Optimal Static and Self-Adjusting Parameter Choices for the (1+(λ,λ)) Genetic Algorithm

The ( 1 + ( λ , λ ) )  genetic algorithm proposed in Doerr et al. (Theor Comput Sci 567:87–104, 2015 ) is one of the few examples for which a super-constant speed-up of the expected optimization time through the use of crossover could be rigorously demonstrated. It was proven that the expected optim...

Full description

Saved in:
Bibliographic Details
Published inAlgorithmica Vol. 80; no. 5; pp. 1658 - 1709
Main Authors Doerr, Benjamin, Doerr, Carola
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2018
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text
ISSN0178-4617
1432-0541
1432-0541
DOI10.1007/s00453-017-0354-9

Cover

Abstract The ( 1 + ( λ , λ ) )  genetic algorithm proposed in Doerr et al. (Theor Comput Sci 567:87–104, 2015 ) is one of the few examples for which a super-constant speed-up of the expected optimization time through the use of crossover could be rigorously demonstrated. It was proven that the expected optimization time of this algorithm on OneMax is O ( max { n log ( n ) / λ , λ n } ) for any offspring population size λ ∈ { 1 , … , n } (and the other parameters suitably dependent on λ ) and it was shown experimentally that a self-adjusting choice of λ leads to a better, most likely linear, runtime. In this work, we study more precisely how the optimization time depends on the parameter choices, leading to the following results on how to optimally choose the population size, the mutation probability, and the crossover bias both in a static and a dynamic fashion. For the mutation probability and the crossover bias depending on λ as in Doerr et al. ( 2015 ), we improve the previous runtime bound to O ( max { n log ( n ) / λ , n λ log log ( λ ) / log ( λ ) } ) . This expression is minimized by a value of λ slightly larger than what the previous result suggested and gives an expected optimization time of O n log ( n ) log log log ( n ) / log log ( n ) . We show that no static choice in the three-dimensional parameter space of offspring population, mutation probability, and crossover bias gives an asymptotically better runtime. We also prove that the self-adjusting parameter choice suggested in Doerr et al. ( 2015 ) outperforms all static choices and yields the conjectured linear expected runtime. This is asymptotically optimal among all possible parameter choices.
AbstractList The (1 + (λ, λ)) genetic algorithm (GA) proposed in [Doerr, Doerr, and Ebel. From black-box complexity to designing new genetic algorithms. Theoretical Computer Science (2015)] is one of the few examples for which a super-constant speed-up of the expected optimization time through the use of crossover could be rigorously demonstrated. It was proven that the expected optimization time of this algorithm on OneMax is O(max{n log(n)/λ, λn}) for any offspring population size λ ∈ {1,. .. , n} (and the other parameters suitably dependent on λ) and it was shown experimentally that a self-adjusting choice of λ leads to a better, most likely linear, runtime. In this work, we study more precisely how the optimization time depends on the parameter choices, leading to the following results on how to optimally choose the population size, the mutation probability, and the crossover bias both in a static and a dynamic fashion. For the mutation probability and the crossover bias depending on λ as in [DDE15], we improve the previous runtime bound to O(max{n log(n)/λ, nλ log log(λ)/ log(λ)}). This expression is minimized by a value of λ slightly larger than what the previous result suggested and gives an expected optimization time of O n log(n) log log log(n)/ log log(n). We show that no static choice in the three-dimensional parameter space of offspring population, mutation probability, and crossover bias gives an asymp-totically better runtime. Results presented in this work are based on [12–14]. B. DoerrÉcole Doerr´DoerrÉcole Polytechnique, LIX-UMR 7161, We also prove that the self-adjusting parameter choice suggested in [DDE15] outperforms all static choices and yields the conjectured linear expected runtime. This is asymptotically optimal among all possible parameter choices.
The (1+(λ,λ)) genetic algorithm proposed in Doerr et al. (Theor Comput Sci 567:87–104, 2015) is one of the few examples for which a super-constant speed-up of the expected optimization time through the use of crossover could be rigorously demonstrated. It was proven that the expected optimization time of this algorithm on OneMax is O(max{nlog(n)/λ,λn}) for any offspring population size λ∈{1,…,n} (and the other parameters suitably dependent on λ) and it was shown experimentally that a self-adjusting choice of λ leads to a better, most likely linear, runtime. In this work, we study more precisely how the optimization time depends on the parameter choices, leading to the following results on how to optimally choose the population size, the mutation probability, and the crossover bias both in a static and a dynamic fashion. For the mutation probability and the crossover bias depending on λ as in Doerr et al. (2015), we improve the previous runtime bound to O(max{nlog(n)/λ,nλloglog(λ)/log(λ)}). This expression is minimized by a value of λ slightly larger than what the previous result suggested and gives an expected optimization time of Onlog(n)logloglog(n)/loglog(n). We show that no static choice in the three-dimensional parameter space of offspring population, mutation probability, and crossover bias gives an asymptotically better runtime. We also prove that the self-adjusting parameter choice suggested in Doerr et al. (2015) outperforms all static choices and yields the conjectured linear expected runtime. This is asymptotically optimal among all possible parameter choices.
The ( 1 + ( λ , λ ) )  genetic algorithm proposed in Doerr et al. (Theor Comput Sci 567:87–104, 2015 ) is one of the few examples for which a super-constant speed-up of the expected optimization time through the use of crossover could be rigorously demonstrated. It was proven that the expected optimization time of this algorithm on OneMax is O ( max { n log ( n ) / λ , λ n } ) for any offspring population size λ ∈ { 1 , … , n } (and the other parameters suitably dependent on λ ) and it was shown experimentally that a self-adjusting choice of λ leads to a better, most likely linear, runtime. In this work, we study more precisely how the optimization time depends on the parameter choices, leading to the following results on how to optimally choose the population size, the mutation probability, and the crossover bias both in a static and a dynamic fashion. For the mutation probability and the crossover bias depending on λ as in Doerr et al. ( 2015 ), we improve the previous runtime bound to O ( max { n log ( n ) / λ , n λ log log ( λ ) / log ( λ ) } ) . This expression is minimized by a value of λ slightly larger than what the previous result suggested and gives an expected optimization time of O n log ( n ) log log log ( n ) / log log ( n ) . We show that no static choice in the three-dimensional parameter space of offspring population, mutation probability, and crossover bias gives an asymptotically better runtime. We also prove that the self-adjusting parameter choice suggested in Doerr et al. ( 2015 ) outperforms all static choices and yields the conjectured linear expected runtime. This is asymptotically optimal among all possible parameter choices.
