Constrained Submodular Maximization via a Nonsymmetric Technique
The study of combinatorial optimization problems with submodular objectives has attracted much attention in recent years. Such problems are important in both theory and practice because their objective functions are very general. Obtaining further improvements for many submodular maximization proble...
Saved in:
Published in | Mathematics of operations research Vol. 44; no. 3; pp. 988 - 1005 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Linthicum
INFORMS
01.08.2019
Institute for Operations Research and the Management Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0364-765X 1526-5471 |
DOI | 10.1287/moor.2018.0955 |
Cover
Abstract | The study of combinatorial optimization problems with submodular objectives has attracted much attention in recent years. Such problems are important in both theory and practice because their objective functions are very general. Obtaining further improvements for many submodular maximization problems boils down to finding better algorithms for optimizing a relaxation of them known as the multilinear extension. In this work, we present an algorithm for optimizing the multilinear relaxation whose guarantee improves over the guarantee of the best previous algorithm (by Ene and Nguyen). Moreover, our algorithm is based on a new technique that is, arguably, simpler and more natural for the problem at hand. In a nutshell, previous algorithms for this problem rely on symmetry properties that are natural only in the absence of a constraint. Our technique avoids the need to resort to such properties, and thus seems to be a better fit for constrained problems. |
---|---|
AbstractList | The study of combinatorial optimization problems with submodular objectives has attracted much attention in recent years. Such problems are important in both theory and practice because their objective functions are very general. Obtaining further improvements for many submodular maximization problems boils down to finding better algorithms for optimizing a relaxation of them known as the multilinear extension. In this work, we present an algorithm for optimizing the multilinear relaxation whose guarantee improves over the guarantee of the best previous algorithm (by Ene and Nguyen). Moreover, our algorithm is based on a new technique that is, arguably, simpler and more natural for the problem at hand. In a nutshell, previous algorithms for this problem rely on symmetry properties that are natural only in the absence of a constraint. Our technique avoids the need to resort to such properties, and thus seems to be a better fit for constrained problems. |
Audience | Academic |
Author | Buchbinder, Niv Feldman, Moran |
Author_xml | – sequence: 1 givenname: Niv surname: Buchbinder fullname: Buchbinder, Niv – sequence: 2 givenname: Moran surname: Feldman fullname: Feldman, Moran |
BookMark | eNqFkEtLxDAURoMoOD627oSCKxcd82iadKcMvmBUcBTchTRNNcM00SQV9debWt0I4iYJfOfLvZwtsG6d1QDsIThFmLOjzjk_xRDxKawoXQMTRHGZ04KhdTCBpCxyVtKHTbAVwhJCRBkqJuB45myIXhqrm2zR151r-pX02ZV8M535kNE4m70amcnsOpHvXaejNyq70-rJmpde74CNVq6C3v2-t8H92end7CKf35xfzk7muSIVibnGGCqK2po1jSobxjCtWwTrtiWo5JyRslEEIygJq2lDJecYpYPoCnOdnmQbHIz_PnuXxoYolq73No0UGHMCGScVS9ThSD3KlRbGKmejfouPsg9BXC5uxQmtOC2LAtPETkdWeReC16149qaT_l0gKAajYjAqBqNiMJoKxa-CMvHL0CBw9Xdtf6wtQ0zBzxDMEstLnvJ8zI1tne_Cf2t8AgZblN4 |
CitedBy_id | crossref_primary_10_1002_cpe_6575 crossref_primary_10_1287_moor_2018_0965 crossref_primary_10_1287_opre_2021_2188 crossref_primary_10_1007_s10878_023_01035_4 crossref_primary_10_1007_s00453_020_00757_9 crossref_primary_10_1007_s10107_020_01472_7 crossref_primary_10_1007_s10878_024_01232_9 crossref_primary_10_1007_s10878_024_01240_9 crossref_primary_10_1007_s11704_024_40266_4 crossref_primary_10_1145_3447383 crossref_primary_10_1145_3606376_3593573 crossref_primary_10_1007_s10878_021_00717_1 crossref_primary_10_1287_moor_2021_1172 crossref_primary_10_1016_j_tcs_2023_114254 crossref_primary_10_1287_moor_2021_1224 crossref_primary_10_1007_s10898_024_01406_z crossref_primary_10_1137_18M1226130 crossref_primary_10_1007_s00453_023_01183_3 crossref_primary_10_1007_s10898_025_01473_w crossref_primary_10_1016_j_tcs_2023_114293 crossref_primary_10_1145_3570615 |
Cites_doi | 10.1287/moor.2013.0592 10.1137/S0097539705447372 10.1109/CVPR.2011.5995589 10.1145/1367497.1367524 10.1109/ICCV.2001.937505 10.1137/090779346 10.1007/978-1-4684-2001-2_9 10.1137/080733991 10.1137/1.9781611973082.83 10.1145/956750.956769 10.1145/285055.285059 10.1137/S0097539797328847 10.1287/mnsc.23.8.789 10.1016/S0020-0190(99)00031-9 10.1007/BF01588971 10.1007/978-3-642-68874-4_10 10.1137/110832318 10.1007/BFb0120891 10.1109/FOCS.2010.60 10.1002/0471722154 10.1007/BFb0121195 10.1016/S0167-5060(08)70322-4 10.1145/2907052 10.1137/090750020 10.1287/moor.3.3.177 10.1137/S0097539700382820 10.1109/FOCS.2011.46 10.1016/S0167-6377(03)00062-2 10.1145/227683.227684 10.1137/110839655 10.1145/1109557.1109624 10.1016/S0166-218X(99)00103-1 10.1137/1.9781611973402.106 10.1109/FOCS.2011.34 10.1016/S0167-5060(08)70732-5 10.1287/moor.1100.0463 10.1016/0166-218X(84)90003-9 10.1109/ISTCS.1995.377033 10.1061/(ASCE)0733-9496(2008)134:6(516) 10.1016/j.ipl.2006.06.003 10.1145/502090.502098 10.1109/FOCS.2016.34 10.1137/130929205 10.1561/2200000039 10.1007/BF02579273 10.1109/FOCS.2006.14 |
ContentType | Journal Article |
Copyright | Copyright: © 2019 INFORMS COPYRIGHT 2019 Institute for Operations Research and the Management Sciences Copyright Institute for Operations Research and the Management Sciences Aug 2019 |
Copyright_xml | – notice: Copyright: © 2019 INFORMS – notice: COPYRIGHT 2019 Institute for Operations Research and the Management Sciences – notice: Copyright Institute for Operations Research and the Management Sciences Aug 2019 |
DBID | AAYXX CITATION ISR JQ2 |
DOI | 10.1287/moor.2018.0955 |
DatabaseName | CrossRef Gale In Context: Science ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science Business |
EISSN | 1526-5471 |
EndPage | 1005 |
ExternalDocumentID | A598564425 10_1287_moor_2018_0955 27287868 moor20180955 |
Genre | Research Articles |
GeographicLocations | Israel |
GeographicLocations_xml | – name: Israel |
GroupedDBID | 08R 1AW 1OL 29M 3V. 4.4 4S 5GY 7WY 85S 8AL 8AO 8FE 8FG 8FL 8G5 8H 8VB AAKYL AAPBV ABBHK ABEFU ABFLS ABJCF ABPPZ ABUWG ACIWK ACNCT ACYGS ADCOW ADGDI ADMHP ADODI AEILP AELPN AENEX AEUPB AFKRA AFXKK AKVCP ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BDTQF BENPR BES BEZIV BGLVJ BHOJU BKOMP BPHCQ CBXGM CHNMF CS3 CWXUR CZBKB DQDLB DSRWC DWQXO EBA EBE EBO EBR EBS EBU ECEWR ECR ECS EDO EFSUC EJD EMK EPL F20 FEDTE FRNLG GIFXF GNUQQ GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HECYW HGD HQ6 HVGLF H~9 IAO ICW IEA IGG IOF ISR ITC JAA JBU JMS JPL JSODD JST K6 K60 K6V K7- L6V M0C M0N M2O M7S MBDVC MV1 N95 NIEAY P-O P2P P62 PADUT PQEST PQQKQ PQUKI PRG PRINS PROAC PTHSS QWB RNS RPU RXW SA0 TAE TH9 TN5 TUS U5U WH7 X XFK XHC XI7 Y99 ZL0 ZY4 -~X .DC 18M AAWTO ABDNZ ABFAN ABKVW ABYRZ ABYWD ABYYQ ACGFO ACMTB ACTMH ACVFL AEGXH AELLO AEMOZ AFVYC AHAJD AHQJS AIAGR AKBRZ AMVHM BAAKF JENOY JPPEU K1G K6~ 2AX 8H~ AAOAC AAWIL AAYXX ABAWQ ABQDR ABXSQ ACDIW ACHJO ACUHF ACXJH ADULT AGLNM AIHAF ALRMG APTMU ASMEE CCPQU CITATION IPSME JAAYA JBMMH JBZCM JHFFW JKQEH JLEZI JLXEF PHGZM PHGZT PQBIZ PQBZA WHG XOL JQ2 |
ID | FETCH-LOGICAL-c393t-e220c51fb7ddc6d7725bf10bff31688736dc3210a37b5d5a8821a883e928e21a3 |
ISSN | 0364-765X |
IngestDate | Sat Aug 16 10:40:59 EDT 2025 Fri Jun 27 06:07:44 EDT 2025 Tue Jul 01 02:11:00 EDT 2025 Thu Apr 24 23:01:01 EDT 2025 Thu May 29 08:47:49 EDT 2025 Wed Jan 06 02:47:58 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c393t-e220c51fb7ddc6d7725bf10bff31688736dc3210a37b5d5a8821a883e928e21a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1535-2979 0000-0002-7014-8954 |
PQID | 2283078397 |
PQPubID | 37790 |
PageCount | 18 |
ParticipantIDs | crossref_primary_10_1287_moor_2018_0955 informs_primary_10_1287_moor_2018_0955 crossref_citationtrail_10_1287_moor_2018_0955 jstor_primary_27287868 gale_incontextgauss_ISR_A598564425 proquest_journals_2283078397 |
ProviderPackageCode | Y99 RPU NIEAY CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Linthicum |
PublicationPlace_xml | – name: Linthicum |
PublicationTitle | Mathematics of operations research |
PublicationYear | 2019 |
Publisher | INFORMS Institute for Operations Research and the Management Sciences |
Publisher_xml | – name: INFORMS – name: Institute for Operations Research and the Management Sciences |
References | B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B1 B2 B3 B4 B5 B6 B7 B8 B9 B40 B41 B42 B43 B44 B45 B46 B47 B48 B49 B50 B51 B52 B53 B10 B54 B11 B55 B12 B56 B13 B14 B15 B16 B17 B18 B19 Lin H (B49) 2010 Hausmann D (B34) 1978; 22 Halperin E (B31) 2001 Krause A (B43) 2008; 9 Jenkyns T (B37) 1976; 17 |
References_xml | – ident: B12 – ident: B35 – ident: B3 – ident: B41 – ident: B45 – ident: B7 – ident: B29 – ident: B25 – ident: B50 – ident: B21 – ident: B16 – ident: B31 – ident: B39 – ident: B54 – ident: B13 – ident: B2 – ident: B40 – ident: B28 – ident: B44 – ident: B49 – ident: B6 – ident: B24 – ident: B48 – ident: B17 – ident: B30 – ident: B34 – ident: B51 – ident: B38 – ident: B55 – ident: B9 – ident: B14 – ident: B10 – ident: B43 – ident: B20 – ident: B1 – ident: B27 – ident: B5 – ident: B47 – ident: B23 – ident: B18 – ident: B33 – ident: B52 – ident: B37 – ident: B56 – ident: B8 – ident: B36 – ident: B11 – ident: B42 – ident: B26 – ident: B4 – ident: B46 – ident: B22 – ident: B32 – ident: B15 – ident: B19 – ident: B53 – ident: B46 doi: 10.1287/moor.2013.0592 – ident: B40 doi: 10.1137/S0097539705447372 – ident: B36 doi: 10.1109/CVPR.2011.5995589 – ident: B32 doi: 10.1145/1367497.1367524 – ident: B5 doi: 10.1109/ICCV.2001.937505 – ident: B21 doi: 10.1137/090779346 – start-page: 1 volume-title: ACM-SIAM Sympos. Discrete Algorithms year: 2001 ident: B31 – volume-title: Proc. 2010 Annual Conf. North Amer. Chapter Assoc. Comput. Linguistics/Human Language Tech. year: 2010 ident: B49 – ident: B38 doi: 10.1007/978-1-4684-2001-2_9 – ident: B8 doi: 10.1137/080733991 – ident: B28 doi: 10.1137/1.9781611973082.83 – ident: B39 doi: 10.1145/956750.956769 – ident: B18 doi: 10.1145/285055.285059 – ident: B55 doi: 10.1137/S0097539797328847 – ident: B15 doi: 10.1287/mnsc.23.8.789 – ident: B41 doi: 10.1016/S0020-0190(99)00031-9 – ident: B53 doi: 10.1007/BF01588971 – ident: B51 doi: 10.1007/978-3-642-68874-4_10 – ident: B56 doi: 10.1137/110832318 – ident: B35 doi: 10.1007/BFb0120891 – ident: B11 doi: 10.1109/FOCS.2010.60 – ident: B2 doi: 10.1002/0471722154 – ident: B25 doi: 10.1007/BFb0121195 – ident: B42 doi: 10.1016/S0167-5060(08)70322-4 – ident: B3 doi: 10.1145/2907052 – volume: 9 start-page: 235 year: 2008 ident: B43 publication-title: J. Machine Learn. Res. – ident: B48 doi: 10.1137/090750020 – ident: B52 doi: 10.1287/moor.3.3.177 – ident: B10 doi: 10.1137/S0097539700382820 – ident: B23 doi: 10.1109/FOCS.2011.46 – volume: 22 start-page: 219 issue: 1 year: 1978 ident: B34 publication-title: Oper. Res. Ser. A-B – ident: B54 doi: 10.1016/S0167-6377(03)00062-2 – ident: B29 doi: 10.1145/227683.227684 – ident: B12 doi: 10.1137/110839655 – ident: B26 doi: 10.1145/1109557.1109624 – ident: B1 doi: 10.1016/S0166-218X(99)00103-1 – ident: B7 doi: 10.1137/1.9781611973402.106 – ident: B9 doi: 10.1109/FOCS.2011.34 – ident: B16 doi: 10.1016/S0167-5060(08)70732-5 – ident: B47 doi: 10.1287/moor.1100.0463 – ident: B14 doi: 10.1016/0166-218X(84)90003-9 – ident: B19 doi: 10.1109/ISTCS.1995.377033 – ident: B45 doi: 10.1061/(ASCE)0733-9496(2008)134:6(516) – ident: B13 doi: 10.1016/j.ipl.2006.06.003 – ident: B33 doi: 10.1145/502090.502098 – ident: B17 doi: 10.1109/FOCS.2016.34 – volume: 17 start-page: 341 year: 1976 ident: B37 publication-title: Cong. Num. – ident: B6 doi: 10.1137/130929205 – ident: B4 doi: 10.1561/2200000039 – ident: B30 doi: 10.1007/BF02579273 – ident: B20 doi: 10.1109/FOCS.2006.14 |
SSID | ssj0015714 |
Score | 2.5316164 |
Snippet | The study of combinatorial optimization problems with submodular objectives has attracted much attention in recent years. Such problems are important in both... |
SourceID | proquest gale crossref jstor informs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 988 |
SubjectTerms | Algorithms approximation algorithm Combinatorial analysis Constraints Expectation-maximization algorithm Mathematical optimization Mathematical research Maximization multilinear relaxation Operations research Optimization Profit maximization Relaxation methods (Mathematics) Studies submodular maximization |
Title | Constrained Submodular Maximization via a Nonsymmetric Technique |
URI | https://www.jstor.org/stable/27287868 https://www.proquest.com/docview/2283078397 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELaWrUD0gWOh6kJBEULwULndHI7jN5aKqgVthaBF-2bFR6BSd1PtUQG_npnYyaa0iMKLFUVjK85MPEdmviHkJfhn1mYqpooLQxPGBVXKRFTFoVYabAolsHZ4dJQenCTvx2zc6Ry2spaWC7Wjf15bV_I_XIV7wFeskv0HzjaLwg24Bv7CCByG8UY8xm6bVY8HtBpBsZWmSiod5d9PJ76-cvsCq662j4Dyx2SC7bO0C6efumzrxjIdNfitVXJHeW5nPkvO4wE1ceO3S_1NIcrizInSxcqcPDM-oDoCyZq2IwpYxJTVEYW6kiqhPGVjpyP8wRillCWuXUp9cjrkRi8hcesYFK5Vn9eo4aCqrL56WkcY79iflCUCs4bZDsLhrfRS_S_-N3XVJBGi-wIrSJwvcb7E-bfIWsTBjOqSteGHL3sfm19KjIceS8xtziN4wgq7l5_gkoXi9fRtB2M7r7NWr2juyhw5fkDueT8iGDqheEg6dtojd-oyhh65X7frCPzp3SPrLezJR-RNS3iClfAEbeEJQHiCPGgLT9AIz2Nysv_ueO-A-nYaVMciXlAbRQPNwkJxY3RqwK1iqggHqiiweVnG49RorOjKY66YYTn4XiEMsRVRZuEy3iDdaTm1myQwiUjDQhQ2yQqwtwulDc6JDeNW5FHaJ7R-hVJ7rHnc0Zm8nml98rqhP3coK3-kfIEckQhdMsXcqK_5cj6Xh58_ySETGQPzPgKiV55ff11to2JnQxZxIMrSrE-2av5K_8HPZQWWx8Gj4E9u_LxPyd3VJ7ZFuovZ0j4DM3ahnnsB_QXD3p3W |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+Submodular+Maximization+via+a+Nonsymmetric+Technique&rft.jtitle=Mathematics+of+operations+research&rft.au=Buchbinder%2C+Niv&rft.au=Feldman%2C+Moran&rft.date=2019-08-01&rft.issn=0364-765X&rft.eissn=1526-5471&rft.volume=44&rft.issue=3&rft.spage=988&rft.epage=1005&rft_id=info:doi/10.1287%2Fmoor.2018.0955&rft.externalDBID=n%2Fa&rft.externalDocID=10_1287_moor_2018_0955 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-765X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-765X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-765X&client=summon |