Self-Reconfigurable Hierarchical Frameworks for Formation Control of Robot Swarms

Hierarchical frameworks-a special class of directed frameworks with a layer-by-layer architecture-can be an effective mechanism to coordinate robot swarms. Their effectiveness was recently demonstrated by the mergeable nervous systems paradigm (Mathews et al., 2017), in which a robot swarm can switc...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 54; no. 1; pp. 87 - 100
Main Authors Zhang, Yuwei, Oguz, Sinan, Wang, Shaoping, Garone, Emanuele, Wang, Xingjian, Dorigo, Marco, Heinrich, Mary Katherine
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2023.3237731

Cover

Abstract Hierarchical frameworks-a special class of directed frameworks with a layer-by-layer architecture-can be an effective mechanism to coordinate robot swarms. Their effectiveness was recently demonstrated by the mergeable nervous systems paradigm (Mathews et al., 2017), in which a robot swarm can switch dynamically between distributed and centralized control depending on the task, using self-organized hierarchical frameworks. New theoretical foundations are required to use this paradigm for formation control of large swarms. In particular, the systematic and mathematically analyzable organization and reorganization of hierarchical frameworks in a robot swarm is still an open problem. Although methods for framework construction and formation maintenance via rigidity theory exist in the literature, they do not address cases of hierarchy in a robot swarm. In this article, we extend bearing rigidity to directed topologies and extend the Henneberg constructions to generate self-organized hierarchical frameworks with bearing rigidity. We investigate three-key self-reconfiguration problems: 1) framework merging; 2) robot departure; and 3) framework splitting. We also derive the mathematical conditions of these problems and then develop algorithms that preserve rigidity and hierarchy using only local information. Our approach can be used for formation control generally, as in principle it can be coupled with any control law that makes use of bearing rigidity. To demonstrate and validate our proposed hierarchical frameworks and methods, we apply them to four scenarios of reactive formation control using an example control law.
AbstractList Hierarchical frameworks—a special class of directed frameworks with a layer-by-layer architecture—can be an effective mechanism to coordinate robot swarms. Their effectiveness was recently demonstrated by the mergeable nervous systems paradigm (Mathews et al., 2017), in which a robot swarm can switch dynamically between distributed and centralized control depending on the task, using self-organized hierarchical frameworks. New theoretical foundations are required to use this paradigm for formation control of large swarms. In particular, the systematic and mathematically analyzable organization and reorganization of hierarchical frameworks in a robot swarm is still an open problem. Although methods for framework construction and formation maintenance via rigidity theory exist in the literature, they do not address cases of hierarchy in a robot swarm. In this article, we extend bearing rigidity to directed topologies and extend the Henneberg constructions to generate self-organized hierarchical frameworks with bearing rigidity. We investigate three-key self-reconfiguration problems: 1) framework merging; 2) robot departure; and 3) framework splitting. We also derive the mathematical conditions of these problems and then develop algorithms that preserve rigidity and hierarchy using only local information. Our approach can be used for formation control generally, as in principle it can be coupled with any control law that makes use of bearing rigidity. To demonstrate and validate our proposed hierarchical frameworks and methods, we apply them to four scenarios of reactive formation control using an example control law.
Hierarchical frameworks-a special class of directed frameworks with a layer-by-layer architecture-can be an effective mechanism to coordinate robot swarms. Their effectiveness was recently demonstrated by the mergeable nervous systems paradigm (Mathews et al., 2017), in which a robot swarm can switch dynamically between distributed and centralized control depending on the task, using self-organized hierarchical frameworks. New theoretical foundations are required to use this paradigm for formation control of large swarms. In particular, the systematic and mathematically analyzable organization and reorganization of hierarchical frameworks in a robot swarm is still an open problem. Although methods for framework construction and formation maintenance via rigidity theory exist in the literature, they do not address cases of hierarchy in a robot swarm. In this article, we extend bearing rigidity to directed topologies and extend the Henneberg constructions to generate self-organized hierarchical frameworks with bearing rigidity. We investigate three-key self-reconfiguration problems: 1) framework merging; 2) robot departure; and 3) framework splitting. We also derive the mathematical conditions of these problems and then develop algorithms that preserve rigidity and hierarchy using only local information. Our approach can be used for formation control generally, as in principle it can be coupled with any control law that makes use of bearing rigidity. To demonstrate and validate our proposed hierarchical frameworks and methods, we apply them to four scenarios of reactive formation control using an example control law.Hierarchical frameworks-a special class of directed frameworks with a layer-by-layer architecture-can be an effective mechanism to coordinate robot swarms. Their effectiveness was recently demonstrated by the mergeable nervous systems paradigm (Mathews et al., 2017), in which a robot swarm can switch dynamically between distributed and centralized control depending on the task, using self-organized hierarchical frameworks. New theoretical foundations are required to use this paradigm for formation control of large swarms. In particular, the systematic and mathematically analyzable organization and reorganization of hierarchical frameworks in a robot swarm is still an open problem. Although methods for framework construction and formation maintenance via rigidity theory exist in the literature, they do not address cases of hierarchy in a robot swarm. In this article, we extend bearing rigidity to directed topologies and extend the Henneberg constructions to generate self-organized hierarchical frameworks with bearing rigidity. We investigate three-key self-reconfiguration problems: 1) framework merging; 2) robot departure; and 3) framework splitting. We also derive the mathematical conditions of these problems and then develop algorithms that preserve rigidity and hierarchy using only local information. Our approach can be used for formation control generally, as in principle it can be coupled with any control law that makes use of bearing rigidity. To demonstrate and validate our proposed hierarchical frameworks and methods, we apply them to four scenarios of reactive formation control using an example control law.
Author Oguz, Sinan
Dorigo, Marco
Zhang, Yuwei
Wang, Shaoping
Heinrich, Mary Katherine
Garone, Emanuele
Wang, Xingjian
Author_xml – sequence: 1
  givenname: Yuwei
  orcidid: 0000-0001-9384-5173
  surname: Zhang
  fullname: Zhang, Yuwei
  email: zhangyuwei@buaa.edu.cn
  organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
– sequence: 2
  givenname: Sinan
  orcidid: 0000-0003-2832-1239
  surname: Oguz
  fullname: Oguz, Sinan
  organization: Institut de Recherches Interdisciplinaires et de Développements en Intelligence Artificielle, Université Libre de Bruxelles, Brussels, Belgium
– sequence: 3
  givenname: Shaoping
  orcidid: 0000-0002-8102-3436
  surname: Wang
  fullname: Wang, Shaoping
  email: shaopingwang@buaa.edu.cn
  organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
– sequence: 4
  givenname: Emanuele
  orcidid: 0000-0003-0419-8483
  surname: Garone
  fullname: Garone, Emanuele
  organization: Unité d'enseignement en Automatique et Analyse des Systémes, Université Libre de Bruxelles, Brussels, Belgium
– sequence: 5
  givenname: Xingjian
  orcidid: 0000-0003-0506-1833
  surname: Wang
  fullname: Wang, Xingjian
  organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
– sequence: 6
  givenname: Marco
  orcidid: 0000-0002-3971-0507
  surname: Dorigo
  fullname: Dorigo, Marco
  organization: Institut de Recherches Interdisciplinaires et de Développements en Intelligence Artificielle, Université Libre de Bruxelles, Brussels, Belgium
– sequence: 7
  givenname: Mary Katherine
  orcidid: 0000-0002-1595-8487
  surname: Heinrich
  fullname: Heinrich, Mary Katherine
  organization: Institut de Recherches Interdisciplinaires et de Développements en Intelligence Artificielle, Université Libre de Bruxelles, Brussels, Belgium
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37022446$$D View this record in MEDLINE/PubMed
BookMark eNptkV1rFDEUhoNUbK39AYLIgDfezJqPmWRyqYtrhYLY1guvwpnMiaZmJttkhmX_vbPuushibhLC84b3PHlOzoY4ICEvGV0wRvW7--X3DwtOuVgILpQS7Am54Ew2JeeqPjuepTonVzk_0Hk185VunpFzoSjnVSUvyNc7DK68RRsH539MCdqAxbXHBMn-9BZCsUrQ4yamX7lwMRWrmHoYfRyKZRzGFEMRXXEb2zgWdxtIfX5BnjoIGa8O-yX5tvp4v7wub758-rx8f1NaocVYIhO6VZJZqBrLXd11tu6ccLpGtK1DbRFsxVuhUKsOJBOC1yAQJLZa1VxcEr5_dxrWsN1ACGadfA9paxg1O0VmtNvW7BSZg6I59HYfWqf4OGEeTe-zxRBgwDhlw5VWrGoUkzP65gR9iFMa5pEM17SStOa6manXB2pqe-yOFf4angG1B2yKOSd0xvrxj8AxgQ_HrrvvPO3KTpKn8_0v82qf8Yj4D0-FZLQRvwFE0akH
CODEN ITCEB8
CitedBy_id crossref_primary_10_1126_scirobotics_adl5161
crossref_primary_10_1109_JSYST_2024_3523485
crossref_primary_10_1109_TMECH_2024_3396222
crossref_primary_10_34133_icomputing_0044
crossref_primary_10_1109_TNSE_2024_3409900
crossref_primary_10_1109_TNSE_2024_3396469
crossref_primary_10_1109_TCSII_2024_3364524
crossref_primary_10_3390_app132312949
crossref_primary_10_1109_TSIPN_2025_3541932
crossref_primary_10_1139_dsa_2023_0107
Cites_doi 10.1109/TCYB.2018.2876608
10.1109/tcyb.2020.3042491
10.1109/TAC.2015.2459191
10.1109/tcyb.2020.2980963
10.1038/nature08891
10.1007/s10514-018-9807-5
10.1109/TAC.2019.2958563
10.1109/IROS.2016.7759748
10.1109/TCNS.2015.2507547
10.1049/iet-cta.2015.0197
10.1109/MCS.2018.2888681
10.3389/frobt.2018.00059
10.1126/science.1245842
10.1007/BF01534980
10.1080/00207179.2012.685183
10.1109/CDC.2015.7403181
10.1109/CDC.2017.8264151
10.1126/science.1254295
10.1016/j.cja.2021.05.009
10.1007/978-3-030-60376-2_25
10.1023/B:AURO.0000033973.24945.f3
10.1126/scirobotics.abe4385
10.1109/TPAMI.2018.2848225
10.1109/TCYB.2014.2378552
10.1007/s10514-015-9491-7
10.1109/CDC.2017.8263975
10.1109/MRA.2013.2252996
10.1109/LCSYS.2021.3088299
10.1002/rnc.1145
10.1016/j.automatica.2014.10.022
10.1109/TCYB.2018.2826049
10.1109/TCYB.2020.2978981
10.1109/tac.2018.2836022
10.1016/j.oceaneng.2022.113242
10.1007/978-3-030-60376-2_17
10.1038/s41467-017-00109-2
10.1109/TCYB.2021.3124827
10.1109/TEVC.2008.2011746
10.1109/CDC.2002.1184307
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ADTOC
UNPAY
DOI 10.1109/TCYB.2023.3237731
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Aerospace Database

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 100
ExternalDocumentID oai:dipot.ulb.ac.be:2013/360497
37022446
10_1109_TCYB_2023_3237731
10036108
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Fellowship of China Postdoctoral Science Foundation
  grantid: 2022M710305
  funderid: 10.13039/501100002858
– fundername: National Natural Science Foundation of China
  grantid: 51620105010; 51675019
  funderid: 10.13039/501100001809
– fundername: National Science and Technology Major Project
  grantid: 2017-V-0010-0060
  funderid: 10.13039/501100018537
– fundername: Program of Concerted Research Actions (ARC) of the Université Libre de Bruxelles
– fundername: National Key Research and Development Program of China; National Basic Research Program of China
  grantid: JCKY2018601C107
  funderid: 10.13039/501100012166
– fundername: Office of Naval Research Global
  grantid: N62909-19-1-2024
  funderid: 10.13039/100007297
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c393t-e139b761ca48c2f5ddc5df3f95eecbfe9ceac42b37e97da613325a3ea6eb97523
IEDL.DBID UNPAY
ISSN 2168-2267
2168-2275
IngestDate Sun Oct 26 04:10:18 EDT 2025
Thu Oct 02 09:46:08 EDT 2025
Sun Jun 29 16:40:47 EDT 2025
Thu Jan 02 22:37:32 EST 2025
Thu Apr 24 22:55:10 EDT 2025
Wed Oct 01 01:36:46 EDT 2025
Wed Aug 27 03:03:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-e139b761ca48c2f5ddc5df3f95eecbfe9ceac42b37e97da613325a3ea6eb97523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8102-3436
0000-0001-9384-5173
0000-0003-0419-8483
0000-0003-2832-1239
0000-0002-1595-8487
0000-0002-3971-0507
0000-0003-0506-1833
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/360497
PMID 37022446
PQID 2904605298
PQPubID 85422
PageCount 14
ParticipantIDs pubmed_primary_37022446
ieee_primary_10036108
proquest_journals_2904605298
crossref_citationtrail_10_1109_TCYB_2023_3237731
proquest_miscellaneous_2797148716
unpaywall_primary_10_1109_tcyb_2023_3237731
crossref_primary_10_1109_TCYB_2023_3237731
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-Jan.
