Validation of non-invasive sensor technologies to measure interaction with enrichment material in weaned fattening pigs
Measuring animal behaviour is important in the assessment of animal welfare. When interaction with the enrichment material (EM) can be measured, it can be used for detecting an increasing/decreasing interest in a certain EM. In this study, non-invasive sensor technologies were validated for measurin...
Saved in:
| Published in | Applied animal behaviour science Vol. 263; p. 105923 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.06.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0168-1591 1872-9045 1872-9045 |
| DOI | 10.1016/j.applanim.2023.105923 |
Cover
| Abstract | Measuring animal behaviour is important in the assessment of animal welfare. When interaction with the enrichment material (EM) can be measured, it can be used for detecting an increasing/decreasing interest in a certain EM. In this study, non-invasive sensor technologies were validated for measuring interaction with EM in pens with weaned fattening pigs. The experiment was carried out in four pens with six weaned pigs per pen (until a body weight of ± 25 kg) at a semi-commercial farm. Pens were provided with EM (ball and piece of wood (and a rope in two of the four pens) connected to a chain). Different sensor technologies were tested: passive infra-red detectors (PIDs), tri-axial accelerometers (TAA) and neural network model algorithms (NNMA 1 and NNMA 2) based on video images. Per pen, a PID was placed above the EM which measured the movement of body heat around the chain (⌀20 cm) in volts per second. A TAA was attached to the EM (at the top of the chain) and measured acceleration based on X-, Y- and Z-axis co-ordinates every second. A video camera was placed above each pen to record video images that were used to feed the NNMAs and for behavioural observations. Interaction with EM (shake, carry, nose, bite, chew or root) was manually scored per second per pig (pooled per pen afterwards) for 30 min of video footage per pen per week and was compared with data from PIDs, TAAs and NNMAs. F1 score (F1) and Matthews Correlation Coefficient (MCC) were calculated to measure the performance of the sensor technologies. PIDs (F1 = 0.380, MCC = 0.192), as well as TAAs (X-axis: F1 = 0.482, MCC = 0.345; Y-axis: F1 = 0.524, MCC = 0.401; Z-axis: F1 = 0.465, MCC = 0.320; XYZ-axis: F1 = 0.474, MCC = 0.333), overestimated interaction with the EM which might be due to the relatively small pen size, resulting in piglets touching the EM without intentional interaction with the EM. NNMAs achieved the highest performance parameters (NNMA 1: F1 = 0.554, MCC = 0.466; NNMA 2: F1 = 0.540, MCC = 0.445). Overall, only moderate F1s and MCCs were reached. The results indicated that the individual sensor technologies are not yet appropriate to measure interaction with the EM. However, there is potential to measure interaction with EM by applying a multi-sensor approach (combination of PID, TAA and NNMA), but this merits further study.
•Monitoring animal behaviour is important in the assessment of animal welfare.•Sensor technologies were validated to measure interaction with enrichment material.•Algorithms, Passive Infra-red Detectors and accelerometers were used.•Individual sensor technologies are not yet appropriate to measure interaction.•Potential to combine sensor technologies for measuring interaction. |
|---|---|
| AbstractList | Measuring animal behaviour is important in the assessment of animal welfare. When interaction with the enrichment material (EM) can be measured, it can be used for detecting an increasing/decreasing interest in a certain EM. In this study, non-invasive sensor technologies were validated for measuring interaction with EM in pens with weaned fattening pigs. The experiment was carried out in four pens with six weaned pigs per pen (until a body weight of ± 25 kg) at a semi-commercial farm. Pens were provided with EM (ball and piece of wood (and a rope in two of the four pens) connected to a chain). Different sensor technologies were tested: passive infra-red detectors (PIDs), tri-axial accelerometers (TAA) and neural network model algorithms (NNMA 1 and NNMA 2) based on video images. Per pen, a PID was placed above the EM which measured the movement of body heat around the chain (⌀20 cm) in volts per second. A TAA was attached to the EM (at the top of the chain) and measured acceleration based on X-, Y- and Z-axis co-ordinates every second. A video camera was placed above each pen to record video images that were used to feed the NNMAs and for behavioural observations. Interaction with EM (shake, carry, nose, bite, chew or root) was manually scored per second per pig (pooled per pen afterwards) for 30 min of video footage per pen per week and was compared with data from PIDs, TAAs and NNMAs. F1 score (F1) and Matthews Correlation Coefficient (MCC) were calculated to measure the performance of the sensor technologies. PIDs (F1 = 0.380, MCC = 0.192), as well as TAAs (X-axis: F1 = 0.482, MCC = 0.345; Y-axis: F1 = 0.524, MCC = 0.401; Z-axis: F1 = 0.465, MCC = 0.320; XYZ-axis: F1 = 0.474, MCC = 0.333), overestimated interaction with the EM which might be due to the relatively small pen size, resulting in piglets touching the EM without intentional interaction with the EM. NNMAs achieved the highest performance parameters (NNMA 1: F1 = 0.554, MCC = 0.466; NNMA 2: F1 = 0.540, MCC = 0.445). Overall, only moderate F1s and MCCs were reached. The results indicated that the individual sensor technologies are not yet appropriate to measure interaction with the EM. However, there is potential to measure interaction with EM by applying a multi-sensor approach (combination of PID, TAA and NNMA), but this merits further study.
