Self-Reconfigurable Hierarchical Frameworks for Formation Control of Robot Swarms
Hierarchical frameworks-a special class of directed frameworks with a layer-by-layer architecture-can be an effective mechanism to coordinate robot swarms. Their effectiveness was recently demonstrated by the mergeable nervous systems paradigm (Mathews et al., 2017), in which a robot swarm can switc...
        Saved in:
      
    
          | Published in | IEEE transactions on cybernetics Vol. 54; no. 1; pp. 87 - 100 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          IEEE
    
        01.01.2024
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2168-2267 2168-2275 2168-2275  | 
| DOI | 10.1109/TCYB.2023.3237731 | 
Cover
| Abstract | Hierarchical frameworks-a special class of directed frameworks with a layer-by-layer architecture-can be an effective mechanism to coordinate robot swarms. Their effectiveness was recently demonstrated by the mergeable nervous systems paradigm (Mathews et al., 2017), in which a robot swarm can switch dynamically between distributed and centralized control depending on the task, using self-organized hierarchical frameworks. New theoretical foundations are required to use this paradigm for formation control of large swarms. In particular, the systematic and mathematically analyzable organization and reorganization of hierarchical frameworks in a robot swarm is still an open problem. Although methods for framework construction and formation maintenance via rigidity theory exist in the literature, they do not address cases of hierarchy in a robot swarm. In this article, we extend bearing rigidity to directed topologies and extend the Henneberg constructions to generate self-organized hierarchical frameworks with bearing rigidity. We investigate three-key self-reconfiguration problems: 1) framework merging; 2) robot departure; and 3) framework splitting. We also derive the mathematical conditions of these problems and then develop algorithms that preserve rigidity and hierarchy using only local information. Our approach can be used for formation control generally, as in principle it can be coupled with any control law that makes use of bearing rigidity. To demonstrate and validate our proposed hierarchical frameworks and methods, we apply them to four scenarios of reactive formation control using an example control law. | 
    
|---|---|
| AbstractList | Hierarchical frameworks—a special class of directed frameworks with a layer-by-layer architecture—can be an effective mechanism to coordinate robot swarms. Their effectiveness was recently demonstrated by the mergeable nervous systems paradigm (Mathews et al., 2017), in which a robot swarm can switch dynamically between distributed and centralized control depending on the task, using self-organized hierarchical frameworks. New theoretical foundations are required to use this paradigm for formation control of large swarms. In particular, the systematic and mathematically analyzable organization and reorganization of hierarchical frameworks in a robot swarm is still an open problem. Although methods for framework construction and formation maintenance via rigidity theory exist in the literature, they do not address cases of hierarchy in a robot swarm. In this article, we extend bearing rigidity to directed topologies and extend the Henneberg constructions to generate self-organized hierarchical frameworks with bearing rigidity. We investigate three-key self-reconfiguration problems: 1) framework merging; 2) robot departure; and 3) framework splitting. We also derive the mathematical conditions of these problems and then develop algorithms that preserve rigidity and hierarchy using only local information. Our approach can be used for formation control generally, as in principle it can be coupled with any control law that makes use of bearing rigidity. To demonstrate and validate our proposed hierarchical frameworks and methods, we apply them to four scenarios of reactive formation control using an example control law. Hierarchical frameworks-a special class of directed frameworks with a layer-by-layer architecture-can be an effective mechanism to coordinate robot swarms. Their effectiveness was recently demonstrated by the mergeable nervous systems paradigm (Mathews et al., 2017), in which a robot swarm can switch dynamically between distributed and centralized control depending on the task, using self-organized hierarchical frameworks. New theoretical foundations are required to use this paradigm for formation control of large swarms. In particular, the systematic and mathematically analyzable organization and reorganization of hierarchical frameworks in a robot swarm is still an open problem. Although methods for framework construction and formation maintenance via rigidity theory exist in the literature, they do not address cases of hierarchy in a robot swarm. In this article, we extend bearing rigidity to directed topologies and extend the Henneberg constructions to generate self-organized hierarchical frameworks with bearing rigidity. We investigate three-key self-reconfiguration problems: 1) framework merging; 2) robot departure; and 3) framework splitting. We also derive the mathematical conditions of these problems and then develop algorithms that preserve rigidity and hierarchy using only local information. Our approach can be used for formation control generally, as in principle it can be coupled with any control law that makes use of bearing rigidity. To demonstrate and validate our proposed hierarchical frameworks and methods, we apply them to four scenarios of reactive formation control using an example control law.Hierarchical frameworks-a special class of directed frameworks with a layer-by-layer architecture-can be an effective mechanism to coordinate robot swarms. Their effectiveness was recently demonstrated by the mergeable nervous systems paradigm (Mathews et al., 2017), in which a robot swarm can switch dynamically between distributed and centralized control depending on the task, using self-organized hierarchical frameworks. New theoretical foundations are required to use this paradigm for formation control of large swarms. In particular, the systematic and mathematically analyzable organization and reorganization of hierarchical frameworks in a robot swarm is still an open problem. Although methods for framework construction and formation maintenance via rigidity theory exist in the literature, they do not address cases of hierarchy in a robot swarm. In this article, we extend bearing rigidity to directed topologies and extend the Henneberg constructions to generate self-organized hierarchical frameworks with bearing rigidity. We investigate three-key self-reconfiguration problems: 1) framework merging; 2) robot departure; and 3) framework splitting. We also derive the mathematical conditions of these problems and then develop algorithms that preserve rigidity and hierarchy using only local information. Our approach can be used for formation control generally, as in principle it can be coupled with any control law that makes use of bearing rigidity. To demonstrate and validate our proposed hierarchical frameworks and methods, we apply them to four scenarios of reactive formation control using an example control law.  | 
    