2024-1-00
2024-Jan
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-Jan.
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Tay (ref28) 1985; 11
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref15
  doi: 10.1109/TCYB.2018.2876608
– ident: ref19
  doi: 10.1109/tcyb.2020.3042491
– ident: ref17
  doi: 10.1109/TAC.2015.2459191
– ident: ref20
  doi: 10.1109/tcyb.2020.2980963
– ident: ref37
  doi: 10.1038/nature08891
– ident: ref9
  doi: 10.1007/s10514-018-9807-5
– ident: ref30
  doi: 10.1109/TAC.2019.2958563
– ident: ref10
  doi: 10.1109/IROS.2016.7759748
– ident: ref16
  doi: 10.1109/TCNS.2015.2507547
– ident: ref32
  doi: 10.1049/iet-cta.2015.0197
– ident: ref25
  doi: 10.1109/MCS.2018.2888681
– ident: ref2
  doi: 10.3389/frobt.2018.00059
– ident: ref7
  doi: 10.1126/science.1245842
– ident: ref38
  doi: 10.1007/BF01534980
– ident: ref29
  doi: 10.1080/00207179.2012.685183
– ident: ref34
  doi: 10.1109/CDC.2015.7403181
– ident: ref36
  doi: 10.1109/CDC.2017.8264151
– ident: ref8
  doi: 10.1126/science.1254295
– ident: ref22
  doi: 10.1016/j.cja.2021.05.009
– ident: ref12
  doi: 10.1007/978-3-030-60376-2_25
– ident: ref4
  doi: 10.1023/B:AURO.0000033973.24945.f3
– ident: ref40
  doi: 10.1126/scirobotics.abe4385
– ident: ref24
  doi: 10.1109/TPAMI.2018.2848225
– ident: ref33
  doi: 10.1109/TCYB.2014.2378552
– ident: ref3
  doi: 10.1007/s10514-015-9491-7
– ident: ref31
  doi: 10.1109/CDC.2017.8263975
– ident: ref6
  doi: 10.1109/MRA.2013.2252996
– ident: ref27
  doi: 10.1109/LCSYS.2021.3088299
– ident: ref35
  doi: 10.1002/rnc.1145
– ident: ref11
  doi: 10.1016/j.automatica.2014.10.022
– ident: ref14
  doi: 10.1109/TCYB.2018.2826049
– ident: ref18
  doi: 10.1109/TCYB.2020.2978981
– ident: ref26
  doi: 10.1109/tac.2018.2836022
– ident: ref23
  doi: 10.1016/j.oceaneng.2022.113242
– ident: ref13
  doi: 10.1007/978-3-030-60376-2_17
– volume: 11
  start-page: 21
  year: 1985
  ident: ref28
  article-title: Generating isostatic frameworks
  publication-title: Struct. Topol.
– ident: ref1
  doi: 10.1038/s41467-017-00109-2
– ident: ref21
  doi: 10.1109/TCYB.2021.3124827
– ident: ref5
  doi: 10.1109/TEVC.2008.2011746
– ident: ref39
  doi: 10.1109/CDC.2002.1184307
SSID ssj0000816898
Score 2.492923
Snippet Hierarchical frameworks-a special class of directed frameworks with a layer-by-layer architecture-can be an effective mechanism to coordinate robot swarms....
Hierarchical frameworks—a special class of directed frameworks with a layer-by-layer architecture—can be an effective mechanism to coordinate robot swarms....
SourceID unpaywall
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 87
SubjectTerms Aerial swarm
Algorithms
Autonomous aerial vehicles
Autonomous underwater vehicles
AUVs
bearing rigidity
Control theory
Formation control
hierarchical framework
Mobile robots
Particle swarm optimization
Reconfiguration
Rigidity
rigidity maintenance
Robot control
Robot kinematics
robot swarm
Robots
System effectiveness
Topology
UAVs
underwater swarm
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagF-BQWiiQ0iIjceChhF07idfHdsVqhUQlaCuVU2Q7Y1QRkmo3UVV-PR7HiZanuEWyE008M_Y3nhchL_jEmlIJG1sNzkAx0zyeWZPGqTYszcGIHDBR-MNJvjxP319kFyFZ3efCAIAPPoMEH70vv2xMh1dlTsPdfjvF1N7bYpb3yVrjhYrvIOF73zL3EDtYIYIXczqRb8_mn48TbBWecMaF4Nghhgs8wBD6bhxJvsfKn-DmPXKnq6_UzbWqqo0jaHGfnAzE95EnX5Ou1Yn5_ktdx__-ux2yHcAoPeqlZ5fcgvoB2Q3qvqYvQ03qVw_Jx1OobIy2am0vv3QrTLiiy0vMXvbNVCq6GKK81tThYLoYkiLpvA-Gp42lnxrdtPT0Wq2-rffI-eLd2XwZh24MseGStzE4rKhFPsUy6IbZrCxNVlpuZQZgtAVp3B6eMs0FSFEqBxM4yxQHlYOWwtm7j8hW3dTwhFAJVs244sivtLSZErPMwWdlsVg9AxmRycCQwoRS5dgxoyq8yTKRBbKzQHYWgZ0ReT2-ctXX6fjX5D1c_o2J_cpH5GBgexFUeV0w6X3HTLrh5-OwU0L0rKgams7NEVI4u9LZnhF53IvL-PFByiLyZpSf30hszY3-icT9v5D4lNx109L-EuiAbLWrDg4dLGr1M68OPwBx3AVd
  priority: 102
  providerName: IEEE
Title Self-Reconfigurable Hierarchical Frameworks for Formation Control of Robot Swarms
URI https://ieeexplore.ieee.org/document/10036108
https://www.ncbi.nlm.nih.gov/pubmed/37022446
https://www.proquest.com/docview/2904605298
https://www.proquest.com/docview/2797148716
http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/360497
UnpaywallVersion submittedVersion
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELZG94B4AAYDisZkJB74oWRJnNhx37ZCVRCMwVppe4psx0YVIanaRNP46zknTrUxhIR4i-TLL93Z953s-z6EXpDAqFww4xmpoUBRIfVSo2IvliqKqVaMatso_OmYTufxh7PkbAv1apu_0QtAdiIH849H3tv3J59no0osRvliWdV-U0j7PqlHrQmhAHTZLbRNE0DkA7Q9Pz45PLe6ciGFQIhaIVl3zRK3uRkG_KBWl9K3CuI-iQhjJLyWnlq9lT9BzzvodlMuxeWFKIor6WhyD-m-qac7hfLdb2rpq583OR7_60_vo7sOr-LDLsB20JYuH6AdtyKs8UtHW_3qIfpyqgvj2XK2NItvzcr2ZOHpwjY4t3orBZ70B8HWGKAynvR9k3jcnZfHlcFfK1nV-PRCrH6sd9F88m42nnpOsMFThJPa0wAnJaOhZUpXkUnyXCW5IYYnWitpNFewzMeRJExzlgtAEiRKBNGCaskZlMSP0KCsSv0EYa6NSIkgNOVpnJtEsDQBhC2M5bOPNB-ioPdTphybuRXVKLK2qgl4NhufH2XWtZlz7RC93tyy7Kg8_ma8a51_xRBSfRikQ7TXR0PmZvs6i3i7vRxxGH6-GYZ5ajdfRKmrBmwYZ1B6Qnk6RI-7KNo8nDCLpGIYebMJqxufaEP12ic-_SfrPTSoV41-BhCqlvttn-O-mye_AJ8yFZY
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQORQOlEIpKQWMxIGHEnZjJ14fYcVqgXYl6FYqp8h2xqgiJNVuoqr8ejzOQ8tT3CzZjhzPjP2N50XIUzayJlfChlaDU1DMOA0n1vCQaxPzFIxIAQOFjxfp_JS_P0vOumB1HwsDAN75DCJselt-XpkGn8qchLvzdoyhvdcTznnShmsNTyq-hoSvfhu7RuiAhejsmOORfLWcfn4TYbHwiMVMCIY1YpjAKwzB78al5Kus_Alw3iTbTXmhri5VUWxcQrMdsuiX3_qefI2aWkfm-y-ZHf_7_26TWx0cpa9b_tkl16C8Q3Y7gV_TZ11W6ud3yccTKGyI2mppz780Kwy5ovNzjF_25VQKOuv9vNbUIWE668Mi6bR1h6eVpZ8qXdX05FKtvq33yOns7XI6D7t6DKFhktUhOLSoRTrGROgmtkmemyS3zMoEwGgL0rhTnMeaCZAiVw4osDhRDFQKWgqn8d4jW2VVwn1CJVg1YYohvXhuEyUmiQPQymK6-hhkQEY9QTLTJSvHmhlF5pWWkcyQnBmSM-vIGZAXw5SLNlPHvwbv4fZvDGx3PiCHPdmzTpjXWSy99TiWrvvJ0O3EEG0rqoSqcWOEFE6zdNpnQPZbdhk-3nNZQF4O_PPbEmtzpX9a4sFflviYbM-Xx0fZ0bvFhwfkhpvC2yehQ7JVrxp46EBSrR950fgBRSIIqg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELZG94B4AAZjFA1kJB74oWRJnNhx37ZCVRCMwVppe4psx0YVIanaRNP46zknTrUxhIR4i-TLL93Z953s-z6EXpDAqFww4xmpoUBRIfVSo2IvliqKqVaMatso_OmYTufxh7PkbAv1apu_0QtAdiIH849H3tv3J59no0osRvliWdV-U0j7PqlHrQmhAHTZLbRNE0DkA7Q9Pz45PLe6ciGFQIhaIVl3zRK3uRkG_KBWl9K3CuI-iQhjJLyWnlq9lT9BzzvodlMuxeWFKIor6WhyD-m-qac7hfLdb2rpq583OR7_60_vo7sOr-LDLsB20JYuH6AdtyKs8UtHW_3qIfpyqgvj2XK2NItvzcr2ZOHpwjY4t3orBZ70B8HWGKAynvR9k3jcnZfHlcFfK1nV-PRCrH6sd9F88m42nnpOsMFThJPa0wAnJaOhZUpXkUnyXCW5IYYnWitpNFewzMeRJExzlgtAEiRKBNGCaskZlMSP0KCsSv0YYa6NSIkgNOVpnJtEsDQBhC2M5bOPNB-ioPdTphybuRXVKLK2qgl4NhufH2XWtZlz7RC93tyy7Kg8_ma8a51_xRBSfRikQ7TfR0PmZvs6i3i7vRxxGH6-GYZ5ajdfRKmrBmwYZ1B6Qnk6RHtdFG0eTphFUjGMvNmE1Y1PtKF67ROf_JP1PhrUq0Y_BQhVy2duhvwCIz8UlQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Reconfigurable+Hierarchical+Frameworks+for+Formation+Control+of+Robot+Swarms&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Zhang%2C+Yuwei&rft.au=O%C4%9Fuz%2C+Sinan&rft.au=Wang%2C+Shaoping&rft.au=Garone%2C+Emanuele&rft.date=2024-01-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=54&rft.issue=1&rft.spage=87&rft.epage=100&rft_id=info:doi/10.1109%2FTCYB.2023.3237731&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2023_3237731
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon