Validation of non-invasive sensor technologies to measure interaction with enrichment material in weaned fattening pigs

Measuring animal behaviour is important in the assessment of animal welfare. When interaction with the enrichment material (EM) can be measured, it can be used for detecting an increasing/decreasing interest in a certain EM. In this study, non-invasive sensor technologies were validated for measurin...

Full description

Saved in:
Bibliographic Details
Published inApplied animal behaviour science Vol. 263; p. 105923
Main Authors Veldkamp, Fleur, Garcia-Faria, Tomas Izquierdo, Witjes, Vivian L., Rebel, Johanna M.J., Jong, Ingrid C. de
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2023
Subjects
Online AccessGet full text
ISSN0168-1591
1872-9045
1872-9045
DOI10.1016/j.applanim.2023.105923

Cover

Abstract Measuring animal behaviour is important in the assessment of animal welfare. When interaction with the enrichment material (EM) can be measured, it can be used for detecting an increasing/decreasing interest in a certain EM. In this study, non-invasive sensor technologies were validated for measuring interaction with EM in pens with weaned fattening pigs. The experiment was carried out in four pens with six weaned pigs per pen (until a body weight of ± 25 kg) at a semi-commercial farm. Pens were provided with EM (ball and piece of wood (and a rope in two of the four pens) connected to a chain). Different sensor technologies were tested: passive infra-red detectors (PIDs), tri-axial accelerometers (TAA) and neural network model algorithms (NNMA 1 and NNMA 2) based on video images. Per pen, a PID was placed above the EM which measured the movement of body heat around the chain (⌀20 cm) in volts per second. A TAA was attached to the EM (at the top of the chain) and measured acceleration based on X-, Y- and Z-axis co-ordinates every second. A video camera was placed above each pen to record video images that were used to feed the NNMAs and for behavioural observations. Interaction with EM (shake, carry, nose, bite, chew or root) was manually scored per second per pig (pooled per pen afterwards) for 30 min of video footage per pen per week and was compared with data from PIDs, TAAs and NNMAs. F1 score (F1) and Matthews Correlation Coefficient (MCC) were calculated to measure the performance of the sensor technologies. PIDs (F1 = 0.380, MCC = 0.192), as well as TAAs (X-axis: F1 = 0.482, MCC = 0.345; Y-axis: F1 = 0.524, MCC = 0.401; Z-axis: F1 = 0.465, MCC = 0.320; XYZ-axis: F1 = 0.474, MCC = 0.333), overestimated interaction with the EM which might be due to the relatively small pen size, resulting in piglets touching the EM without intentional interaction with the EM. NNMAs achieved the highest performance parameters (NNMA 1: F1 = 0.554, MCC = 0.466; NNMA 2: F1 = 0.540, MCC = 0.445). Overall, only moderate F1s and MCCs were reached. The results indicated that the individual sensor technologies are not yet appropriate to measure interaction with the EM. However, there is potential to measure interaction with EM by applying a multi-sensor approach (combination of PID, TAA and NNMA), but this merits further study. •Monitoring animal behaviour is important in the assessment of animal welfare.•Sensor technologies were validated to measure interaction with enrichment material.•Algorithms, Passive Infra-red Detectors and accelerometers were used.•Individual sensor technologies are not yet appropriate to measure interaction.•Potential to combine sensor technologies for measuring interaction.
AbstractList Measuring animal behaviour is important in the assessment of animal welfare. When interaction with the enrichment material (EM) can be measured, it can be used for detecting an increasing/decreasing interest in a certain EM. In this study, non-invasive sensor technologies were validated for measuring interaction with EM in pens with weaned fattening pigs. The experiment was carried out in four pens with six weaned pigs per pen (until a body weight of ± 25 kg) at a semi-commercial farm. Pens were provided with EM (ball and piece of wood (and a rope in two of the four pens) connected to a chain). Different sensor technologies were tested: passive infra-red detectors (PIDs), tri-axial accelerometers (TAA) and neural network model algorithms (NNMA 1 and NNMA 2) based on video images. Per pen, a PID was placed above the EM which measured the movement of body heat around the chain (⌀20 cm) in volts per second. A TAA was attached to the EM (at the top of the chain) and measured acceleration based on X-, Y- and Z-axis co-ordinates every second. A video camera was placed above each pen to record video images that were used to feed the NNMAs and for behavioural observations. Interaction with EM (shake, carry, nose, bite, chew or root) was manually scored per second per pig (pooled per pen afterwards) for 30 min of video footage per pen per week and was compared with data from PIDs, TAAs and NNMAs. F1 score (F1) and Matthews Correlation Coefficient (MCC) were calculated to measure the performance of the sensor technologies. PIDs (F1 = 0.380, MCC = 0.192), as well as TAAs (X-axis: F1 = 0.482, MCC = 0.345; Y-axis: F1 = 0.524, MCC = 0.401; Z-axis: F1 = 0.465, MCC = 0.320; XYZ-axis: F1 = 0.474, MCC = 0.333), overestimated interaction with the EM which might be due to the relatively small pen size, resulting in piglets touching the EM without intentional interaction with the EM. NNMAs achieved the highest performance parameters (NNMA 1: F1 = 0.554, MCC = 0.466; NNMA 2: F1 = 0.540, MCC = 0.445). Overall, only moderate F1s and MCCs were reached. The results indicated that the individual sensor technologies are not yet appropriate to measure interaction with the EM. However, there is potential to measure interaction with EM by applying a multi-sensor approach (combination of PID, TAA and NNMA), but this merits further study. •Monitoring animal behaviour is important in the assessment of animal welfare.•Sensor technologies were validated to measure interaction with enrichment material.•Algorithms, Passive Infra-red Detectors and accelerometers were used.•Individual sensor technologies are not yet appropriate to measure interaction.•Potential to combine sensor technologies for measuring interaction.