Author Doerr, Carola
Doerr, Benjamin
Author_xml – sequence: 1
  givenname: Benjamin
  surname: Doerr
  fullname: Doerr, Benjamin
  organization: École Polytechnique, LIX - UMR 7161
– sequence: 2
  givenname: Carola
  surname: Doerr
  fullname: Doerr, Carola
  email: Carola.Doerr@mpi-inf.mpg.de
  organization: Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606
BackLink https://hal.science/hal-01668262$$DView record in HAL
BookMark eNqNkdFqFDEUhoNUcFt9AO8C3nTR6DmTzEzncllsKyxUqF54FbKZk91ZZjNrklX6bH2HPlMzTKEgKF4Fkv_7z_n_nLITP3hi7C3CRwSoP0UAVUoBWAuQpRLNCzZDJQsBpcITNssPF0JVWL9ipzHuALCom2rGftwcUrc3Pb9NJnWWG9_yW-qdWLS7Y0yd3_CvJpg9JQp8uR06S5G7IfC0JX6O788f7j883M_n_Io8jQaLfjOELm33r9lLZ_pIb57OM_b98vO35bVY3Vx9WS5WwspGJmEMOCyxVZZUY5WtxhyK0JbK2UICrGlNjavXhmoglChLaB1KqaSDyrXyjBWT79EfzN1v0_f6EHKkcKcR9FiOnsrRuQM9lqObDM0naGue5YPp9PVipcc7wKq6KKriF2btu0l7CMPPI8Wkd8Mx-JxJF9kyT5BQZRVOKhuGGAO5_9qi_oOx3fgNg0_BdP0_yafQMU_xGwrPO_0degREYaPd
CitedBy_id crossref_primary_10_1007_s00453_020_00731_5
crossref_primary_10_1007_s00453_024_01249_w
crossref_primary_10_1007_s00500_019_04414_4
crossref_primary_10_1145_3472304
crossref_primary_10_1016_j_tcs_2018_09_024
crossref_primary_10_1016_j_artint_2024_104098
crossref_primary_10_1109_TEVC_2020_2985450
crossref_primary_10_1016_j_asoc_2019_106027
crossref_primary_10_1162_evco_a_00313
crossref_primary_10_1145_3675783
crossref_primary_10_1007_s00453_018_0477_7
crossref_primary_10_1016_j_tcs_2023_114181
crossref_primary_10_1109_ACCESS_2021_3058128
crossref_primary_10_1155_2021_6672773
crossref_primary_10_1007_s00453_020_00726_2
crossref_primary_10_1007_s00453_022_00957_5
crossref_primary_10_1007_s00453_022_00933_z
crossref_primary_10_1145_3469800
crossref_primary_10_1016_j_ic_2023_105125
crossref_primary_10_1109_TEVC_2021_3068574
crossref_primary_10_1145_3564755
crossref_primary_10_1016_j_artint_2023_104061
crossref_primary_10_1088_1742_6596_1852_3_032054
crossref_primary_10_1109_TCYB_2019_2930979
crossref_primary_10_1109_TEVC_2019_2917014
crossref_primary_10_1109_TEVC_2019_2956633
crossref_primary_10_1007_s00453_021_00854_3
crossref_primary_10_1007_s00453_023_01153_9
crossref_primary_10_1007_s43069_023_00261_0
crossref_primary_10_3103_S0146411621070208
crossref_primary_10_1007_s00453_021_00907_7
crossref_primary_10_1016_j_geits_2022_100002
crossref_primary_10_1016_j_artint_2023_104016
crossref_primary_10_1109_TEVC_2022_3191698
crossref_primary_10_1007_s00453_023_01098_z
crossref_primary_10_1155_2022_5112950
crossref_primary_10_1007_s00453_020_00775_7
Cites_doi 10.1145/1527125.1527135
10.1142/9789814282673_0002
10.1145/2739482.2768487
10.1109/TAC.1968.1098903
10.1145/1068009.1068202
10.1162/EVCO_a_00055
10.1145/2463372.2463480
10.1016/j.tcs.2014.11.028
10.1007/3-540-49543-6_13
10.1109/ICEC.1995.489123
10.1007/978-3-662-05094-1
10.1016/S0004-3702(01)00058-3
10.1016/j.ipl.2013.09.013
10.1007/s00453-011-9585-3
10.1016/j.jda.2005.01.002
10.1007/11513575_14
10.1145/1527125.1527132
10.1007/978-3-319-45823-6_77
10.1145/2330163.2330260
10.1007/978-3-540-24854-5_109
10.1007/978-3-319-45823-6_73
10.1145/2576768.2598350
10.1162/106365605774666921
10.1145/1967654.1967669
10.1145/1569901.1569937
10.1145/1967654.1967671
10.1007/978-3-540-87700-4_12
10.1145/2739480.2754683
10.1007/978-3-319-45823-6_75
10.1007/11523468_48
10.1145/2908812.2908956
10.1145/2739480.2754684
10.1007/s00453-002-0940-2
10.1145/1570256.1570342
10.1016/j.tcs.2014.03.015
10.1109/TEVC.2014.2308294
10.1007/s00453-012-9616-8
10.1145/2908812.2908885
10.1145/2576768.2598364
10.1109/CEC.2009.4983114
10.1007/s00224-004-1177-z
10.1016/j.tcs.2012.10.059
10.1145/2739480.2754738
10.1007/978-3-319-10762-2_88
10.1017/S0963548312000600
10.1023/B:NACO.0000023416.59689.4e
10.1109/4235.771166
10.1007/978-3-642-17339-4
10.1007/978-3-642-15844-5_1
10.1016/j.tcs.2010.10.035
10.1007/978-3-319-45823-6_83
10.1016/S0304-3975(01)00182-7
10.1007/978-3-642-15844-5_18
10.1007/s00453-012-9622-x
10.1007/3-540-48224-5_6
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2017
Copyright Springer Science & Business Media 2018
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer Science+Business Media, LLC 2017
– notice: Copyright Springer Science & Business Media 2018
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
JQ2
1XC
VOOES
ADTOC
UNPAY
DOI 10.1007/s00453-017-0354-9
DatabaseName CrossRef
ProQuest Computer Science Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 1709
ExternalDocumentID oai:HAL:hal-01668262v1
10_1007_s00453_017_0354_9
GrantInformation_xml – fundername: Agence Nationale de la Recherche
  grantid: ANR-11-LABX-0056-LMH
  funderid: http://dx.doi.org/10.13039/501100001665
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
1XC
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c393t-aa0f151d4ce49c4c604534e1c54fc2300bebe9f7bae70e131350df13343f06fd3
IEDL.DBID UNPAY
ISSN 0178-4617
1432-0541
IngestDate Sun Oct 26 03:48:29 EDT 2025
Tue Oct 14 20:46:14 EDT 2025
Thu Oct 02 15:01:56 EDT 2025
Thu Apr 24 23:09:11 EDT 2025
Wed Oct 01 05:50:28 EDT 2025
Fri Feb 21 02:43:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Parameter choice
Theory of randomized search heuristics
Runtime analysis
Parameter control
Genetic algorithms
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-aa0f151d4ce49c4c604534e1c54fc2300bebe9f7bae70e131350df13343f06fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4981-3227
0000-0002-9786-220X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hal.science/hal-01668262
PQID 2017100306
PQPubID 2043795
PageCount 52
ParticipantIDs unpaywall_primary_10_1007_s00453_017_0354_9
hal_primary_oai_HAL_hal_01668262v1
proquest_journals_2017100306
crossref_primary_10_1007_s00453_017_0354_9
crossref_citationtrail_10_1007_s00453_017_0354_9
springer_journals_10_1007_s00453_017_0354_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-01
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References DrosteSJansenTWegenerIOn the analysis of the (1+1) evolutionary algorithmTheor. Comput. Sci.20022765181189634710.1016/S0304-3975(01)00182-71002.68037
JansenTWegenerIOn the analysis of a dynamic evolutionary algorithmJ. Discrete Algorithms20064181199221174510.1016/j.jda.2005.01.0021128.68118
Dang, D., Friedrich, T., Kötzing, T., Krejca, M.S., Lehre, P.K., Oliveto, P.S., Sudholt, D., Sutton, A.M.: Escaping local optima with diversity mechanisms and crossover. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’16), pp. 645–652. ACM (2016)
Doerr, B., Johannsen, D., Kötzing, T., Lehre, P.K., Wagner, M., Winzen, C.: Faster black-box algorithms through higher arity operators. In: Proceedings of Foundations of Genetic Algorithms (FOGA’11), pp. 163–172. ACM (2011)
DoerrBJansenTSudholtDWinzenCZargesCMutation rate matters even when optimizing monotonic functionsEvol. Comput.20132112710.1162/EVCO_a_00055
EibenAEHinterdingRMichalewiczZParameter control in evolutionary algorithmsIEEE Trans. Evol. Comput.1999312414110.1109/4235.771166
Wegener, I.: Theoretical aspects of evolutionary algorithms. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) Proc. of the 28th International Colloquium on Automata, Languages and Programming (ICALP’01), Lecture Notes in Computer Science, vol. 2076, pp. 64–78. Springer (2001)
DrosteSJansenTWegenerIUpper and lower bounds for randomized search heuristics in black-box optimizationTheory Comput. Syst.200639525544223751210.1007/s00224-004-1177-z1103.68115
Doerr, B., Doerr, C., Kötzing, T.: Provably optimal self-adjusting step sizes for multi-valued decision variables. In: Proceedings of Parallel Problem Solving from Nature (PPSN’16), Lecture Notes in Computer Science, vol. 9921, pp. 782–791. Springer (2016)
De Jong, K.A.: An analysis of the behavior of a class of genetic adaptive systems. Ph.D. thesis, Ann Arbor, MI, USA (1975)
Doerr, B.: Optimal parameter settings for the (1+(λ,λ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+(\lambda , \lambda ))$$\end{document} genetic algorithm. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’16), pp. 1107–1114. ACM (2016)
DoerrBJohannsenDKötzingTNeumannFTheileMMore effective crossover operators for the all-pairs shortest path problemTheor. Comput. Sci.20134711226300615910.1016/j.tcs.2012.10.0591259.68180
Devroye, L.: The compound random search. Ph.D. dissertation, Purdue University, West Lafayette, IN (1972)
DoerrBDoerrCEbelFFrom black-box complexity to designing new genetic algorithmsTheor. Comput. Sci.201556787104329562610.1016/j.tcs.2014.11.0281314.68290
KernSMüllerSDHansenNBücheDOcenasekJKoumoutsakosPLearning probability distributions in continuous evolutionary algorithms–a comparative reviewNat. Comput.2004377112211328410.1023/B:NACO.0000023416.59689.4e1074.68063
Kötzing, T.: Concentration of first hitting times under additive drift. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’14), pp. 1391–1398. ACM (2014)
Badkobeh, G., Lehre, P.K., Sudholt, D.: Unbiased black-box complexity of parallel search. In: Proceedings of Parallel Problem Solving from Nature (PPSN’14), Lecture Notes in Computer Science, vol. 8672, pp. 892–901. Springer (2014)
Gießen, C., Witt, C.: Population size vs. mutation strength for the (1+λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}) EA on OneMax. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’15), pp. 1439–1446. ACM (2015)
Dang, D., Friedrich, T., Kötzing, T., Krejca, M.S., Lehre, P.K., Oliveto, P.S., Sudholt, D., Sutton, A.M.: Emergence of diversity and its benefits for crossover in genetic algorithms. In: Proceedings of Parallel Problem Solving from Nature (PPSN’16), Lecture Notes in Computer Science, vol. 9921, pp. 890–900. Springer (2016)
Doerr, B., Doerr, C., Kötzing, T.: The right mutation strength for multi-valued decision variables. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’16), pp. 1115–1122. ACM (2016). http://arxiv.org/abs/1604.03277
KarafotiasGHoogendoornMEibenAParameter control in evolutionary algorithms: trends and challengesIEEE Trans. Evol. Comput.20151916718710.1109/TEVC.2014.2308294
SchumerMASteiglitzKAdaptive step size random searchIEEE Trans. Autom. Control19681327027610.1109/TAC.1968.1098903
Lässig, J., Sudholt, D.: Adaptive population models for offspring populations and parallel evolutionary algorithms. In: Proceedings of Foundations of Genetic Algorithms (FOGA’11), pp. 181–192. ACM (2011)
Oliveto, P.S., Lehre, P.K., Neumann, F.: Theoretical analysis of rank-based mutation—combining exploration and exploitation. In: Proceedings of Congress on Evolutionary Computation (CEC’09), pp. 1455–1462. IEEE (2009)
Doerr, B., Doerr, C.: A tight runtime analysis of the (1+(λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document})) genetic algorithm on OneMax. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’15), pp. 1423–1430. ACM (2015)
DoerrBKünnemannMOptimizing linear functions with the (1+λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}) evolutionary algorithm-different asymptotic runtimes for different instancesTheor. Comput. Sci.2015561323328218110.1016/j.tcs.2014.03.0151303.68120
Mironovich, V., Buzdalov, M.: Hard test generation for maximum flow algorithms with the fast crossover-based evolutionary algorithm. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’15) (Companion Material), pp. 1229–1232. ACM (2015)
Dang, D.C., Lehre, P.K.: Self-adaptation of mutation rates in non-elitist populations. In: Proceedings of Parallel Problem Solving from Nature (PPSN’16), Lecture Notes in Computer Science, vol. 9921, pp. 803–813. Springer (2016)
Doerr, B.: Analyzing randomized search heuristics: tools from probability theory. In: Auger, A., Doerr, B. (eds.) Theory of Randomized Search Heuristics, pp. 1–20. World Scientific Publishing (2011). http://www.worldscientific.com/doi/suppl/10.1142/7438/suppl_file/7438_chap01.pdf
Zarges, C.: Rigorous runtime analysis of inversely fitness proportional mutation rates. In: Proceedings of Parallel Problem Solving from Nature (PPSN’08), Lecture Notes in Computer Science, vol. 5199, pp. 112–122. Springer (2008)
Doerr, B., Doerr, C.: Optimal parameter choices through self-adjustment: Applying the 1/5-th rule in discrete settings. In: Proceedigns of Genetic and Evolutionary Computation Conference (GECCO’15), pp. 1335–1342. ACM (2015)
Auger, A.: Benchmarking the (1+1) evolution strategy with one-fifth success rule on the BBOB-2009 function testbed. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’09), (Companion), pp. 2447–2452. ACM (2009)
Sudholt, D.: Crossover speeds up building-block assembly. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’12), pp. 689–702. ACM (2012)
DoerrBGoldbergLAAdaptive drift analysisAlgorithmica201365224250300480510.1007/s00453-011-9585-31277.68289
WittCTight bounds on the optimization time of a randomized search heuristic on linear functionsComb. Probab. Comput.201322294318302133610.1017/S09635483120006001258.68183
LehrePKWittCBlack-box search by unbiased variationAlgorithmica201264623642298946810.1007/s00453-012-9616-81264.68221
RechenbergIEvolutionsstrategie1973StuttgartFriedrich Fromman Verlag (Günther Holzboog KG)
Zarges, C.: On the utility of the population size for inversely fitness proportional mutation rates. In: Proceedings of Foundations of Genetic Algorithms (FOGA’09), pp. 39–46. ACM (2009)
Doerr, B., Doerr, C., Yang, J.: k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-bit mutation with self-adjusting k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} outperforms standard bit mutation. In: Proceedings of Parallel Problem Solving from Nature (PPSN’16), Lecture Notes in Computer Science, vol. 9921, pp. 824–834. Springer (2016)
Auger, A., Hansen, N.: Linear Convergence on Positively Homogeneous Functions of a Comparison Based Step-size Adaptive Randomized Search: The (1+1) ES with Generalized One-fifth Success Rule (2013). http://arxiv.org/abs/1310.8397
DoerrBHappEKleinCCrossover can provably be useful in evolutionary computationTheor. Comput. Sci.20124251733289156110.1016/j.tcs.2010.10.0351267.68210
ErdősPRényiAOn two problems of information theoryMagyar Tudományos Akadémia Matematikai Kutató Intézet Közleményei196382292431659880119.34001
HeJYaoXDrift analysis and average time complexity of evolutionary algorithmsArtif. Intell.20011275785183176110.1016/S0004-3702(01)00058-30971.68129
Anil, G., Wiegand, R.P.: Black-box search by elimin
354_CR34
354_CR35
354_CR36
PK Lehre (354_CR48) 2012; 64
B Doerr (354_CR21) 2013; 65
C Witt (354_CR62) 2014; 114
T Jansen (354_CR43) 2006; 4
G Karafotias (354_CR44) 2015; 19
354_CR28
T Jansen (354_CR40) 2013
354_CR3
354_CR2
354_CR1
354_CR46
354_CR47
B Doerr (354_CR22) 2012; 425
354_CR9
354_CR8
354_CR7
354_CR6
354_CR5
354_CR4
B Doerr (354_CR16) 2015; 567
I Wegener (354_CR59) 2002
T Jansen (354_CR42) 2002; 34
354_CR37
354_CR39
C Witt (354_CR61) 2013; 22
354_CR11
354_CR12
354_CR56
354_CR13
354_CR57
354_CR14
354_CR58
354_CR51
354_CR53
354_CR10
B Doerr (354_CR23) 2013; 21
AE Eiben (354_CR31) 1999; 3
354_CR50
P Erdős (354_CR33) 1963; 8
S Kern (354_CR45) 2004; 3
PS Oliveto (354_CR52) 2011
B Doerr (354_CR27) 2015; 561
354_CR49
354_CR24
354_CR63
354_CR20
354_CR64
J He (354_CR38) 2001; 127
B Doerr (354_CR26) 2012; 64
354_CR60
B Doerr (354_CR25) 2013; 471
AE Eiben (354_CR32) 2003
S Droste (354_CR29) 2002; 276
I Rechenberg (354_CR54) 1973
MA Schumer (354_CR55) 1968; 13
354_CR19
354_CR15
T Jansen (354_CR41) 2005; 13
354_CR17
S Droste (354_CR30) 2006; 39
354_CR18
References_xml – reference: Badkobeh, G., Lehre, P.K., Sudholt, D.: Unbiased black-box complexity of parallel search. In: Proceedings of Parallel Problem Solving from Nature (PPSN’14), Lecture Notes in Computer Science, vol. 8672, pp. 892–901. Springer (2014)
– reference: OlivetoPSYaoXAugerADoerrBRuntime analysis of evolutionary algorithms for discrete optimizationTheory of Randomized Search Heuristics2011SingaporeWorld Scientific Publishing215210.1142/9789814282673_0002
– reference: Wegener, I.: Theoretical aspects of evolutionary algorithms. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) Proc. of the 28th International Colloquium on Automata, Languages and Programming (ICALP’01), Lecture Notes in Computer Science, vol. 2076, pp. 64–78. Springer (2001)
– reference: Doerr, B., Doerr, C., Kötzing, T.: The right mutation strength for multi-valued decision variables. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’16), pp. 1115–1122. ACM (2016). http://arxiv.org/abs/1604.03277
– reference: Mitchell, M., Holland, J.H., Forrest, S.: When will a genetic algorithm outperform hill climbing? In: Proceedings of the 7th Neural Information Processing Systems Conference (NIPS’93), Advances in Neural Information Processing Systems, vol. 6, pp. 51–58. Morgan Kaufmann (1993)
– reference: SchumerMASteiglitzKAdaptive step size random searchIEEE Trans. Autom. Control19681327027610.1109/TAC.1968.1098903
– reference: JansenTDe JongKAWegenerIOn the choice of the offspring population size in evolutionary algorithmsEvol. Comput.20051341344010.1162/106365605774666921
– reference: DoerrBHappEKleinCCrossover can provably be useful in evolutionary computationTheor. Comput. Sci.20124251733289156110.1016/j.tcs.2010.10.0351267.68210
– reference: Doerr, B., Johannsen, D., Kötzing, T., Lehre, P.K., Wagner, M., Winzen, C.: Faster black-box algorithms through higher arity operators. In: Proceedings of Foundations of Genetic Algorithms (FOGA’11), pp. 163–172. ACM (2011)
– reference: Hansen, N., Gawelczyk, A., Ostermeier, A.: Sizing the population with respect to the local progress in (1,λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \lambda $$\end{document})-evolution strategies—a theoretical analysis. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC’95), pp. 80–85. IEEE (1995)
– reference: Doerr, B., Doerr, C., Yang, J.: k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-bit mutation with self-adjusting k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} outperforms standard bit mutation. In: Proceedings of Parallel Problem Solving from Nature (PPSN’16), Lecture Notes in Computer Science, vol. 9921, pp. 824–834. Springer (2016)
– reference: Raab, M., Steger, A.: “Balls into bins”—a simple and tight analysis. In: Proceedings of Randomization and Approximation Techniques in Computer Science (RANDOM’98), Lecture Notes in Computer Science, vol. 1518, pp. 159–170. Springer (1998)
– reference: LehrePKWittCBlack-box search by unbiased variationAlgorithmica201264623642298946810.1007/s00453-012-9616-81264.68221
– reference: Fischer, S., Wegener, I.: The Ising model on the ring: mutation versus recombination. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’04), Lecture Notes in Computer Science, vol. 3102, pp. 1113–1124. Springer (2004)
– reference: DoerrBJohannsenDWinzenCMultiplicative drift analysisAlgorithmica201264673697298947010.1007/s00453-012-9622-x1264.68220
– reference: Zarges, C.: Rigorous runtime analysis of inversely fitness proportional mutation rates. In: Proceedings of Parallel Problem Solving from Nature (PPSN’08), Lecture Notes in Computer Science, vol. 5199, pp. 112–122. Springer (2008)
– reference: DoerrBJansenTSudholtDWinzenCZargesCMutation rate matters even when optimizing monotonic functionsEvol. Comput.20132112710.1162/EVCO_a_00055
– reference: DrosteSJansenTWegenerIUpper and lower bounds for randomized search heuristics in black-box optimizationTheory Comput. Syst.200639525544223751210.1007/s00224-004-1177-z1103.68115
– reference: DoerrBGoldbergLAAdaptive drift analysisAlgorithmica201365224250300480510.1007/s00453-011-9585-31277.68289
– reference: Dang, D., Friedrich, T., Kötzing, T., Krejca, M.S., Lehre, P.K., Oliveto, P.S., Sudholt, D., Sutton, A.M.: Escaping local optima with diversity mechanisms and crossover. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’16), pp. 645–652. ACM (2016)
– reference: Anil, G., Wiegand, R.P.: Black-box search by elimination of fitness functions. In: Proceedings of Foundations of Genetic Algorithms (FOGA’09), pp. 67–78. ACM (2009)
– reference: Doerr, B., Theile, M.: Improved analysis methods for crossover-based algorithms. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’09), pp. 247–254. ACM (2009)
– reference: Doerr, B., Goldberg, L.A.: Drift analysis with tail bounds. In: Proceedings of Parallel Problem Solving from Nature (PPSN’10), Lecture Notes in Computer Science, vol. 6238, pp. 174–183. Springer (2010)
– reference: Jägersküpper, J.: Rigorous runtime analysis of the (1+1) ES: 1/5-rule and ellipsoidal fitness landscapes. In: Proceedings of Foundations of Genetic Algorithms (FOGA’05), Lecture Notes in Computer Science, vol. 3469, pp. 260–281. Springer (2005)
– reference: Gießen, C., Witt, C.: Population size vs. mutation strength for the (1+λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}) EA on OneMax. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’15), pp. 1439–1446. ACM (2015)
– reference: RechenbergIEvolutionsstrategie1973StuttgartFriedrich Fromman Verlag (Günther Holzboog KG)
– reference: KarafotiasGHoogendoornMEibenAParameter control in evolutionary algorithms: trends and challengesIEEE Trans. Evol. Comput.20151916718710.1109/TEVC.2014.2308294
– reference: Dang, D.C., Lehre, P.K.: Self-adaptation of mutation rates in non-elitist populations. In: Proceedings of Parallel Problem Solving from Nature (PPSN’16), Lecture Notes in Computer Science, vol. 9921, pp. 803–813. Springer (2016)
– reference: KernSMüllerSDHansenNBücheDOcenasekJKoumoutsakosPLearning probability distributions in continuous evolutionary algorithms–a comparative reviewNat. Comput.2004377112211328410.1023/B:NACO.0000023416.59689.4e1074.68063
– reference: Doerr, B.: Optimal parameter settings for the (1+(λ,λ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+(\lambda , \lambda ))$$\end{document} genetic algorithm. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’16), pp. 1107–1114. ACM (2016)
– reference: EibenAESmithJEIntroduction to Evolutionary Computing2003BerlinSpringer10.1007/978-3-662-05094-11028.68022
– reference: DoerrBJohannsenDKötzingTNeumannFTheileMMore effective crossover operators for the all-pairs shortest path problemTheor. Comput. Sci.20134711226300615910.1016/j.tcs.2012.10.0591259.68180
– reference: Sudholt, D.: Crossover is provably essential for the Ising model on trees. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’05), pp. 1161–1167. ACM Press (2005)
– reference: HeJYaoXDrift analysis and average time complexity of evolutionary algorithmsArtif. Intell.20011275785183176110.1016/S0004-3702(01)00058-30971.68129
– reference: Wegener, I.: Simulated annealing beats metropolis in combinatorial optimization. In: Proceedings of International Colloquium on Automata, Languages and Programming (ICALP’05), Lecture Notes in Computer Science, vol. 3580, pp. 589–601. Springer (2005)
– reference: JansenTAnalyzing Evolutionary Algorithms: The Computer Science Perspective2013BerlinSpringer10.1007/978-3-642-17339-41282.68008
– reference: Doerr, B., Doerr, C., Ebel, F.: Lessons from the black-box: Fast crossover-based genetic algorithms. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’13), pp. 781–788. ACM (2013)
– reference: Doerr, B., Doerr, C.: Optimal parameter choices through self-adjustment: Applying the 1/5-th rule in discrete settings. In: Proceedigns of Genetic and Evolutionary Computation Conference (GECCO’15), pp. 1335–1342. ACM (2015)
– reference: Doerr, B.: Analyzing randomized search heuristics: tools from probability theory. In: Auger, A., Doerr, B. (eds.) Theory of Randomized Search Heuristics, pp. 1–20. World Scientific Publishing (2011). http://www.worldscientific.com/doi/suppl/10.1142/7438/suppl_file/7438_chap01.pdf
– reference: DrosteSJansenTWegenerIOn the analysis of the (1+1) evolutionary algorithmTheor. Comput. Sci.20022765181189634710.1016/S0304-3975(01)00182-71002.68037
– reference: Doerr, B., Doerr, C.: A tight runtime analysis of the (1+(λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document})) genetic algorithm on OneMax. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’15), pp. 1423–1430. ACM (2015)
– reference: Mironovich, V., Buzdalov, M.: Hard test generation for maximum flow algorithms with the fast crossover-based evolutionary algorithm. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’15) (Companion Material), pp. 1229–1232. ACM (2015)
– reference: Auger, A., Hansen, N.: Linear Convergence on Positively Homogeneous Functions of a Comparison Based Step-size Adaptive Randomized Search: The (1+1) ES with Generalized One-fifth Success Rule (2013). http://arxiv.org/abs/1310.8397
– reference: DoerrBDoerrCEbelFFrom black-box complexity to designing new genetic algorithmsTheor. Comput. Sci.201556787104329562610.1016/j.tcs.2014.11.0281314.68290
– reference: Doerr, B., Doerr, C., Kötzing, T.: Provably optimal self-adjusting step sizes for multi-valued decision variables. In: Proceedings of Parallel Problem Solving from Nature (PPSN’16), Lecture Notes in Computer Science, vol. 9921, pp. 782–791. Springer (2016)
– reference: Zarges, C.: On the utility of the population size for inversely fitness proportional mutation rates. In: Proceedings of Foundations of Genetic Algorithms (FOGA’09), pp. 39–46. ACM (2009)
– reference: Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mutation rates for the LeadingOnes problem. In: Proceedings of Parallel Problem Solving from Nature (PPSN’10), Lecture Notes in Computer Science, vol. 6238, pp. 1–10. Springer (2010)
– reference: WegenerISarkerRMohammadianMYaoXMethods for the analysis of evolutionary algorithms on pseudo-Boolean functionsEvolutionary Optimization2002BerlinKluwer349369
– reference: Auger, A.: Benchmarking the (1+1) evolution strategy with one-fifth success rule on the BBOB-2009 function testbed. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’09), (Companion), pp. 2447–2452. ACM (2009)
– reference: Lässig, J., Sudholt, D.: Adaptive population models for offspring populations and parallel evolutionary algorithms. In: Proceedings of Foundations of Genetic Algorithms (FOGA’11), pp. 181–192. ACM (2011)
– reference: JansenTWegenerIThe analysis of evolutionary algorithms–a proof that crossover really can helpAlgorithmica2002344766191292710.1007/s00453-002-0940-21016.68030
– reference: WittCFitness levels with tail bounds for the analysis of randomized search heuristicsInf. Process. Lett.20141143841312838810.1016/j.ipl.2013.09.0131329.68281
– reference: Oliveto, P.S., Lehre, P.K., Neumann, F.: Theoretical analysis of rank-based mutation—combining exploration and exploitation. In: Proceedings of Congress on Evolutionary Computation (CEC’09), pp. 1455–1462. IEEE (2009)
– reference: ErdősPRényiAOn two problems of information theoryMagyar Tudományos Akadémia Matematikai Kutató Intézet Közleményei196382292431659880119.34001
– reference: Dang, D., Friedrich, T., Kötzing, T., Krejca, M.S., Lehre, P.K., Oliveto, P.S., Sudholt, D., Sutton, A.M.: Emergence of diversity and its benefits for crossover in genetic algorithms. In: Proceedings of Parallel Problem Solving from Nature (PPSN’16), Lecture Notes in Computer Science, vol. 9921, pp. 890–900. Springer (2016)
– reference: Sudholt, D.: Crossover speeds up building-block assembly. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’12), pp. 689–702. ACM (2012)
– reference: DoerrBKünnemannMOptimizing linear functions with the (1+λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}) evolutionary algorithm-different asymptotic runtimes for different instancesTheor. Comput. Sci.2015561323328218110.1016/j.tcs.2014.03.0151303.68120
– reference: Devroye, L.: The compound random search. Ph.D. dissertation, Purdue University, West Lafayette, IN (1972)
– reference: Goldman, B.W., Punch, W.F.: Parameter-less population pyramid. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’14), pp. 785–792. ACM (2014)
– reference: JansenTWegenerIOn the analysis of a dynamic evolutionary algorithmJ. Discrete Algorithms20064181199221174510.1016/j.jda.2005.01.0021128.68118
– reference: EibenAEHinterdingRMichalewiczZParameter control in evolutionary algorithmsIEEE Trans. Evol. Comput.1999312414110.1109/4235.771166
– reference: De Jong, K.A.: An analysis of the behavior of a class of genetic adaptive systems. Ph.D. thesis, Ann Arbor, MI, USA (1975)
– reference: Kötzing, T.: Concentration of first hitting times under additive drift. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’14), pp. 1391–1398. ACM (2014)
– reference: WittCTight bounds on the optimization time of a randomized search heuristic on linear functionsComb. Probab. Comput.201322294318302133610.1017/S09635483120006001258.68183
– ident: 354_CR1
  doi: 10.1145/1527125.1527135
– start-page: 21
  volume-title: Theory of Randomized Search Heuristics
  year: 2011
  ident: 354_CR52
  doi: 10.1142/9789814282673_0002
– ident: 354_CR49
  doi: 10.1145/2739482.2768487
– volume: 13
  start-page: 270
  year: 1968
  ident: 354_CR55
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1968.1098903
– ident: 354_CR56
  doi: 10.1145/1068009.1068202
– volume: 21
  start-page: 1
  year: 2013
  ident: 354_CR23
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00055
– ident: 354_CR9
– ident: 354_CR15
  doi: 10.1145/2463372.2463480
– volume: 567
  start-page: 87
  year: 2015
  ident: 354_CR16
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2014.11.028
– ident: 354_CR53
  doi: 10.1007/3-540-49543-6_13
– ident: 354_CR10
– ident: 354_CR37
  doi: 10.1109/ICEC.1995.489123
– volume-title: Introduction to Evolutionary Computing
  year: 2003
  ident: 354_CR32
  doi: 10.1007/978-3-662-05094-1
– volume: 127
  start-page: 57
  year: 2001
  ident: 354_CR38
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(01)00058-3
– volume: 114
  start-page: 38
  year: 2014
  ident: 354_CR62
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2013.09.013
– volume: 8
  start-page: 229
  year: 1963
  ident: 354_CR33
  publication-title: Magyar Tudományos Akadémia Matematikai Kutató Intézet Közleményei
– start-page: 349
  volume-title: Evolutionary Optimization
  year: 2002
  ident: 354_CR59
– volume: 65
  start-page: 224
  year: 2013
  ident: 354_CR21
  publication-title: Algorithmica
  doi: 10.1007/s00453-011-9585-3
– volume: 4
  start-page: 181
  year: 2006
  ident: 354_CR43
  publication-title: J. Discrete Algorithms
  doi: 10.1016/j.jda.2005.01.002
– ident: 354_CR39
  doi: 10.1007/11513575_14
– ident: 354_CR64
  doi: 10.1145/1527125.1527132
– ident: 354_CR19
  doi: 10.1007/978-3-319-45823-6_77
– ident: 354_CR57
  doi: 10.1145/2330163.2330260
– ident: 354_CR34
  doi: 10.1007/978-3-540-24854-5_109
– volume-title: Evolutionsstrategie
  year: 1973
  ident: 354_CR54
– ident: 354_CR11
– ident: 354_CR17
  doi: 10.1007/978-3-319-45823-6_73
– ident: 354_CR36
  doi: 10.1145/2576768.2598350
– volume: 13
  start-page: 413
  year: 2005
  ident: 354_CR41
  publication-title: Evol. Comput.
  doi: 10.1162/106365605774666921
– ident: 354_CR24
  doi: 10.1145/1967654.1967669
– ident: 354_CR28
  doi: 10.1145/1569901.1569937
– ident: 354_CR47
  doi: 10.1145/1967654.1967671
– ident: 354_CR63
  doi: 10.1007/978-3-540-87700-4_12
– ident: 354_CR14
  doi: 10.1145/2739480.2754683
– ident: 354_CR8
  doi: 10.1007/978-3-319-45823-6_75
– ident: 354_CR60
  doi: 10.1007/11523468_48
– ident: 354_CR7
  doi: 10.1145/2908812.2908956
– ident: 354_CR13
  doi: 10.1145/2739480.2754684
– ident: 354_CR50
– volume: 34
  start-page: 47
  year: 2002
  ident: 354_CR42
  publication-title: Algorithmica
  doi: 10.1007/s00453-002-0940-2
– ident: 354_CR2
  doi: 10.1145/1570256.1570342
– volume: 561
  start-page: 3
  year: 2015
  ident: 354_CR27
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2014.03.015
– volume: 19
  start-page: 167
  year: 2015
  ident: 354_CR44
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2308294
– volume: 64
  start-page: 623
  year: 2012
  ident: 354_CR48
  publication-title: Algorithmica
  doi: 10.1007/s00453-012-9616-8
– ident: 354_CR12
  doi: 10.1145/2908812.2908885
– ident: 354_CR46
  doi: 10.1145/2576768.2598364
– ident: 354_CR51
  doi: 10.1109/CEC.2009.4983114
– ident: 354_CR3
– volume: 39
  start-page: 525
  year: 2006
  ident: 354_CR30
  publication-title: Theory Comput. Syst.
  doi: 10.1007/s00224-004-1177-z
– volume: 471
  start-page: 12
  year: 2013
  ident: 354_CR25
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2012.10.059
– ident: 354_CR35
  doi: 10.1145/2739480.2754738
– ident: 354_CR4
  doi: 10.1007/978-3-319-10762-2_88
– volume: 22
  start-page: 294
  year: 2013
  ident: 354_CR61
  publication-title: Comb. Probab. Comput.
  doi: 10.1017/S0963548312000600
– volume: 3
  start-page: 77
  year: 2004
  ident: 354_CR45
  publication-title: Nat. Comput.
  doi: 10.1023/B:NACO.0000023416.59689.4e
– volume: 3
  start-page: 124
  year: 1999
  ident: 354_CR31
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.771166
– volume-title: Analyzing Evolutionary Algorithms: The Computer Science Perspective
  year: 2013
  ident: 354_CR40
  doi: 10.1007/978-3-642-17339-4
– ident: 354_CR18
– ident: 354_CR5
  doi: 10.1007/978-3-642-15844-5_1
– volume: 425
  start-page: 17
  year: 2012
  ident: 354_CR22
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2010.10.035
– ident: 354_CR6
  doi: 10.1007/978-3-319-45823-6_83
– volume: 276
  start-page: 51
  year: 2002
  ident: 354_CR29
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/S0304-3975(01)00182-7
– ident: 354_CR20
  doi: 10.1007/978-3-642-15844-5_18
– volume: 64
  start-page: 673
  year: 2012
  ident: 354_CR26
  publication-title: Algorithmica
  doi: 10.1007/s00453-012-9622-x
– ident: 354_CR58
  doi: 10.1007/3-540-48224-5_6
SSID ssj0012796
Score 2.554081
Snippet The ( 1 + ( λ , λ ) )  genetic algorithm proposed in Doerr et al. (Theor Comput Sci 567:87–104, 2015 ) is one of the few examples for which a super-constant...
The (1+(λ,λ)) genetic algorithm proposed in Doerr et al. (Theor Comput Sci 567:87–104, 2015) is one of the few examples for which a super-constant speed-up of...
The (1 + (λ, λ)) genetic algorithm (GA) proposed in [Doerr, Doerr, and Ebel. From black-box complexity to designing new genetic algorithms. Theoretical...
SourceID unpaywall
hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1658
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Bias
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Algorithms
Data Structures and Information Theory
Genetic algorithms
Mathematics of Computing
Mutation
Neural and Evolutionary Computing
Optimization
Parameters
Run time (computers)
Special Issue on Genetic and Evolutionary Computation
Theory of Computation
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB5BOLQcCvQhUgJaoR6g6Upr79qOjxYCRaiFSm0kerLs9S6hMk6URyt-W_5DfhMzjm2ohKi4eh-2Z2ZnvtHMzgB8UjokSZEcFaHkSqY-T8Oe5q4l-VLKZj5dcP524fcH6vzKu6rucU_rbPc6JFlq6uayG6EPyv0JuJCe4uE6bHhUzQuFeOBGTejADcqmXNR2niu0z3Uo86kt_jFG60NKhXyEM5vQ6Ca8mhfj5O5vkuePrM_ZNrypYCOLVnzegTVTvIWtuiUDq07oO_h1iSrgFmcSiLzRLCky9sPklkfZb-rbVVyz7wnlY9Gqk-GI1ARD3MoQB7Ijp3u0XHxZLo6PGZWjpg2i_Ho0uZkNb9_D4Oz050mfV90TuJahnPEkERbNeaa0UaFW2qd_V8bRnrIaHQ-RIv9CG6SJCYRxpCM9kVl0WZW0wreZ_ACtYlSYXWCBxkFNOYjWIwDSk5mSIsmEFY5RRrZB1GSMdVVanDpc5HFTFLmkfIyUj4nycdiGz82S8aquxnOTD5E3zTyqiN2Pvsb0DBGrjx6S-8dpQ6dmXVydw2nsUjmg0i9qQ7dm58PwM2_sNhz___d9fNHee_AaP6u3yprsQGs2mZt9RDaz9KCU5Hspkuo1
  priority: 102
  providerName: Springer Nature
Title Optimal Static and Self-Adjusting Parameter Choices for the (1+(λ,λ)) Genetic Algorithm
URI https://link.springer.com/article/10.1007/s00453-017-0354-9
https://www.proquest.com/docview/2017100306
https://hal.science/hal-01668262
UnpaywallVersion submittedVersion
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: AFBBN
  dateStart: 19861101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtNAEB21yQPwQLmKlBKtkB8S0q3W2bUTP7pVQ8QlVIJIrYRk2WtvU-o6VeuAQOLL-Ae-iRnfKDwEIUtry56VLzM7e0aePQNgKe2RpUiOjlByJSOXR95Y86Eh-1LKxC4tcH47c6dz9erYOd4AVq-FWSDirHw_HWOk67qIgNHJtl0H0XYL2vPZkX9SZCZiAKTcoqguzvpDjujDrn9cipIn1KFkoREX0lHc-2Pq2VxQ4uMNVNn8CL0Dt1bZZfj1S5imN-aayVaZ83hdUBRSisn53iqP9vS3vwgc173GPbhbAU3ml5ZxHzaS7AFs1UUcWDWmH8L3d-g0LlCSYOeZZmEWs_dJargff6JKX9kpOwopg4t6HSyW5FgYIl2GyJFZVs8e9D6iVUVxyHbrg37fsliP2WyA7c8fbJeaPm5Eck038dPT5dVZvrh4BPPJ4YeDKa9qMnAtPZnzMBQGQUKsdKI8rbRL31gltnaU0RjOiAitwjOjKExGIrGlLR0RGwyElTTCNbF8DK1smSVPgI00XtSU2WgcgjVjGSspwlgYYScqkR0QtboCXRGWU92MNGiolgsNB6jhgDQceB140XS5LNk61gk_R9U0csSzPfXfBHSuVtdnuwM7tYkE1ei-DoZEMlREWx0Y1Gbz-_KaOw4ay_r3823_l_RTuI2PNS5zMXeglV-tkmeIl_KoC21_sr8_o_3Lk9eHXdicD_1uNZB-AQaVCcU
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fT9RAEJ_I8YA-iH_jKerG-ACeS7bdbXt9bAhwyoEmHgk8bdrtLoeWHoGeRr8a34HP5MxdW9AYDK_t7na6Ozv7m8zsbwDeKhOTpkiOhlByJbOQZ3HfcN-Rfinl8pAuOO_uhYN99fEgOKjvcZ832e5NSHJmqdvLboQ-KPcn4kIGiscLsKjQP_E7sJhsH-5stsEDP5qV5aLC81zhCd0EM_81yB_H0cKYkiGvIc02OHoPlqblafrzR1oU186frWUYNZLP006-rU-rbN38-ovU8Za_9gDu13iUJXMFegh3bPkIlptaD6ze-o_h8BPalhNsSej02LC0zNkXWzie5F-pIFh5xD6nlOhFvTbGE7I_DAExQ4DJVr3e6uXF-8uLtTVGPNc0QFIcTc6Oq_HJE9jf2hxtDHhdloEbGcuKp6lwiBNyZayKjTIhCa-sZwLlDHo0IkPFiF2UpTYS1pOeDETu0BdW0onQ5fIpdMpJaZ8Biwy-NJTc6AJCNn2ZKynSXDjhWWVlF0SzOtrUnOVUOqPQLdvybOo0Tp2mqdNxF961XU7nhB03NX6DS962I6rtQTLU9AyhcIiul__d68JKoxG63uDn2ieeoZnD1YVes6hXr2_4Yq9VpP_L9_xWY7-GpcFod6iHH_Z2XsBdFLE_T81cgU51NrUvET5V2at6u_wG4jUJ8A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1tT9RAEJ4IJiof8D0coG6MH8Bzw7a7ba8fG_RyKiKJXoKfNu2-cJjSu0DB-Nv4D_wmZ-7aionB-LX70nZmdveZzOwzAK-USclSJMeNUHIli5gX6cDw0JN9KeVtTBecP-3Ho7H6cBgdNnVOz9ps9zYkubjTQCxNVb0zs36nu_hGSITygBIuZKR4ugS3FfEkoEGPw6wLI4TJvEAXlaDnCs_qNqz5tyn-OJiWJpQWeQ1zdmHSFbh7Xs3ynz_ysrx2Eg0fwGoDIVm20PlDuOWqR3C_Lc_AmtX6GL59xu3gBHsSoDw2LK8s--JKzzP7nWp4VUfsIKfcLBq1O5nSlsEQwzLEhGwr6G9dXb65utzeZkRNTRNk5dH09LienDyB8fDd190RbyopcCNTWfM8Fx6PdquMU6lRJqZ_Vy4wkfIGnRBRoC5TnxS5S4QLZCAjYT26r0p6EXsrn8JyNa3cGrDEYKOhfEQfERgZSKukyK3wInDKyR6IVozaNDTjVO2i1B1B8lzyGiWvSfI67cHrbshswbFxU-eXqJuuH7Fjj7I9Tc8QvcboLYUXQQ82W9XpZk2e6ZCogeY-Ug_6rTp_N9_wxn6n8X9_3_p_zf0C7hy8Heq99_sfN-AefuFgkUy5Ccv16bl7hoCnLp7PjfoXNczxXQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ta9RAEF7q9YP6wfqKV6sskg93Xrdsbjd7l4-hWA7RWtCDCkLY7EuvNs2VNqco-Mv8D_4mZ_Jm9cOJBJaQnbBJZnb2GXbyDCGBNDFaimDgCAWTIlMsi6eGjT3al5TeKvzB-c2hms3lq-PoeIPQ9l-YBSDOxvfjOUS6SgECBie7qSJA2z2yOT88Sj5UmYkQAElVFdWFVX_MAH2E7cYlr3lCI0wWmjAuIsniP5aeGwtMfLyGKruN0Nvk5qq40F-_6Dy_ttYcbNU5j1cVRSGmmJztrcpsz3z7i8Bx3WvcJXcaoEmT2jLukQ1X3CdbbREH2szpB-T7W3Aa5yCJsPPUUF1Y-s7lniX2E1b6Kk7okcYMLrxrf7FEx0IB6VJAjjQIBuFo8BGsKrOa7rYnw2EQ0AEN6Qjanz_oLjZDOJDkGgdJ8pPl5Wm5OH9I5gcv3-_PWFOTgRkRi5JpzT2ABCuNk7GRRuE3li40kfQGwhmegVXEfpJpN-EuFKGIuPUQCEvhufJWPCK9Ylm4x4RODHQazGz0EcKaqbBScG2556GTTvQJb9WVmoawHOtm5GlHtVxpOAUNp6jhNO6TF90tFzVbxzrh56CaTg55tmfJ6xSvter6HPbJTmsiaTO7r9IxkgxV0VafjFqz-d29ZsRRZ1n_fr7t_5J-Qm7BY03rXMwd0isvV-4p4KUye9ZMmV9hWgXM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Static+and+Self-Adjusting+Parameter+Choices+for+the+%28+1+%2B+%28+%CE%BB+%2C+%CE%BB+%29+%29+Genetic+Algorithm&rft.jtitle=Algorithmica&rft.au=Doerr%2C+Benjamin&rft.au=Doerr%2C+Carola&rft.date=2018-05-01&rft.pub=Springer+Verlag&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=80&rft.spage=1658&rft.epage=1709&rft_id=info:doi/10.1007%2Fs00453-017-0354-9&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01668262v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon