.2007.04.011 10.1007/s11721-007-0002-0 10.1016/j.ijrmms.2011.02.013 10.1007/s12517-011-0415-3 10.1016/j.tust.2008.12.007 10.1007/BF02832128 10.1016/S0886-7798(00)00055-9 10.1016/j.ijrmms.2005.06.007 10.1016/j.measurement.2014.08.007 10.1016/S1365-1609(02)00069-2 10.1504/IJMME.2013.053172 10.1016/j.neucom.2003.08.006 10.1007/s10064-013-0497-0 10.1016/j.ijrmms.2008.03.003 10.1109/ICNN.1995.488968 10.1061/(ASCE)CP.1943-5487.0000421 10.1016/0925-2312(95)00039-9 10.1016/0148-9062(82)91151-2 10.1109/IAS.2006.256639 10.1016/j.sandf.2012.01.002 10.1016/0893-6080(89)90020-8 10.1016/S1674-5264(09)60271-4 10.1016/j.asoc.2012.10.009 10.1007/s12517-013-1174-0 10.1016/j.measurement.2014.09.075 10.1016/j.solener.2012.08.005 10.1016/0148-9062(75)90547-1 10.1016/0148-9062(85)93229-2 10.1007/s00366-015-0410-5 10.1016/j.enggeo.2007.10.009 10.1016/j.tust.2004.02.128 10.1016/S0148-9062(98)00173-9 10.1007/BF02478259 10.1109/IJCNN.1991.155275 10.1109/TPWRS.2008.2008606 10.1016/j.measurement.2013.04.077 10.1016/j.tust.2012.02.012 10.1109/69.494162 10.1016/j.neucom.2008.02.017 10.1016/j.engappai.2009.03.007 10.1080/014311697218719 10.1108/17563780810893446 10.1016/j.ijrmms.2014.09.012 10.1016/j.enggeo.2007.09.003 10.1109/CEC.2007.4425083 10.1016/S0167-9031(86)90250-1 10.1007/s12205-012-1452-5 10.1016/j.fuel.2012.05.050 10.1109/4235.985692 10.1007/s12665-012-1783-z 10.1016/j.ijrmms.2015.09.019 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd Copyright Elsevier BV Mar 2017 |
| Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Copyright Elsevier BV Mar 2017 |
| DBID | AAYXX CITATION 8FD FR3 KR7 |
| DOI | 10.1016/j.tust.2016.12.009 |
| DatabaseName | CrossRef Technology Research Database Engineering Research Database Civil Engineering Abstracts |
| DatabaseTitle | CrossRef Technology Research Database Civil Engineering Abstracts Engineering Research Database |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1878-4364 |
| EndPage | 43 |
| ExternalDocumentID | 10_1016_j_tust_2016_12_009 S0886779815303473 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACNNM ACRLP ACSBN ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W JJJVA KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEP SES SET SEW SPC SPCBC SSE SST SSZ T5K WUQ ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 8FD AFXIZ AGCQF AGRNS FR3 KR7 SSH |
| ID | FETCH-LOGICAL-c394t-122656f54a76b39163e1e79a01b82b31aed4fa2a54c4a1a0bec3b5b68fc0f9023 |
| IEDL.DBID | .~1 |
| ISSN | 0886-7798 |
| IngestDate | Mon Jul 14 07:41:31 EDT 2025 Thu Apr 24 23:09:30 EDT 2025 Wed Oct 01 05:55:49 EDT 2025 Fri Feb 23 02:15:46 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Penetration rate Tunnel boring machine Artificial neural network Particle swarm optimization Imperialism competitive algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c394t-122656f54a76b39163e1e79a01b82b31aed4fa2a54c4a1a0bec3b5b68fc0f9023 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1953097188 |
| PQPubID | 2045384 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_1953097188 crossref_citationtrail_10_1016_j_tust_2016_12_009 crossref_primary_10_1016_j_tust_2016_12_009 elsevier_sciencedirect_doi_10_1016_j_tust_2016_12_009 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | March 2017 2017-03-00 20170301 |
| PublicationDateYYYYMMDD | 2017-03-01 |
| PublicationDate_xml | – month: 03 year: 2017 text: March 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Tunnelling and underground space technology |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Simoes, M.G., Kim, T., 2006. Fuzzy modeling approaches for the prediction of machine utilization in hard rock tunnel boring machines. In: Industry Applications Conference, 2006. 41st IAS Annual Meeting. Conference Record of the 2006 IEEE. IEEE, pp. 947–954. Yagiz, Gokceoglu, Sezer, Iplikci (b0430) 2009; 22 Maulenkamp, Grima (b0245) 1999; 36 Sato, Gong, Itakura (b0355) 1991 Priddy, Keller (b0315) 2005 Hajihassani, Jahed Armaghani, Marto, Tonnizam Mohamad (b0135) 2014 Hecht-Nielsen, R., 1987. Kolmogorov’s mapping neural network existence theorem. In: Proceedings of the First IEEE International Conference on Neural Networks, San Diego, CA, USA, pp. 11–14. Ceryan, Okkan, Kesimal (b0065) 2012; 68 Mogana, S.N., 2007. The effects of ground conditions on TBM performance in tunnel excavation – a case history. In: Proceedings of the 10th Australia New Zealand Conference on Geomechanics, pp. 442–447. Azit, Ismail (b0030) 2014 Clerc, Kennedy (b0075) 2002; 6 Sonmez, Gokceoglu, Nefeslioglu, Kayabasi (b0380) 2006; 43 Nelson, Illingworth (b0285) 1990 Masters (b0240) 1994 Jahed Armaghani, Mohamad, Hajihassanic, Yagiz, Motaghedie (b0185) 2016 Lee, Y., Oh, S.H., Kim, M.W., 1991. The effect of initial weights on premature saturation in back-propagation learning. In: Proceedings of the International Joint Conference on Neural Networks, pp. 765–770. Eftekhari, M., Baghbanan, A., Bayati, M., 2010. Predicting penetration rate of a tunnel boring machine using artificial neural network. In: ISRM International Symposium-6th Asian Rock Mechanics Symposium. International Society for Rock Mechanics, pp. 1–7. Nordin, Z., 2014. Planning and construction of Pahang-Selangor raw water transfer (PSRWT) tunnel. In: Seminar on Tunnels and Underground Structures, 2–4 September, Malaysia. Bashir, El-Hawary (b0045) 2009; 24 Poli, Kennedy, Blackwell (b0310) 2007; 1 Roxborough, Phillips (b0335) 1975; 12 Ghasemi, Yagiz, Ataei (b0100) 2014; 73 Demuth, H., Beale, M., Hagan, M., 2009. MATLAB Version 7.14.0.739; Neural Network Toolbox for Use with Matlab. The Mathworks. Farmer, Glossop (b0090) 1980; 12 Looney (b0225) 1996; 8 Bansal, Singh, Saraswat, Verma, Jadon, Abraham (b0040) 2011 Sanio (b0345) 1985; 22 Yavari, Mahdavi (b0450) 2005 Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: IEEE International Conference on Neural Networks. Perth, Australia, pp. 1942–1948. Snowdon, Ryley, Temporal (b0365) 1982; 19 Yagiz (b0425) 2008; 23 Zurada (b0460) 1992; vol. 8 Sonmez, Gokceoglu (b0385) 2008; 97 Yagiz, S., 2002. Development of Rock Fracture and Brittleness Indices to Quantify the Effects of Rock Mass Features and Toughness in the CSM Model Basic Penetration for Hard Rock Tunneling Machines (Ph.D. Thesis). Department of Mining and Earth Systems Engineering, Colorado School of Mines, Golden, Colorado, USA, p. 289. Hajihassani (b0130) 2013 Kaastra, Boyd (b0190) 1996; 10 Zorlu, Gokceoglu, Ocakoglu, Nefeslioglu, Acikalin (b0455) 2008; 96 Gordan, Jahed Armaghani, Hajihassani, Monjezi (b0120) 2015 Gholamnejad, Tayarani (b0110) 2010; 20 Bamford, W.F., 1984. Rock test indices are being successfully correlated with tunnel boring machine performance. In: Proceedings of the 5th Australian Tunneling Conference, Melbourne, pp. 9–22. Wang (b0405) 1994 Graham, P.C., 1976. Rock exploration for machine manufacturers. In: Bieniawski, Z.T. (Ed.), Exploration for Rock Engineering. Johannesburg, Balkema, pp. 173–80. Hughes (b0155) 1986; 3 Khamesi, Torabi, Mirzaei-Nasirabad, Ghadiri (b0205) 2015; 29 Ch, Mathur (b0070) 2012; 16 Hornik, Stinchcombe, White (b0150) 1989; 2 Mahdevari, Shahriar, Yagiz, Shirazi (b0230) 2014; 72 Salimi, Esmaeili (b0340) 2013; 4 Yang (b0445) 2010 Atashpaz-Gargari, Hashemzadeh, Rajabioun, Lucas (b0025) 2008; 1 Farrokh, Rostami, Laughton (b0095) 2012; 30 Swingler (b0390) 1996 Atashpaz-Gargari, E., Lucas, C., 2007. Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: IEEE Congress on Evolutionary Computation, pp. 4661–4667. Ahmadi, Shadizadeh (b0010) 2012; 102 Jahed Armaghani, Hajihassani, Mohamad, Marto, Noorani (b0170) 2014; 7 Gong, Zhao (b0115) 2009; 46 Jahed Armaghani, Hasanipanah, Tonnizam Mohamad (b0165) 2015 Lin, Hsieh (b0215) 2009; 72 Benardos, Kaliampakos (b0050) 2004; 19 Ahmadi, Ebadi, Shokrollahi, Majidi (b0005) 2013; 13 Gholami, M., Shahriar, K., Sharifzadeh, M., Hamidi, J.K., 2012. A comparison of artificial neural network and multiple regression analysis in TBM performance prediction. In: ISRM Regional Symposium-7th Asian Rock Mechanics Symposium. International Society for Rock Mechanics. Marto, Hajihassani, Jahed Armaghani, Tonnizam Mohamad, Makhtar (b0235) 2014 McCulloch Warren, Pitts (b0250) 1943; 5 Yagiz, Karahan (b0435) 2011; 48 Liou, Wang, Huang (b0220) 2009; 15 Bruines, P., 1998. Neuro-fuzzy modeling of TBM performance with emphasis on the penetration rate. Memoirs of the Centre of Engineering Geology in the Netherlands, Delft, no. 173, 202, pp. 1386–5072. Momeni, Armaghani, Hajihassani, Amin (b0280) 2015; 60 Oraee, Khorami, Hosseini (b0295) 2012 Ornek, Laman, Demir, Yildiz (b0300) 2012; 52 Wu, Qian, Gong (b0415) 2006; 11 Brownlee (b0055) 2011 Jahed Armaghani, Raja, Faizi, Rashid (b0180) 2015 Wang, Tang, Tamura, Ishii, Sun (b0410) 2004; 56 Momeni, Nazir, Jahed Armaghani, Maizir (b0275) 2014; 57 Mogana, S.N., Rafek, A.G., Komoo, I., 1998. The influence of rock mass properties in the assessment of TBM performance. In: Moore, D., Hungr, O. (Eds.), 8th IAEG Congr, Vancouver, Balkema, Rotterdam, pp. 3553–3559. Haykin (b0140) 1999 Mikaeil, Naghadehi, Sereshki (b0255) 2009; 24 Mohandes (b0260) 2012; 86 Shao, Li, Su (b0360) 2013 Taghavifar, Mardani, Taghavifar (b0395) 2013; 46 Simpson (b0375) 1990 Jahed Armaghani, Tonnizam Mohamad, Momeni, Narayanasamy, Mohd Amin (b0175) 2014 ISRM (b0160) 2007 Yagiz, Karahan (b0440) 2015; 80 Alvarez Grima, Bruines, Verhoef (b0015) 2000; 15 Rostami, J., Ozdemir, L., 1993. A new model for performance prediction of hard rock TBM. In: Bowerman, L.D. et al. (Eds.), Proceedings of RETC, Boston, MA, pp. 793–809. Rostami (b0330) 1997 Torabi, Shirazi, Hajali, Monjezi (b0400) 2013; 6 Kanellopoulas, Wilkinson (b0195) 1997; 18 Sapigni, Berti, Behtaz, Busillo, Cardone (b0350) 2002; 39 Ripley (b0320) 1993 Paola (b0305) 1994 Ch (10.1016/j.tust.2016.12.009_b0070) 2012; 16 Yavari (10.1016/j.tust.2016.12.009_b0450) 2005 Sapigni (10.1016/j.tust.2016.12.009_b0350) 2002; 39 Ahmadi (10.1016/j.tust.2016.12.009_b0010) 2012; 102 Ceryan (10.1016/j.tust.2016.12.009_b0065) 2012; 68 10.1016/j.tust.2016.12.009_b0210 Kaastra (10.1016/j.tust.2016.12.009_b0190) 1996; 10 Looney (10.1016/j.tust.2016.12.009_b0225) 1996; 8 10.1016/j.tust.2016.12.009_b0370 Marto (10.1016/j.tust.2016.12.009_b0235) 2014 10.1016/j.tust.2016.12.009_b0290 Salimi (10.1016/j.tust.2016.12.009_b0340) 2013; 4 Snowdon (10.1016/j.tust.2016.12.009_b0365) 1982; 19 Wu (10.1016/j.tust.2016.12.009_b0415) 2006; 11 Gong (10.1016/j.tust.2016.12.009_b0115) 2009; 46 Maulenkamp (10.1016/j.tust.2016.12.009_b0245) 1999; 36 Sonmez (10.1016/j.tust.2016.12.009_b0385) 2008; 97 Yagiz (10.1016/j.tust.2016.12.009_b0430) 2009; 22 Gholamnejad (10.1016/j.tust.2016.12.009_b0110) 2010; 20 Simpson (10.1016/j.tust.2016.12.009_b0375) 1990 Hornik (10.1016/j.tust.2016.12.009_b0150) 1989; 2 Shao (10.1016/j.tust.2016.12.009_b0360) 2013 Ornek (10.1016/j.tust.2016.12.009_b0300) 2012; 52 Zurada (10.1016/j.tust.2016.12.009_b0460) 1992; vol. 8 Mikaeil (10.1016/j.tust.2016.12.009_b0255) 2009; 24 Haykin (10.1016/j.tust.2016.12.009_b0140) 1999 Wang (10.1016/j.tust.2016.12.009_b0405) 1994 Sonmez (10.1016/j.tust.2016.12.009_b0380) 2006; 43 Yagiz (10.1016/j.tust.2016.12.009_b0425) 2008; 23 Roxborough (10.1016/j.tust.2016.12.009_b0335) 1975; 12 Ripley (10.1016/j.tust.2016.12.009_b0320) 1993 Wang (10.1016/j.tust.2016.12.009_b0410) 2004; 56 Mahdevari (10.1016/j.tust.2016.12.009_b0230) 2014; 72 10.1016/j.tust.2016.12.009_b0085 Mohandes (10.1016/j.tust.2016.12.009_b0260) 2012; 86 Hajihassani (10.1016/j.tust.2016.12.009_b0135) 2014 Liou (10.1016/j.tust.2016.12.009_b0220) 2009; 15 Torabi (10.1016/j.tust.2016.12.009_b0400) 2013; 6 10.1016/j.tust.2016.12.009_b0080 Jahed Armaghani (10.1016/j.tust.2016.12.009_b0175) 2014 Priddy (10.1016/j.tust.2016.12.009_b0315) 2005 Kanellopoulas (10.1016/j.tust.2016.12.009_b0195) 1997; 18 Swingler (10.1016/j.tust.2016.12.009_b0390) 1996 Yang (10.1016/j.tust.2016.12.009_b0445) 2010 Gordan (10.1016/j.tust.2016.12.009_b0120) 2015 Clerc (10.1016/j.tust.2016.12.009_b0075) 2002; 6 Jahed Armaghani (10.1016/j.tust.2016.12.009_b0170) 2014; 7 Alvarez Grima (10.1016/j.tust.2016.12.009_b0015) 2000; 15 McCulloch Warren (10.1016/j.tust.2016.12.009_b0250) 1943; 5 10.1016/j.tust.2016.12.009_b0325 Zorlu (10.1016/j.tust.2016.12.009_b0455) 2008; 96 Atashpaz-Gargari (10.1016/j.tust.2016.12.009_b0025) 2008; 1 10.1016/j.tust.2016.12.009_b0200 10.1016/j.tust.2016.12.009_b0125 10.1016/j.tust.2016.12.009_b0270 Momeni (10.1016/j.tust.2016.12.009_b0280) 2015; 60 Nelson (10.1016/j.tust.2016.12.009_b0285) 1990 Ahmadi (10.1016/j.tust.2016.12.009_b0005) 2013; 13 Jahed Armaghani (10.1016/j.tust.2016.12.009_b0180) 2015 Bansal (10.1016/j.tust.2016.12.009_b0040) 2011 Paola (10.1016/j.tust.2016.12.009_b0305) 1994 Oraee (10.1016/j.tust.2016.12.009_b0295) 2012 Sanio (10.1016/j.tust.2016.12.009_b0345) 1985; 22 10.1016/j.tust.2016.12.009_b0035 Poli (10.1016/j.tust.2016.12.009_b0310) 2007; 1 