| Author | Oguz, Sinan Dorigo, Marco Zhang, Yuwei Wang, Shaoping Heinrich, Mary Katherine Garone, Emanuele Wang, Xingjian  | 
    
| Author_xml | – sequence: 1 givenname: Yuwei orcidid: 0000-0001-9384-5173 surname: Zhang fullname: Zhang, Yuwei email: zhangyuwei@buaa.edu.cn organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China – sequence: 2 givenname: Sinan orcidid: 0000-0003-2832-1239 surname: Oguz fullname: Oguz, Sinan organization: Institut de Recherches Interdisciplinaires et de Développements en Intelligence Artificielle, Université Libre de Bruxelles, Brussels, Belgium – sequence: 3 givenname: Shaoping orcidid: 0000-0002-8102-3436 surname: Wang fullname: Wang, Shaoping email: shaopingwang@buaa.edu.cn organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China – sequence: 4 givenname: Emanuele orcidid: 0000-0003-0419-8483 surname: Garone fullname: Garone, Emanuele organization: Unité d'enseignement en Automatique et Analyse des Systémes, Université Libre de Bruxelles, Brussels, Belgium – sequence: 5 givenname: Xingjian orcidid: 0000-0003-0506-1833 surname: Wang fullname: Wang, Xingjian organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China – sequence: 6 givenname: Marco orcidid: 0000-0002-3971-0507 surname: Dorigo fullname: Dorigo, Marco organization: Institut de Recherches Interdisciplinaires et de Développements en Intelligence Artificielle, Université Libre de Bruxelles, Brussels, Belgium – sequence: 7 givenname: Mary Katherine orcidid: 0000-0002-1595-8487 surname: Heinrich fullname: Heinrich, Mary Katherine organization: Institut de Recherches Interdisciplinaires et de Développements en Intelligence Artificielle, Université Libre de Bruxelles, Brussels, Belgium  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37022446$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNptkV1rFDEUhoNUbK39AYLIgDfezJqPmWRyqYtrhYLY1guvwpnMiaZmJttkhmX_vbPuushibhLC84b3PHlOzoY4ICEvGV0wRvW7--X3DwtOuVgILpQS7Am54Ew2JeeqPjuepTonVzk_0Hk185VunpFzoSjnVSUvyNc7DK68RRsH539MCdqAxbXHBMn-9BZCsUrQ4yamX7lwMRWrmHoYfRyKZRzGFEMRXXEb2zgWdxtIfX5BnjoIGa8O-yX5tvp4v7wub758-rx8f1NaocVYIhO6VZJZqBrLXd11tu6ccLpGtK1DbRFsxVuhUKsOJBOC1yAQJLZa1VxcEr5_dxrWsN1ACGadfA9paxg1O0VmtNvW7BSZg6I59HYfWqf4OGEeTe-zxRBgwDhlw5VWrGoUkzP65gR9iFMa5pEM17SStOa6manXB2pqe-yOFf4angG1B2yKOSd0xvrxj8AxgQ_HrrvvPO3KTpKn8_0v82qf8Yj4D0-FZLQRvwFE0akH | 
    
| CODEN | ITCEB8 | 
    
| CitedBy_id | crossref_primary_10_1126_scirobotics_adl5161 crossref_primary_10_1109_JSYST_2024_3523485 crossref_primary_10_1109_TMECH_2024_3396222 crossref_primary_10_34133_icomputing_0044 crossref_primary_10_1109_TNSE_2024_3409900 crossref_primary_10_1109_TNSE_2024_3396469 crossref_primary_10_1109_TCSII_2024_3364524 crossref_primary_10_3390_app132312949 crossref_primary_10_1109_TSIPN_2025_3541932 crossref_primary_10_1139_dsa_2023_0107  | 
    
| Cites_doi | 10.1109/TCYB.2018.2876608 10.1109/tcyb.2020.3042491 10.1109/TAC.2015.2459191 10.1109/tcyb.2020.2980963 10.1038/nature08891 10.1007/s10514-018-9807-5 10.1109/TAC.2019.2958563 10.1109/IROS.2016.7759748 10.1109/TCNS.2015.2507547 10.1049/iet-cta.2015.0197 10.1109/MCS.2018.2888681 10.3389/frobt.2018.00059 10.1126/science.1245842 10.1007/BF01534980 10.1080/00207179.2012.685183 10.1109/CDC.2015.7403181 10.1109/CDC.2017.8264151 10.1126/science.1254295 10.1016/j.cja.2021.05.009 10.1007/978-3-030-60376-2_25 10.1023/B:AURO.0000033973.24945.f3 10.1126/scirobotics.abe4385 10.1109/TPAMI.2018.2848225 10.1109/TCYB.2014.2378552 10.1007/s10514-015-9491-7 10.1109/CDC.2017.8263975 10.1109/MRA.2013.2252996 10.1109/LCSYS.2021.3088299 10.1002/rnc.1145 10.1016/j.automatica.2014.10.022 10.1109/TCYB.2018.2826049 10.1109/TCYB.2020.2978981 10.1109/tac.2018.2836022 10.1016/j.oceaneng.2022.113242 10.1007/978-3-030-60376-2_17 10.1038/s41467-017-00109-2 10.1109/TCYB.2021.3124827 10.1109/TEVC.2008.2011746 10.1109/CDC.2002.1184307  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 | 
    
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 ADTOC UNPAY  | 
    
| DOI | 10.1109/TCYB.2023.3237731 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic  | 
    
| DatabaseTitleList | Aerospace Database MEDLINE - Academic PubMed  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) | 
    
| EISSN | 2168-2275 | 
    
| EndPage | 100 | 
    
| ExternalDocumentID | oai:dipot.ulb.ac.be:2013/360497 37022446 10_1109_TCYB_2023_3237731 10036108  | 
    
| Genre | orig-research Journal Article  | 
    
| GrantInformation_xml | – fundername: Fellowship of China Postdoctoral Science Foundation grantid: 2022M710305 funderid: 10.13039/501100002858 – fundername: National Natural Science Foundation of China grantid: 51620105010; 51675019 funderid: 10.13039/501100001809 – fundername: National Science and Technology Major Project grantid: 2017-V-0010-0060 funderid: 10.13039/501100018537 – fundername: Program of Concerted Research Actions (ARC) of the Université Libre de Bruxelles – fundername: National Key Research and Development Program of China; National Basic Research Program of China grantid: JCKY2018601C107 funderid: 10.13039/501100012166 – fundername: Office of Naval Research Global grantid: N62909-19-1-2024 funderid: 10.13039/100007297  | 
    
