Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition

The aim of this research is to develop new intelligent prediction models for estimating the tunnel boring machine performance (TBM) by means of the rate pf penetration (PR). To obtain this aim, the Pahang-Selangor Raw Water Transfer (PSRWT) tunnel in Malaysia was investigated and the data collected...

Full description

Saved in:
Bibliographic Details
Published inTunnelling and underground space technology Vol. 63; pp. 29 - 43
Main Authors Armaghani, Danial Jahed, Mohamad, Edy Tonnizam, Narayanasamy, Mogana Sundaram, Narita, Nobuya, Yagiz, Saffet
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.03.2017
Elsevier BV
Subjects
Online AccessGet full text
ISSN0886-7798
1878-4364
DOI10.1016/j.tust.2016.12.009

Cover

Abstract The aim of this research is to develop new intelligent prediction models for estimating the tunnel boring machine performance (TBM) by means of the rate pf penetration (PR). To obtain this aim, the Pahang-Selangor Raw Water Transfer (PSRWT) tunnel in Malaysia was investigated and the data collected along the tunnel and generated in the laboratory via rock tests to be used for the proposed models. In order to develop relevant models, rock properties including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), rock quality designation (RQD), rock mass rating (RMR), weathering zone (WZ), and also machine parameters including thrust force (TF) and revolution per minute (RPM) were obtained and then, the dataset composed of both rock and machine parameters were established. After that, using the established database consisting of 1286 datasets, two hybrid intelligent systems namely particle swarm optimization (PSO)-artificial neural network (ANN) and imperialism competitive algorithm (ICA)-ANN and also simple ANN model were developed for predicting the TBM penetration rate. Further, developed models were compared and the best model was chosen among them. To compare the obtained results from the models, several performance indices i.e. coefficient of determination (R2), root mean square error (RMSE) and variance account for (VAF) were computed. It is found that the hybrid models including ICA-ANN and PSO-ANN having determination coefficients of 0.912 and 0.905 respectively for testing data as that of the simple ANN model are 0.666. More, the RMSE (0.034; 0.035) and VAF (90.338; 91.194) of hybrid models are also higher than these of simple ANN model (0.071; 66.148) respectively. Concluding remark is that the hybrid intelligent models are superior in comparison with simple ANN technique.
AbstractList The aim of this research is to develop new intelligent prediction models for estimating the tunnel boring machine performance (TBM) by means of the rate pf penetration (PR). To obtain this aim, the Pahang-Selangor Raw Water Transfer (PSRWT) tunnel in Malaysia was investigated and the data collected along the tunnel and generated in the laboratory via rock tests to be used for the proposed models. In order to develop relevant models, rock properties including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), rock quality designation (RQD), rock mass rating (RMR), weathering zone (WZ), and also machine parameters including thrust force (TF) and revolution per minute (RPM) were obtained and then, the dataset composed of both rock and machine parameters were established. After that, using the established database consisting of 1286 datasets, two hybrid intelligent systems namely particle swarm optimization (PSO)-artificial neural network (ANN) and imperialism competitive algorithm (ICA)-ANN and also simple ANN model were developed for predicting the TBM penetration rate. Further, developed models were compared and the best model was chosen among them. To compare the obtained results from the models, several performance indices i.e. coefficient of determination (R2), root mean square error (RMSE) and variance account for (VAF) were computed. It is found that the hybrid models including ICA-ANN and PSO-ANN having determination coefficients of 0.912 and 0.905 respectively for testing data as that of the simple ANN model are 0.666. More, the RMSE (0.034; 0.035) and VAF (90.338; 91.194) of hybrid models are also higher than these of simple ANN model (0.071; 66.148) respectively. Concluding remark is that the hybrid intelligent models are superior in comparison with simple ANN technique
The aim of this research is to develop new intelligent prediction models for estimating the tunnel boring machine performance (TBM) by means of the rate pf penetration (PR). To obtain this aim, the Pahang-Selangor Raw Water Transfer (PSRWT) tunnel in Malaysia was investigated and the data collected along the tunnel and generated in the laboratory via rock tests to be used for the proposed models. In order to develop relevant models, rock properties including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), rock quality designation (RQD), rock mass rating (RMR), weathering zone (WZ), and also machine parameters including thrust force (TF) and revolution per minute (RPM) were obtained and then, the dataset composed of both rock and machine parameters were established. After that, using the established database consisting of 1286 datasets, two hybrid intelligent systems namely particle swarm optimization (PSO)-artificial neural network (ANN) and imperialism competitive algorithm (ICA)-ANN and also simple ANN model were developed for predicting the TBM penetration rate. Further, developed models were compared and the best model was chosen among them. To compare the obtained results from the models, several performance indices i.e. coefficient of determination (R2), root mean square error (RMSE) and variance account for (VAF) were computed. It is found that the hybrid models including ICA-ANN and PSO-ANN having determination coefficients of 0.912 and 0.905 respectively for testing data as that of the simple ANN model are 0.666. More, the RMSE (0.034; 0.035) and VAF (90.338; 91.194) of hybrid models are also higher than these of simple ANN model (0.071; 66.148) respectively. Concluding remark is that the hybrid intelligent models are superior in comparison with simple ANN technique.
Author Yagiz, Saffet
Narita, Nobuya
Armaghani, Danial Jahed
Narayanasamy, Mogana Sundaram
Mohamad, Edy Tonnizam
Author_xml – sequence: 1
  givenname: Danial Jahed
  surname: Armaghani
  fullname: Armaghani, Danial Jahed
  email: danialarmaghani@gmail.com
  organization: Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, UTM, Skudai, Johor, Malaysia
– sequence: 2
  givenname: Edy Tonnizam
  surname: Mohamad
  fullname: Mohamad, Edy Tonnizam
  email: edy@utm.my
  organization: Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, UTM, Skudai, Johor, Malaysia
– sequence: 3
  givenname: Mogana Sundaram
  surname: Narayanasamy
  fullname: Narayanasamy, Mogana Sundaram
  email: mogana.sundaram@aurecongroup.com
  organization: AURECON Pty Ltd., Brisbane, Australia
– sequence: 4
  givenname: Nobuya
  surname: Narita
  fullname: Narita, Nobuya
  email: hnarita@tepsco.com.my
  organization: Tokyo Electric Power Services Co., Ltd. (TEPSCO), Japan
– sequence: 5
  givenname: Saffet
  surname: Yagiz
  fullname: Yagiz, Saffet
  email: syagiz@pau.edu.tr
  organization: Department of Geological Engineering, Engineering Faculty, Pamukkale University, 20020 Denizli, Turkey
BookMark eNp9kEtPwzAMgCM0JMbgD3CKxLklSV-JxIU3SENc4BylqQsZXVKSbBL_npRx4rCTLdufLX_HaGadBYTOKMkpofXFKo-bEHOW8pyynBBxgOaUNzwri7qcoTnhvM6aRvAjdBzCihBSMSbmSN_CFgY3rsFG7Hr88d1602FjIwyDeZ-qa9fBEHDvPB49dEZHY9_x6_UzHsFC9CoaZ3EKkDD8oXyHvdOfWDvbmal3gg57NQQ4_YsL9HZ_93rzmC1fHp5urpaZLkQZM8pYXdV9VaqmbgtB6wIoNEIR2nLWFlRBV_aKqarUpaKKtKCLtmpr3mvSC8KKBTrf7R29-9pAiHLlNt6mk5KKqiCioZynKb6b0t6F4KGX2sTfH9IrZpCUyEmpXMlJqZyUSspkUppQ9g8dvVkr_70futxBSSJsDXgZtAGrk0kPOsrOmX34DyPrk-A
CitedBy_id crossref_primary_10_1007_s00366_019_00808_y
crossref_primary_10_1007_s00500_018_3253_3
crossref_primary_10_3390_su13169245
crossref_primary_10_3390_su131910541
crossref_primary_10_1007_s11053_020_09770_9
crossref_primary_10_1007_s11356_022_20518_1
crossref_primary_10_1016_j_prostr_2019_08_122
crossref_primary_10_1007_s00366_018_0648_9
crossref_primary_10_1007_s10064_018_1349_8
crossref_primary_10_1016_j_prostr_2019_08_123
crossref_primary_10_1088_1755_1315_861_7_072044
crossref_primary_10_3390_app11041922
crossref_primary_10_1007_s00366_019_00701_8
crossref_primary_10_1016_j_measurement_2019_05_069
crossref_primary_10_1007_s00366_018_0625_3
crossref_primary_10_1016_j_autcon_2022_104457
crossref_primary_10_1038_s41598_022_09947_7
crossref_primary_10_3390_eng4020087
crossref_primary_10_1007_s00603_023_03582_y
crossref_primary_10_1007_s40996_022_00972_0
crossref_primary_10_1016_j_tust_2022_104757
crossref_primary_10_3390_su12062229
crossref_primary_10_1016_j_autcon_2019_102928
crossref_primary_10_3390_app9040780
crossref_primary_10_1016_j_physa_2019_124046
crossref_primary_10_1016_j_petlm_2022_04_002
crossref_primary_10_1016_j_asoc_2020_106204
crossref_primary_10_3390_buildings12060772
crossref_primary_10_1016_j_tust_2024_105745
crossref_primary_10_1007_s00521_021_06217_x
crossref_primary_10_1007_s40948_022_00496_x
crossref_primary_10_3390_app9245458
crossref_primary_10_3390_app122211480
crossref_primary_10_1016_j_conbuildmat_2024_135369
crossref_primary_10_1016_j_eswa_2021_115490
crossref_primary_10_1080_17486025_2021_1928765
crossref_primary_10_1007_s11831_020_09524_z
crossref_primary_10_1016_j_asoc_2022_108997
crossref_primary_10_1016_j_tust_2019_04_014
crossref_primary_10_1002_cpe_6157
crossref_primary_10_1016_j_ghm_2023_11_004
crossref_primary_10_1007_s11053_020_09794_1
crossref_primary_10_1016_j_measurement_2024_114563
crossref_primary_10_1016_j_undsp_2024_11_004
crossref_primary_10_1016_j_compgeo_2024_106294
crossref_primary_10_1007_s12613_019_1937_z
crossref_primary_10_1007_s00366_019_00932_9
crossref_primary_10_1038_s41598_024_64276_1
crossref_primary_10_1007_s12517_020_05305_x
crossref_primary_10_1007_s10706_018_0706_5
crossref_primary_10_3934_era_2023288
crossref_primary_10_1007_s10064_017_1116_2
crossref_primary_10_3390_buildings14041173
crossref_primary_10_1016_j_measurement_2021_109720
crossref_primary_10_1016_j_tust_2022_104979
crossref_primary_10_1016_j_ijrmms_2021_104988
crossref_primary_10_1007_s00521_022_07214_4
crossref_primary_10_1007_s13369_020_04787_x
crossref_primary_10_1007_s42107_023_00925_6
crossref_primary_10_1016_j_undsp_2021_04_003
crossref_primary_10_1007_s00366_019_00726_z
crossref_primary_10_3390_su14105938
crossref_primary_10_1080_01496395_2019_1565773
crossref_primary_10_3390_app10155187
crossref_primary_10_1016_j_gsf_2019_12_003
crossref_primary_10_1016_j_petrol_2020_108125
crossref_primary_10_1007_s11053_019_09611_4
crossref_primary_10_1007_s00366_019_00752_x
crossref_primary_10_1007_s00603_022_02868_x
crossref_primary_10_1007_s10706_022_02178_7
crossref_primary_10_3390_app10061904
crossref_primary_10_1007_s00366_020_01159_9
crossref_primary_10_3390_app10072364
crossref_primary_10_1007_s11440_022_01596_4
crossref_primary_10_1007_s12665_019_8163_x
crossref_primary_10_1016_j_future_2021_01_014
crossref_primary_10_5004_dwt_2021_27386
crossref_primary_10_1007_s11440_022_01498_5
crossref_primary_10_1088_1742_6596_2185_1_012062
crossref_primary_10_1007_s10064_022_03047_6
crossref_primary_10_1016_j_aei_2020_101097
crossref_primary_10_1007_s10064_019_01538_7
crossref_primary_10_3390_app10041486
crossref_primary_10_3390_math11204237
crossref_primary_10_1007_s11440_021_01228_3
crossref_primary_10_3390_ma15134582
crossref_primary_10_3390_math11010106
crossref_primary_10_1016_j_tust_2020_103595
crossref_primary_10_3390_ma15155287
crossref_primary_10_1007_s00366_019_00707_2
crossref_primary_10_1016_j_tust_2020_103593
crossref_primary_10_1016_j_jrmge_2021_09_004
crossref_primary_10_1016_j_trgeo_2022_100895
crossref_primary_10_1007_s10064_023_03095_6
crossref_primary_10_3390_math10234523
crossref_primary_10_1080_0305215X_2021_1919100
crossref_primary_10_1007_s00366_020_01225_2
crossref_primary_10_1016_j_engappai_2020_104015
crossref_primary_10_1038_s41598_023_40903_1
crossref_primary_10_1007_s42452_020_03767_y
crossref_primary_10_3390_buildings12070919
crossref_primary_10_1002_minf_202200026
crossref_primary_10_32604_cmes_2023_029938
crossref_primary_10_1016_j_autcon_2022_104386
crossref_primary_10_1016_j_dche_2023_100128
crossref_primary_10_1016_j_scp_2024_101894
crossref_primary_10_3233_JIFS_232989
crossref_primary_10_1007_s41062_021_00579_w
crossref_primary_10_1038_s41598_023_49033_0
crossref_primary_10_1016_j_tust_2022_104728
crossref_primary_10_1016_j_tust_2022_104605
crossref_primary_10_1007_s00366_017_0526_x
crossref_primary_10_3390_app9245372
crossref_primary_10_3390_ma15093309
crossref_primary_10_1007_s13762_022_04170_3
crossref_primary_10_1007_s13369_023_08360_0
crossref_primary_10_1007_s00366_017_0541_y
crossref_primary_10_1016_S1003_6326_21_65615_7
crossref_primary_10_33271_mining14_02_075
crossref_primary_10_2174_18748368_v16_2201120
crossref_primary_10_3390_app132011435
crossref_primary_10_1007_s10706_022_02086_w
crossref_primary_10_3390_app10020472
crossref_primary_10_1016_j_tust_2023_105315
crossref_primary_10_1007_s12205_022_0128_z
crossref_primary_10_1007_s11053_019_09470_z
crossref_primary_10_1007_s00603_021_02723_5
crossref_primary_10_2174_18748368_v16_e2201120
crossref_primary_10_2174_1874836802014010298
crossref_primary_10_1007_s10706_017_0380_z
crossref_primary_10_3389_feart_2024_1518844
crossref_primary_10_1016_j_cmpb_2019_105016
crossref_primary_10_1007_s10064_021_02527_5
crossref_primary_10_1016_j_soildyn_2020_106390
crossref_primary_10_1007_s11053_021_09899_1
crossref_primary_10_1016_j_petrol_2018_12_013
crossref_primary_10_1109_ACCESS_2018_2821190
crossref_primary_10_1016_j_trgeo_2023_101169
crossref_primary_10_1007_s10706_020_01213_9
crossref_primary_10_1007_s10462_024_10772_9
crossref_primary_10_1016_j_compgeo_2023_105557
crossref_primary_10_1016_j_jrmge_2019_01_002
crossref_primary_10_3390_app13169459
crossref_primary_10_1007_s00366_019_00711_6
crossref_primary_10_1016_j_autcon_2019_102860
crossref_primary_10_1038_s41598_024_79588_5
crossref_primary_10_2113_2021_2467126
crossref_primary_10_1038_s41598_022_19301_6
crossref_primary_10_3389_feart_2025_1542291
crossref_primary_10_1007_s00500_021_06005_8
crossref_primary_10_1016_j_asoc_2020_106904
crossref_primary_10_1007_s12517_022_09665_4
crossref_primary_10_3390_app10051761
crossref_primary_10_3390_ma12223708
crossref_primary_10_1177_1464419320907432
crossref_primary_10_1016_j_tust_2020_103383
crossref_primary_10_32604_cmes_2022_017792
crossref_primary_10_32604_cmes_2024_052210
crossref_primary_10_1038_s41598_024_65351_3
crossref_primary_10_1016_j_measurement_2020_108127
crossref_primary_10_1007_s00366_019_00855_5
crossref_primary_10_1007_s00366_018_0642_2
crossref_primary_10_1007_s12665_024_11539_9
crossref_primary_10_3390_app9142788
crossref_primary_10_1007_s13369_019_04134_9
crossref_primary_10_1007_s11053_020_09697_1
crossref_primary_10_1016_j_autcon_2018_03_030
crossref_primary_10_1016_j_undsp_2022_11_002
crossref_primary_10_3390_app9132630
crossref_primary_10_3390_su142013420
crossref_primary_10_1007_s00603_020_02226_9
crossref_primary_10_1016_j_conbuildmat_2021_124450
crossref_primary_10_1016_j_kscej_2024_100077
crossref_primary_10_1016_j_earscirev_2022_103991
crossref_primary_10_3390_app9183715
crossref_primary_10_1016_j_trgeo_2020_100446
crossref_primary_10_1142_S0218001418590188
crossref_primary_10_1007_s11440_021_01319_1
crossref_primary_10_1016_j_gsf_2020_09_020
crossref_primary_10_1016_j_applthermaleng_2025_125604
crossref_primary_10_1007_s00521_021_06600_8
crossref_primary_10_1016_j_eswa_2022_118303
crossref_primary_10_3390_math10244637
crossref_primary_10_1016_j_measurement_2021_109545
crossref_primary_10_3390_app10175734
crossref_primary_10_3390_en15082907
crossref_primary_10_1007_s10921_020_00725_x
crossref_primary_10_1007_s00366_019_00849_3
crossref_primary_10_3390_jmse9010071
crossref_primary_10_1680_jsmic_20_00011
crossref_primary_10_1016_j_advengsoft_2021_103009
crossref_primary_10_1007_s00521_020_04803_z
crossref_primary_10_1016_j_flowmeasinst_2021_102108
crossref_primary_10_1007_s10462_024_10836_w
crossref_primary_10_1080_17499518_2024_2422493
crossref_primary_10_1007_s10706_023_02516_3
crossref_primary_10_1007_s00366_019_00754_9
crossref_primary_10_1016_j_tust_2025_106496
crossref_primary_10_1016_j_jrmge_2021_05_010
crossref_primary_10_1007_s10064_019_01626_8
crossref_primary_10_1016_j_tust_2022_104497
crossref_primary_10_1007_s13369_020_04683_4
crossref_primary_10_1016_j_eng_2024_11_037
crossref_primary_10_1016_j_undsp_2020_01_003
crossref_primary_10_17491_jgsi_2025_174077
crossref_primary_10_1061_IJGNAI_GMENG_7738
crossref_primary_10_1016_j_cie_2022_108251
crossref_primary_10_1016_j_petrol_2019_02_045
crossref_primary_10_1007_s00366_017_0520_3
crossref_primary_10_1016_j_trgeo_2021_100627
crossref_primary_10_1016_j_conbuildmat_2022_127668
crossref_primary_10_1016_j_tust_2021_104183
crossref_primary_10_1007_s12145_021_00736_w
crossref_primary_10_1016_j_heliyon_2024_e33174
crossref_primary_10_1016_j_cemconres_2020_106167
crossref_primary_10_3390_app12104854
crossref_primary_10_1007_s00366_018_0600_z
crossref_primary_10_1007_s11053_019_09519_z
crossref_primary_10_1061_AJRUA6_RUENG_1451
crossref_primary_10_1007_s12665_022_10436_3
crossref_primary_10_3390_app10051691
crossref_primary_10_1016_j_undsp_2020_05_008
crossref_primary_10_1007_s12145_019_00381_4
crossref_primary_10_1016_j_undsp_2020_05_005
crossref_primary_10_1016_j_tust_2018_05_023
crossref_primary_10_1016_j_undsp_2020_05_002
crossref_primary_10_3390_su132212797
crossref_primary_10_46464_tdad_1033302
crossref_primary_10_1007_s11709_022_0908_z
crossref_primary_10_1007_s11053_020_09714_3
crossref_primary_10_1093_jcde_qwab004
crossref_primary_10_3389_feart_2023_1135948
crossref_primary_10_1016_j_tust_2024_105906
crossref_primary_10_1007_s00366_018_0596_4
crossref_primary_10_1007_s10706_017_0356_z
crossref_primary_10_1016_j_engappai_2020_103783
crossref_primary_10_1007_s00366_020_01241_2
crossref_primary_10_3390_app12105019
crossref_primary_10_1016_j_tust_2020_103620
crossref_primary_10_1007_s11053_020_09676_6
crossref_primary_10_1016_j_undsp_2019_12_001
crossref_primary_10_1007_s00366_019_00770_9
crossref_primary_10_1016_j_measurement_2019_106870
crossref_primary_10_1016_j_tust_2021_104054
crossref_primary_10_1002_suco_202200023
crossref_primary_10_1007_s11709_022_0823_3
crossref_primary_10_3390_ma15103500
crossref_primary_10_1007_s42107_022_00495_z
crossref_primary_10_1109_ACCESS_2020_3041032
crossref_primary_10_3390_app9214554
crossref_primary_10_1016_j_cscm_2022_e01323
crossref_primary_10_1016_j_conbuildmat_2022_128737
crossref_primary_10_3390_app142311394
crossref_primary_10_1007_s11053_019_09532_2
crossref_primary_10_3846_jcem_2021_15853
crossref_primary_10_1016_j_cscm_2023_e01985
crossref_primary_10_1016_j_geoen_2024_213247
crossref_primary_10_2174_1874836802014010237
crossref_primary_10_3390_electronics11071045
crossref_primary_10_1007_s11053_019_09605_2
crossref_primary_10_1016_j_jrmge_2023_02_014
crossref_primary_10_1007_s12205_023_1286_3
crossref_primary_10_1016_j_engappai_2024_108985
crossref_primary_10_1016_j_jer_2024_05_009
crossref_primary_10_1016_j_asoc_2023_111174
crossref_primary_10_1155_2022_6156210
crossref_primary_10_1016_j_trgeo_2021_100652
crossref_primary_10_1007_s10706_017_0432_4
crossref_primary_10_1016_j_trgeo_2020_100497
crossref_primary_10_1016_j_iot_2023_100853
crossref_primary_10_1016_j_trgeo_2020_100372
crossref_primary_10_1016_j_jclepro_2023_138673
crossref_primary_10_3390_mining2040034
crossref_primary_10_1007_s11600_024_01320_8
crossref_primary_10_1016_j_tust_2023_105249
crossref_primary_10_1080_10916466_2021_2003386
crossref_primary_10_1038_s41598_022_08864_z
crossref_primary_10_3390_math10193432
crossref_primary_10_1177_16878132231159971
crossref_primary_10_1016_j_tust_2020_103520
crossref_primary_10_1016_j_trgeo_2022_100819
crossref_primary_10_3390_app13052878
crossref_primary_10_1007_s00366_018_0672_9
crossref_primary_10_1016_j_tust_2020_103636
crossref_primary_10_1016_j_jrmge_2021_06_015
crossref_primary_10_1007_s10712_021_09638_4
crossref_primary_10_1016_j_tust_2022_104448
crossref_primary_10_1016_j_jrmge_2023_06_015
crossref_primary_10_1177_1687814021998831
crossref_primary_10_1016_j_jrmge_2023_06_010
crossref_primary_10_1109_ACCESS_2019_2952649
crossref_primary_10_1007_s00603_025_04451_6
crossref_primary_10_3390_math10203875
crossref_primary_10_1002_dug2_12082
crossref_primary_10_1007_s00366_020_01217_2
crossref_primary_10_1016_j_cscm_2024_e04053
crossref_primary_10_1016_j_measurement_2018_05_049
crossref_primary_10_1007_s00366_020_00997_x
crossref_primary_10_1007_s12517_021_08319_1
crossref_primary_10_1038_s41598_020_76569_2
crossref_primary_10_1155_2019_7198962
crossref_primary_10_1007_s12517_024_11878_8
crossref_primary_10_3390_ma15124193
crossref_primary_10_1155_2021_2621931
crossref_primary_10_1007_s42107_023_00699_x
crossref_primary_10_1007_s41062_019_0234_z
crossref_primary_10_1016_j_cemconres_2021_106449
crossref_primary_10_1007_s00366_019_00715_2
crossref_primary_10_1016_j_rineng_2024_102437
crossref_primary_10_32604_cmes_2023_025993
crossref_primary_10_3389_feart_2023_1105610
crossref_primary_10_1016_j_eswa_2024_123701
crossref_primary_10_1007_s12665_018_7293_x
crossref_primary_10_1109_ACCESS_2020_3004995
crossref_primary_10_3390_su141911944
crossref_primary_10_1016_j_measurement_2019_107244
crossref_primary_10_5004_dwt_2021_27184
crossref_primary_10_1016_j_measurement_2019_06_007
crossref_primary_10_1016_j_conbuildmat_2025_140628
crossref_primary_10_1016_j_ijrmms_2024_105728
crossref_primary_10_1007_s00366_017_0545_7
crossref_primary_10_1108_MLAG_06_2024_0004
crossref_primary_10_1007_s40891_021_00299_2
Cites_doi 10.1016/j.tust.2007.04.011
10.1007/s11721-007-0002-0
10.1016/j.ijrmms.2011.02.013
10.1007/s12517-011-0415-3
10.1016/j.tust.2008.12.007
10.1007/BF02832128
10.1016/S0886-7798(00)00055-9
10.1016/j.ijrmms.2005.06.007
10.1016/j.measurement.2014.08.007
10.1016/S1365-1609(02)00069-2
10.1504/IJMME.2013.053172
10.1016/j.neucom.2003.08.006
10.1007/s10064-013-0497-0
10.1016/j.ijrmms.2008.03.003
10.1109/ICNN.1995.488968
10.1061/(ASCE)CP.1943-5487.0000421
10.1016/0925-2312(95)00039-9
10.1016/0148-9062(82)91151-2
10.1109/IAS.2006.256639
10.1016/j.sandf.2012.01.002
10.1016/0893-6080(89)90020-8
10.1016/S1674-5264(09)60271-4
10.1016/j.asoc.2012.10.009
10.1007/s12517-013-1174-0
10.1016/j.measurement.2014.09.075
10.1016/j.solener.2012.08.005
10.1016/0148-9062(75)90547-1
10.1016/0148-9062(85)93229-2
10.1007/s00366-015-0410-5
10.1016/j.enggeo.2007.10.009
10.1016/j.tust.2004.02.128
10.1016/S0148-9062(98)00173-9
10.1007/BF02478259
10.1109/IJCNN.1991.155275
10.1109/TPWRS.2008.2008606
10.1016/j.measurement.2013.04.077
10.1016/j.tust.2012.02.012
10.1109/69.494162
10.1016/j.neucom.2008.02.017
10.1016/j.engappai.2009.03.007
10.1080/014311697218719
10.1108/17563780810893446
10.1016/j.ijrmms.2014.09.012
10.1016/j.enggeo.2007.09.003
10.1109/CEC.2007.4425083
10.1016/S0167-9031(86)90250-1
10.1007/s12205-012-1452-5
10.1016/j.fuel.2012.05.050
10.1109/4235.985692
10.1007/s12665-012-1783-z
10.1016/j.ijrmms.2015.09.019
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright Elsevier BV Mar 2017
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Copyright Elsevier BV Mar 2017
DBID AAYXX
CITATION
8FD
FR3
KR7
DOI 10.1016/j.tust.2016.12.009
DatabaseName CrossRef
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-4364
EndPage 43
ExternalDocumentID 10_1016_j_tust_2016_12_009
S0886779815303473
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACNNM
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
JJJVA
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEP
SES
SET
SEW
SPC
SPCBC
SSE
SST
SSZ
T5K
WUQ
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
8FD
AFXIZ
AGCQF
AGRNS
FR3
KR7
SSH
ID FETCH-LOGICAL-c394t-122656f54a76b39163e1e79a01b82b31aed4fa2a54c4a1a0bec3b5b68fc0f9023
IEDL.DBID .~1
ISSN 0886-7798
IngestDate Mon Jul 14 07:41:31 EDT 2025
Thu Apr 24 23:09:30 EDT 2025
Wed Oct 01 05:55:49 EDT 2025
Fri Feb 23 02:15:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Penetration rate
Tunnel boring machine
Artificial neural network
Particle swarm optimization
Imperialism competitive algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-122656f54a76b39163e1e79a01b82b31aed4fa2a54c4a1a0bec3b5b68fc0f9023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1953097188
PQPubID 2045384
PageCount 15
ParticipantIDs proquest_journals_1953097188
crossref_citationtrail_10_1016_j_tust_2016_12_009
crossref_primary_10_1016_j_tust_2016_12_009
elsevier_sciencedirect_doi_10_1016_j_tust_2016_12_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2017
2017-03-00
20170301
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: March 2017
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Tunnelling and underground space technology
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Simoes, M.G., Kim, T., 2006. Fuzzy modeling approaches for the prediction of machine utilization in hard rock tunnel boring machines. In: Industry Applications Conference, 2006. 41st IAS Annual Meeting. Conference Record of the 2006 IEEE. IEEE, pp. 947–954.
Yagiz, Gokceoglu, Sezer, Iplikci (b0430) 2009; 22
Maulenkamp, Grima (b0245) 1999; 36
Sato, Gong, Itakura (b0355) 1991
Priddy, Keller (b0315) 2005
Hajihassani, Jahed Armaghani, Marto, Tonnizam Mohamad (b0135) 2014
Hecht-Nielsen, R., 1987. Kolmogorov’s mapping neural network existence theorem. In: Proceedings of the First IEEE International Conference on Neural Networks, San Diego, CA, USA, pp. 11–14.
Ceryan, Okkan, Kesimal (b0065) 2012; 68
Mogana, S.N., 2007. The effects of ground conditions on TBM performance in tunnel excavation – a case history. In: Proceedings of the 10th Australia New Zealand Conference on Geomechanics, pp. 442–447.
Azit, Ismail (b0030) 2014
Clerc, Kennedy (b0075) 2002; 6
Sonmez, Gokceoglu, Nefeslioglu, Kayabasi (b0380) 2006; 43
Nelson, Illingworth (b0285) 1990
Masters (b0240) 1994
Jahed Armaghani, Mohamad, Hajihassanic, Yagiz, Motaghedie (b0185) 2016
Lee, Y., Oh, S.H., Kim, M.W., 1991. The effect of initial weights on premature saturation in back-propagation learning. In: Proceedings of the International Joint Conference on Neural Networks, pp. 765–770.
Eftekhari, M., Baghbanan, A., Bayati, M., 2010. Predicting penetration rate of a tunnel boring machine using artificial neural network. In: ISRM International Symposium-6th Asian Rock Mechanics Symposium. International Society for Rock Mechanics, pp. 1–7.
Nordin, Z., 2014. Planning and construction of Pahang-Selangor raw water transfer (PSRWT) tunnel. In: Seminar on Tunnels and Underground Structures, 2–4 September, Malaysia.
Bashir, El-Hawary (b0045) 2009; 24
Poli, Kennedy, Blackwell (b0310) 2007; 1
Roxborough, Phillips (b0335) 1975; 12
Ghasemi, Yagiz, Ataei (b0100) 2014; 73
Demuth, H., Beale, M., Hagan, M., 2009. MATLAB Version 7.14.0.739; Neural Network Toolbox for Use with Matlab. The Mathworks.
Farmer, Glossop (b0090) 1980; 12
Looney (b0225) 1996; 8
Bansal, Singh, Saraswat, Verma, Jadon, Abraham (b0040) 2011
Sanio (b0345) 1985; 22
Yavari, Mahdavi (b0450) 2005
Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: IEEE International Conference on Neural Networks. Perth, Australia, pp. 1942–1948.
Snowdon, Ryley, Temporal (b0365) 1982; 19
Yagiz (b0425) 2008; 23
Zurada (b0460) 1992; vol. 8
Sonmez, Gokceoglu (b0385) 2008; 97
Yagiz, S., 2002. Development of Rock Fracture and Brittleness Indices to Quantify the Effects of Rock Mass Features and Toughness in the CSM Model Basic Penetration for Hard Rock Tunneling Machines (Ph.D. Thesis). Department of Mining and Earth Systems Engineering, Colorado School of Mines, Golden, Colorado, USA, p. 289.
Hajihassani (b0130) 2013
Kaastra, Boyd (b0190) 1996; 10
Zorlu, Gokceoglu, Ocakoglu, Nefeslioglu, Acikalin (b0455) 2008; 96
Gordan, Jahed Armaghani, Hajihassani, Monjezi (b0120) 2015
Gholamnejad, Tayarani (b0110) 2010; 20
Bamford, W.F., 1984. Rock test indices are being successfully correlated with tunnel boring machine performance. In: Proceedings of the 5th Australian Tunneling Conference, Melbourne, pp. 9–22.
Wang (b0405) 1994
Graham, P.C., 1976. Rock exploration for machine manufacturers. In: Bieniawski, Z.T. (Ed.), Exploration for Rock Engineering. Johannesburg, Balkema, pp. 173–80.
Hughes (b0155) 1986; 3
Khamesi, Torabi, Mirzaei-Nasirabad, Ghadiri (b0205) 2015; 29
Ch, Mathur (b0070) 2012; 16
Hornik, Stinchcombe, White (b0150) 1989; 2
Mahdevari, Shahriar, Yagiz, Shirazi (b0230) 2014; 72
Salimi, Esmaeili (b0340) 2013; 4
Yang (b0445) 2010
Atashpaz-Gargari, Hashemzadeh, Rajabioun, Lucas (b0025) 2008; 1
Farrokh, Rostami, Laughton (b0095) 2012; 30
Swingler (b0390) 1996
Atashpaz-Gargari, E., Lucas, C., 2007. Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: IEEE Congress on Evolutionary Computation, pp. 4661–4667.
Ahmadi, Shadizadeh (b0010) 2012; 102
Jahed Armaghani, Hajihassani, Mohamad, Marto, Noorani (b0170) 2014; 7
Gong, Zhao (b0115) 2009; 46
Jahed Armaghani, Hasanipanah, Tonnizam Mohamad (b0165) 2015
Lin, Hsieh (b0215) 2009; 72
Benardos, Kaliampakos (b0050) 2004; 19
Ahmadi, Ebadi, Shokrollahi, Majidi (b0005) 2013; 13
Gholami, M., Shahriar, K., Sharifzadeh, M., Hamidi, J.K., 2012. A comparison of artificial neural network and multiple regression analysis in TBM performance prediction. In: ISRM Regional Symposium-7th Asian Rock Mechanics Symposium. International Society for Rock Mechanics.
Marto, Hajihassani, Jahed Armaghani, Tonnizam Mohamad, Makhtar (b0235) 2014
McCulloch Warren, Pitts (b0250) 1943; 5
Yagiz, Karahan (b0435) 2011; 48
Liou, Wang, Huang (b0220) 2009; 15
Bruines, P., 1998. Neuro-fuzzy modeling of TBM performance with emphasis on the penetration rate. Memoirs of the Centre of Engineering Geology in the Netherlands, Delft, no. 173, 202, pp. 1386–5072.
Momeni, Armaghani, Hajihassani, Amin (b0280) 2015; 60
Oraee, Khorami, Hosseini (b0295) 2012
Ornek, Laman, Demir, Yildiz (b0300) 2012; 52
Wu, Qian, Gong (b0415) 2006; 11
Brownlee (b0055) 2011
Jahed Armaghani, Raja, Faizi, Rashid (b0180) 2015
Wang, Tang, Tamura, Ishii, Sun (b0410) 2004; 56
Momeni, Nazir, Jahed Armaghani, Maizir (b0275) 2014; 57
Mogana, S.N., Rafek, A.G., Komoo, I., 1998. The influence of rock mass properties in the assessment of TBM performance. In: Moore, D., Hungr, O. (Eds.), 8th IAEG Congr, Vancouver, Balkema, Rotterdam, pp. 3553–3559.
Haykin (b0140) 1999
Mikaeil, Naghadehi, Sereshki (b0255) 2009; 24
Mohandes (b0260) 2012; 86
Shao, Li, Su (b0360) 2013
Taghavifar, Mardani, Taghavifar (b0395) 2013; 46
Simpson (b0375) 1990
Jahed Armaghani, Tonnizam Mohamad, Momeni, Narayanasamy, Mohd Amin (b0175) 2014
ISRM (b0160) 2007
Yagiz, Karahan (b0440) 2015; 80
Alvarez Grima, Bruines, Verhoef (b0015) 2000; 15
Rostami, J., Ozdemir, L., 1993. A new model for performance prediction of hard rock TBM. In: Bowerman, L.D. et al. (Eds.), Proceedings of RETC, Boston, MA, pp. 793–809.
Rostami (b0330) 1997
Torabi, Shirazi, Hajali, Monjezi (b0400) 2013; 6
Kanellopoulas, Wilkinson (b0195) 1997; 18
Sapigni, Berti, Behtaz, Busillo, Cardone (b0350) 2002; 39
Ripley (b0320) 1993
Paola (b0305) 1994
Ch (10.1016/j.tust.2016.12.009_b0070) 2012; 16
Yavari (10.1016/j.tust.2016.12.009_b0450) 2005
Sapigni (10.1016/j.tust.2016.12.009_b0350) 2002; 39
Ahmadi (10.1016/j.tust.2016.12.009_b0010) 2012; 102
Ceryan (10.1016/j.tust.2016.12.009_b0065) 2012; 68
10.1016/j.tust.2016.12.009_b0210
Kaastra (10.1016/j.tust.2016.12.009_b0190) 1996; 10
Looney (10.1016/j.tust.2016.12.009_b0225) 1996; 8
10.1016/j.tust.2016.12.009_b0370
Marto (10.1016/j.tust.2016.12.009_b0235) 2014
10.1016/j.tust.2016.12.009_b0290
Salimi (10.1016/j.tust.2016.12.009_b0340) 2013; 4
Snowdon (10.1016/j.tust.2016.12.009_b0365) 1982; 19
Wu (10.1016/j.tust.2016.12.009_b0415) 2006; 11
Gong (10.1016/j.tust.2016.12.009_b0115) 2009; 46
Maulenkamp (10.1016/j.tust.2016.12.009_b0245) 1999; 36
Sonmez (10.1016/j.tust.2016.12.009_b0385) 2008; 97
Yagiz (10.1016/j.tust.2016.12.009_b0430) 2009; 22
Gholamnejad (10.1016/j.tust.2016.12.009_b0110) 2010; 20
Simpson (10.1016/j.tust.2016.12.009_b0375) 1990
Hornik (10.1016/j.tust.2016.12.009_b0150) 1989; 2
Shao (10.1016/j.tust.2016.12.009_b0360) 2013
Ornek (10.1016/j.tust.2016.12.009_b0300) 2012; 52
Zurada (10.1016/j.tust.2016.12.009_b0460) 1992; vol. 8
Mikaeil (10.1016/j.tust.2016.12.009_b0255) 2009; 24
Haykin (10.1016/j.tust.2016.12.009_b0140) 1999
Wang (10.1016/j.tust.2016.12.009_b0405) 1994
Sonmez (10.1016/j.tust.2016.12.009_b0380) 2006; 43
Yagiz (10.1016/j.tust.2016.12.009_b0425) 2008; 23
Roxborough (10.1016/j.tust.2016.12.009_b0335) 1975; 12
Ripley (10.1016/j.tust.2016.12.009_b0320) 1993
Wang (10.1016/j.tust.2016.12.009_b0410) 2004; 56
Mahdevari (10.1016/j.tust.2016.12.009_b0230) 2014; 72
10.1016/j.tust.2016.12.009_b0085
Mohandes (10.1016/j.tust.2016.12.009_b0260) 2012; 86
Hajihassani (10.1016/j.tust.2016.12.009_b0135) 2014
Liou (10.1016/j.tust.2016.12.009_b0220) 2009; 15
Torabi (10.1016/j.tust.2016.12.009_b0400) 2013; 6
10.1016/j.tust.2016.12.009_b0080
Jahed Armaghani (10.1016/j.tust.2016.12.009_b0175) 2014
Priddy (10.1016/j.tust.2016.12.009_b0315) 2005
Kanellopoulas (10.1016/j.tust.2016.12.009_b0195) 1997; 18
Swingler (10.1016/j.tust.2016.12.009_b0390) 1996
Yang (10.1016/j.tust.2016.12.009_b0445) 2010
Gordan (10.1016/j.tust.2016.12.009_b0120) 2015
Clerc (10.1016/j.tust.2016.12.009_b0075) 2002; 6
Jahed Armaghani (10.1016/j.tust.2016.12.009_b0170) 2014; 7
Alvarez Grima (10.1016/j.tust.2016.12.009_b0015) 2000; 15
McCulloch Warren (10.1016/j.tust.2016.12.009_b0250) 1943; 5
10.1016/j.tust.2016.12.009_b0325
Zorlu (10.1016/j.tust.2016.12.009_b0455) 2008; 96
Atashpaz-Gargari (10.1016/j.tust.2016.12.009_b0025) 2008; 1
10.1016/j.tust.2016.12.009_b0200
10.1016/j.tust.2016.12.009_b0125
10.1016/j.tust.2016.12.009_b0270
Momeni (10.1016/j.tust.2016.12.009_b0280) 2015; 60
Nelson (10.1016/j.tust.2016.12.009_b0285) 1990
Ahmadi (10.1016/j.tust.2016.12.009_b0005) 2013; 13
Jahed Armaghani (10.1016/j.tust.2016.12.009_b0180) 2015
Bansal (10.1016/j.tust.2016.12.009_b0040) 2011
Paola (10.1016/j.tust.2016.12.009_b0305) 1994
Oraee (10.1016/j.tust.2016.12.009_b0295) 2012
Sanio (10.1016/j.tust.2016.12.009_b0345) 1985; 22
10.1016/j.tust.2016.12.009_b0035
Poli (10.1016/j.tust.2016.12.009_b0310) 2007; 1
Taghavifar (10.1016/j.tust.2016.12.009_b0395) 2013; 46
10.1016/j.tust.2016.12.009_b0020
Azit (10.1016/j.tust.2016.12.009_b0030) 2014
Hajihassani (10.1016/j.tust.2016.12.009_b0130) 2013
Rostami (10.1016/j.tust.2016.12.009_b0330) 1997
Khamesi (10.1016/j.tust.2016.12.009_b0205) 2015; 29
10.1016/j.tust.2016.12.009_b0265
10.1016/j.tust.2016.12.009_b0060
Brownlee (10.1016/j.tust.2016.12.009_b0055) 2011
Benardos (10.1016/j.tust.2016.12.009_b0050) 2004; 19
Momeni (10.1016/j.tust.2016.12.009_b0275) 2014; 57
Jahed Armaghani (10.1016/j.tust.2016.12.009_b0165) 2015
Sato (10.1016/j.tust.2016.12.009_b0355) 1991
Bashir (10.1016/j.tust.2016.12.009_b0045) 2009; 24
Jahed Armaghani (10.1016/j.tust.2016.12.009_b0185) 2016
Ghasemi (10.1016/j.tust.2016.12.009_b0100) 2014; 73
Farrokh (10.1016/j.tust.2016.12.009_b0095) 2012; 30
Lin (10.1016/j.tust.2016.12.009_b0215) 2009; 72
ISRM (10.1016/j.tust.2016.12.009_b0160) 2007
10.1016/j.tust.2016.12.009_b0105
Masters (10.1016/j.tust.2016.12.009_b0240) 1994
Yagiz (10.1016/j.tust.2016.12.009_b0440) 2015; 80
10.1016/j.tust.2016.12.009_b0145
10.1016/j.tust.2016.12.009_b0420
Farmer (10.1016/j.tust.2016.12.009_b0090) 1980; 12
Yagiz (10.1016/j.tust.2016.12.009_b0435) 2011; 48
Hughes (10.1016/j.tust.2016.12.009_b0155) 1986; 3
References_xml – year: 2011
  ident: b0055
  article-title: Clever Algorithms: Nature-Inspired Programming Recipes
– year: 1990
  ident: b0285
  article-title: A Practical Guide to Neural Nets
– volume: 73
  start-page: 23
  year: 2014
  end-page: 35
  ident: b0100
  article-title: Predicting penetration rate of hard rock tunnel boring machine using fuzzy logic
  publication-title: Bull. Eng. Geol. Environ.
– start-page: 409
  year: 2013
  end-page: 416
  ident: b0360
  article-title: Performance prediction of hard rock TBM based on extreme learning machine
  publication-title: Intelligent Robotics and Applications
– volume: 23
  start-page: 326
  year: 2008
  end-page: 339
  ident: b0425
  article-title: Utilizing rock mass properties for predicting TBM performance in hard rock conditions
  publication-title: Tunnell. Undergr. Space Technol.
– volume: 72
  start-page: 1121
  year: 2009
  end-page: 1130
  ident: b0215
  article-title: Classification of mental task from EEG data using neural networks based on particle swarm optimization
  publication-title: Neurocomputing
– year: 1996
  ident: b0390
  article-title: Applying Neural Networks: A Practical Guide
– year: 2014
  ident: b0175
  article-title: An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young’s modulus: a study on Main Range granite
  publication-title: Bull. Eng. Geol. Environ.
– volume: 22
  start-page: 153
  year: 1985
  end-page: 161
  ident: b0345
  article-title: Prediction of the performance of disc cutters in anisotropy rocks
  publication-title: Int. J. Rock Mech. Min. Sci., Abstr.
– volume: 11
  start-page: 385
  year: 2006
  end-page: 398
  ident: b0415
  article-title: The time and cost prediction of tunnel boring machine in tunneling
  publication-title: Wuhan Univ. J. Natural Sci.
– volume: 56
  start-page: 455
  year: 2004
  end-page: 460
  ident: b0410
  article-title: An improved backpropagation algorithm to avoid the local minima problem
  publication-title: Neurocomputing
– volume: vol. 8
  year: 1992
  ident: b0460
  publication-title: Introduction to Artificial Neural Systems
– volume: 1
  start-page: 33
  year: 2007
  end-page: 57
  ident: b0310
  article-title: Particle swarm optimization an overview
  publication-title: Swarm Intell.
– volume: 39
  start-page: 771
  year: 2002
  end-page: 788
  ident: b0350
  article-title: TBM performance estimation using rock mass classification
  publication-title: Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
– year: 2016
  ident: b0185
  article-title: Application of several non-linear prediction tools for estimating uniaxial compressive strength of granitic rocks and comparison of their performances
  publication-title: Eng. Comput.
– volume: 80
  start-page: 308
  year: 2015
  end-page: 315
  ident: b0440
  article-title: Application of various optimization techniques and comparison of their performances for predicting TBM penetration rate in rock mass
  publication-title: Int. J. Rock Mech. Min. Sci.
– year: 1994
  ident: b0240
  article-title: Practical Neural Network Recipes in C++
– year: 1991
  ident: b0355
  article-title: Prediction of disc cutter performance using a circular rock cutting ring
  publication-title: Proceedings, the First International Mine Mechanization and Automation Symposium
– volume: 43
  start-page: 224
  year: 2006
  end-page: 235
  ident: b0380
  article-title: Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equation
  publication-title: Int. J. Rock. Mech. Min. Sci.
– volume: 15
  start-page: 742
  year: 2009
  end-page: 764
  ident: b0220
  article-title: Integrative discovery of multifaceted sequence patterns by frame-relayed search and hybrid PSO-ANN
  publication-title: J. Univ. Comput. Sci.
– reference: Demuth, H., Beale, M., Hagan, M., 2009. MATLAB Version 7.14.0.739; Neural Network Toolbox for Use with Matlab. The Mathworks.
– volume: 6
  start-page: 58
  year: 2002
  end-page: 73
  ident: b0075
  article-title: The particle swarm explosion, stability, and convergence in a multi-dimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
– volume: 3
  start-page: 95
  year: 1986
  end-page: 109
  ident: b0155
  article-title: The relative cuttability of coal-measures stone
  publication-title: Min. Sci. Technol.
– volume: 8
  start-page: 211
  year: 1996
  end-page: 226
  ident: b0225
  article-title: Advances in feed-forward neural networks: demystifying knowledge acquiring black boxes
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: Lee, Y., Oh, S.H., Kim, M.W., 1991. The effect of initial weights on premature saturation in back-propagation learning. In: Proceedings of the International Joint Conference on Neural Networks, pp. 765–770.
– volume: 16
  start-page: 298
  year: 2012
  end-page: 307
  ident: b0070
  article-title: Particle swarm optimization trained neural network for aquifer parameter estimation
  publication-title: KSCE J. Civ. Eng.
– reference: Graham, P.C., 1976. Rock exploration for machine manufacturers. In: Bieniawski, Z.T. (Ed.), Exploration for Rock Engineering. Johannesburg, Balkema, pp. 173–80.
– year: 1999
  ident: b0140
  article-title: Neural Networks
– start-page: 640
  year: 2011
  end-page: 647
  ident: b0040
  article-title: Inertia Weight Strategies in Particle Swarm Optimization
  publication-title: Third World Congress on Nature and Biologically Inspired Computing
– volume: 24
  start-page: 500
  year: 2009
  end-page: 505
  ident: b0255
  article-title: Multifactorial fuzzy approach to the penetrability classification of TBM in hard rock conditions
  publication-title: Tunnell. Undergr. Space Technol.
– reference: Mogana, S.N., Rafek, A.G., Komoo, I., 1998. The influence of rock mass properties in the assessment of TBM performance. In: Moore, D., Hungr, O. (Eds.), 8th IAEG Congr, Vancouver, Balkema, Rotterdam, pp. 3553–3559.
– volume: 46
  start-page: 8
  year: 2009
  end-page: 18
  ident: b0115
  article-title: Development of a rock mass characteristics model for TBM penetration rate prediction
  publication-title: Int. J. Rock Mech. Min. Sci.
– year: 2010
  ident: b0445
  article-title: Engineering Optimization: An Introduction with Metaheuristic Applications
– volume: 46
  start-page: 2288
  year: 2013
  end-page: 2299
  ident: b0395
  article-title: A hybridized artificial neural network and imperialist competitive algorithm optimization approach for prediction of soil compaction in soil bin facility
  publication-title: Measurement
– start-page: 519
  year: 2014
  end-page: 529
  ident: b0030
  article-title: Rock mass classification system used for Pahang-Selangor raw water transfer tunnel
  publication-title: InCIEC 2013
– reference: Nordin, Z., 2014. Planning and construction of Pahang-Selangor raw water transfer (PSRWT) tunnel. In: Seminar on Tunnels and Underground Structures, 2–4 September, Malaysia.
– year: 1997
  ident: b0330
  article-title: Development of a Force Estimation Model for Rock Fragmentation with Disc Cutters through Theoretical Modeling and Physical Measurement of Crushed Zone Pressure
– volume: 102
  start-page: 716
  year: 2012
  end-page: 723
  ident: b0010
  article-title: New approach for prediction of asphaltene precipitation due to natural depletion by using evolutionary algorithm concept
  publication-title: Fuel
– reference: Gholami, M., Shahriar, K., Sharifzadeh, M., Hamidi, J.K., 2012. A comparison of artificial neural network and multiple regression analysis in TBM performance prediction. In: ISRM Regional Symposium-7th Asian Rock Mechanics Symposium. International Society for Rock Mechanics.
– reference: Mogana, S.N., 2007. The effects of ground conditions on TBM performance in tunnel excavation – a case history. In: Proceedings of the 10th Australia New Zealand Conference on Geomechanics, pp. 442–447.
– start-page: 1
  year: 2005
  end-page: 10
  ident: b0450
  article-title: Prediction of penetration rate of TBM using ANN
  publication-title: National Mining Conference, 1–3 Feb 2005, Iran
– volume: 29
  start-page: 05014010
  year: 2015
  ident: b0205
  article-title: Improving the performance of intelligent back analysis for tunneling using optimized fuzzy systems: case study of the Karaj Subway Line 2 in Iran
  publication-title: J. Comput. Civ. Eng.
– reference: Simoes, M.G., Kim, T., 2006. Fuzzy modeling approaches for the prediction of machine utilization in hard rock tunnel boring machines. In: Industry Applications Conference, 2006. 41st IAS Annual Meeting. Conference Record of the 2006 IEEE. IEEE, pp. 947–954.
– volume: 52
  start-page: 69
  year: 2012
  end-page: 80
  ident: b0300
  article-title: Prediction of bearing capacity of circular footings on soft clay stabilized with granular soil
  publication-title: Soil Found.
– volume: 4
  start-page: 249
  year: 2013
  end-page: 264
  ident: b0340
  article-title: Utilizing of linear and non-linear prediction tools for evaluation of penetration rate of tunnel boring machine in hard rock condition
  publication-title: Int. J. Min. Miner. Eng.
– reference: Hecht-Nielsen, R., 1987. Kolmogorov’s mapping neural network existence theorem. In: Proceedings of the First IEEE International Conference on Neural Networks, San Diego, CA, USA, pp. 11–14.
– year: 2013
  ident: b0130
  article-title: Tunneling-Induced Ground Movement and Building Damage Prediction Using Hybrid Artificial Neural Networks
– start-page: 297
  year: 2012
  end-page: 302
  ident: b0295
  article-title: Prediction of the penetration rate of TBM using adaptive neuro fuzzy inference system (ANFIS)
  publication-title: Proceeding of SME Annual Meeting & Exhibit, From the Mine to the Market, Now It's Global, Seattle, WA, USA
– year: 2015
  ident: b0120
  article-title: Prediction of seismic slope stability through combination of particle swarm optimization and neural network
  publication-title: Eng. Comput.
– volume: 12
  start-page: 22
  year: 1980
  end-page: 25
  ident: b0090
  article-title: Mechanics of disc cutter penetration
  publication-title: Tunnels Tunnell. Int.
– year: 2015
  ident: b0180
  article-title: Developing a Hybrid PSO–ANN Model for Estimating the Ultimate Bearing Capacity of Rock-Socketed Piles
– reference: Yagiz, S., 2002. Development of Rock Fracture and Brittleness Indices to Quantify the Effects of Rock Mass Features and Toughness in the CSM Model Basic Penetration for Hard Rock Tunneling Machines (Ph.D. Thesis). Department of Mining and Earth Systems Engineering, Colorado School of Mines, Golden, Colorado, USA, p. 289.
– volume: 15
  start-page: 259
  year: 2000
  end-page: 269
  ident: b0015
  article-title: Modeling tunnel boring machine performance by neuro-fuzzy methods
  publication-title: Tunnell. Undergr. Space Technol.
– volume: 20
  start-page: 727
  year: 2010
  end-page: 733
  ident: b0110
  article-title: Application of artificial neural networks to the prediction of tunnel boring machine penetration rate
  publication-title: Min. Sci. Technol. (China)
– volume: 10
  start-page: 215
  year: 1996
  end-page: 236
  ident: b0190
  article-title: Designing a neural network for forecasting financial and economic time series
  publication-title: Neurocomputing
– year: 1990
  ident: b0375
  article-title: Artificial Neural System—Foundation, Paradigm, Application and Implementations
– year: 2015
  ident: b0165
  article-title: A combination of the ICA-ANN model to predict air-overpressure resulting from blasting
  publication-title: Eng. Comput.
– year: 1994
  ident: b0405
  article-title: A Theory of Generalization in Learning Machines with Neural Application
– reference: Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: IEEE International Conference on Neural Networks. Perth, Australia, pp. 1942–1948.
– volume: 97
  start-page: 91
  year: 2008
  end-page: 93
  ident: b0385
  article-title: Discussion on the paper by H. Gullu and E. Ercelebi, “A neural network approach for attenuation relationships: an application using strong ground motion data from Turkey”
  publication-title: Eng. Geol.
– volume: 12
  start-page: 361
  year: 1975
  end-page: 366
  ident: b0335
  article-title: Rock excavation by disc cutter
  publication-title: Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
– volume: 19
  start-page: 597
  year: 2004
  end-page: 605
  ident: b0050
  article-title: Modelling TBM performance with artificial neural networks
  publication-title: Tunnell. Undergr. Space Technol.
– year: 2007
  ident: b0160
  article-title: The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006
  publication-title: Suggested Methods Prepared by the Commission on Testing Methods, International Society for Rock Mechanics
– reference: Eftekhari, M., Baghbanan, A., Bayati, M., 2010. Predicting penetration rate of a tunnel boring machine using artificial neural network. In: ISRM International Symposium-6th Asian Rock Mechanics Symposium. International Society for Rock Mechanics, pp. 1–7.
– volume: 1
  start-page: 337
  year: 2008
  end-page: 355
  ident: b0025
  article-title: Colonial competitive algorithm, a novel approach for PID controller design in MIMO distillation column process
  publication-title: Int. J. Intell. Comput. Cybern.
– year: 1994
  ident: b0305
  article-title: Neural Network Classification of Multispectral Imagery
– volume: 18
  start-page: 711
  year: 1997
  end-page: 725
  ident: b0195
  article-title: Strategies and best practice for neural network image classification
  publication-title: Int. J. Remote Sens.
– reference: Bruines, P., 1998. Neuro-fuzzy modeling of TBM performance with emphasis on the penetration rate. Memoirs of the Centre of Engineering Geology in the Netherlands, Delft, no. 173, 202, pp. 1386–5072.
– volume: 96
  start-page: 141
  year: 2008
  end-page: 158
  ident: b0455
  article-title: Prediction of uniaxial compressive strength of sandstones using petrography-based models
  publication-title: Eng. Geol.
– volume: 60
  start-page: 50
  year: 2015
  end-page: 63
  ident: b0280
  article-title: Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks
  publication-title: Measurement
– volume: 19
  start-page: 107
  year: 1982
  end-page: 121
  ident: b0365
  article-title: A study of disc cutting in selected British rocks
  publication-title: Int. J. Rock Mech. Min. Sci.
– volume: 24
  start-page: 20
  year: 2009
  end-page: 27
  ident: b0045
  article-title: Applying wavelets to short-term load forecasting using PSO-based neural networks
  publication-title: IEEE Trans. Power Syst.
– year: 2014
  ident: b0235
  article-title: A Novel Approach for Blast-induced Flyrock Prediction Based on Imperialist Competitive Algorithm and Artificial Neural Network
– volume: 57
  start-page: 122
  year: 2014
  end-page: 131
  ident: b0275
  article-title: Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN
  publication-title: Measurement
– start-page: 40
  year: 1993
  end-page: 123
  ident: b0320
  article-title: Statistical aspects of neural networks
  publication-title: Networks and Chaos-Statistical and Probabilistic Aspects
– year: 2014
  ident: b0135
  article-title: Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm
  publication-title: Bull. Eng. Geol. Environ.
– volume: 22
  start-page: 808
  year: 2009
  end-page: 814
  ident: b0430
  article-title: Application of two non-linear prediction tools to the estimation of tunnel boring machine performance
  publication-title: Eng. Appl. Artif. Intell.
– reference: Atashpaz-Gargari, E., Lucas, C., 2007. Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: IEEE Congress on Evolutionary Computation, pp. 4661–4667.
– volume: 72
  start-page: 214
  year: 2014
  end-page: 229
  ident: b0230
  article-title: A support vector regression model for predicting tunnel boring machine penetration rates
  publication-title: Int. J. Rock Mech. Min. Sci.
– reference: Rostami, J., Ozdemir, L., 1993. A new model for performance prediction of hard rock TBM. In: Bowerman, L.D. et al. (Eds.), Proceedings of RETC, Boston, MA, pp. 793–809.
– volume: 30
  start-page: 110
  year: 2012
  end-page: 123
  ident: b0095
  article-title: Study of various models for estimation of penetration rate of hard rock TBMs
  publication-title: Tunnell. Undergr. Space Technol.
– volume: 6
  start-page: 1215
  year: 2013
  end-page: 1227
  ident: b0400
  article-title: Study of the influence of geotechnical parameters on the TBM performance in Tehran-Shomal highway project using ANN and SPSS
  publication-title: Arab. J. Geosci.
– volume: 36
  start-page: 29
  year: 1999
  end-page: 39
  ident: b0245
  article-title: Application of neural networks for the prediction of the unconfined compressive strength (UCS) from Equotip hardness
  publication-title: Int. J. Rock. Mech. Min. Sci.
– volume: 5
  start-page: 115
  year: 1943
  end-page: 133
  ident: b0250
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull. Math. Biophys.
– volume: 86
  start-page: 3137
  year: 2012
  end-page: 3145
  ident: b0260
  article-title: Modeling global solar radiation using particle swarm optimization (PSO)
  publication-title: Sol. Energy
– year: 2005
  ident: b0315
  article-title: Artificial Neural Networks: An Introduction
– volume: 48
  start-page: 427
  year: 2011
  end-page: 433
  ident: b0435
  article-title: Prediction of hard rock TBM penetration rate using particle swarm optimization
  publication-title: Int. J. Rock Mech. Min. Sci.
– volume: 68
  start-page: 807
  year: 2012
  end-page: 819
  ident: b0065
  article-title: Prediction of unconfined compressive strength of carbonate rocks using artificial neural networks
  publication-title: Environ. Earth Sci.
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: b0150
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Networks
– reference: Bamford, W.F., 1984. Rock test indices are being successfully correlated with tunnel boring machine performance. In: Proceedings of the 5th Australian Tunneling Conference, Melbourne, pp. 9–22.
– volume: 7
  start-page: 5383
  year: 2014
  end-page: 5396
  ident: b0170
  article-title: Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization
  publication-title: Arab. J. Geosci.
– volume: 13
  start-page: 1085
  year: 2013
  end-page: 1098
  ident: b0005
  article-title: Evolving artificial neural network and imperialist competitive algorithm for prediction oil flow rate of the reservoir
  publication-title: Appl. Soft Comput.
– volume: 23
  start-page: 326
  issue: 3
  year: 2008
  ident: 10.1016/j.tust.2016.12.009_b0425
  article-title: Utilizing rock mass properties for predicting TBM performance in hard rock conditions
  publication-title: Tunnell. Undergr. Space Technol.
  doi: 10.1016/j.tust.2007.04.011
– volume: 1
  start-page: 33
  year: 2007
  ident: 10.1016/j.tust.2016.12.009_b0310
  article-title: Particle swarm optimization an overview
  publication-title: Swarm Intell.
  doi: 10.1007/s11721-007-0002-0
– volume: 48
  start-page: 427
  issue: 3
  year: 2011
  ident: 10.1016/j.tust.2016.12.009_b0435
  article-title: Prediction of hard rock TBM penetration rate using particle swarm optimization
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2011.02.013
– ident: 10.1016/j.tust.2016.12.009_b0125
– volume: 6
  start-page: 1215
  issue: 4
  year: 2013
  ident: 10.1016/j.tust.2016.12.009_b0400
  article-title: Study of the influence of geotechnical parameters on the TBM performance in Tehran-Shomal highway project using ANN and SPSS
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-011-0415-3
– year: 2013
  ident: 10.1016/j.tust.2016.12.009_b0130
– volume: 24
  start-page: 500
  issue: 5
  year: 2009
  ident: 10.1016/j.tust.2016.12.009_b0255
  article-title: Multifactorial fuzzy approach to the penetrability classification of TBM in hard rock conditions
  publication-title: Tunnell. Undergr. Space Technol.
  doi: 10.1016/j.tust.2008.12.007
– volume: 11
  start-page: 385
  issue: 2
  year: 2006
  ident: 10.1016/j.tust.2016.12.009_b0415
  article-title: The time and cost prediction of tunnel boring machine in tunneling
  publication-title: Wuhan Univ. J. Natural Sci.
  doi: 10.1007/BF02832128
– start-page: 409
  year: 2013
  ident: 10.1016/j.tust.2016.12.009_b0360
  article-title: Performance prediction of hard rock TBM based on extreme learning machine
– ident: 10.1016/j.tust.2016.12.009_b0035
– volume: 15
  start-page: 259
  issue: 3
  year: 2000
  ident: 10.1016/j.tust.2016.12.009_b0015
  article-title: Modeling tunnel boring machine performance by neuro-fuzzy methods
  publication-title: Tunnell. Undergr. Space Technol.
  doi: 10.1016/S0886-7798(00)00055-9
– volume: 43
  start-page: 224
  year: 2006
  ident: 10.1016/j.tust.2016.12.009_b0380
  article-title: Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equation
  publication-title: Int. J. Rock. Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2005.06.007
– start-page: 640
  year: 2011
  ident: 10.1016/j.tust.2016.12.009_b0040
  article-title: Inertia Weight Strategies in Particle Swarm Optimization
– volume: 57
  start-page: 122
  year: 2014
  ident: 10.1016/j.tust.2016.12.009_b0275
  article-title: Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.08.007
– volume: 39
  start-page: 771
  year: 2002
  ident: 10.1016/j.tust.2016.12.009_b0350
  article-title: TBM performance estimation using rock mass classification
  publication-title: Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
  doi: 10.1016/S1365-1609(02)00069-2
– year: 2014
  ident: 10.1016/j.tust.2016.12.009_b0175
  article-title: An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young’s modulus: a study on Main Range granite
  publication-title: Bull. Eng. Geol. Environ.
– volume: 4
  start-page: 249
  issue: 3
  year: 2013
  ident: 10.1016/j.tust.2016.12.009_b0340
  article-title: Utilizing of linear and non-linear prediction tools for evaluation of penetration rate of tunnel boring machine in hard rock condition
  publication-title: Int. J. Min. Miner. Eng.
  doi: 10.1504/IJMME.2013.053172
– year: 1997
  ident: 10.1016/j.tust.2016.12.009_b0330
– year: 2015
  ident: 10.1016/j.tust.2016.12.009_b0180
– volume: 56
  start-page: 455
  year: 2004
  ident: 10.1016/j.tust.2016.12.009_b0410
  article-title: An improved backpropagation algorithm to avoid the local minima problem
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2003.08.006
– ident: 10.1016/j.tust.2016.12.009_b0105
– ident: 10.1016/j.tust.2016.12.009_b0080
– volume: 73
  start-page: 23
  issue: 1
  year: 2014
  ident: 10.1016/j.tust.2016.12.009_b0100
  article-title: Predicting penetration rate of hard rock tunnel boring machine using fuzzy logic
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-013-0497-0
– year: 1991
  ident: 10.1016/j.tust.2016.12.009_b0355
  article-title: Prediction of disc cutter performance using a circular rock cutting ring
– ident: 10.1016/j.tust.2016.12.009_b0145
– ident: 10.1016/j.tust.2016.12.009_b0420
– volume: 12
  start-page: 22
  issue: 6
  year: 1980
  ident: 10.1016/j.tust.2016.12.009_b0090
  article-title: Mechanics of disc cutter penetration
  publication-title: Tunnels Tunnell. Int.
– year: 1994
  ident: 10.1016/j.tust.2016.12.009_b0305
– volume: vol. 8
  year: 1992
  ident: 10.1016/j.tust.2016.12.009_b0460
– volume: 46
  start-page: 8
  issue: 1
  year: 2009
  ident: 10.1016/j.tust.2016.12.009_b0115
  article-title: Development of a rock mass characteristics model for TBM penetration rate prediction
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2008.03.003
– year: 1990
  ident: 10.1016/j.tust.2016.12.009_b0285
– year: 2014
  ident: 10.1016/j.tust.2016.12.009_b0135
  article-title: Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm
  publication-title: Bull. Eng. Geol. Environ.
– ident: 10.1016/j.tust.2016.12.009_b0200
  doi: 10.1109/ICNN.1995.488968
– volume: 29
  start-page: 05014010
  issue: 6
  year: 2015
  ident: 10.1016/j.tust.2016.12.009_b0205
  article-title: Improving the performance of intelligent back analysis for tunneling using optimized fuzzy systems: case study of the Karaj Subway Line 2 in Iran
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000421
– ident: 10.1016/j.tust.2016.12.009_b0265
– start-page: 40
  year: 1993
  ident: 10.1016/j.tust.2016.12.009_b0320
  article-title: Statistical aspects of neural networks
– volume: 10
  start-page: 215
  year: 1996
  ident: 10.1016/j.tust.2016.12.009_b0190
  article-title: Designing a neural network for forecasting financial and economic time series
  publication-title: Neurocomputing
  doi: 10.1016/0925-2312(95)00039-9
– volume: 19
  start-page: 107
  year: 1982
  ident: 10.1016/j.tust.2016.12.009_b0365
  article-title: A study of disc cutting in selected British rocks
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/0148-9062(82)91151-2
– ident: 10.1016/j.tust.2016.12.009_b0060
– ident: 10.1016/j.tust.2016.12.009_b0085
– ident: 10.1016/j.tust.2016.12.009_b0370
  doi: 10.1109/IAS.2006.256639
– volume: 52
  start-page: 69
  issue: 1
  year: 2012
  ident: 10.1016/j.tust.2016.12.009_b0300
  article-title: Prediction of bearing capacity of circular footings on soft clay stabilized with granular soil
  publication-title: Soil Found.
  doi: 10.1016/j.sandf.2012.01.002
– volume: 2
  start-page: 359
  year: 1989
  ident: 10.1016/j.tust.2016.12.009_b0150
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(89)90020-8
– start-page: 1
  year: 2005
  ident: 10.1016/j.tust.2016.12.009_b0450
  article-title: Prediction of penetration rate of TBM using ANN
– volume: 20
  start-page: 727
  issue: 5
  year: 2010
  ident: 10.1016/j.tust.2016.12.009_b0110
  article-title: Application of artificial neural networks to the prediction of tunnel boring machine penetration rate
  publication-title: Min. Sci. Technol. (China)
  doi: 10.1016/S1674-5264(09)60271-4
– volume: 13
  start-page: 1085
  issue: 2
  year: 2013
  ident: 10.1016/j.tust.2016.12.009_b0005
  article-title: Evolving artificial neural network and imperialist competitive algorithm for prediction oil flow rate of the reservoir
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.10.009
– start-page: 297
  year: 2012
  ident: 10.1016/j.tust.2016.12.009_b0295
  article-title: Prediction of the penetration rate of TBM using adaptive neuro fuzzy inference system (ANFIS)
– year: 2015
  ident: 10.1016/j.tust.2016.12.009_b0120
  article-title: Prediction of seismic slope stability through combination of particle swarm optimization and neural network
  publication-title: Eng. Comput.
– volume: 7
  start-page: 5383
  year: 2014
  ident: 10.1016/j.tust.2016.12.009_b0170
  article-title: Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-013-1174-0
– volume: 60
  start-page: 50
  year: 2015
  ident: 10.1016/j.tust.2016.12.009_b0280
  article-title: Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.09.075
– volume: 86
  start-page: 3137
  issue: 11
  year: 2012
  ident: 10.1016/j.tust.2016.12.009_b0260
  article-title: Modeling global solar radiation using particle swarm optimization (PSO)
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2012.08.005
– volume: 12
  start-page: 361
  year: 1975
  ident: 10.1016/j.tust.2016.12.009_b0335
  article-title: Rock excavation by disc cutter
  publication-title: Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
  doi: 10.1016/0148-9062(75)90547-1
– volume: 22
  start-page: 153
  issue: 3
  year: 1985
  ident: 10.1016/j.tust.2016.12.009_b0345
  article-title: Prediction of the performance of disc cutters in anisotropy rocks
  publication-title: Int. J. Rock Mech. Min. Sci., Abstr.
  doi: 10.1016/0148-9062(85)93229-2
– volume: 15
  start-page: 742
  issue: 4
  year: 2009
  ident: 10.1016/j.tust.2016.12.009_b0220
  article-title: Integrative discovery of multifaceted sequence patterns by frame-relayed search and hybrid PSO-ANN
  publication-title: J. Univ. Comput. Sci.
– year: 2016
  ident: 10.1016/j.tust.2016.12.009_b0185
  article-title: Application of several non-linear prediction tools for estimating uniaxial compressive strength of granitic rocks and comparison of their performances
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-015-0410-5
– volume: 96
  start-page: 141
  year: 2008
  ident: 10.1016/j.tust.2016.12.009_b0455
  article-title: Prediction of uniaxial compressive strength of sandstones using petrography-based models
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2007.10.009
– volume: 19
  start-page: 597
  issue: 6
  year: 2004
  ident: 10.1016/j.tust.2016.12.009_b0050
  article-title: Modelling TBM performance with artificial neural networks
  publication-title: Tunnell. Undergr. Space Technol.
  doi: 10.1016/j.tust.2004.02.128
– ident: 10.1016/j.tust.2016.12.009_b0290
– volume: 36
  start-page: 29
  year: 1999
  ident: 10.1016/j.tust.2016.12.009_b0245
  article-title: Application of neural networks for the prediction of the unconfined compressive strength (UCS) from Equotip hardness
  publication-title: Int. J. Rock. Mech. Min. Sci.
  doi: 10.1016/S0148-9062(98)00173-9
– year: 2007
  ident: 10.1016/j.tust.2016.12.009_b0160
  article-title: The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006
– volume: 5
  start-page: 115
  year: 1943
  ident: 10.1016/j.tust.2016.12.009_b0250
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull. Math. Biophys.
  doi: 10.1007/BF02478259
– ident: 10.1016/j.tust.2016.12.009_b0210
  doi: 10.1109/IJCNN.1991.155275
– volume: 24
  start-page: 20
  issue: 1
  year: 2009
  ident: 10.1016/j.tust.2016.12.009_b0045
  article-title: Applying wavelets to short-term load forecasting using PSO-based neural networks
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2008.2008606
– ident: 10.1016/j.tust.2016.12.009_b0325
– volume: 46
  start-page: 2288
  issue: 8
  year: 2013
  ident: 10.1016/j.tust.2016.12.009_b0395
  article-title: A hybridized artificial neural network and imperialist competitive algorithm optimization approach for prediction of soil compaction in soil bin facility
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.04.077
– year: 2011
  ident: 10.1016/j.tust.2016.12.009_b0055
– year: 2014
  ident: 10.1016/j.tust.2016.12.009_b0235
– start-page: 519
  year: 2014
  ident: 10.1016/j.tust.2016.12.009_b0030
  article-title: Rock mass classification system used for Pahang-Selangor raw water transfer tunnel
– volume: 30
  start-page: 110
  year: 2012
  ident: 10.1016/j.tust.2016.12.009_b0095
  article-title: Study of various models for estimation of penetration rate of hard rock TBMs
  publication-title: Tunnell. Undergr. Space Technol.
  doi: 10.1016/j.tust.2012.02.012
– volume: 8
  start-page: 211
  issue: 2
  year: 1996
  ident: 10.1016/j.tust.2016.12.009_b0225
  article-title: Advances in feed-forward neural networks: demystifying knowledge acquiring black boxes
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/69.494162
– volume: 72
  start-page: 1121
  year: 2009
  ident: 10.1016/j.tust.2016.12.009_b0215
  article-title: Classification of mental task from EEG data using neural networks based on particle swarm optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.02.017
– year: 1994
  ident: 10.1016/j.tust.2016.12.009_b0405
– year: 2015
  ident: 10.1016/j.tust.2016.12.009_b0165
  article-title: A combination of the ICA-ANN model to predict air-overpressure resulting from blasting
  publication-title: Eng. Comput.
– year: 2005
  ident: 10.1016/j.tust.2016.12.009_b0315
– year: 1996
  ident: 10.1016/j.tust.2016.12.009_b0390
– volume: 22
  start-page: 808
  issue: 4
  year: 2009
  ident: 10.1016/j.tust.2016.12.009_b0430
  article-title: Application of two non-linear prediction tools to the estimation of tunnel boring machine performance
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2009.03.007
– volume: 18
  start-page: 711
  year: 1997
  ident: 10.1016/j.tust.2016.12.009_b0195
  article-title: Strategies and best practice for neural network image classification
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311697218719
– volume: 1
  start-page: 337
  year: 2008
  ident: 10.1016/j.tust.2016.12.009_b0025
  article-title: Colonial competitive algorithm, a novel approach for PID controller design in MIMO distillation column process
  publication-title: Int. J. Intell. Comput. Cybern.
  doi: 10.1108/17563780810893446
– volume: 72
  start-page: 214
  year: 2014
  ident: 10.1016/j.tust.2016.12.009_b0230
  article-title: A support vector regression model for predicting tunnel boring machine penetration rates
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2014.09.012
– year: 1994
  ident: 10.1016/j.tust.2016.12.009_b0240
– volume: 97
  start-page: 91
  year: 2008
  ident: 10.1016/j.tust.2016.12.009_b0385
  article-title: Discussion on the paper by H. Gullu and E. Ercelebi, “A neural network approach for attenuation relationships: an application using strong ground motion data from Turkey”
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2007.09.003
– ident: 10.1016/j.tust.2016.12.009_b0020
  doi: 10.1109/CEC.2007.4425083
– volume: 3
  start-page: 95
  issue: 2
  year: 1986
  ident: 10.1016/j.tust.2016.12.009_b0155
  article-title: The relative cuttability of coal-measures stone
  publication-title: Min. Sci. Technol.
  doi: 10.1016/S0167-9031(86)90250-1
– year: 2010
  ident: 10.1016/j.tust.2016.12.009_b0445
– ident: 10.1016/j.tust.2016.12.009_b0270
– year: 1999
  ident: 10.1016/j.tust.2016.12.009_b0140
– volume: 16
  start-page: 298
  issue: 3
  year: 2012
  ident: 10.1016/j.tust.2016.12.009_b0070
  article-title: Particle swarm optimization trained neural network for aquifer parameter estimation
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-012-1452-5
– volume: 102
  start-page: 716
  year: 2012
  ident: 10.1016/j.tust.2016.12.009_b0010
  article-title: New approach for prediction of asphaltene precipitation due to natural depletion by using evolutionary algorithm concept
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.05.050
– volume: 6
  start-page: 58
  issue: 1
  year: 2002
  ident: 10.1016/j.tust.2016.12.009_b0075
  article-title: The particle swarm explosion, stability, and convergence in a multi-dimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.985692
– year: 1990
  ident: 10.1016/j.tust.2016.12.009_b0375
– volume: 68
  start-page: 807
  issue: 3
  year: 2012
  ident: 10.1016/j.tust.2016.12.009_b0065
  article-title: Prediction of unconfined compressive strength of carbonate rocks using artificial neural networks
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-012-1783-z
– volume: 80
  start-page: 308
  year: 2015
  ident: 10.1016/j.tust.2016.12.009_b0440
  article-title: Application of various optimization techniques and comparison of their performances for predicting TBM penetration rate in rock mass
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2015.09.019
SSID ssj0005229
Score 2.59834
Snippet The aim of this research is to develop new intelligent prediction models for estimating the tunnel boring machine performance (TBM) by means of the rate pf...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 29
SubjectTerms Artificial neural network
Artificial neural networks
Boring machines
Compressive strength
Hybrid systems
Imperialism competitive algorithm
Intelligent systems
Mathematical models
Neural networks
Particle swarm optimization
Penetration
Penetration rate
Performance indices
Prediction models
Rock mass rating
Rock properties
Root-mean-square errors
Tensile strength
Thrust
Tunnel boring machine
Water distribution
Weathering
Title Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition
URI https://dx.doi.org/10.1016/j.tust.2016.12.009
https://www.proquest.com/docview/1953097188
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1878-4364
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005229
  issn: 0886-7798
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1878-4364
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005229
  issn: 0886-7798
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1878-4364
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005229
  issn: 0886-7798
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1878-4364
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005229
  issn: 0886-7798
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1878-4364
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005229
  issn: 0886-7798
  databaseCode: AKRWK
  dateStart: 19860101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELUqWGBAfIpCqTywodA4sR1nLBVVAbULrdTNchJHFFBbtWFg4bdzlzpVQagDa2RH0dl372K_e0fIdap8GWTg3zK2kQd4m3lxopgXKGMAr60MMzyH7A9kb8Qfx2JcI52qFgZplS72r2J6Ga3dk5azZms-mbSewT9kFMUKfNYPeYSKn5xH2MXg9muT5lF2KsPBHo52hTMrjleBZQ0AgbI8EkRS4t_g9CtMl9jTPSQHLmmk7dV3HZGanR6T_Q0pwROSbrB_6CynL59YikUna8XNgpZNb5YUslQ6X-D9DDKe6fCuT-cQ8Jx8LkXpCJhGsRqLArq9Ufhjzkpi1ykZde-HnZ7nGih4aRjzwmOQWwmZC24imWCFbWiZjWLjs0QFSciMzXhuAiN4yg0zPqxnmIhEqjz18xjQ_IzsTGdTe05oLDPf2jxKBd7tKlTly0OWK5WFgQgSUSesspxOnbo4Nrl41xWN7FWjtTVaW7NAg7Xr5GY9Z77S1tg6WlQLon_sEA3Bf-u8RrV62vnnUuPlIapnKXXxz9dekr0AEb6kozXITrH4sFeQnxRJs9yATbLbfnjqDb4BeGDlFQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDMCAeIry9MCGQmM7dpwREKg8ykIrdbOcxBEF1FZtGFj47dylDioIMbBGdhSdffed4---I-Qk06HiOfi3SlwcAN7mQZJqFnBtLeC1UyLH_5CdB9XuRbd92V8gl3UtDNIqfeyfxfQqWvsnLW_N1ngwaD2Cf6g4TjT4bCiiWCySpUjyGE9gZx_zPI-qVRmODnC4r5yZkbxKrGsADFTVP0FkJf6OTj_idAU-1-tkzWeN9Hz2YRtkwQ03yeqcluAWyeboP3RU0Kd3rMWigy_JzZJWXW-mFNJUOp7gBQ1Snmn3okPHEPG8fi5F7QiYRrEciwK8vVA4MucVs2ub9K6vupftwHdQCDKRRGXAILmSqpCRjVWKJbbCMRcnNmSp5qlg1uVRYbmVURZZZkNYUJHKVOkiC4sE4HyHNIajodslNFF56FwRZxIvdzXK8hWCFVrngkueyiZhteVM5uXFscvFq6l5ZM8GrW3Q2oZxA9ZuktOvOeOZuMafo2W9IObbFjEQ_f-cd1CvnvEOOjV4e4jyWVrv_fO1x2S53e3cm_ubh7t9ssIR7itu2gFplJM3dwjJSpkeVZvxE9jc5qo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+hybrid+intelligent+models+for+predicting+TBM+penetration+rate+in+hard+rock+condition&rft.jtitle=Tunnelling+and+underground+space+technology&rft.au=Armaghani%2C+Danial+Jahed&rft.au=Mohamad%2C+Edy+Tonnizam&rft.au=Narayanasamy%2C+Mogana+Sundaram&rft.au=Narita%2C+Nobuya&rft.date=2017-03-01&rft.pub=Elsevier+Ltd&rft.issn=0886-7798&rft.eissn=1878-4364&rft.volume=63&rft.spage=29&rft.epage=43&rft_id=info:doi/10.1016%2Fj.tust.2016.12.009&rft.externalDocID=S0886779815303473
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-7798&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-7798&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-7798&client=summon