Measuring animal behaviour is important in the assessment of animal welfare. When interaction with the enrichment material (EM) can be measured, it can be used for detecting an increasing/decreasing interest in a certain EM. In this study, non-invasive sensor technologies were validated for measuring interaction with EM in pens with weaned fattening pigs. The experiment was carried out in four pens with six weaned pigs per pen (until a body weight of ± 25 kg) at a semi-commercial farm. Pens were provided with EM (ball and piece of wood (and a rope in two of the four pens) connected to a chain). Different sensor technologies were tested: passive infra-red detectors (PIDs), tri-axial accelerometers (TAA) and neural network model algorithms (NNMA 1 and NNMA 2) based on video images. Per pen, a PID was placed above the EM which measured the movement of body heat around the chain (⌀20 cm) in volts per second. A TAA was attached to the EM (at the top of the chain) and measured acceleration based on X-, Y- and Z-axis co-ordinates every second. A video camera was placed above each pen to record video images that were used to feed the NNMAs and for behavioural observations. Interaction with EM (shake, carry, nose, bite, chew or root) was manually scored per second per pig (pooled per pen afterwards) for 30 min of video footage per pen per week and was compared with data from PIDs, TAAs and NNMAs. F1 score (F1) and Matthews Correlation Coefficient (MCC) were calculated to measure the performance of the sensor technologies. PIDs (F1 = 0.380, MCC = 0.192), as well as TAAs (X-axis: F1 = 0.482, MCC = 0.345; Y-axis: F1 = 0.524, MCC = 0.401; Z-axis: F1 = 0.465, MCC = 0.320; XYZ-axis: F1 = 0.474, MCC = 0.333), overestimated interaction with the EM which might be due to the relatively small pen size, resulting in piglets touching the EM without intentional interaction with the EM. NNMAs achieved the highest performance parameters (NNMA 1: F1 = 0.554, MCC = 0.466; NNMA 2: F1 = 0.540, MCC = 0.445). Overall, only moderate F1s and MCCs were reached. The results indicated that the individual sensor technologies are not yet appropriate to measure interaction with the EM. However, there is potential to measure interaction with EM by applying a multi-sensor approach (combination of PID, TAA and NNMA), but this merits further study.
ArticleNumber 105923
Author Garcia-Faria, Tomas Izquierdo
Rebel, Johanna M.J.
Veldkamp, Fleur
Jong, Ingrid C. de
Witjes, Vivian L.
Author_xml – sequence: 1
  givenname: Fleur
  orcidid: 0000-0003-0171-8850
  surname: Veldkamp
  fullname: Veldkamp, Fleur
  email: fleur1.veldkamp@wur.nl
  organization: Wageningen Livestock Research, Wageningen University and Research, De Elst 1, NL-6708 WD Wageningen, the Netherlands
– sequence: 2
  givenname: Tomas Izquierdo
  surname: Garcia-Faria
  fullname: Garcia-Faria, Tomas Izquierdo
  organization: Wageningen Livestock Research, Wageningen University and Research, De Elst 1, NL-6708 WD Wageningen, the Netherlands
– sequence: 3
  givenname: Vivian L.
  surname: Witjes
  fullname: Witjes, Vivian L.
  organization: Farm Animal Health, Department Population Health Sciences, Veterinary Medicine, Utrecht University, Yalelaan 7, NL-3584 CL Utrecht, the Netherlands
– sequence: 4
  givenname: Johanna M.J.
  surname: Rebel
  fullname: Rebel, Johanna M.J.
  organization: Adaptation Physiology Group, Wageningen University and Research, De Elst 1, NL-6708 WD Wageningen, the Netherlands
– sequence: 5
  givenname: Ingrid C. de
  surname: Jong
  fullname: Jong, Ingrid C. de
  organization: Wageningen Livestock Research, Wageningen University and Research, De Elst 1, NL-6708 WD Wageningen, the Netherlands
BookMark eNqNkE1vEzEQhi1UJNLCX0A-ctlgr-P9kDiAKgqVKnFpe7Wm3nEy0a692E6i_nvcLr1wKSdL4-d9Z_ScszMfPDL2UYq1FLL5vF_DPI_gaVrXolZlqPtavWEr2bV11YuNPmOrAnaV1L18x85T2gshtJJixU73MNIAmYLnwfFSXZE_QqIj8oQ-hcgz2p0PY9gSJp4DnxDSISInnzGCfY6eKO84-kh2N6HPfILyRzAWiJ8QPA7cQc7oyW_5TNv0nr11MCb88Pe9YHdX328vf1Y3v35cX367qazqVa7cIJzuWsRWKjU4xMH1oHXr3NBZi1j3-mHTaW2h6-xGDdA1tat7J8uwFbZRF6xdeg9-hscTjKOZI00QH40U5smf2ZsXf-bJn1n8leSnJTnH8PuAKZuJksWxkBgOydSd2tSiEa0o6JcFtTGkFNEZS_nZaY5A4-ubmn_i_33i1yWIxeCRMJpkCb3FgSLabIZAr1X8AW_ptwU
CitedBy_id crossref_primary_10_1016_j_applanim_2023_106084
crossref_primary_10_3389_fanim_2023_1279086
crossref_primary_10_1186_s40813_024_00396_4
crossref_primary_10_1016_j_applanim_2023_106027
crossref_primary_10_1016_j_applanim_2023_106148
Cites_doi 10.1016/j.beproc.2020.104262
10.1109/ICCV48922.2021.00349
10.1006/jaer.1995.1051
10.20506/rst.33.1.2259
10.1016/j.physbeh.2004.08.005
10.1016/j.applanim.2006.06.005
10.1016/j.livsci.2018.06.008
10.1016/j.compag.2019.105166
10.1038/s41598-017-17451-6
10.1016/j.biosystemseng.2017.03.014
10.1016/j.compag.2020.105580
10.1016/j.compag.2014.06.003
10.1017/S1751731118003701
10.3390/ani10030385
10.1016/j.compag.2019.05.049
10.1017/S1751731110002326
10.1016/j.compag.2012.09.015
10.3390/ani10050792
10.1016/j.compag.2013.01.013
10.1016/j.anbehav.2014.02.007
10.1016/j.applanim.2014.04.001
10.1016/j.applanim.2009.02.010
10.5713/ajas.17.0138