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c393t-e139b761ca48c2f5ddc5df3f95eecbfe9ceac42b37e97da613325a3ea6eb97523 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2168-2267 2168-2275  | 
    
| IngestDate | Sun Oct 26 04:10:18 EDT 2025 Thu Oct 02 09:46:08 EDT 2025 Sun Jun 29 16:40:47 EDT 2025 Thu Jan 02 22:37:32 EST 2025 Thu Apr 24 22:55:10 EDT 2025 Wed Oct 01 01:36:46 EDT 2025 Wed Aug 27 03:03:27 EDT 2025  | 
    
| IsDoiOpenAccess | false | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 other-oa  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c393t-e139b761ca48c2f5ddc5df3f95eecbfe9ceac42b37e97da613325a3ea6eb97523 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-8102-3436 0000-0001-9384-5173 0000-0003-0419-8483 0000-0003-2832-1239 0000-0002-1595-8487 0000-0002-3971-0507 0000-0003-0506-1833  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/360497 | 
    
| PMID | 37022446 | 
    
| PQID | 2904605298 | 
    
| PQPubID | 85422 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | pubmed_primary_37022446 ieee_primary_10036108 proquest_journals_2904605298 crossref_citationtrail_10_1109_TCYB_2023_3237731 proquest_miscellaneous_2797148716 unpaywall_primary_10_1109_tcyb_2023_3237731 crossref_primary_10_1109_TCYB_2023_3237731  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-Jan. 2024-1-00 2024-Jan 20240101  | 
    
| PublicationDateYYYYMMDD | 2024-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-Jan.  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Piscataway  | 
    
| PublicationTitle | IEEE transactions on cybernetics | 
    
| PublicationTitleAbbrev | TCYB | 
    
| PublicationTitleAlternate | IEEE Trans Cybern | 
    
| PublicationYear | 2024 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 Tay (ref28) 1985; 11 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40  | 
    
| References_xml | – ident: ref15 doi: 10.1109/TCYB.2018.2876608 – ident: ref19 doi: 10.1109/tcyb.2020.3042491 – ident: ref17 doi: 10.1109/TAC.2015.2459191 – ident: ref20 doi: 10.1109/tcyb.2020.2980963 – ident: ref37 doi: 10.1038/nature08891 – ident: ref9 doi: 10.1007/s10514-018-9807-5 – ident: ref30 doi: 10.1109/TAC.2019.2958563 – ident: ref10 doi: 10.1109/IROS.2016.7759748 – ident: ref16 doi: 10.1109/TCNS.2015.2507547 – ident: ref32 doi: 10.1049/iet-cta.2015.0197 – ident: ref25 doi: 10.1109/MCS.2018.2888681 – ident: ref2 doi: 10.3389/frobt.2018.00059 – ident: ref7 doi: 10.1126/science.1245842 – ident: ref38 doi: 10.1007/BF01534980 – ident: ref29 doi: 10.1080/00207179.2012.685183 – ident: ref34 doi: 10.1109/CDC.2015.7403181 – ident: ref36 doi: 10.1109/CDC.2017.8264151 – ident: ref8 doi: 10.1126/science.1254295 – ident: ref22 doi: 10.1016/j.cja.2021.05.009 – ident: ref12 doi: 10.1007/978-3-030-60376-2_25 – ident: ref4 doi: 10.1023/B:AURO.0000033973.24945.f3 – ident: ref40 doi: 10.1126/scirobotics.abe4385 – ident: ref24 doi: 10.1109/TPAMI.2018.2848225 – ident: ref33 doi: 10.1109/TCYB.2014.2378552 – ident: ref3 doi: 10.1007/s10514-015-9491-7 – ident: ref31 doi: 10.1109/CDC.2017.8263975 – ident: ref6 doi: 10.1109/MRA.2013.2252996 – ident: ref27 doi: 10.1109/LCSYS.2021.3088299 – ident: ref35 doi: 10.1002/rnc.1145 – ident: ref11 doi: 10.1016/j.automatica.2014.10.022 – ident: ref14 doi: 10.1109/TCYB.2018.2826049 – ident: ref18 doi: 10.1109/TCYB.2020.2978981 – ident: ref26 doi: 10.1109/tac.2018.2836022 – ident: ref23 doi: 10.1016/j.oceaneng.2022.113242 – ident: ref13 doi: 10.1007/978-3-030-60376-2_17 – volume: 11 start-page: 21 year: 1985 ident: ref28 article-title: Generating isostatic frameworks publication-title: Struct. Topol. – ident: ref1 doi: 10.1038/s41467-017-00109-2 – ident: ref21 doi: 10.1109/TCYB.2021.3124827 – ident: ref5 doi: 10.1109/TEVC.2008.2011746 – ident: ref39 doi: 10.1109/CDC.2002.1184307  | 
    