Taghavifar (10.1016/j.tust.2016.12.009_b0395) 2013; 46 10.1016/j.tust.2016.12.009_b0020 Azit (10.1016/j.tust.2016.12.009_b0030) 2014 Hajihassani (10.1016/j.tust.2016.12.009_b0130) 2013 Rostami (10.1016/j.tust.2016.12.009_b0330) 1997 Khamesi (10.1016/j.tust.2016.12.009_b0205) 2015; 29 10.1016/j.tust.2016.12.009_b0265 10.1016/j.tust.2016.12.009_b0060 Brownlee (10.1016/j.tust.2016.12.009_b0055) 2011 Benardos (10.1016/j.tust.2016.12.009_b0050) 2004; 19 Momeni (10.1016/j.tust.2016.12.009_b0275) 2014; 57 Jahed Armaghani (10.1016/j.tust.2016.12.009_b0165) 2015 Sato (10.1016/j.tust.2016.12.009_b0355) 1991 Bashir (10.1016/j.tust.2016.12.009_b0045) 2009; 24 Jahed Armaghani (10.1016/j.tust.2016.12.009_b0185) 2016 Ghasemi (10.1016/j.tust.2016.12.009_b0100) 2014; 73 Farrokh (10.1016/j.tust.2016.12.009_b0095) 2012; 30 Lin (10.1016/j.tust.2016.12.009_b0215) 2009; 72 ISRM (10.1016/j.tust.2016.12.009_b0160) 2007 10.1016/j.tust.2016.12.009_b0105 Masters (10.1016/j.tust.2016.12.009_b0240) 1994 Yagiz (10.1016/j.tust.2016.12.009_b0440) 2015; 80 10.1016/j.tust.2016.12.009_b0145 10.1016/j.tust.2016.12.009_b0420 Farmer (10.1016/j.tust.2016.12.009_b0090) 1980; 12 Yagiz (10.1016/j.tust.2016.12.009_b0435) 2011; 48 Hughes (10.1016/j.tust.2016.12.009_b0155) 1986; 3 |
| References_xml | – year: 2011 ident: b0055 article-title: Clever Algorithms: Nature-Inspired Programming Recipes – year: 1990 ident: b0285 article-title: A Practical Guide to Neural Nets – volume: 73 start-page: 23 year: 2014 end-page: 35 ident: b0100 article-title: Predicting penetration rate of hard rock tunnel boring machine using fuzzy logic publication-title: Bull. Eng. Geol. Environ. – start-page: 409 year: 2013 end-page: 416 ident: b0360 article-title: Performance prediction of hard rock TBM based on extreme learning machine publication-title: Intelligent Robotics and Applications – volume: 23 start-page: 326 year: 2008 end-page: 339 ident: b0425 article-title: Utilizing rock mass properties for predicting TBM performance in hard rock conditions publication-title: Tunnell. Undergr. Space Technol. – volume: 72 start-page: 1121 year: 2009 end-page: 1130 ident: b0215 article-title: Classification of mental task from EEG data using neural networks based on particle swarm optimization publication-title: Neurocomputing – year: 1996 ident: b0390 article-title: Applying Neural Networks: A Practical Guide – year: 2014 ident: b0175 article-title: An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young’s modulus: a study on Main Range granite publication-title: Bull. Eng. Geol. Environ. – volume: 22 start-page: 153 year: 1985 end-page: 161 ident: b0345 article-title: Prediction of the performance of disc cutters in anisotropy rocks publication-title: Int. J. Rock Mech. Min. Sci., Abstr. – volume: 11 start-page: 385 year: 2006 end-page: 398 ident: b0415 article-title: The time and cost prediction of tunnel boring machine in tunneling publication-title: Wuhan Univ. J. Natural Sci. – volume: 56 start-page: 455 year: 2004 end-page: 460 ident: b0410 article-title: An improved backpropagation algorithm to avoid the local minima problem publication-title: Neurocomputing – volume: vol. 8 year: 1992 ident: b0460 publication-title: Introduction to Artificial Neural Systems – volume: 1 start-page: 33 year: 2007 end-page: 57 ident: b0310 article-title: Particle swarm optimization an overview publication-title: Swarm Intell. – volume: 39 start-page: 771 year: 2002 end-page: 788 ident: b0350 article-title: TBM performance estimation using rock mass classification publication-title: Int. J. Rock Mech. Min. Sci. Geomech. Abstr. – year: 2016 ident: b0185 article-title: Application of several non-linear prediction tools for estimating uniaxial compressive strength of granitic rocks and comparison of their performances publication-title: Eng. Comput. – volume: 80 start-page: 308 year: 2015 end-page: 315 ident: b0440 article-title: Application of various optimization techniques and comparison of their performances for predicting TBM penetration rate in rock mass publication-title: Int. J. Rock Mech. Min. Sci. – year: 1994 ident: b0240 article-title: Practical Neural Network Recipes in C++ – year: 1991 ident: b0355 article-title: Prediction of disc cutter performance using a circular rock cutting ring publication-title: Proceedings, the First International Mine Mechanization and Automation Symposium – volume: 43 start-page: 224 year: 2006 end-page: 235 ident: b0380 article-title: Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equation publication-title: Int. J. Rock. Mech. Min. Sci. – volume: 15 start-page: 742 year: 2009 end-page: 764 ident: b0220 article-title: Integrative discovery of multifaceted sequence patterns by frame-relayed search and hybrid PSO-ANN publication-title: J. Univ. Comput. Sci. – reference: Demuth, H., Beale, M., Hagan, M., 2009. MATLAB Version 7.14.0.739; Neural Network Toolbox for Use with Matlab. The Mathworks. – volume: 6 start-page: 58 year: 2002 end-page: 73 ident: b0075 article-title: The particle swarm explosion, stability, and convergence in a multi-dimensional complex space publication-title: IEEE Trans. Evol. Comput. – volume: 3 start-page: 95 year: 1986 end-page: 109 ident: b0155 article-title: The relative cuttability of coal-measures stone publication-title: Min. Sci. Technol. – volume: 8 start-page: 211 year: 1996 end-page: 226 ident: b0225 article-title: Advances in feed-forward neural networks: demystifying knowledge acquiring black boxes publication-title: IEEE Trans. Knowl. Data Eng. – reference: Lee, Y., Oh, S.H., Kim, M.W., 1991. The effect of initial weights on premature saturation in back-propagation learning. In: Proceedings of the International Joint Conference on Neural Networks, pp. 765–770. – volume: 16 start-page: 298 year: 2012 end-page: 307 ident: b0070 article-title: Particle swarm optimization trained neural network for aquifer parameter estimation publication-title: KSCE J. Civ. Eng. – reference: Graham, P.C., 1976. Rock exploration for machine manufacturers. In: Bieniawski, Z.T. (Ed.), Exploration for Rock Engineering. Johannesburg, Balkema, pp. 173–80. – year: 1999 ident: b0140 article-title: Neural Networks – start-page: 640 year: 2011 end-page: 647 ident: b0040 article-title: Inertia Weight Strategies in Particle Swarm Optimization publication-title: Third World Congress on Nature and Biologically Inspired Computing – volume: 24 start-page: 500 year: 2009 end-page: 505 ident: b0255 article-title: Multifactorial fuzzy approach to the penetrability classification of TBM in hard rock conditions publication-title: Tunnell. Undergr. Space Technol. – reference: Mogana, S.N., Rafek, A.G., Komoo, I., 1998. The influence of rock mass properties in the assessment of TBM performance. In: Moore, D., Hungr, O. (Eds.), 8th IAEG Congr, Vancouver, Balkema, Rotterdam, pp. 3553–3559. – volume: 46 start-page: 8 year: 2009 end-page: 18 ident: b0115 article-title: Development of a rock mass characteristics model for TBM penetration rate prediction publication-title: Int. J. Rock Mech. Min. Sci. – year: 2010 ident: b0445 article-title: Engineering Optimization: An Introduction with Metaheuristic Applications – volume: 46 start-page: 2288 year: 2013 end-page: 2299 ident: b0395 article-title: A hybridized artificial neural network and imperialist competitive algorithm optimization approach for prediction of soil compaction in soil bin facility publication-title: Measurement – start-page: 519 year: 2014 end-page: 529 ident: b0030 article-title: Rock mass classification system used for Pahang-Selangor raw water transfer tunnel publication-title: InCIEC 2013 – reference: Nordin, Z., 2014. Planning and construction of Pahang-Selangor raw water transfer (PSRWT) tunnel. In: Seminar on Tunnels and Underground Structures, 2–4 September, Malaysia. – year: 1997 ident: b0330 article-title: Development of a Force Estimation Model for Rock Fragmentation with Disc Cutters through Theoretical Modeling and Physical Measurement of Crushed Zone Pressure – volume: 102 start-page: 716 year: 2012 end-page: 723 ident: b0010 article-title: New approach for prediction of asphaltene precipitation due to natural depletion by using evolutionary algorithm concept publication-title: Fuel – reference: Gholami, M., Shahriar, K., Sharifzadeh, M., Hamidi, J.K., 2012. A comparison of artificial neural network and multiple regression analysis in TBM performance prediction. In: ISRM Regional Symposium-7th Asian Rock Mechanics Symposium. International Society for Rock Mechanics. – reference: Mogana, S.N., 2007. The effects of ground conditions on TBM performance in tunnel excavation – a case history. In: Proceedings of the 10th Australia New Zealand Conference on Geomechanics, pp. 442–447. – start-page: 1 year: 2005 end-page: 10 ident: b0450 article-title: Prediction of penetration rate of TBM using ANN publication-title: National Mining Conference, 1–3 Feb 2005, Iran – volume: 29 start-page: 05014010 year: 2015 ident: b0205 article-title: Improving the performance of intelligent back analysis for tunneling using optimized fuzzy systems: case study of the Karaj Subway Line 2 in Iran publication-title: J. Comput. Civ. Eng. – reference: Simoes, M.G., Kim, T., 2006. Fuzzy modeling approaches for the prediction of machine utilization in hard rock tunnel boring machines. In: Industry Applications Conference, 2006. 41st IAS Annual Meeting. Conference Record of the 2006 IEEE. IEEE, pp. 947–954. – volume: 52 start-page: 69 year: 2012 end-page: 80 ident: b0300 article-title: Prediction of bearing capacity of circular footings on soft clay stabilized with granular soil publication-title: Soil Found. – volume: 4 start-page: 249 year: 2013 end-page: 264 ident: b0340 article-title: Utilizing of linear and non-linear prediction tools for evaluation of penetration rate of tunnel boring machine in hard rock condition publication-title: Int. J. Min. Miner. Eng. – reference: Hecht-Nielsen, R., 1987. Kolmogorov’s mapping neural network existence theorem. In: Proceedings of the First IEEE International Conference on Neural Networks, San Diego, CA, USA, pp. 11–14. – year: 2013 ident: b0130 article-title: Tunneling-Induced Ground Movement and Building Damage Prediction Using Hybrid Artificial Neural Networks – start-page: 297 year: 2012 end-page: 302 ident: b0295 article-title: Prediction of the penetration rate of TBM using adaptive neuro fuzzy inference system (ANFIS) publication-title: Proceeding of SME Annual Meeting & Exhibit, From the Mine to the Market, Now It's Global, Seattle, WA, USA – year: 2015 ident: b0120 article-title: Prediction of seismic slope stability through combination of particle swarm optimization and neural network publication-title: Eng. Comput. – volume: 12 start-page: 22 year: 1980 end-page: 25 ident: b0090 article-title: Mechanics of disc cutter penetration publication-title: Tunnels Tunnell. Int. – year: 2015 ident: b0180 article-title: Developing a Hybrid PSO–ANN Model for Estimating the Ultimate Bearing Capacity of Rock-Socketed Piles – reference: Yagiz, S., 2002. Development of Rock Fracture and Brittleness Indices to Quantify the Effects of Rock Mass Features and Toughness in the CSM Model Basic Penetration for Hard Rock Tunneling Machines (Ph.D. Thesis). Department of Mining and Earth Systems Engineering, Colorado School of Mines, Golden, Colorado, USA, p. 289. – volume: 15 start-page: 259 year: 2000 end-page: 269 ident: b0015 article-title: Modeling tunnel boring machine performance by neuro-fuzzy methods publication-title: Tunnell. Undergr. Space Technol. – volume: 20 start-page: 727 year: 2010 end-page: 733 ident: b0110 article-title: Application of artificial neural networks to the prediction of tunnel boring machine penetration rate publication-title: Min. Sci. Technol. (China) – volume: 10 start-page: 215 year: 1996 end-page: 236 ident: b0190 article-title: Designing a neural network for forecasting financial and economic time series publication-title: Neurocomputing – year: 1990 ident: b0375 article-title: Artificial Neural System—Foundation, Paradigm, Application and Implementations – year: 2015 ident: b0165 article-title: A combination of the ICA-ANN model to predict air-overpressure resulting from blasting publication-title: Eng. Comput. – year: 1994 ident: b0405 article-title: A Theory of Generalization in Learning Machines with Neural Application – reference: Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: IEEE International Conference on Neural Networks. Perth, Australia, pp. 1942–1948. – volume: 97 start-page: 91 year: 2008 end-page: 93 ident: b0385 article-title: Discussion on the paper by H. Gullu and E. Ercelebi, “A neural network approach for attenuation relationships: an application using strong ground motion data from Turkey” publication-title: Eng. Geol. – volume: 12 start-page: 361 year: 1975 end-page: 366 ident: b0335 article-title: Rock excavation by disc cutter publication-title: Int. J. Rock Mech. Min. Sci. Geomech. Abstr. – volume: 19 start-page: 597 year: 2004 end-page: 605 ident: b0050 article-title: Modelling TBM performance with artificial neural networks publication-title: Tunnell. Undergr. Space Technol. – year: 2007 ident: b0160 article-title: The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006 publication-title: Suggested Methods Prepared by the Commission on Testing Methods, International Society for Rock Mechanics – reference: Eftekhari, M., Baghbanan, A., Bayati, M., 2010. Predicting penetration rate of a tunnel boring machine using artificial neural network. In: ISRM International Symposium-6th Asian Rock Mechanics Symposium. International Society for Rock Mechanics, pp. 1–7. – volume: 1 start-page: 337 year: 2008 end-page: 355 ident: b0025 article-title: Colonial competitive algorithm, a novel approach for PID controller design in MIMO distillation column process publication-title: Int. J. Intell. Comput. Cybern. – year: 1994 ident: b0305 article-title: Neural Network Classification of Multispectral Imagery – volume: 18 start-page: 711 year: 1997 end-page: 725 ident: b0195 article-title: Strategies and best practice for neural network image classification publication-title: Int. J. Remote Sens. – reference: Bruines, P., 1998. Neuro-fuzzy modeling of TBM performance with emphasis on the penetration rate. Memoirs of the Centre of Engineering Geology in the Netherlands, Delft, no. 173, 202, pp. 1386–5072. – volume: 96 start-page: 141 year: 2008 end-page: 158 ident: b0455 article-title: Prediction of uniaxial compressive strength of sandstones using petrography-based models publication-title: Eng. Geol. – volume: 60 start-page: 50 year: 2015 end-page: 63 ident: b0280 article-title: Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks publication-title: Measurement – volume: 19 start-page: 107 year: 1982 end-page: 121 ident: b0365 article-title: A study of disc cutting in selected British rocks publication-title: Int. J. Rock Mech. Min. Sci. – volume: 24 start-page: 20 year: 2009 end-page: 27 ident: b0045 article-title: Applying wavelets to short-term load forecasting using PSO-based neural networks publication-title: IEEE Trans. Power Syst. – year: 2014 ident: b0235 article-title: A Novel Approach for Blast-induced Flyrock Prediction Based on Imperialist Competitive Algorithm and Artificial Neural Network – volume: 57 start-page: 122 year: 2014 end-page: 131 ident: b0275 article-title: Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN publication-title: Measurement – start-page: 40 year: 1993 end-page: 123 ident: b0320 article-title: Statistical aspects of neural networks publication-title: Networks and Chaos-Statistical and Probabilistic Aspects – year: 2014 ident: b0135 article-title: Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm publication-title: Bull. Eng. Geol. Environ. – volume: 22 start-page: 808 year: 2009 end-page: 814 ident: b0430 article-title: Application of two non-linear prediction tools to the estimation of tunnel boring machine performance publication-title: Eng. Appl. Artif. Intell. – reference: Atashpaz-Gargari, E., Lucas, C., 2007. Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: IEEE Congress on Evolutionary Computation, pp. 4661–4667. – volume: 72 start-page: 214 year: 2014 end-page: 229 ident: b0230 article-title: A support vector regression model for predicting tunnel boring machine penetration rates publication-title: Int. J. Rock Mech. Min. Sci. – reference: Rostami, J., Ozdemir, L., 1993. A new model for performance prediction of hard rock TBM. In: Bowerman, L.D. et al. (Eds.), Proceedings of RETC, Boston, MA, pp. 793–809. – volume: 30 start-page: 110 year: 2012 end-page: 123 ident: b0095 article-title: Study of various models for estimation of penetration rate of hard rock TBMs publication-title: Tunnell. Undergr. Space Technol. – volume: 6 start-page: 1215 year: 2013 end-page: 1227 ident: b0400 article-title: Study of the influence of geotechnical parameters on the TBM performance in Tehran-Shomal highway project using ANN and SPSS publication-title: Arab. J. Geosci. – volume: 36 start-page: 29 year: 1999 end-page: 39 ident: b0245 article-title: Application of neural networks for the prediction of the unconfined compressive strength (UCS) from Equotip hardness publication-title: Int. J. Rock. Mech. Min. Sci. – volume: 5 start-page: 115 year: 1943 end-page: 133 ident: b0250 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull. Math. Biophys. – volume: 86 start-page: 3137 year: 2012 end-page: 3145 ident: b0260 article-title: Modeling global solar radiation using particle swarm optimization (PSO) publication-title: Sol. Energy – year: 2005 ident: b0315 article-title: Artificial Neural Networks: An Introduction – volume: 48 start-page: 427 year: 2011 end-page: 433 ident: b0435 article-title: Prediction of hard rock TBM penetration rate using particle swarm optimization publication-title: Int. J. Rock Mech. Min. Sci. – volume: 68 start-page: 807 year: 2012 end-page: 819 ident: b0065 article-title: Prediction of unconfined compressive strength of carbonate rocks using artificial neural networks publication-title: Environ. Earth Sci. – volume: 2 start-page: 359 year: 1989 end-page: 366 ident: b0150 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Networks – reference: Bamford, W.F., 1984. Rock test indices are being successfully correlated with tunnel boring machine performance. In: Proceedings of the 5th Australian Tunneling Conference, Melbourne, pp. 9–22. – volume: 7 start-page: 5383 year: 2014 end-page: 5396 ident: b0170 article-title: Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization publication-title: Arab. J. Geosci. – volume: 13 start-page: 1085 year: 2013 end-page: 1098 ident: b0005 article-title: Evolving artificial neural network and imperialist competitive algorithm for prediction oil flow rate of the reservoir publication-title: Appl. Soft Comput. – volume: 23 start-page: 326 issue: 3 year: 2008 ident: 10.1016/j.tust.2016.12.009_b0425 article-title: Utilizing rock mass properties for predicting TBM performance in hard rock conditions publication-title: Tunnell. Undergr. Space Technol. doi: 10.1016/j.tust.2007.04.011 – volume: 1 start-page: 33 year: 2007 ident: 10.1016/j.tust.2016.12.009_b0310 article-title: Particle swarm optimization an overview publication-title: Swarm Intell. doi: 10.1007/s11721-007-0002-0 – volume: 48 start-page: 427 issue: 3 year: 2011 ident: 10.1016/j.tust.2016.12.009_b0435 article-title: Prediction of hard rock TBM penetration rate using particle swarm optimization publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2011.02.013 – ident: 10.1016/j.tust.2016.12.009_b0125 – volume: 6 start-page: 1215 issue: 4 year: 2013 ident: 10.1016/j.tust.2016.12.009_b0400 article-title: Study of the influence of geotechnical parameters on the TBM performance in Tehran-Shomal highway project using ANN and SPSS publication-title: Arab. J. Geosci. doi: 10.1007/s12517-011-0415-3 – year: 2013 ident: 10.1016/j.tust.2016.12.009_b0130 – volume: 24 start-page: 500 issue: 5 year: 2009 ident: 10.1016/j.tust.2016.12.009_b0255 article-title: Multifactorial fuzzy approach to the penetrability classification of TBM in hard rock conditions publication-title: Tunnell. Undergr. Space Technol. doi: 10.1016/j.tust.2008.12.007 – volume: 11 start-page: 385 issue: 2 year: 2006 ident: 10.1016/j.tust.2016.12.009_b0415 article-title: The time and cost prediction of tunnel boring machine in tunneling publication-title: Wuhan Univ. J. Natural Sci. doi: 10.1007/BF02832128 – start-page: 409 year: 2013 ident: 10.1016/j.tust.2016.12.009_b0360 article-title: Performance prediction of hard rock TBM based on extreme learning machine – ident: 10.1016/j.tust.2016.12.009_b0035 – volume: 15 start-page: 259 issue: 3 year: 2000 ident: 10.1016/j.tust.2016.12.009_b0015 article-title: Modeling tunnel boring machine performance by neuro-fuzzy methods publication-title: Tunnell. Undergr. Space Technol. doi: 10.1016/S0886-7798(00)00055-9 – volume: 43 start-page: 224 year: 2006 ident: 10.1016/j.tust.2016.12.009_b0380 article-title: Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equation publication-title: Int. J. Rock. Mech. Min. Sci. doi: 10.1016/j.ijrmms.2005.06.007 – start-page: 640 year: 2011 ident: 10.1016/j.tust.2016.12.009_b0040 article-title: Inertia Weight Strategies in Particle Swarm Optimization – volume: 57 start-page: 122 year: 2014 ident: 10.1016/j.tust.2016.12.009_b0275 article-title: Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN publication-title: Measurement doi: 10.1016/j.measurement.2014.08.007 – volume: 39 start-page: 771 year: 2002 ident: 10.1016/j.tust.2016.12.009_b0350 article-title: TBM performance estimation using rock mass classification publication-title: Int. J. Rock Mech. Min. Sci. Geomech. Abstr. doi: 10.1016/S1365-1609(02)00069-2 – year: 2014 ident: 10.1016/j.tust.2016.12.009_b0175 article-title: An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young’s modulus: a study on Main Range granite publication-title: Bull. Eng. Geol. Environ. – volume: 4 start-page: 249 issue: 3 year: 2013 ident: 10.1016/j.tust.2016.12.009_b0340 article-title: Utilizing of linear and non-linear prediction tools for evaluation of penetration rate of tunnel boring machine in hard rock condition publication-title: Int. J. Min. Miner. Eng. doi: 10.1504/IJMME.2013.053172 – year: 1997 ident: 10.1016/j.tust.2016.12.009_b0330 – year: 2015 ident: 10.1016/j.tust.2016.12.009_b0180 – volume: 56 start-page: 455 year: 2004 ident: 10.1016/j.tust.2016.12.009_b0410 article-title: An improved backpropagation algorithm to avoid the local minima problem publication-title: Neurocomputing doi: 10.1016/j.neucom.2003.08.006 – ident: 10.1016/j.tust.2016.12.009_b0105 – ident: 10.1016/j.tust.2016.12.009_b0080 – volume: 73 start-page: 23 issue: 1 year: 2014 ident: 10.1016/j.tust.2016.12.009_b0100 article-title: Predicting penetration rate of hard rock tunnel boring machine using fuzzy logic publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-013-0497-0 – year: 1991 ident: 10.1016/j.tust.2016.12.009_b0355 article-title: Prediction of disc cutter performance using a circular rock cutting ring – ident: 10.1016/j.tust.2016.12.009_b0145 – ident: 10.1016/j.tust.2016.12.009_b0420 – volume: 12 start-page: 22 issue: 6 year: 1980 ident: 10.1016/j.tust.2016.12.009_b0090 article-title: Mechanics of disc cutter penetration publication-title: Tunnels Tunnell. Int. – year: 1994 ident: 10.1016/j.tust.2016.12.009_b0305 – volume: vol. 8 year: 1992 ident: 10.1016/j.tust.2016.12.009_b0460 – volume: 46 start-page: 8 issue: 1 year: 2009 ident: 10.1016/j.tust.2016.12.009_b0115 article-title: Development of a rock mass characteristics model for TBM penetration rate prediction publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2008.03.003 – year: 1990 ident: 10.1016/j.tust.2016.12.009_b0285 – year: 2014 ident: 10.1016/j.tust.2016.12.009_b0135 article-title: Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm publication-title: Bull. Eng. Geol. Environ. – ident: 10.1016/j.tust.2016.12.009_b0200 doi: 10.1109/ICNN.1995.488968 – volume: 29 start-page: 05014010 issue: 6 year: 2015 ident: 10.1016/j.tust.2016.12.009_b0205 article-title: Improving the performance of intelligent back analysis for tunneling using optimized fuzzy systems: case study of the Karaj Subway Line 2 in Iran publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000421 – ident: 10.1016/j.tust.2016.12.009_b0265 – start-page: 40 year: 1993 ident: 10.1016/j.tust.2016.12.009_b0320 article-title: Statistical aspects of neural networks – volume: 10 start-page: 215 year: 1996 ident: 10.1016/j.tust.2016.12.009_b0190 article-title: Designing a neural network for forecasting financial and economic time series publication-title: Neurocomputing doi: 10.1016/0925-2312(95)00039-9 – volume: 19 start-page: 107 year: 1982 ident: 10.1016/j.tust.2016.12.009_b0365 article-title: A study of disc cutting in selected British rocks publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/0148-9062(82)91151-2 – ident: 10.1016/j.tust.2016.12.009_b0060 – ident: 10.1016/j.tust.2016.12.009_b0085 – ident: 10.1016/j.tust.2016.12.009_b0370 doi: 10.1109/IAS.2006.256639 – volume: 52 start-page: 69 issue: 1 year: 2012 ident: 10.1016/j.tust.2016.12.009_b0300 article-title: Prediction of bearing capacity of circular footings on soft clay stabilized with granular soil publication-title: Soil Found. doi: 10.1016/j.sandf.2012.01.002 – volume: 2 start-page: 359 year: 1989 ident: 10.1016/j.tust.2016.12.009_b0150 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Networks doi: 10.1016/0893-6080(89)90020-8 – start-page: 1 year: 2005 ident: 10.1016/j.tust.2016.12.009_b0450 article-title: Prediction of penetration rate of TBM using ANN – volume: 20 start-page: 727 issue: 5 year: 2010 ident: 10.1016/j.tust.2016.12.009_b0110 article-title: Application of artificial neural networks to the prediction of tunnel boring machine penetration rate publication-title: Min. Sci. Technol. (China) doi: 10.1016/S1674-5264(09)60271-4 – volume: 13 start-page: 1085 issue: 2 year: 2013 ident: 10.1016/j.tust.2016.12.009_b0005 article-title: Evolving artificial neural network and imperialist competitive algorithm for prediction oil flow rate of the reservoir publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.10.009 – start-page: 297 year: 2012 ident: 10.1016/j.tust.2016.12.009_b0295 article-title: Prediction of the penetration rate of TBM using adaptive neuro fuzzy inference system (ANFIS) – year: 2015 ident: 10.1016/j.tust.2016.12.009_b0120 article-title: Prediction of seismic slope stability through combination of particle swarm optimization and neural network publication-title: Eng. Comput. – volume: 7 start-page: 5383 year: 2014 ident: 10.1016/j.tust.2016.12.009_b0170 article-title: Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization publication-title: Arab. J. Geosci. doi: 10.1007/s12517-013-1174-0 – volume: 60 start-page: 50 year: 2015 ident: 10.1016/j.tust.2016.12.009_b0280 article-title: Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks publication-title: Measurement doi: 10.1016/j.measurement.2014.09.075 – volume: 86 start-page: 3137 issue: 11 year: 2012 ident: 10.1016/j.tust.2016.12.009_b0260 article-title: Modeling global solar radiation using particle swarm optimization (PSO) publication-title: Sol. Energy doi: 10.1016/j.solener.2012.08.005 – volume: 12 start-page: 361 year: 1975 ident: 10.1016/j.tust.2016.12.009_b0335 article-title: Rock excavation by disc cutter publication-title: Int. J. Rock Mech. Min. Sci. Geomech. Abstr. doi: 10.1016/0148-9062(75)90547-1 – volume: 22 start-page: 153 issue: 3 year: 1985 ident: 10.1016/j.tust.2016.12.009_b0345 article-title: Prediction of the performance of disc cutters in anisotropy rocks publication-title: Int. J. Rock Mech. Min. Sci., Abstr. doi: 10.1016/0148-9062(85)93229-2 – volume: 15 start-page: 742 issue: 4 year: 2009 ident: 10.1016/j.tust.2016.12.009_b0220 article-title: Integrative discovery of multifaceted sequence patterns by frame-relayed search and hybrid PSO-ANN publication-title: J. Univ. Comput. Sci. – year: 2016 ident: 10.1016/j.tust.2016.12.009_b0185 article-title: Application of several non-linear prediction tools for estimating uniaxial compressive strength of granitic rocks and comparison of their performances publication-title: Eng. Comput. doi: 10.1007/s00366-015-0410-5 – volume: 96 start-page: 141 year: 2008 ident: 10.1016/j.tust.2016.12.009_b0455 article-title: Prediction of uniaxial compressive strength of sandstones using petrography-based models publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2007.10.009 – volume: 19 start-page: 597 issue: 6 year: 2004 ident: 10.1016/j.tust.2016.12.009_b0050 article-title: Modelling TBM performance with artificial neural networks publication-title: Tunnell. Undergr. Space Technol. doi: 10.1016/j.tust.2004.02.128 – ident: 10.1016/j.tust.2016.12.009_b0290 – volume: 36 start-page: 29 year: 1999 ident: 10.1016/j.tust.2016.12.009_b0245 article-title: Application of neural networks for the prediction of the unconfined compressive strength (UCS) from Equotip hardness publication-title: Int. J. Rock. Mech. Min. Sci. doi: 10.1016/S0148-9062(98)00173-9 – year: 2007 ident: 10.1016/j.tust.2016.12.009_b0160 article-title: The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006 – volume: 5 start-page: 115 year: 1943 ident: 10.1016/j.tust.2016.12.009_b0250 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull. Math. Biophys. doi: 10.1007/BF02478259 – ident: 10.1016/j.tust.2016.12.009_b0210 doi: 10.1109/IJCNN.1991.155275 – volume: 24 start-page: 20 issue: 1 year: 2009 ident: 10.1016/j.tust.2016.12.009_b0045 article-title: Applying wavelets to short-term load forecasting using PSO-based neural networks publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2008.2008606 – ident: 10.1016/j.tust.2016.12.009_b0325 – volume: 46 start-page: 2288 issue: 8 year: 2013 ident: 10.1016/j.tust.2016.12.009_b0395 article-title: A hybridized artificial neural network and imperialist competitive algorithm optimization approach for prediction of soil compaction in soil bin facility publication-title: Measurement doi: 10.1016/j.measurement.2013.04.077 – year: 2011 ident: 10.1016/j.tust.2016.12.009_b0055 – year: 2014 ident: 10.1016/j.tust.2016.12.009_b0235 – start-page: 519 year: 2014 ident: 10.1016/j.tust.2016.12.009_b0030 article-title: Rock mass classification system used for Pahang-Selangor raw water transfer tunnel – volume: 30 start-page: 110 year: 2012 ident: 10.1016/j.tust.2016.12.009_b0095 article-title: Study of various models for estimation of penetration rate of hard rock TBMs publication-title: Tunnell. Undergr. Space Technol. doi: 10.1016/j.tust.2012.02.012 – volume: 8 start-page: 211 issue: 2 year: 1996 ident: 10.1016/j.tust.2016.12.009_b0225 article-title: Advances in feed-forward neural networks: demystifying knowledge acquiring black boxes publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/69.494162 – volume: 72 start-page: 1121 year: 2009 ident: 10.1016/j.tust.2016.12.009_b0215 article-title: Classification of mental task from EEG data using neural networks based on particle swarm optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.02.017 – year: 1994 ident: 10.1016/j.tust.2016.12.009_b0405 – year: 2015 ident: 10.1016/j.tust.2016.12.009_b0165 article-title: A combination of the ICA-ANN model to predict air-overpressure resulting from blasting publication-title: Eng. Comput. – year: 2005 ident: 10.1016/j.tust.2016.12.009_b0315 – year: 1996 ident: 10.1016/j.tust.2016.12.009_b0390 – volume: 22 start-page: 808 issue: 4 year: 2009 ident: 10.1016/j.tust.2016.12.009_b0430 article-title: Application of two non-linear prediction tools to the estimation of tunnel boring machine performance publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2009.03.007 – volume: 18 start-page: 711 year: 1997 ident: 10.1016/j.tust.2016.12.009_b0195 article-title: Strategies and best practice for neural network image classification publication-title: Int. J. Remote Sens. doi: 10.1080/014311697218719 – volume: 1 start-page: 337 year: 2008 ident: 10.1016/j.tust.2016.12.009_b0025 article-title: Colonial competitive algorithm, a novel approach for PID controller design in MIMO distillation column process publication-title: Int. J. Intell. Comput. Cybern. doi: 10.1108/17563780810893446 – volume: 72 start-page: 214 year: 2014 ident: 10.1016/j.tust.2016.12.009_b0230 article-title: A support vector regression model for predicting tunnel boring machine penetration rates publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2014.09.012 – year: 1994 ident: 10.1016/j.tust.2016.12.009_b0240 – volume: 97 start-page: 91 year: 2008 ident: 10.1016/j.tust.2016.12.009_b0385 article-title: Discussion on the paper by H. Gullu and E. Ercelebi, “A neural network approach for attenuation relationships: an application using strong ground motion data from Turkey” publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2007.09.003 – ident: 10.1016/j.tust.2016.12.009_b0020 doi: 10.1109/CEC.2007.4425083 – volume: 3 start-page: 95 issue: 2 year: 1986 ident: 10.1016/j.tust.2016.12.009_b0155 article-title: The relative cuttability of coal-measures stone publication-title: Min. Sci. Technol. doi: 10.1016/S0167-9031(86)90250-1 – year: 2010 ident: 10.1016/j.tust.2016.12.009_b0445 – ident: 10.1016/j.tust.2016.12.009_b0270 – year: 1999 ident: 10.1016/j.tust.2016.12.009_b0140 – volume: 16 start-page: 298 issue: 3 year: 2012 ident: 10.1016/j.tust.2016.12.009_b0070 article-title: Particle swarm optimization trained neural network for aquifer parameter estimation publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-012-1452-5 – volume: 102 start-page: 716 year: 2012 ident: 10.1016/j.tust.2016.12.009_b0010 article-title: New approach for prediction of asphaltene precipitation due to natural depletion by using evolutionary algorithm concept publication-title: Fuel doi: 10.1016/j.fuel.2012.05.050 – volume: 6 start-page: 58 issue: 1 year: 2002 ident: 10.1016/j.tust.2016.12.009_b0075 article-title: The particle swarm explosion, stability, and convergence in a multi-dimensional complex space publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.985692 – year: 1990 ident: 10.1016/j.tust.2016.12.009_b0375 – volume: 68 start-page: 807 issue: 3 year: 2012 ident: 10.1016/j.tust.2016.12.009_b0065 article-title: Prediction of unconfined compressive strength of carbonate rocks using artificial neural networks publication-title: Environ. Earth Sci. doi: 10.1007/s12665-012-1783-z – volume: 80 start-page: 308 year: 2015 ident: 10.1016/j.tust.2016.12.009_b0440 article-title: Application of various optimization techniques and comparison of their performances for predicting TBM penetration rate in rock mass publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2015.09.019 |
| SSID | ssj0005229 |
| Score | 2.59834 |
| Snippet | The aim of this research is to develop new intelligent prediction models for estimating the tunnel boring machine performance (TBM) by means of the rate pf... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 29 |
| SubjectTerms | Artificial neural network Artificial neural networks Boring machines Compressive strength Hybrid systems Imperialism competitive algorithm Intelligent systems Mathematical models Neural networks Particle swarm optimization Penetration Penetration rate Performance indices Prediction models Rock mass rating Rock properties Root-mean-square errors Tensile strength Thrust Tunnel boring machine Water distribution Weathering |
| Title | Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition |
| URI | https://dx.doi.org/10.1016/j.tust.2016.12.009 https://www.proquest.com/docview/1953097188 |
| Volume | 63 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1878-4364 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005229 issn: 0886-7798 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1878-4364 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005229 issn: 0886-7798 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1878-4364 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005229 issn: 0886-7798 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1878-4364 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005229 issn: 0886-7798 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1878-4364 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005229 issn: 0886-7798 databaseCode: AKRWK dateStart: 19860101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELUqWGBAfIpCqTywodA4sR1nLBVVAbULrdTNchJHFFBbtWFg4bdzlzpVQagDa2RH0dl372K_e0fIdap8GWTg3zK2kQd4m3lxopgXKGMAr60MMzyH7A9kb8Qfx2JcI52qFgZplS72r2J6Ga3dk5azZms-mbSewT9kFMUKfNYPeYSKn5xH2MXg9muT5lF2KsPBHo52hTMrjleBZQ0AgbI8EkRS4t_g9CtMl9jTPSQHLmmk7dV3HZGanR6T_Q0pwROSbrB_6CynL59YikUna8XNgpZNb5YUslQ6X-D9DDKe6fCuT-cQ8Jx8LkXpCJhGsRqLArq9Ufhjzkpi1ykZde-HnZ7nGih4aRjzwmOQWwmZC24imWCFbWiZjWLjs0QFSciMzXhuAiN4yg0zPqxnmIhEqjz18xjQ_IzsTGdTe05oLDPf2jxKBd7tKlTly0OWK5WFgQgSUSesspxOnbo4Nrl41xWN7FWjtTVaW7NAg7Xr5GY9Z77S1tg6WlQLon_sEA3Bf-u8RrV62vnnUuPlIapnKXXxz9dekr0AEb6kozXITrH4sFeQnxRJs9yATbLbfnjqDb4BeGDlFQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDMCAeIry9MCGQmM7dpwREKg8ykIrdbOcxBEF1FZtGFj47dylDioIMbBGdhSdffed4---I-Qk06HiOfi3SlwcAN7mQZJqFnBtLeC1UyLH_5CdB9XuRbd92V8gl3UtDNIqfeyfxfQqWvsnLW_N1ngwaD2Cf6g4TjT4bCiiWCySpUjyGE9gZx_zPI-qVRmODnC4r5yZkbxKrGsADFTVP0FkJf6OTj_idAU-1-tkzWeN9Hz2YRtkwQ03yeqcluAWyeboP3RU0Kd3rMWigy_JzZJWXW-mFNJUOp7gBQ1Snmn3okPHEPG8fi5F7QiYRrEciwK8vVA4MucVs2ub9K6vupftwHdQCDKRRGXAILmSqpCRjVWKJbbCMRcnNmSp5qlg1uVRYbmVURZZZkNYUJHKVOkiC4sE4HyHNIajodslNFF56FwRZxIvdzXK8hWCFVrngkueyiZhteVM5uXFscvFq6l5ZM8GrW3Q2oZxA9ZuktOvOeOZuMafo2W9IObbFjEQ_f-cd1CvnvEOOjV4e4jyWVrv_fO1x2S53e3cm_ubh7t9ssIR7itu2gFplJM3dwjJSpkeVZvxE9jc5qo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+hybrid+intelligent+models+for+predicting+TBM+penetration+rate+in+hard+rock+condition&rft.jtitle=Tunnelling+and+underground+space+technology&rft.au=Armaghani%2C+Danial+Jahed&rft.au=Mohamad%2C+Edy+Tonnizam&rft.au=Narayanasamy%2C+Mogana+Sundaram&rft.au=Narita%2C+Nobuya&rft.date=2017-03-01&rft.pub=Elsevier+Ltd&rft.issn=0886-7798&rft.eissn=1878-4364&rft.volume=63&rft.spage=29&rft.epage=43&rft_id=info:doi/10.1016%2Fj.tust.2016.12.009&rft.externalDocID=S0886779815303473 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-7798&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-7798&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-7798&client=summon |