10.1111/j.1751-0813.1986.tb02897.x
10.1016/j.compag.2011.02.010
10.1016/j.compag.2016.04.022
10.1016/j.biosystemseng.2015.09.007
10.1186/s40064-016-2785-1
10.3390/su13020692
10.20506/rst.33.1.2273
10.1016/j.tvjl.2016.09.005
10.1016/j.livsci.2013.11.007
10.1016/j.livsci.2021.104530
10.1017/S1751731117001690
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
ADTOC
UNPAY
DOI 10.1016/j.applanim.2023.105923
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Veterinary Medicine
Zoology
Psychology
EISSN 1872-9045
ExternalDocumentID 10.1016/j.applanim.2023.105923
10_1016_j_applanim_2023_105923
S0168159123000953
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABBQC
ABFNM
ABGRD
ABIVO
ABKYH
ABMAC
ABMZM
ABRWV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AEXOQ
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
QYZTP
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSA
SSZ
SVS
T5K
VH1
WUQ
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
7S9
L.6
ABUFD
ADTOC
UNPAY
ID FETCH-LOGICAL-c393t-fd0f587ee7133dfeedf9a557ffd8ccee295b4855ca88c43da862f29f148570c63
IEDL.DBID UNPAY
ISSN 0168-1591
1872-9045
IngestDate Sun Oct 26 03:59:55 EDT 2025
Sun Sep 28 12:18:15 EDT 2025
Thu Apr 24 22:58:44 EDT 2025
Thu Oct 02 04:22:34 EDT 2025
Fri Apr 05 04:25:46 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Pigs
Enrichment
Accelerometer
Passive infra-red
Behaviour
Algorithm
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-fd0f587ee7133dfeedf9a557ffd8ccee295b4855ca88c43da862f29f148570c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0171-8850
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.applanim.2023.105923
PQID 2834206070
PQPubID 24069
ParticipantIDs unpaywall_primary_10_1016_j_applanim_2023_105923
proquest_miscellaneous_2834206070
crossref_citationtrail_10_1016_j_applanim_2023_105923
crossref_primary_10_1016_j_applanim_2023_105923
elsevier_sciencedirect_doi_10_1016_j_applanim_2023_105923
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationTitle Applied animal behaviour science
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Max Kuhn, 2022. caret: Classification and Regression Training.
Hitoshi Iuchi, 2017. mccr: The Matthews Correlation Coefficient.
Kashiha, Bahr, Ott, Moons, Niewold, Tuyttens, Berckmans (bib18) 2014; 159
Tuyttens, de Graaf, Heerkens, Jacobs, Nalon, Ott, Stadig, Van Laer, Ampe (bib36) 2014; 90
Kashiha, Bahr, Ott, Moons, Niewold, Ödberg, Berckmans (bib16) 2013; 93
Pedersen, Pedersen (bib28) 1995; 61
Czycholl, Kniese, Büttner, Beilage, Schrader, Krieter (bib10) 2016; 5
Kashiha, Bahr, Haredasht, Ott, Moons, Niewold, Ödberg, Berckmans (bib15) 2013; 90
Besteiro, Rodríguez, Fernández, Ortega, Velo (bib3) 2018; 214
Sekachev, B., Manovich, N., Zhiltsov, M., Zhavoronkov, A., Kalinin, D., Hoff, B., TOsmanov, Kruchinin, D., Zankevich, A., DmitriySidnev, Markelov, M., Johannes222, Chenuet, M., a-andre, telenachos, Melnikov, A., Kim, J., Ilouz, L., Glazov, N., Priya4607, Tehrani, R., Jeong, S., Skubriev, V., Yonekura, S., truong, vugia, zliang7, lizhming, Truong, T., 2020. opencv/cvat: v1.1.0. https://doi.org/10.5281/ZENODO.4009388.
Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J., 2020. Deformable DETR: deformable transformers for end-to-end object detection.
Berckmans (bib2) 2014; 33
Pfeifer, Eggemann, Kransmann, Schmitt, Hessel (bib29) 2019; 13
Mkwanazi, Ncobela, Kanengoni, Chimonyo (bib23) 2019; 32
Tian, Guo, Chen, Wang, Long, Ma (bib35) 2019; 163
Kashiha, Bahr, Ott, Moons, Niewold, Ödberg, Berckmans (bib17) 2014; 107
Oczak, Maschat, Berckmans, Vranken, Baumgartner (bib26) 2015; 140
Feng, C., Zhong, Y., Gao, Y., Scott, M.R., Huang, W., 2021. TOOD: Task-aligned One-stage Object Detection, In: Proceedings of the IEEE International Conference on Computer Vision. pp. 3490–3499.
Wemelsfelder, Mullan (bib39) 2014; 33
Chen, K., Wang, Jiaqi, Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Xu, J., Zhang, Z., Cheng, D., Zhu, C., Cheng, T., Zhao, Q., Li, B., Lu, X., Zhu, R., Wu, Y., Dai, J., Wang, Jingdong, Shi, J., Ouyang, W., Loy, C.C., Lin, D., 2019. MMDetection: Open MMLab Detection Toolbox and Benchmark.
Chen, Zhu, Oczak, Maschat, Baumgartner, Larsen, Norton (bib6) 2020; 175
von Jasmund, Wellnitz, Krommweh, Büscher (bib14) 2020; 10
Cornou, Lundbye-Christensen, Kristensen (bib9) 2011; 76
Nasirahmadi, Hensel, Edwards, Sturm (bib24) 2016; 124
Tzanidakis, Simitzis, Arvanitis, Panagakis (bib37) 2021; 249
Alonso, González-Montaña, Lomillos (bib1) 2020; 10
Zonderland, Schepers, Bracke, den Hartog, Kemp, Spoolder (bib41) 2011; 5
Stygar, Dolecheck, Kristensen (bib34) 2018; 12
Ni, Liu, Radcliffe, Vonderohe (bib25) 2017; 158
Matthews, Miller, Clapp, Plötz, Kyriazakis (bib21) 2016; 217
Matthews, Miller, Plötz, Kyriazakis (bib22) 2017; 7
Salak-Johnson, Anderson, McGlone (bib32) 2004; 83
Chen, Zhu, Steibel, Siegford, Wurtz, Han, Norton (bib7) 2020; 169
Chapa, Maschat, Iwersen, Baumgartner, Drillich (bib5) 2020; 181
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S., 2019. PyTorch: An imperative style, high-performance deep learning library, in: Advances in Neural Information Processing Systems.
Reiner, Hübner, Hepp (bib31) 2009; 118
Larsen, Wang, Norton (bib20) 2021; 13
.
R Core Team, 2021. R: A Language and Environment for Statistical Computing.
Ursinus, Van Reenen, Kemp, Bolhuis (bib38) 2014; 156
Blackshaw (bib4) 1986; 63
Escobar, Van Alstine, Baker, Johnson (bib11) 2007; 105
10.1016/j.applanim.2023.105923_bib19
Besteiro (10.1016/j.applanim.2023.105923_bib3) 2018; 214
Kashiha (10.1016/j.applanim.2023.105923_bib16) 2013; 93
Kashiha (10.1016/j.applanim.2023.105923_bib17) 2014; 107
Oczak (10.1016/j.applanim.2023.105923_bib26) 2015; 140
Tian (10.1016/j.applanim.2023.105923_bib35) 2019; 163
Chapa (10.1016/j.applanim.2023.105923_bib5) 2020; 181
10.1016/j.applanim.2023.105923_bib8
Pfeifer (10.1016/j.applanim.2023.105923_bib29) 2019; 13
Wemelsfelder (10.1016/j.applanim.2023.105923_bib39) 2014; 33
Berckmans (10.1016/j.applanim.2023.105923_bib2) 2014; 33
Nasirahmadi (10.1016/j.applanim.2023.105923_bib24) 2016; 124
Ursinus (10.1016/j.applanim.2023.105923_bib38) 2014; 156
Larsen (10.1016/j.applanim.2023.105923_bib20) 2021; 13
Pedersen (10.1016/j.applanim.2023.105923_bib28) 1995; 61
von Jasmund (10.1016/j.applanim.2023.105923_bib14) 2020; 10
Chen (10.1016/j.applanim.2023.105923_bib7) 2020; 169
Chen (10.1016/j.applanim.2023.105923_bib6) 2020; 175
10.1016/j.applanim.2023.105923_bib40
Kashiha (10.1016/j.applanim.2023.105923_bib18) 2014; 159
Kashiha (10.1016/j.applanim.2023.105923_bib15) 2013; 90
Czycholl (10.1016/j.applanim.2023.105923_bib10) 2016; 5
10.1016/j.applanim.2023.105923_bib27
Escobar (10.1016/j.applanim.2023.105923_bib11) 2007; 105
Blackshaw (10.1016/j.applanim.2023.105923_bib4) 1986; 63
Ni (10.1016/j.applanim.2023.105923_bib25) 2017; 158
Salak-Johnson (10.1016/j.applanim.2023.105923_bib32) 2004; 83
Tuyttens (10.1016/j.applanim.2023.105923_bib36) 2014; 90
Stygar (10.1016/j.applanim.2023.105923_bib34) 2018; 12
Mkwanazi (10.1016/j.applanim.2023.105923_bib23) 2019; 32
Zonderland (10.1016/j.applanim.2023.105923_bib41) 2011; 5
Matthews (10.1016/j.applanim.2023.105923_bib22) 2017; 7
Tzanidakis (10.1016/j.applanim.2023.105923_bib37) 2021; 249
Matthews (10.1016/j.applanim.2023.105923_bib21) 2016; 217
Alonso (10.1016/j.applanim.2023.105923_bib1) 2020; 10
10.1016/j.applanim.2023.105923_bib33
Reiner (10.1016/j.applanim.2023.105923_bib31) 2009; 118
10.1016/j.applanim.2023.105923_bib13
10.1016/j.applanim.2023.105923_bib12
Cornou (10.1016/j.applanim.2023.105923_bib9) 2011; 76
10.1016/j.applanim.2023.105923_bib30
References_xml – reference: Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J., 2020. Deformable DETR: deformable transformers for end-to-end object detection.
– reference: Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S., 2019. PyTorch: An imperative style, high-performance deep learning library, in: Advances in Neural Information Processing Systems.
– reference: Feng, C., Zhong, Y., Gao, Y., Scott, M.R., Huang, W., 2021. TOOD: Task-aligned One-stage Object Detection, In: Proceedings of the IEEE International Conference on Computer Vision. pp. 3490–3499.
– volume: 175
  year: 2020
  ident: bib6
  article-title: A computer vision approach for recognition of the engagement of pigs with different enrichment objects
  publication-title: Comput. Electron Agric.
– volume: 61
  start-page: 239
  year: 1995
  end-page: 246
  ident: bib28
  article-title: Animal activity measured by infrared detectors
  publication-title: J. Agric. Eng. Res.
– volume: 124
  start-page: 295
  year: 2016
  end-page: 302
  ident: bib24
  article-title: Automatic detection of mounting behaviours among pigs using image analysis
  publication-title: Comput. Electron Agric.
– volume: 158
  start-page: 86
  year: 2017
  end-page: 94
  ident: bib25
  article-title: Evaluation and characterisation of passive infrared detectors to monitor pig activities in an environmental research building
  publication-title: Biosyst. Eng.
– volume: 5
  year: 2016
  ident: bib10
  article-title: Interobserver reliability of the ‘Welfare Quality® animal welfare assessment protocol for growing pigs
  publication-title: Springerplus
– volume: 12
  start-page: 295
  year: 2018
  end-page: 302
  ident: bib34
  article-title: Analyses of body weight patterns in growing pigs: a new view on body weight in pigs for frequent monitoring
  publication-title: Animal
– volume: 13
  start-page: 692
  year: 2021
  ident: bib20
  article-title: Information technologies for welfare monitoring in pigs and their relation to welfare quality®
  publication-title: Sustainability
– volume: 140
  start-page: 48
  year: 2015
  end-page: 58
  ident: bib26
  article-title: Classification of nest-building behaviour in non-crated farrowing sows on the basis of accelerometer data
  publication-title: Biosyst. Eng.
– volume: 169
  year: 2020
  ident: bib7
  article-title: Recognition of aggressive episodes of pigs based on convolutional neural network and long short-term memory
  publication-title: Comput. Electron Agric.
– volume: 107
  start-page: 38
  year: 2014
  end-page: 44
  ident: bib17
  article-title: Automatic weight estimation of individual pigs using image analysis
  publication-title: Comput. Electron Agric.
– volume: 13
  start-page: 1712
  year: 2019
  end-page: 1720
  ident: bib29
  article-title: Inter- and intra-observer reliability of animal welfare indicators for the on-farm self-assessment of fattening pigs
  publication-title: Animal
– volume: 33
  start-page: 189
  year: 2014
  end-page: 196
  ident: bib2
  article-title: Precision livestock farming technologies for welfare management in intensive livestock systems
  publication-title: Rev. Sci. Tech.
– volume: 163
  year: 2019
  ident: bib35
  article-title: Automated pig counting using deep learning
  publication-title: Comput. Electron. Agric.
– volume: 105
  start-page: 42
  year: 2007
  end-page: 50
  ident: bib11
  article-title: Behaviour of pigs with viral and bacterial pneumonia
  publication-title: Appl. Anim. Behav. Sci.
– volume: 83
  start-page: 143
  year: 2004
  end-page: 150
  ident: bib32
  article-title: Differential dose effects of central CRF and effects of CRF astressin on pig behavior
  publication-title: Physiol. Behav.
– volume: 5
  start-page: 767
  year: 2011
  end-page: 775
  ident: bib41
  article-title: Characteristics of biter and victim piglets apparent before a tail-biting outbreak
  publication-title: Animal
– reference: Max Kuhn, 2022. caret: Classification and Regression Training.
– volume: 10
  start-page: 385
  year: 2020
  ident: bib1
  article-title: Consumers’ concerns and perceptions of farm animal welfare
  publication-title: Animals
– volume: 90
  start-page: 164
  year: 2013
  end-page: 169
  ident: bib15
  article-title: The automatic monitoring of pigs water use by cameras
  publication-title: Comput. Electron Agric.
– volume: 63
  start-page: 361
  year: 1986
  end-page: 364
  ident: bib4
  article-title: Objective measures of welfare in farming environments
  publication-title: Aust. Vet. J.
– reference: Chen, K., Wang, Jiaqi, Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Xu, J., Zhang, Z., Cheng, D., Zhu, C., Cheng, T., Zhao, Q., Li, B., Lu, X., Zhu, R., Wu, Y., Dai, J., Wang, Jingdong, Shi, J., Ouyang, W., Loy, C.C., Lin, D., 2019. MMDetection: Open MMLab Detection Toolbox and Benchmark.
– volume: 76
  start-page: 316
  year: 2011
  end-page: 324
  ident: bib9
  article-title: Modelling and monitoring sows’ activity types in farrowing house using acceleration data
  publication-title: Comput. Electron Agric.
– reference: Hitoshi Iuchi, 2017. mccr: The Matthews Correlation Coefficient.
– volume: 33
  start-page: 111
  year: 2014
  end-page: 120
  ident: bib39
  article-title: Applying ethological and health indicators to practical animal welfare assessment
  publication-title: Rev. Sci. Tech. . Int. Epiz
– reference: Sekachev, B., Manovich, N., Zhiltsov, M., Zhavoronkov, A., Kalinin, D., Hoff, B., TOsmanov, Kruchinin, D., Zankevich, A., DmitriySidnev, Markelov, M., Johannes222, Chenuet, M., a-andre, telenachos, Melnikov, A., Kim, J., Ilouz, L., Glazov, N., Priya4607, Tehrani, R., Jeong, S., Skubriev, V., Yonekura, S., truong, vugia, zliang7, lizhming, Truong, T., 2020. opencv/cvat: v1.1.0. https://doi.org/10.5281/ZENODO.4009388.
– volume: 181
  year: 2020
  ident: bib5
  article-title: Accelerometer systems as tools for health and welfare assessment in cattle and pigs – a review
  publication-title: Behav. Process.
– reference: .
– volume: 32
  start-page: 1
  year: 2019
  ident: bib23
  article-title: Effects of environmental enrichment on behaviour, physiology and performance of pigs — a review
  publication-title: Asian-Austral J. Anim. Sci.
– volume: 118
  start-page: 222
  year: 2009
  end-page: 231
  ident: bib31
  article-title: Suffering in diseased pigs as expressed by behavioural, clinical and clinical-chemical traits, in a well defined parasite model
  publication-title: Appl. Anim. Behav. Sci.
– volume: 10
  start-page: 792
  year: 2020
  ident: bib14
  article-title: Using passive infrared detectors to record group activity and activity in certain focus areas in fattening pigs
  publication-title: Animals
– reference: R Core Team, 2021. R: A Language and Environment for Statistical Computing.
– volume: 249
  year: 2021
  ident: bib37
  article-title: An overview of the current trends in precision pig farming technologies
  publication-title: Livest. Sci.
– volume: 217
  start-page: 43
  year: 2016
  end-page: 51
  ident: bib21
  article-title: Early detection of health and welfare compromises through automated detection of behavioural changes in pigs
  publication-title: Vet. J.
– volume: 90
  start-page: 273
  year: 2014
  end-page: 280
  ident: bib36
  article-title: Observer bias in animal behaviour research: can we believe what we score, if we score what we believe
  publication-title: Anim. Behav.
– volume: 7
  year: 2017
  ident: bib22
  article-title: Automated tracking to measure behavioural changes in pigs for health and welfare monitoring
  publication-title: Sci. Rep.
– volume: 214
  start-page: 219
  year: 2018
  end-page: 224
  ident: bib3
  article-title: Agreement between passive infrared detector measurements and human observations of animal activity
  publication-title: Livest. Sci.
– volume: 93
  start-page: 111
  year: 2013
  end-page: 120
  ident: bib16
  article-title: Automatic identification of marked pigs in a pen using image pattern recognition
  publication-title: Comput. Electron Agric.
– volume: 156
  start-page: 22
  year: 2014
  end-page: 36
  ident: bib38
  article-title: Tail biting behaviour and tail damage in pigs and the relationship with general behaviour: predicting the inevitable?
  publication-title: Appl. Anim. Behav. Sci.
– volume: 159
  start-page: 141
  year: 2014
  end-page: 148
  ident: bib18
  article-title: Automatic monitoring of pig locomotion using image analysis
  publication-title: Livest. Sci.
– ident: 10.1016/j.applanim.2023.105923_bib19
– volume: 181
  year: 2020
  ident: 10.1016/j.applanim.2023.105923_bib5
  article-title: Accelerometer systems as tools for health and welfare assessment in cattle and pigs – a review
  publication-title: Behav. Process.
  doi: 10.1016/j.beproc.2020.104262
– ident: 10.1016/j.applanim.2023.105923_bib8
– ident: 10.1016/j.applanim.2023.105923_bib12
  doi: 10.1109/ICCV48922.2021.00349
– volume: 61
  start-page: 239
  year: 1995
  ident: 10.1016/j.applanim.2023.105923_bib28
  article-title: Animal activity measured by infrared detectors
  publication-title: J. Agric. Eng. Res.
  doi: 10.1006/jaer.1995.1051
– volume: 33
  start-page: 111
  year: 2014
  ident: 10.1016/j.applanim.2023.105923_bib39
  article-title: Applying ethological and health indicators to practical animal welfare assessment
  publication-title: Rev. Sci. Tech. . Int. Epiz
  doi: 10.20506/rst.33.1.2259
– ident: 10.1016/j.applanim.2023.105923_bib13
– volume: 83
  start-page: 143
  year: 2004
  ident: 10.1016/j.applanim.2023.105923_bib32
  article-title: Differential dose effects of central CRF and effects of CRF astressin on pig behavior
  publication-title: Physiol. Behav.
  doi: 10.1016/j.physbeh.2004.08.005
– volume: 105
  start-page: 42
  year: 2007
  ident: 10.1016/j.applanim.2023.105923_bib11
  article-title: Behaviour of pigs with viral and bacterial pneumonia
  publication-title: Appl. Anim. Behav. Sci.
  doi: 10.1016/j.applanim.2006.06.005
– volume: 214
  start-page: 219
  year: 2018
  ident: 10.1016/j.applanim.2023.105923_bib3
  article-title: Agreement between passive infrared detector measurements and human observations of animal activity
  publication-title: Livest. Sci.
  doi: 10.1016/j.livsci.2018.06.008
– volume: 169
  year: 2020
  ident: 10.1016/j.applanim.2023.105923_bib7
  article-title: Recognition of aggressive episodes of pigs based on convolutional neural network and long short-term memory
  publication-title: Comput. Electron Agric.
  doi: 10.1016/j.compag.2019.105166
– volume: 7
  year: 2017
  ident: 10.1016/j.applanim.2023.105923_bib22
  article-title: Automated tracking to measure behavioural changes in pigs for health and welfare monitoring
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-17451-6
– volume: 158
  start-page: 86
  year: 2017
  ident: 10.1016/j.applanim.2023.105923_bib25
  article-title: Evaluation and characterisation of passive infrared detectors to monitor pig activities in an environmental research building
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2017.03.014
– ident: 10.1016/j.applanim.2023.105923_bib30
– volume: 175
  year: 2020
  ident: 10.1016/j.applanim.2023.105923_bib6
  article-title: A computer vision approach for recognition of the engagement of pigs with different enrichment objects
  publication-title: Comput. Electron Agric.
  doi: 10.1016/j.compag.2020.105580
– volume: 107
  start-page: 38
  year: 2014
  ident: 10.1016/j.applanim.2023.105923_bib17
  article-title: Automatic weight estimation of individual pigs using image analysis
  publication-title: Comput. Electron Agric.
  doi: 10.1016/j.compag.2014.06.003
– volume: 13
  start-page: 1712
  year: 2019
  ident: 10.1016/j.applanim.2023.105923_bib29
  article-title: Inter- and intra-observer reliability of animal welfare indicators for the on-farm self-assessment of fattening pigs
  publication-title: Animal
  doi: 10.1017/S1751731118003701
– ident: 10.1016/j.applanim.2023.105923_bib40
– volume: 10
  start-page: 385
  year: 2020
  ident: 10.1016/j.applanim.2023.105923_bib1
  article-title: Consumers’ concerns and perceptions of farm animal welfare
  publication-title: Animals
  doi: 10.3390/ani10030385
– ident: 10.1016/j.applanim.2023.105923_bib27
– volume: 163
  year: 2019
  ident: 10.1016/j.applanim.2023.105923_bib35
  article-title: Automated pig counting using deep learning
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.05.049
– volume: 5
  start-page: 767
  year: 2011
  ident: 10.1016/j.applanim.2023.105923_bib41
  article-title: Characteristics of biter and victim piglets apparent before a tail-biting outbreak
  publication-title: Animal
  doi: 10.1017/S1751731110002326
– volume: 90
  start-page: 164
  year: 2013
  ident: 10.1016/j.applanim.2023.105923_bib15
  article-title: The automatic monitoring of pigs water use by cameras
  publication-title: Comput. Electron Agric.
  doi: 10.1016/j.compag.2012.09.015
– volume: 10
  start-page: 792
  year: 2020
  ident: 10.1016/j.applanim.2023.105923_bib14
  article-title: Using passive infrared detectors to record group activity and activity in certain focus areas in fattening pigs
  publication-title: Animals
  doi: 10.3390/ani10050792
– volume: 93
  start-page: 111
  year: 2013
  ident: 10.1016/j.applanim.2023.105923_bib16
  article-title: Automatic identification of marked pigs in a pen using image pattern recognition
  publication-title: Comput. Electron Agric.
  doi: 10.1016/j.compag.2013.01.013
– volume: 90
  start-page: 273
  year: 2014
  ident: 10.1016/j.applanim.2023.105923_bib36
  article-title: Observer bias in animal behaviour research: can we believe what we score, if we score what we believe
  publication-title: Anim. Behav.
  doi: 10.1016/j.anbehav.2014.02.007
– volume: 156
  start-page: 22
  year: 2014
  ident: 10.1016/j.applanim.2023.105923_bib38
  article-title: Tail biting behaviour and tail damage in pigs and the relationship with general behaviour: predicting the inevitable?
  publication-title: Appl. Anim. Behav. Sci.
  doi: 10.1016/j.applanim.2014.04.001
– volume: 118
  start-page: 222
  year: 2009
  ident: 10.1016/j.applanim.2023.105923_bib31
  article-title: Suffering in diseased pigs as expressed by behavioural, clinical and clinical-chemical traits, in a well defined parasite model
  publication-title: Appl. Anim. Behav. Sci.
  doi: 10.1016/j.applanim.2009.02.010
– volume: 32
  start-page: 1
  year: 2019
  ident: 10.1016/j.applanim.2023.105923_bib23
  article-title: Effects of environmental enrichment on behaviour, physiology and performance of pigs — a review
  publication-title: Asian-Austral J. Anim. Sci.
  doi: 10.5713/ajas.17.0138
– volume: 63
  start-page: 361
  year: 1986
  ident: 10.1016/j.applanim.2023.105923_bib4
  article-title: Objective measures of welfare in farming environments
  publication-title: Aust. Vet. J.
  doi: 10.1111/j.1751-0813.1986.tb02897.x
– volume: 76
  start-page: 316
  year: 2011
  ident: 10.1016/j.applanim.2023.105923_bib9
  article-title: Modelling and monitoring sows’ activity types in farrowing house using acceleration data
  publication-title: Comput. Electron Agric.
  doi: 10.1016/j.compag.2011.02.010
– volume: 124
  start-page: 295
  year: 2016
  ident: 10.1016/j.applanim.2023.105923_bib24
  article-title: Automatic detection of mounting behaviours among pigs using image analysis
  publication-title: Comput. Electron Agric.
  doi: 10.1016/j.compag.2016.04.022
– volume: 140
  start-page: 48
  year: 2015
  ident: 10.1016/j.applanim.2023.105923_bib26
  article-title: Classification of nest-building behaviour in non-crated farrowing sows on the basis of accelerometer data
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2015.09.007
– ident: 10.1016/j.applanim.2023.105923_bib33
– volume: 5
  year: 2016
  ident: 10.1016/j.applanim.2023.105923_bib10
  article-title: Interobserver reliability of the ‘Welfare Quality® animal welfare assessment protocol for growing pigs
  publication-title: Springerplus
  doi: 10.1186/s40064-016-2785-1
– volume: 13
  start-page: 692
  year: 2021
  ident: 10.1016/j.applanim.2023.105923_bib20
  article-title: Information technologies for welfare monitoring in pigs and their relation to welfare quality®
  publication-title: Sustainability
  doi: 10.3390/su13020692
– volume: 33
  start-page: 189
  year: 2014
  ident: 10.1016/j.applanim.2023.105923_bib2
  article-title: Precision livestock farming technologies for welfare management in intensive livestock systems
  publication-title: Rev. Sci. Tech.
  doi: 10.20506/rst.33.1.2273
– volume: 217
  start-page: 43
  year: 2016
  ident: 10.1016/j.applanim.2023.105923_bib21
  article-title: Early detection of health and welfare compromises through automated detection of behavioural changes in pigs
  publication-title: Vet. J.
  doi: 10.1016/j.tvjl.2016.09.005
– volume: 159
  start-page: 141
  year: 2014
  ident: 10.1016/j.applanim.2023.105923_bib18
  article-title: Automatic monitoring of pig locomotion using image analysis
  publication-title: Livest. Sci.
  doi: 10.1016/j.livsci.2013.11.007
– volume: 249
  year: 2021
  ident: 10.1016/j.applanim.2023.105923_bib37
  article-title: An overview of the current trends in precision pig farming technologies
  publication-title: Livest. Sci.
  doi: 10.1016/j.livsci.2021.104530
– volume: 12
  start-page: 295
  year: 2018
  ident: 10.1016/j.applanim.2023.105923_bib34
  article-title: Analyses of body weight patterns in growing pigs: a new view on body weight in pigs for frequent monitoring
  publication-title: Animal
  doi: 10.1017/S1751731117001690
SSID ssj0005310
Score 2.4105906
Snippet Measuring animal behaviour is important in the assessment of animal welfare. When interaction with the enrichment material (EM) can be measured, it can be used...
SourceID unpaywall
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105923
SubjectTerms Accelerometer
Algorithm
animal behavior
Behaviour
body temperature
body weight
Enrichment
farms
neural networks
nose
Passive infra-red
Pigs
swine
video cameras
wood
SummonAdditionalLinks – databaseName: Science Direct
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB9EKPVF2mtLT23ZQl_jxWw2yT4WUUSwL60iviy7m12NXJPjLufhS__2zmyS43wQC74EkuzCZmcy85vZ-QD4blxiRJ7zyFrvotSUKAelEHgJtUh8mYVuDRc_s7PL9PxaXG_B8ZALQ2GVvezvZHqQ1v2TSb-bk1lVTX4hWClQGaPoDUCBKn6maU5dDA7_boR58FCRgAZHNHojS_j-kA6JdV1RRnrCqeWtTPhzCmoDgL5d1jP9uNLT6YYuOn0Huz2IZD-6db6HLVePYGctyx5HMLqiMJeQa8su-uPzEby5acL7D7C6QvzdtVNijWd1U0dV_aAplp0t0LJt5qwdnO5oS7O2YX86byKjAhPzLh2CkReXIQdW9o68jAzhb-BoHMRWTqMIZ54KeJLzhc2q28VHuDw9-X18FvU9GCLLJW8jX8ZeFLlzZMyWHjWql1qI3PuysKhgEykM1ZexuihsykuNFpJPpEcrS-Sxzfgn2MZvcJ-BpcbwJJbcFEKnGUesp4-MkKV0RZbr7GgMYth4ZfsC5dQnY6qGSLR7NRBMEcFUR7AxTNbzZl2JjhdnyIGu6gmzKdQjL879NjCCwj-RjldwN5vlQiFQS5M4Qxk6hnjNIf-5pL1XLGkfduiuC2A7gO12vnRfECq15mv4F_4BKhQU-g
  priority: 102
  providerName: Elsevier
Title Validation of non-invasive sensor technologies to measure interaction with enrichment material in weaned fattening pigs
URI https://dx.doi.org/10.1016/j.applanim.2023.105923
https://www.proquest.com/docview/2834206070
https://doi.org/10.1016/j.applanim.2023.105923
UnpaywallVersion publishedVersion
Volume 263
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9045
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005310
  issn: 1872-9045
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-9045
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005310
  issn: 1872-9045
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-9045
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005310
  issn: 1872-9045
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-9045
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005310
  issn: 1872-9045
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9045
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005310
  issn: 1872-9045
  databaseCode: AKRWK
  dateStart: 19840301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6xrRBceBQQRVAZiWtKGsdJfKwQq0K1BSG6LFws27GXQkmqNqVaDvx2xnFSFQTa5ZIcEkfxeOz55g3wTJlIsTSlgdbWBLHK8RzkjOGlrkVi86Tu1nAySybz-PUZO2sURZcL85v_vo7Dco5cWSxc1nhEXVtahCRH0E0YYu8OdOezt-OPvoA3qkOsbpE3ytIo4AhWDlKC__6hf0mjA7R5Y1us5MVOLpcHguf4Nrxpf9nHm3wdbis11D_-qOZ49TndgVsNBiVjzzR34ZopenBzfxRe9KB36qJk6lRdctJ433tw_VNZP78Hu1OE774bEyktKcoiWBTfpQuFJxtUjMs1qVqbParipCrJN2-MJK4-xdpnUxBnBCbIwAv92RkpCaLnekPgS2RnJEoAYl39T2e7IavF-eY-zI9fvn8xCZoWDoGmnFaBzUPLstQYpwvnFgWy5ZKx1No80yifI86UK0-jZZbpmOYSFSwbcYtKGktDndAH0ME5mIdAYqVoFHKqMibjhCJUlCPFeM5NlqQyGfWBtUspdFPf3LXZWIo2kO2LaOkuHN2Fp3sfnu_HrXyFj0tH8JZTRINTPP4QuNKXjn3aspbAjey8M0jNcrsRiPPiKEzwCO5DuOe5K_7So_8f8hg61XprniCmqtQAjoY_RwPojl9NJzN3n777MB002-sXyBMleA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NIbS9ICggymAYidesWRwn8eM0MXWw7oVtmnix7MQemUpStemqvfC3785JqvKAhsRLHhJbcnznu9-d7wPgs7GREWnKgzx3NohNgXJQCoEPX4vEFYnv1jA5T8aX8ddrcb0Fx30uDIVVdrK_leleWndvRt1ujmZlOfqOYCVDZYyi1wMF_gSexiJKyQI7-L0R58F9SQIaHdDwjTTh2wO6JdZVSSnpEaeetzLif9NQGwh0Z1nN9P1KT6cbyujkBTzvUCQ7ahf6ErZsNYDdtTC7H8DgiuJcfLItm3T35wN49qP231_B6goBeNtPidWOVXUVlNWdpmB2tkDTtp6zpve6ozHNmpr9at2JjCpMzNt8CEZuXIYsWOY_yc3IEP96lsZBbGU1ynDmqIIneV_YrLxZvIbLky8Xx-Oga8IQ5FzyJnBF6ESWWkvWbOFQpTqphUidK7IcNWwkhaECM7nOsjzmhUYTyUXSoZkl0jBP-BvYxn-wb4HFxvAolNxkQscJR7CnD42QhbRZkurkcAii33iVdxXKqVHGVPWhaLeqJ5gigqmWYEMYrefN2hodj86QPV3VH9ymUJE8OvdTzwgKjyLdr-Bu1suFQqQWR2GCQnQI4ZpD_nFJ7_5jSR9hZ3wxOVNnp-ff9mCXvrTRbO9hu5kv7QfETY3Z9-fiARygGB0
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-NVhO8sK0DrRNMRtprWBrHSfyIEKiaBNsDRWwvlu3Yo9AlVZtSdX895zipumkT7CUvyUX2-ez73fk-AD4qEymWpjTQ2pogVjmeg5wxfNS1SGye1N0aLi6T4Sj-fMNuGkPR5cL8dn9fx2G5i1xZjF3WeERdW1qEJFvQTRhi7w50R5dfT775At5oDrG6Rd4gS6OAI1jZSAn--4_-pY020Ob2opjK1VJOJhuK5_wVfGmH7ONN7o8XlTrWv_6o5vj8Ob2G3QaDkhMvNG_ghSl6sLM-Clc96F27KJk6VZdcNLfvPXj5vazfv4XlNcJ3342JlJYUZRGMiwfpQuHJHA3jckaq1mePpjipSvLTOyOJq08x89kUxDmBCQrwWN86JyVB9FxvCPyILI1EDUCsq__pfDdkOv4x34PR-dnV6TBoWjgEmnJaBTYPLctSY5wtnFtUyJZLxlJr80yjfo44U648jZZZpmOaSzSwbMQtGmksDXVC96GDczDvgMRK0SjkVGVMxglFqCgHivGcmyxJZTLoA2uXUuimvrlrszERbSDbnWj5Lhzfhed7Hz6t6aa-wseTFLyVFNHgFI8_BK70k7RHrWgJ3Mjudga5WS7mAnFeHIUJHsF9CNcy98whvf9_kgPoVLOFOURMVakPzUZ6BMXdIUk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+non-invasive+sensor+technologies+to+measure+interaction+with+enrichment+material+in+weaned+fattening+pigs&rft.jtitle=Applied+animal+behaviour+science&rft.au=Veldkamp%2C+Fleur&rft.au=Garcia-Faria%2C+Tomas+Izquierdo&rft.au=Witjes%2C+Vivian+L&rft.au=Rebel%2C+Johanna+M.J.&rft.date=2023-06-01&rft.issn=0168-1591&rft.volume=263+p.105923-&rft_id=info:doi/10.1016%2Fj.applanim.2023.105923&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1591&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1591&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1591&client=summon