•Monitoring animal behaviour is important in the assessment of animal welfare.•Sensor technologies were validated to measure interaction with enrichment material.•Algorithms, Passive Infra-red Detectors and accelerometers were used.•Individual sensor technologies are not yet appropriate to measure interaction.•Potential to combine sensor technologies for measuring interaction. Measuring animal behaviour is important in the assessment of animal welfare. When interaction with the enrichment material (EM) can be measured, it can be used for detecting an increasing/decreasing interest in a certain EM. In this study, non-invasive sensor technologies were validated for measuring interaction with EM in pens with weaned fattening pigs. The experiment was carried out in four pens with six weaned pigs per pen (until a body weight of ± 25 kg) at a semi-commercial farm. Pens were provided with EM (ball and piece of wood (and a rope in two of the four pens) connected to a chain). Different sensor technologies were tested: passive infra-red detectors (PIDs), tri-axial accelerometers (TAA) and neural network model algorithms (NNMA 1 and NNMA 2) based on video images. Per pen, a PID was placed above the EM which measured the movement of body heat around the chain (⌀20 cm) in volts per second. A TAA was attached to the EM (at the top of the chain) and measured acceleration based on X-, Y- and Z-axis co-ordinates every second. A video camera was placed above each pen to record video images that were used to feed the NNMAs and for behavioural observations. Interaction with EM (shake, carry, nose, bite, chew or root) was manually scored per second per pig (pooled per pen afterwards) for 30 min of video footage per pen per week and was compared with data from PIDs, TAAs and NNMAs. F1 score (F1) and Matthews Correlation Coefficient (MCC) were calculated to measure the performance of the sensor technologies. PIDs (F1 = 0.380, MCC = 0.192), as well as TAAs (X-axis: F1 = 0.482, MCC = 0.345; Y-axis: F1 = 0.524, MCC = 0.401; Z-axis: F1 = 0.465, MCC = 0.320; XYZ-axis: F1 = 0.474, MCC = 0.333), overestimated interaction with the EM which might be due to the relatively small pen size, resulting in piglets touching the EM without intentional interaction with the EM. NNMAs achieved the highest performance parameters (NNMA 1: F1 = 0.554, MCC = 0.466; NNMA 2: F1 = 0.540, MCC = 0.445). Overall, only moderate F1s and MCCs were reached. The results indicated that the individual sensor technologies are not yet appropriate to measure interaction with the EM. However, there is potential to measure interaction with EM by applying a multi-sensor approach (combination of PID, TAA and NNMA), but this merits further study. |
| ArticleNumber | 105923 |
| Author | Garcia-Faria, Tomas Izquierdo Rebel, Johanna M.J. Veldkamp, Fleur Jong, Ingrid C. de Witjes, Vivian L. |
| Author_xml | – sequence: 1 givenname: Fleur orcidid: 0000-0003-0171-8850 surname: Veldkamp fullname: Veldkamp, Fleur email: fleur1.veldkamp@wur.nl organization: Wageningen Livestock Research, Wageningen University and Research, De Elst 1, NL-6708 WD Wageningen, the Netherlands – sequence: 2 givenname: Tomas Izquierdo surname: Garcia-Faria fullname: Garcia-Faria, Tomas Izquierdo organization: Wageningen Livestock Research, Wageningen University and Research, De Elst 1, NL-6708 WD Wageningen, the Netherlands – sequence: 3 givenname: Vivian L. surname: Witjes fullname: Witjes, Vivian L. organization: Farm Animal Health, Department Population Health Sciences, Veterinary Medicine, Utrecht University, Yalelaan 7, NL-3584 CL Utrecht, the Netherlands – sequence: 4 givenname: Johanna M.J. surname: Rebel fullname: Rebel, Johanna M.J. organization: Adaptation Physiology Group, Wageningen University and Research, De Elst 1, NL-6708 WD Wageningen, the Netherlands – sequence: 5 givenname: Ingrid C. de surname: Jong fullname: Jong, Ingrid C. de organization: Wageningen Livestock Research, Wageningen University and Research, De Elst 1, NL-6708 WD Wageningen, the Netherlands |
| BookMark | eNqNkE1vEzEQhi1UJNLCX0A-ctlgr-P9kDiAKgqVKnFpe7Wm3nEy0a692E6i_nvcLr1wKSdL4-d9Z_ScszMfPDL2UYq1FLL5vF_DPI_gaVrXolZlqPtavWEr2bV11YuNPmOrAnaV1L18x85T2gshtJJixU73MNIAmYLnwfFSXZE_QqIj8oQ-hcgz2p0PY9gSJp4DnxDSISInnzGCfY6eKO84-kh2N6HPfILyRzAWiJ8QPA7cQc7oyW_5TNv0nr11MCb88Pe9YHdX328vf1Y3v35cX367qazqVa7cIJzuWsRWKjU4xMH1oHXr3NBZi1j3-mHTaW2h6-xGDdA1tat7J8uwFbZRF6xdeg9-hscTjKOZI00QH40U5smf2ZsXf-bJn1n8leSnJTnH8PuAKZuJksWxkBgOydSd2tSiEa0o6JcFtTGkFNEZS_nZaY5A4-ubmn_i_33i1yWIxeCRMJpkCb3FgSLabIZAr1X8AW_ptwU |
| CitedBy_id | crossref_primary_10_1016_j_applanim_2023_106084 crossref_primary_10_3389_fanim_2023_1279086 crossref_primary_10_1186_s40813_024_00396_4 crossref_primary_10_1016_j_applanim_2023_106027 crossref_primary_10_1016_j_applanim_2023_106148 |
| Cites_doi | 10.1016/j.beproc.2020.104262 10.1109/ICCV48922.2021.00349 10.1006/jaer.1995.1051 10.20506/rst.33.1.2259 10.1016/j.physbeh.2004.08.005 10.1016/j.applanim.2006.06.005 10.1016/j.livsci.2018.06.008 10.1016/j.compag.2019.105166 10.1038/s41598-017-17451-6 10.1016/j.biosystemseng.2017.03.014 10.1016/j.compag.2020.105580 10.1016/j.compag.2014.06.003 10.1017/S1751731118003701 10.3390/ani10030385 10.1016/j.compag.2019.05.049 10.1017/S1751731110002326 10.1016/j.compag.2012.09.015 10.3390/ani10050792 10.1016/j.compag.2013.01.013 10.1016/j.anbehav.2014.02.007 10.1016/j.applanim.2014.04.001 10.1016/j.applanim.2009.02.010 10.5713/ajas.17.0138 10.1111/j.1751-0813.1986.tb02897.x 10.1016/j.compag.2011.02.010 10.1016/j.compag.2016.04.022 10.1016/j.biosystemseng.2015.09.007 10.1186/s40064-016-2785-1 10.3390/su13020692 10.20506/rst.33.1.2273 10.1016/j.tvjl.2016.09.005 10.1016/j.livsci.2013.11.007 10.1016/j.livsci.2021.104530 10.1017/S1751731117001690 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors |
| Copyright_xml | – notice: 2023 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 ADTOC UNPAY |
| DOI | 10.1016/j.applanim.2023.105923 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Veterinary Medicine Zoology Psychology |
| EISSN | 1872-9045 |
| ExternalDocumentID | 10.1016/j.applanim.2023.105923 10_1016_j_applanim_2023_105923 S0168159123000953 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABBQC ABFNM ABGRD ABIVO ABKYH ABMAC ABMZM ABRWV ABXDB ABYKQ ACDAQ ACGFS ACIUM ACPRK ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AEXOQ AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HVGLF HZ~ IHE J1W KOM LCYCR LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 QYZTP R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEL SES SEW SPCBC SSA SSZ SVS T5K VH1 WUQ ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD 7S9 L.6 ABUFD ADTOC UNPAY |
| ID | FETCH-LOGICAL-c393t-fd0f587ee7133dfeedf9a557ffd8ccee295b4855ca88c43da862f29f148570c63 |
| IEDL.DBID | UNPAY |
| ISSN | 0168-1591 1872-9045 |
| IngestDate | Sun Oct 26 03:59:55 EDT 2025 Sun Sep 28 12:18:15 EDT 2025 Thu Apr 24 22:58:44 EDT 2025 Thu Oct 02 04:22:34 EDT 2025 Fri Apr 05 04:25:46 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Pigs Enrichment Accelerometer Passive infra-red Behaviour Algorithm |
| Language | English |
| License | This is an open access article under the CC BY license. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c393t-fd0f587ee7133dfeedf9a557ffd8ccee295b4855ca88c43da862f29f148570c63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-0171-8850 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.applanim.2023.105923 |
| PQID | 2834206070 |
| PQPubID | 24069 |
| ParticipantIDs | unpaywall_primary_10_1016_j_applanim_2023_105923 proquest_miscellaneous_2834206070 crossref_citationtrail_10_1016_j_applanim_2023_105923 crossref_primary_10_1016_j_applanim_2023_105923 elsevier_sciencedirect_doi_10_1016_j_applanim_2023_105923 |
| PublicationCentury | 2000 |
| PublicationDate | June 2023 2023-06-00 20230601 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: June 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied animal behaviour science |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Max Kuhn, 2022. caret: Classification and Regression Training. Hitoshi Iuchi, 2017. mccr: The Matthews Correlation Coefficient. Kashiha, Bahr, Ott, Moons, Niewold, Tuyttens, Berckmans (bib18) 2014; 159 Tuyttens, de Graaf, Heerkens, Jacobs, Nalon, Ott, Stadig, Van Laer, Ampe (bib36) 2014; 90 Kashiha, Bahr, Ott, Moons, Niewold, Ödberg, Berckmans (bib16) 2013; 93 Pedersen, Pedersen (bib28) 1995; 61 Czycholl, Kniese, Büttner, Beilage, Schrader, Krieter (bib10) 2016; 5 Kashiha, Bahr, Haredasht, Ott, Moons, Niewold, Ödberg, Berckmans (bib15) 2013; 90 Besteiro, Rodríguez, Fernández, Ortega, Velo (bib3) 2018; 214 Sekachev, B., Manovich, N., Zhiltsov, M., Zhavoronkov, A., Kalinin, D., Hoff, B., TOsmanov, Kruchinin, D., Zankevich, A., DmitriySidnev, Markelov, M., Johannes222, Chenuet, M., a-andre, telenachos, Melnikov, A., Kim, J., Ilouz, L., Glazov, N., Priya4607, Tehrani, R., Jeong, S., Skubriev, V., Yonekura, S., truong, vugia, zliang7, lizhming, Truong, T., 2020. opencv/cvat: v1.1.0. https://doi.org/10.5281/ZENODO.4009388. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J., 2020. Deformable DETR: deformable transformers for end-to-end object detection. Berckmans (bib2) 2014; 33 Pfeifer, Eggemann, Kransmann, Schmitt, Hessel (bib29) 2019; 13 Mkwanazi, Ncobela, Kanengoni, Chimonyo (bib23) 2019; 32 Tian, Guo, Chen, Wang, Long, Ma (bib35) 2019; 163 Kashiha, Bahr, Ott, Moons, Niewold, Ödberg, Berckmans (bib17) 2014; 107 Oczak, Maschat, Berckmans, Vranken, Baumgartner (bib26) 2015; 140 Feng, C., Zhong, Y., Gao, Y., Scott, M.R., Huang, W., 2021. TOOD: Task-aligned One-stage Object Detection, In: Proceedings of the IEEE International Conference on Computer Vision. pp. 3490–3499. Wemelsfelder, Mullan (bib39) 2014; 33 Chen, K., Wang, Jiaqi, Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Xu, J., Zhang, Z., Cheng, D., Zhu, C., Cheng, T., Zhao, Q., Li, B., Lu, X., Zhu, R., Wu, Y., Dai, J., Wang, Jingdong, Shi, J., Ouyang, W., Loy, C.C., Lin, D., 2019. MMDetection: Open MMLab Detection Toolbox and Benchmark. Chen, Zhu, Oczak, Maschat, Baumgartner, Larsen, Norton (bib6) 2020; 175 von Jasmund, Wellnitz, Krommweh, Büscher (bib14) 2020; 10 Cornou, Lundbye-Christensen, Kristensen (bib9) 2011; 76 Nasirahmadi, Hensel, Edwards, Sturm (bib24) 2016; 124 Tzanidakis, Simitzis, Arvanitis, Panagakis (bib37) 2021; 249 Alonso, González-Montaña, Lomillos (bib1) 2020; 10 Zonderland, Schepers, Bracke, den Hartog, Kemp, Spoolder (bib41) 2011; 5 Stygar, Dolecheck, Kristensen (bib34) 2018; 12 Ni, Liu, Radcliffe, Vonderohe (bib25) 2017; 158 Matthews, Miller, Clapp, Plötz, Kyriazakis (bib21) 2016; 217 Matthews, Miller, Plötz, Kyriazakis (bib22) 2017; 7 Salak-Johnson, Anderson, McGlone (bib32) 2004; 83 Chen, Zhu, Steibel, Siegford, Wurtz, Han, Norton (bib7) 2020; 169 Chapa, Maschat, Iwersen, Baumgartner, Drillich (bib5) 2020; 181 Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S., 2019. PyTorch: An imperative style, high-performance deep learning library, in: Advances in Neural Information Processing Systems. Reiner, Hübner, Hepp (bib31) 2009; 118 Larsen, Wang, Norton (bib20) 2021; 13 . R Core Team, 2021. R: A Language and Environment for Statistical Computing. Ursinus, Van Reenen, Kemp, Bolhuis (bib38) 2014; 156 Blackshaw (bib4) 1986; 63 Escobar, Van Alstine, Baker, Johnson (bib11) 2007; 105 10.1016/j.applanim.2023.105923_bib19 Besteiro (10.1016/j.applanim.2023.105923_bib3) 2018; 214 Kashiha (10.1016/j.applanim.2023.105923_bib16) 2013; 93 Kashiha (10.1016/j.applanim.2023.105923_bib17) 2014; 107 Oczak (10.1016/j.applanim.2023.105923_bib26) 2015; 140 Tian (10.1016/j.applanim.2023.105923_bib35) 2019; 163 Chapa (10.1016/j.applanim.2023.105923_bib5) 2020; 181 10.1016/j.applanim.2023.105923_bib8 Pfeifer (10.1016/j.applanim.2023.105923_bib29) 2019; 13 Wemelsfelder (10.1016/j.applanim.2023.105923_bib39) 2014; 33 Berckmans (10.1016/j.applanim.2023.105923_bib2) 2014; 33 Nasirahmadi (10.1016/j.applanim.2023.105923_bib24) 2016; 124 Ursinus (10.1016/j.applanim.2023.105923_bib38) 2014; 156 Larsen (10.1016/j.applanim.2023.105923_bib20) 2021; 13 Pedersen (10.1016/j.applanim.2023.105923_bib28) 1995; 61 von Jasmund (10.1016/j.applanim.2023.105923_bib14) 2020; 10 Chen (10.1016/j.applanim.2023.105923_bib7) 2020; 169 Chen (10.1016/j.applanim.2023.105923_bib6) 2020; 175 10.1016/j.applanim.2023.105923_bib40 Kashiha (10.1016/j.applanim.2023.105923_bib18) 2014; 159 Kashiha (10.1016/j.applanim.2023.105923_bib15) 2013; 90 Czycholl (10.1016/j.applanim.2023.105923_bib10) 2016; 5 10.1016/j.applanim.2023.105923_bib27 Escobar (10.1016/j.applanim.2023.105923_bib11) 2007; 105 Blackshaw (10.1016/j.applanim.2023.105923_bib4) 1986; 63 Ni (10.1016/j.applanim.2023.105923_bib25) 2017; 158 Salak-Johnson (10.1016/j.applanim.2023.105923_bib32) 2004; 83 Tuyttens (10.1016/j.applanim.2023.105923_bib36) 2014; 90 Stygar (10.1016/j.applanim.2023.105923_bib34) 2018; 12 Mkwanazi (10.1016/j.applanim.2023.105923_bib23) 2019; 32 Zonderland (10.1016/j.applanim.2023.105923_bib41) 2011; 5 Matthews (10.1016/j.applanim.2023.105923_bib22) 2017; 7 Tzanidakis (10.1016/j.applanim.2023.105923_bib37) 2021; 249 Matthews (10.1016/j.applanim.2023.105923_bib21) 2016; 217 Alonso (10.1016/j.applanim.2023.105923_bib1) 2020; 10 10.1016/j.applanim.2023.105923_bib33 Reiner (10.1016/j.applanim.2023.105923_bib31) 2009; 118 10.1016/j.applanim.2023.105923_bib13 10.1016/j.applanim.2023.105923_bib12 Cornou (10.1016/j.applanim.2023.105923_bib9) 2011; 76 10.1016/j.applanim.2023.105923_bib30 |
| References_xml | – reference: Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J., 2020. Deformable DETR: deformable transformers for end-to-end object detection. – reference: Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S., 2019. PyTorch: An imperative style, high-performance deep learning library, in: Advances in Neural Information Processing Systems. – reference: Feng, C., Zhong, Y., Gao, Y., Scott, M.R., Huang, W., 2021. TOOD: Task-aligned One-stage Object Detection, In: Proceedings of the IEEE International Conference on Computer Vision. pp. 3490–3499. – volume: 175 year: 2020 ident: bib6 article-title: A computer vision approach for recognition of the engagement of pigs with different enrichment objects publication-title: Comput. Electron Agric. – volume: 61 start-page: 239 year: 1995 end-page: 246 ident: bib28 article-title: Animal activity measured by infrared detectors publication-title: J. Agric. Eng. Res. – volume: 124 start-page: 295 year: 2016 end-page: 302 ident: bib24 article-title: Automatic detection of mounting behaviours among pigs using image analysis publication-title: Comput. Electron Agric. – volume: 158 start-page: 86 year: 2017 end-page: 94 ident: bib25 article-title: Evaluation and characterisation of passive infrared detectors to monitor pig activities in an environmental research building publication-title: Biosyst. Eng. – volume: 5 year: 2016 ident: bib10 article-title: Interobserver reliability of the ‘Welfare Quality® animal welfare assessment protocol for growing pigs publication-title: Springerplus – volume: 12 start-page: 295 year: 2018 end-page: 302 ident: bib34 article-title: Analyses of body weight patterns in growing pigs: a new view on body weight in pigs for frequent monitoring publication-title: Animal – volume: 13 start-page: 692 year: 2021 ident: bib20 article-title: Information technologies for welfare monitoring in pigs and their relation to welfare quality® publication-title: Sustainability – volume: 140 start-page: 48 year: 2015 end-page: 58 ident: bib26 article-title: Classification of nest-building behaviour in non-crated farrowing sows on the basis of accelerometer data publication-title: Biosyst. Eng. – volume: 169 year: 2020 ident: bib7 article-title: Recognition of aggressive episodes of pigs based on convolutional neural network and long short-term memory publication-title: Comput. Electron Agric. – volume: 107 start-page: 38 year: 2014 end-page: 44 ident: bib17 article-title: Automatic weight estimation of individual pigs using image analysis publication-title: Comput. Electron Agric. – volume: 13 start-page: 1712 year: 2019 end-page: 1720 ident: bib29 article-title: Inter- and intra-observer reliability of animal welfare indicators for the on-farm self-assessment of fattening pigs publication-title: Animal – volume: 33 start-page: 189 year: 2014 end-page: 196 ident: bib2 article-title: Precision livestock farming technologies for welfare management in intensive livestock systems publication-title: Rev. Sci. Tech. – volume: 163 year: 2019 ident: bib35 article-title: Automated pig counting using deep learning publication-title: Comput. Electron. Agric. – volume: 105 start-page: 42 year: 2007 end-page: 50 ident: bib11 article-title: Behaviour of pigs with viral and bacterial pneumonia publication-title: Appl. Anim. Behav. Sci. – volume: 83 start-page: 143 year: 2004 end-page: 150 ident: bib32 article-title: Differential dose effects of central CRF and effects of CRF astressin on pig behavior publication-title: Physiol. Behav. – volume: 5 start-page: 767 year: 2011 end-page: 775 ident: bib41 article-title: Characteristics of biter and victim piglets apparent before a tail-biting outbreak publication-title: Animal – reference: Max Kuhn, 2022. caret: Classification and Regression Training. – volume: 10 start-page: 385 year: 2020 ident: bib1 article-title: Consumers’ concerns and perceptions of farm animal welfare publication-title: Animals – volume: 90 start-page: 164 year: 2013 end-page: 169 ident: bib15 article-title: The automatic monitoring of pigs water use by cameras publication-title: Comput. Electron Agric. – volume: 63 start-page: 361 year: 1986 end-page: 364 ident: bib4 article-title: Objective measures of welfare in farming environments publication-title: Aust. Vet. J. – reference: Chen, K., Wang, Jiaqi, Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Xu, J., Zhang, Z., Cheng, D., Zhu, C., Cheng, T., Zhao, Q., Li, B., Lu, X., Zhu, R., Wu, Y., Dai, J., Wang, Jingdong, Shi, J., Ouyang, W., Loy, C.C., Lin, D., 2019. MMDetection: Open MMLab Detection Toolbox and Benchmark. – volume: 76 start-page: 316 year: 2011 end-page: 324 ident: bib9 article-title: Modelling and monitoring sows’ activity types in farrowing house using acceleration data publication-title: Comput. Electron Agric. – reference: Hitoshi Iuchi, 2017. mccr: The Matthews Correlation Coefficient. – volume: 33 start-page: 111 year: 2014 end-page: 120 ident: bib39 article-title: Applying ethological and health indicators to practical animal welfare assessment publication-title: Rev. Sci. Tech. . Int. Epiz – reference: Sekachev, B., Manovich, N., Zhiltsov, M., Zhavoronkov, A., Kalinin, D., Hoff, B., TOsmanov, Kruchinin, D., Zankevich, A., DmitriySidnev, Markelov, M., Johannes222, Chenuet, M., a-andre, telenachos, Melnikov, A., Kim, J., Ilouz, L., Glazov, N., Priya4607, Tehrani, R., Jeong, S., Skubriev, V., Yonekura, S., truong, vugia, zliang7, lizhming, Truong, T., 2020. opencv/cvat: v1.1.0. https://doi.org/10.5281/ZENODO.4009388. – volume: 181 year: 2020 ident: bib5 article-title: Accelerometer systems as tools for health and welfare assessment in cattle and pigs – a review publication-title: Behav. Process. – reference: . – volume: 32 start-page: 1 year: 2019 ident: bib23 article-title: Effects of environmental enrichment on behaviour, physiology and performance of pigs — a review publication-title: Asian-Austral J. Anim. Sci. – volume: 118 start-page: 222 year: 2009 end-page: 231 ident: bib31 article-title: Suffering in diseased pigs as expressed by behavioural, clinical and clinical-chemical traits, in a well defined parasite model publication-title: Appl. Anim. Behav. Sci. – volume: 10 start-page: 792 year: 2020 ident: bib14 article-title: Using passive infrared detectors to record group activity and activity in certain focus areas in fattening pigs publication-title: Animals – reference: R Core Team, 2021. R: A Language and Environment for Statistical Computing. – volume: 249 year: 2021 ident: bib37 article-title: An overview of the current trends in precision pig farming technologies publication-title: Livest. Sci. – volume: 217 start-page: 43 year: 2016 end-page: 51 ident: bib21 article-title: Early detection of health and welfare compromises through automated detection of behavioural changes in pigs publication-title: Vet. J. – volume: 90 start-page: 273 year: 2014 end-page: 280 ident: bib36 article-title: Observer bias in animal behaviour research: can we believe what we score, if we score what we believe publication-title: Anim. Behav. – volume: 7 year: 2017 ident: bib22 article-title: Automated tracking to measure behavioural changes in pigs for health and welfare monitoring publication-title: Sci. Rep. – volume: 214 start-page: 219 year: 2018 end-page: 224 ident: bib3 article-title: Agreement between passive infrared detector measurements and human observations of animal activity publication-title: Livest. Sci. – volume: 93 start-page: 111 year: 2013 end-page: 120 ident: bib16 article-title: Automatic identification of marked pigs in a pen using image pattern recognition publication-title: Comput. Electron Agric. – volume: 156 start-page: 22 year: 2014 end-page: 36 ident: bib38 article-title: Tail biting behaviour and tail damage in pigs and the relationship with general behaviour: predicting the inevitable? publication-title: Appl. Anim. Behav. Sci. – volume: 159 start-page: 141 year: 2014 end-page: 148 ident: bib18 article-title: Automatic monitoring of pig locomotion using image analysis publication-title: Livest. Sci. – ident: 10.1016/j.applanim.2023.105923_bib19 – volume: 181 year: 2020 ident: 10.1016/j.applanim.2023.105923_bib5 article-title: Accelerometer systems as tools for health and welfare assessment in cattle and pigs – a review publication-title: Behav. Process. doi: 10.1016/j.beproc.2020.104262 – ident: 10.1016/j.applanim.2023.105923_bib8 – ident: 10.1016/j.applanim.2023.105923_bib12 doi: 10.1109/ICCV48922.2021.00349 – volume: 61 start-page: 239 year: 1995 ident: 10.1016/j.applanim.2023.105923_bib28 article-title: Animal activity measured by infrared detectors publication-title: J. Agric. Eng. Res. doi: 10.1006/jaer.1995.1051 – volume: 33 start-page: 111 year: 2014 ident: 10.1016/j.applanim.2023.105923_bib39 article-title: Applying ethological and health indicators to practical animal welfare assessment publication-title: Rev. Sci. Tech. . Int. Epiz doi: 10.20506/rst.33.1.2259 – ident: 10.1016/j.applanim.2023.105923_bib13 – volume: 83 start-page: 143 year: 2004 ident: 10.1016/j.applanim.2023.105923_bib32 article-title: Differential dose effects of central CRF and effects of CRF astressin on pig behavior publication-title: Physiol. Behav. doi: 10.1016/j.physbeh.2004.08.005 – volume: 105 start-page: 42 year: 2007 ident: 10.1016/j.applanim.2023.105923_bib11 article-title: Behaviour of pigs with viral and bacterial pneumonia publication-title: Appl. Anim. Behav. Sci. doi: 10.1016/j.applanim.2006.06.005 – volume: 214 start-page: 219 year: 2018 ident: 10.1016/j.applanim.2023.105923_bib3 article-title: Agreement between passive infrared detector measurements and human observations of animal activity publication-title: Livest. Sci. doi: 10.1016/j.livsci.2018.06.008 – volume: 169 year: 2020 ident: 10.1016/j.applanim.2023.105923_bib7 article-title: Recognition of aggressive episodes of pigs based on convolutional neural network and long short-term memory publication-title: Comput. Electron Agric. doi: 10.1016/j.compag.2019.105166 – volume: 7 year: 2017 ident: 10.1016/j.applanim.2023.105923_bib22 article-title: Automated tracking to measure behavioural changes in pigs for health and welfare monitoring publication-title: Sci. Rep. doi: 10.1038/s41598-017-17451-6 – volume: 158 start-page: 86 year: 2017 ident: 10.1016/j.applanim.2023.105923_bib25 article-title: Evaluation and characterisation of passive infrared detectors to monitor pig activities in an environmental research building publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2017.03.014 – ident: 10.1016/j.applanim.2023.105923_bib30 – volume: 175 year: 2020 ident: 10.1016/j.applanim.2023.105923_bib6 article-title: A computer vision approach for recognition of the engagement of pigs with different enrichment objects publication-title: Comput. Electron Agric. doi: 10.1016/j.compag.2020.105580 – volume: 107 start-page: 38 year: 2014 ident: 10.1016/j.applanim.2023.105923_bib17 article-title: Automatic weight estimation of individual pigs using image analysis publication-title: Comput. Electron Agric. doi: 10.1016/j.compag.2014.06.003 – volume: 13 start-page: 1712 year: 2019 ident: 10.1016/j.applanim.2023.105923_bib29 article-title: Inter- and intra-observer reliability of animal welfare indicators for the on-farm self-assessment of fattening pigs publication-title: Animal doi: 10.1017/S1751731118003701 – ident: 10.1016/j.applanim.2023.105923_bib40 – volume: 10 start-page: 385 year: 2020 ident: 10.1016/j.applanim.2023.105923_bib1 article-title: Consumers’ concerns and perceptions of farm animal welfare publication-title: Animals doi: 10.3390/ani10030385 – ident: 10.1016/j.applanim.2023.105923_bib27 – volume: 163 year: 2019 ident: 10.1016/j.applanim.2023.105923_bib35 article-title: Automated pig counting using deep learning publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.05.049 – volume: 5 start-page: 767 year: 2011 ident: 10.1016/j.applanim.2023.105923_bib41 article-title: Characteristics of biter and victim piglets apparent before a tail-biting outbreak publication-title: Animal doi: 10.1017/S1751731110002326 – volume: 90 start-page: 164 year: 2013 ident: 10.1016/j.applanim.2023.105923_bib15 article-title: The automatic monitoring of pigs water use by cameras publication-title: Comput. Electron Agric. doi: 10.1016/j.compag.2012.09.015 – volume: 10 start-page: 792 year: 2020 ident: 10.1016/j.applanim.2023.105923_bib14 article-title: Using passive infrared detectors to record group activity and activity in certain focus areas in fattening pigs publication-title: Animals doi: 10.3390/ani10050792 – volume: 93 start-page: 111 year: 2013 ident: 10.1016/j.applanim.2023.105923_bib16 article-title: Automatic identification of marked pigs in a pen using image pattern recognition publication-title: Comput. Electron Agric. doi: 10.1016/j.compag.2013.01.013 – volume: 90 start-page: 273 year: 2014 ident: 10.1016/j.applanim.2023.105923_bib36 article-title: Observer bias in animal behaviour research: can we believe what we score, if we score what we believe publication-title: Anim. Behav. doi: 10.1016/j.anbehav.2014.02.007 – volume: 156 start-page: 22 year: 2014 ident: 10.1016/j.applanim.2023.105923_bib38 article-title: Tail biting behaviour and tail damage in pigs and the relationship with general behaviour: predicting the inevitable? publication-title: Appl. Anim. Behav. Sci. doi: 10.1016/j.applanim.2014.04.001 – volume: 118 start-page: 222 year: 2009 ident: 10.1016/j.applanim.2023.105923_bib31 article-title: Suffering in diseased pigs as expressed by behavioural, clinical and clinical-chemical traits, in a well defined parasite model publication-title: Appl. Anim. Behav. Sci. doi: 10.1016/j.applanim.2009.02.010 – volume: 32 start-page: 1 year: 2019 ident: 10.1016/j.applanim.2023.105923_bib23 article-title: Effects of environmental enrichment on behaviour, physiology and performance of pigs — a review publication-title: Asian-Austral J. Anim. Sci. doi: 10.5713/ajas.17.0138 – volume: 63 start-page: 361 year: 1986 ident: 10.1016/j.applanim.2023.105923_bib4 article-title: Objective measures of welfare in farming environments publication-title: Aust. Vet. J. doi: 10.1111/j.1751-0813.1986.tb02897.x – volume: 76 start-page: 316 year: 2011 ident: 10.1016/j.applanim.2023.105923_bib9 article-title: Modelling and monitoring sows’ activity types in farrowing house using acceleration data publication-title: Comput. Electron Agric. doi: 10.1016/j.compag.2011.02.010 – volume: 124 start-page: 295 year: 2016 ident: 10.1016/j.applanim.2023.105923_bib24 article-title: Automatic detection of mounting behaviours among pigs using image analysis publication-title: Comput. Electron Agric. doi: 10.1016/j.compag.2016.04.022 – volume: 140 start-page: 48 year: 2015 ident: 10.1016/j.applanim.2023.105923_bib26 article-title: Classification of nest-building behaviour in non-crated farrowing sows on the basis of accelerometer data publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2015.09.007 – ident: 10.1016/j.applanim.2023.105923_bib33 – volume: 5 year: 2016 ident: 10.1016/j.applanim.2023.105923_bib10 article-title: Interobserver reliability of the ‘Welfare Quality® animal welfare assessment protocol for growing pigs publication-title: Springerplus doi: 10.1186/s40064-016-2785-1 – volume: 13 start-page: 692 year: 2021 ident: 10.1016/j.applanim.2023.105923_bib20 article-title: Information technologies for welfare monitoring in pigs and their relation to welfare quality® publication-title: Sustainability doi: 10.3390/su13020692 – volume: 33 start-page: 189 year: 2014 ident: 10.1016/j.applanim.2023.105923_bib2 article-title: Precision livestock farming technologies for welfare management in intensive livestock systems publication-title: Rev. Sci. Tech. doi: 10.20506/rst.33.1.2273 – volume: 217 start-page: 43 year: 2016 ident: 10.1016/j.applanim.2023.105923_bib21 article-title: Early detection of health and welfare compromises through automated detection of behavioural changes in pigs publication-title: Vet. J. doi: 10.1016/j.tvjl.2016.09.005 – volume: 159 start-page: 141 year: 2014 ident: 10.1016/j.applanim.2023.105923_bib18 article-title: Automatic monitoring of pig locomotion using image analysis publication-title: Livest. Sci. doi: 10.1016/j.livsci.2013.11.007 – volume: 249 year: 2021 ident: 10.1016/j.applanim.2023.105923_bib37 article-title: An overview of the current trends in precision pig farming technologies publication-title: Livest. Sci. doi: 10.1016/j.livsci.2021.104530 – volume: 12 start-page: 295 year: 2018 ident: 10.1016/j.applanim.2023.105923_bib34 article-title: Analyses of body weight patterns in growing pigs: a new view on body weight in pigs for frequent monitoring publication-title: Animal doi: 10.1017/S1751731117001690 |
| SSID | ssj0005310 |
| Score | 2.4105906 |
| Snippet | Measuring animal behaviour is important in the assessment of animal welfare. When interaction with the enrichment material (EM) can be measured, it can be used... |
| SourceID | unpaywall proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 105923 |
| SubjectTerms | Accelerometer Algorithm animal behavior Behaviour body temperature body weight Enrichment farms neural networks nose Passive infra-red Pigs swine video cameras wood |
| SummonAdditionalLinks | – databaseName: Science Direct dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB9EKPVF2mtLT23ZQl_jxWw2yT4WUUSwL60iviy7m12NXJPjLufhS__2zmyS43wQC74EkuzCZmcy85vZ-QD4blxiRJ7zyFrvotSUKAelEHgJtUh8mYVuDRc_s7PL9PxaXG_B8ZALQ2GVvezvZHqQ1v2TSb-bk1lVTX4hWClQGaPoDUCBKn6maU5dDA7_boR58FCRgAZHNHojS_j-kA6JdV1RRnrCqeWtTPhzCmoDgL5d1jP9uNLT6YYuOn0Huz2IZD-6db6HLVePYGctyx5HMLqiMJeQa8su-uPzEby5acL7D7C6QvzdtVNijWd1U0dV_aAplp0t0LJt5qwdnO5oS7O2YX86byKjAhPzLh2CkReXIQdW9o68jAzhb-BoHMRWTqMIZ54KeJLzhc2q28VHuDw9-X18FvU9GCLLJW8jX8ZeFLlzZMyWHjWql1qI3PuysKhgEykM1ZexuihsykuNFpJPpEcrS-Sxzfgn2MZvcJ-BpcbwJJbcFEKnGUesp4-MkKV0RZbr7GgMYth4ZfsC5dQnY6qGSLR7NRBMEcFUR7AxTNbzZl2JjhdnyIGu6gmzKdQjL879NjCCwj-RjldwN5vlQiFQS5M4Qxk6hnjNIf-5pL1XLGkfduiuC2A7gO12vnRfECq15mv4F_4BKhQU-g priority: 102 providerName: Elsevier |
| Title | Validation of non-invasive sensor technologies to measure interaction with enrichment material in weaned fattening pigs |
| URI | https://dx.doi.org/10.1016/j.applanim.2023.105923 https://www.proquest.com/docview/2834206070 https://doi.org/10.1016/j.applanim.2023.105923 |
| UnpaywallVersion | publishedVersion |
| Volume | 263 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9045 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005310 issn: 1872-9045 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-9045 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005310 issn: 1872-9045 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-9045 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005310 issn: 1872-9045 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-9045 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005310 issn: 1872-9045 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9045 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005310 issn: 1872-9045 databaseCode: AKRWK dateStart: 19840301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6xrRBceBQQRVAZiWtKGsdJfKwQq0K1BSG6LFws27GXQkmqNqVaDvx2xnFSFQTa5ZIcEkfxeOz55g3wTJlIsTSlgdbWBLHK8RzkjOGlrkVi86Tu1nAySybz-PUZO2sURZcL85v_vo7Dco5cWSxc1nhEXVtahCRH0E0YYu8OdOezt-OPvoA3qkOsbpE3ytIo4AhWDlKC__6hf0mjA7R5Y1us5MVOLpcHguf4Nrxpf9nHm3wdbis11D_-qOZ49TndgVsNBiVjzzR34ZopenBzfxRe9KB36qJk6lRdctJ433tw_VNZP78Hu1OE774bEyktKcoiWBTfpQuFJxtUjMs1qVqbParipCrJN2-MJK4-xdpnUxBnBCbIwAv92RkpCaLnekPgS2RnJEoAYl39T2e7IavF-eY-zI9fvn8xCZoWDoGmnFaBzUPLstQYpwvnFgWy5ZKx1No80yifI86UK0-jZZbpmOYSFSwbcYtKGktDndAH0ME5mIdAYqVoFHKqMibjhCJUlCPFeM5NlqQyGfWBtUspdFPf3LXZWIo2kO2LaOkuHN2Fp3sfnu_HrXyFj0tH8JZTRINTPP4QuNKXjn3aspbAjey8M0jNcrsRiPPiKEzwCO5DuOe5K_7So_8f8hg61XprniCmqtQAjoY_RwPojl9NJzN3n777MB002-sXyBMleA |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NIbS9ICggymAYidesWRwn8eM0MXWw7oVtmnix7MQemUpStemqvfC3785JqvKAhsRLHhJbcnznu9-d7wPgs7GREWnKgzx3NohNgXJQCoEPX4vEFYnv1jA5T8aX8ddrcb0Fx30uDIVVdrK_leleWndvRt1ujmZlOfqOYCVDZYyi1wMF_gSexiJKyQI7-L0R58F9SQIaHdDwjTTh2wO6JdZVSSnpEaeetzLif9NQGwh0Z1nN9P1KT6cbyujkBTzvUCQ7ahf6ErZsNYDdtTC7H8DgiuJcfLItm3T35wN49qP231_B6goBeNtPidWOVXUVlNWdpmB2tkDTtp6zpve6ozHNmpr9at2JjCpMzNt8CEZuXIYsWOY_yc3IEP96lsZBbGU1ynDmqIIneV_YrLxZvIbLky8Xx-Oga8IQ5FzyJnBF6ESWWkvWbOFQpTqphUidK7IcNWwkhaECM7nOsjzmhUYTyUXSoZkl0jBP-BvYxn-wb4HFxvAolNxkQscJR7CnD42QhbRZkurkcAii33iVdxXKqVHGVPWhaLeqJ5gigqmWYEMYrefN2hodj86QPV3VH9ymUJE8OvdTzwgKjyLdr-Bu1suFQqQWR2GCQnQI4ZpD_nFJ7_5jSR9hZ3wxOVNnp-ff9mCXvrTRbO9hu5kv7QfETY3Z9-fiARygGB0 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-NVhO8sK0DrRNMRtprWBrHSfyIEKiaBNsDRWwvlu3Yo9AlVZtSdX895zipumkT7CUvyUX2-ez73fk-AD4qEymWpjTQ2pogVjmeg5wxfNS1SGye1N0aLi6T4Sj-fMNuGkPR5cL8dn9fx2G5i1xZjF3WeERdW1qEJFvQTRhi7w50R5dfT775At5oDrG6Rd4gS6OAI1jZSAn--4_-pY020Ob2opjK1VJOJhuK5_wVfGmH7ONN7o8XlTrWv_6o5vj8Ob2G3QaDkhMvNG_ghSl6sLM-Clc96F27KJk6VZdcNLfvPXj5vazfv4XlNcJ3342JlJYUZRGMiwfpQuHJHA3jckaq1mePpjipSvLTOyOJq08x89kUxDmBCQrwWN86JyVB9FxvCPyILI1EDUCsq__pfDdkOv4x34PR-dnV6TBoWjgEmnJaBTYPLctSY5wtnFtUyJZLxlJr80yjfo44U648jZZZpmOaSzSwbMQtGmksDXVC96GDczDvgMRK0SjkVGVMxglFqCgHivGcmyxJZTLoA2uXUuimvrlrszERbSDbnWj5Lhzfhed7Hz6t6aa-wseTFLyVFNHgFI8_BK70k7RHrWgJ3Mjudga5WS7mAnFeHIUJHsF9CNcy98whvf9_kgPoVLOFOURMVakPzUZ6BMXdIUk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+non-invasive+sensor+technologies+to+measure+interaction+with+enrichment+material+in+weaned+fattening+pigs&rft.jtitle=Applied+animal+behaviour+science&rft.au=Veldkamp%2C+Fleur&rft.au=Garcia-Faria%2C+Tomas+Izquierdo&rft.au=Witjes%2C+Vivian+L&rft.au=Rebel%2C+Johanna+M.J.&rft.date=2023-06-01&rft.issn=0168-1591&rft.volume=263+p.105923-&rft_id=info:doi/10.1016%2Fj.applanim.2023.105923&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1591&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1591&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1591&client=summon |