| SSID | ssj0000816898 | 
    
| Score | 2.492923 | 
    
| Snippet | Hierarchical frameworks-a special class of directed frameworks with a layer-by-layer architecture-can be an effective mechanism to coordinate robot swarms.... Hierarchical frameworks—a special class of directed frameworks with a layer-by-layer architecture—can be an effective mechanism to coordinate robot swarms....  | 
    
| SourceID | unpaywall proquest pubmed crossref ieee  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 87 | 
    
| SubjectTerms | Aerial swarm Algorithms Autonomous aerial vehicles Autonomous underwater vehicles AUVs bearing rigidity Control theory Formation control hierarchical framework Mobile robots Particle swarm optimization Reconfiguration Rigidity rigidity maintenance Robot control Robot kinematics robot swarm Robots System effectiveness Topology UAVs underwater swarm  | 
    
| SummonAdditionalLinks | – databaseName: IEEE Xplore dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagF-BQWiiQ0iIjceChhF07idfHdsVqhUQlaCuVU2Q7Y1QRkmo3UVV-PR7HiZanuEWyE008M_Y3nhchL_jEmlIJG1sNzkAx0zyeWZPGqTYszcGIHDBR-MNJvjxP319kFyFZ3efCAIAPPoMEH70vv2xMh1dlTsPdfjvF1N7bYpb3yVrjhYrvIOF73zL3EDtYIYIXczqRb8_mn48TbBWecMaF4Nghhgs8wBD6bhxJvsfKn-DmPXKnq6_UzbWqqo0jaHGfnAzE95EnX5Ou1Yn5_ktdx__-ux2yHcAoPeqlZ5fcgvoB2Q3qvqYvQ03qVw_Jx1OobIy2am0vv3QrTLiiy0vMXvbNVCq6GKK81tThYLoYkiLpvA-Gp42lnxrdtPT0Wq2-rffI-eLd2XwZh24MseGStzE4rKhFPsUy6IbZrCxNVlpuZQZgtAVp3B6eMs0FSFEqBxM4yxQHlYOWwtm7j8hW3dTwhFAJVs244sivtLSZErPMwWdlsVg9AxmRycCQwoRS5dgxoyq8yTKRBbKzQHYWgZ0ReT2-ctXX6fjX5D1c_o2J_cpH5GBgexFUeV0w6X3HTLrh5-OwU0L0rKgams7NEVI4u9LZnhF53IvL-PFByiLyZpSf30hszY3-icT9v5D4lNx109L-EuiAbLWrDg4dLGr1M68OPwBx3AVd priority: 102 providerName: IEEE  | 
    
| Title | Self-Reconfigurable Hierarchical Frameworks for Formation Control of Robot Swarms | 
    
| URI | https://ieeexplore.ieee.org/document/10036108 https://www.ncbi.nlm.nih.gov/pubmed/37022446 https://www.proquest.com/docview/2904605298 https://www.proquest.com/docview/2797148716 http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/360497  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 54 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELZG94B4AAYDisZkJB74oWRJnNhx37ZCVRCMwVppe4psx0YVIanaRNP46zknTrUxhIR4i-TLL93Z953s-z6EXpDAqFww4xmpoUBRIfVSo2IvliqKqVaMatso_OmYTufxh7PkbAv1apu_0QtAdiIH849H3tv3J59no0osRvliWdV-U0j7PqlHrQmhAHTZLbRNE0DkA7Q9Pz45PLe6ciGFQIhaIVl3zRK3uRkG_KBWl9K3CuI-iQhjJLyWnlq9lT9BzzvodlMuxeWFKIor6WhyD-m-qac7hfLdb2rpq583OR7_60_vo7sOr-LDLsB20JYuH6AdtyKs8UtHW_3qIfpyqgvj2XK2NItvzcr2ZOHpwjY4t3orBZ70B8HWGKAynvR9k3jcnZfHlcFfK1nV-PRCrH6sd9F88m42nnpOsMFThJPa0wAnJaOhZUpXkUnyXCW5IYYnWitpNFewzMeRJExzlgtAEiRKBNGCaskZlMSP0KCsSv0EYa6NSIkgNOVpnJtEsDQBhC2M5bOPNB-ioPdTphybuRXVKLK2qgl4NhufH2XWtZlz7RC93tyy7Kg8_ma8a51_xRBSfRikQ7TXR0PmZvs6i3i7vRxxGH6-GYZ5ajdfRKmrBmwYZ1B6Qnk6RI-7KNo8nDCLpGIYebMJqxufaEP12ic-_SfrPTSoV41-BhCqlvttn-O-mye_AJ8yFZY | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQORQOlEIpKQWMxIGHEnZjJ14fYcVqgXYl6FYqp8h2xqgiJNVuoqr8ejzOQ8tT3CzZjhzPjP2N50XIUzayJlfChlaDU1DMOA0n1vCQaxPzFIxIAQOFjxfp_JS_P0vOumB1HwsDAN75DCJselt-XpkGn8qchLvzdoyhvdcTznnShmsNTyq-hoSvfhu7RuiAhejsmOORfLWcfn4TYbHwiMVMCIY1YpjAKwzB78al5Kus_Alw3iTbTXmhri5VUWxcQrMdsuiX3_qefI2aWkfm-y-ZHf_7_26TWx0cpa9b_tkl16C8Q3Y7gV_TZ11W6ud3yccTKGyI2mppz780Kwy5ovNzjF_25VQKOuv9vNbUIWE668Mi6bR1h6eVpZ8qXdX05FKtvq33yOns7XI6D7t6DKFhktUhOLSoRTrGROgmtkmemyS3zMoEwGgL0rhTnMeaCZAiVw4osDhRDFQKWgqn8d4jW2VVwn1CJVg1YYohvXhuEyUmiQPQymK6-hhkQEY9QTLTJSvHmhlF5pWWkcyQnBmSM-vIGZAXw5SLNlPHvwbv4fZvDGx3PiCHPdmzTpjXWSy99TiWrvvJ0O3EEG0rqoSqcWOEFE6zdNpnQPZbdhk-3nNZQF4O_PPbEmtzpX9a4sFflviYbM-Xx0fZ0bvFhwfkhpvC2yehQ7JVrxp46EBSrR950fgBRSIIqg | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELZG94B4AAZjFA1kJB74oWRJnNhx37ZCVRCMwVppe4psx0YVIanaRNP46zknTrUxhIR4i-TLL93Z953s-z6EXpDAqFww4xmpoUBRIfVSo2IvliqKqVaMatso_OmYTufxh7PkbAv1apu_0QtAdiIH849H3tv3J59no0osRvliWdV-U0j7PqlHrQmhAHTZLbRNE0DkA7Q9Pz45PLe6ciGFQIhaIVl3zRK3uRkG_KBWl9K3CuI-iQhjJLyWnlq9lT9BzzvodlMuxeWFKIor6WhyD-m-qac7hfLdb2rpq583OR7_60_vo7sOr-LDLsB20JYuH6AdtyKs8UtHW_3qIfpyqgvj2XK2NItvzcr2ZOHpwjY4t3orBZ70B8HWGKAynvR9k3jcnZfHlcFfK1nV-PRCrH6sd9F88m42nnpOsMFThJPa0wAnJaOhZUpXkUnyXCW5IYYnWitpNFewzMeRJExzlgtAEiRKBNGCaskZlMSP0KCsSv0YYa6NSIkgNOVpnJtEsDQBhC2M5bOPNB-ioPdTphybuRXVKLK2qgl4NhufH2XWtZlz7RC93tyy7Kg8_ma8a51_xRBSfRikQ7TfR0PmZvs6i3i7vRxxGH6-GYZ5ajdfRKmrBmwYZ1B6Qnk6RHtdFG0eTphFUjGMvNmE1Y1PtKF67ROf_JP1PhrUq0Y_BQhVy2duhvwCIz8UlQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Reconfigurable+Hierarchical+Frameworks+for+Formation+Control+of+Robot+Swarms&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Zhang%2C+Yuwei&rft.au=O%C4%9Fuz%2C+Sinan&rft.au=Wang%2C+Shaoping&rft.au=Garone%2C+Emanuele&rft.date=2024-01-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=54&rft.issue=1&rft.spage=87&rft.epage=100&rft_id=info:doi/10.1109%2FTCYB.2023.3237731&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2023_3237731 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |