Optimal Static and Self-Adjusting Parameter Choices for the (1+(λ,λ)) Genetic Algorithm
The ( 1 + ( λ , λ ) ) genetic algorithm proposed in Doerr et al. (Theor Comput Sci 567:87–104, 2015 ) is one of the few examples for which a super-constant speed-up of the expected optimization time through the use of crossover could be rigorously demonstrated. It was proven that the expected optim...
        Saved in:
      
    
          | Published in | Algorithmica Vol. 80; no. 5; pp. 1658 - 1709 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.05.2018
     Springer Nature B.V Springer Verlag  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0178-4617 1432-0541 1432-0541  | 
| DOI | 10.1007/s00453-017-0354-9 | 
Cover
| Abstract | The
(
1
+
(
λ
,
λ
)
)
 genetic algorithm proposed in Doerr et al. (Theor Comput Sci 567:87–104,
2015
) is one of the few examples for which a super-constant speed-up of the expected optimization time through the use of crossover could be rigorously demonstrated. It was proven that the expected optimization time of this algorithm on
OneMax
is
O
(
max
{
n
log
(
n
)
/
λ
,
λ
n
}
)
for any offspring population size
λ
∈
{
1
,
…
,
n
}
(and the other parameters suitably dependent on
λ
) and it was shown experimentally that a self-adjusting choice of
λ
leads to a better, most likely linear, runtime. In this work, we study more precisely how the optimization time depends on the parameter choices, leading to the following results on how to optimally choose the population size, the mutation probability, and the crossover bias both in a static and a dynamic fashion. For the mutation probability and the crossover bias depending on
λ
as in Doerr et al. (
2015
), we improve the previous runtime bound to
O
(
max
{
n
log
(
n
)
/
λ
,
n
λ
log
log
(
λ
)
/
log
(
λ
)
}
)
. This expression is minimized by a value of
λ
slightly larger than what the previous result suggested and gives an expected optimization time of
O
n
log
(
n
)
log
log
log
(
n
)
/
log
log
(
n
)
. We show that no static choice in the three-dimensional parameter space of offspring population, mutation probability, and crossover bias gives an asymptotically better runtime. We also prove that the self-adjusting parameter choice suggested in Doerr et al. (
2015
) outperforms all static choices and yields the conjectured linear expected runtime. This is asymptotically optimal among all possible parameter choices. | 
    
|---|---|
| AbstractList | The (1 + (λ, λ)) genetic algorithm (GA) proposed in [Doerr, Doerr, and Ebel. From black-box complexity to designing new genetic algorithms. Theoretical Computer Science (2015)] is one of the few examples for which a super-constant speed-up of the expected optimization time through the use of crossover could be rigorously demonstrated. It was proven that the expected optimization time of this algorithm on OneMax is O(max{n log(n)/λ, λn}) for any offspring population size λ ∈ {1,. .. , n} (and the other parameters suitably dependent on λ) and it was shown experimentally that a self-adjusting choice of λ leads to a better, most likely linear, runtime. In this work, we study more precisely how the optimization time depends on the parameter choices, leading to the following results on how to optimally choose the population size, the mutation probability, and the crossover bias both in a static and a dynamic fashion. For the mutation probability and the crossover bias depending on λ as in [DDE15], we improve the previous runtime bound to O(max{n log(n)/λ, nλ log log(λ)/ log(λ)}). This expression is minimized by a value of λ slightly larger than what the previous result suggested and gives an expected optimization time of O n log(n) log log log(n)/ log log(n). We show that no static choice in the three-dimensional parameter space of offspring population, mutation probability, and crossover bias gives an asymp-totically better runtime. Results presented in this work are based on [12–14]. B. DoerrÉcole Doerr´DoerrÉcole Polytechnique, LIX-UMR 7161, We also prove that the self-adjusting parameter choice suggested in [DDE15] outperforms all static choices and yields the conjectured linear expected runtime. This is asymptotically optimal among all possible parameter choices. The (1+(λ,λ)) genetic algorithm proposed in Doerr et al. (Theor Comput Sci 567:87–104, 2015) is one of the few examples for which a super-constant speed-up of the expected optimization time through the use of crossover could be rigorously demonstrated. It was proven that the expected optimization time of this algorithm on OneMax is O(max{nlog(n)/λ,λn}) for any offspring population size λ∈{1,…,n} (and the other parameters suitably dependent on λ) and it was shown experimentally that a self-adjusting choice of λ leads to a better, most likely linear, runtime. In this work, we study more precisely how the optimization time depends on the parameter choices, leading to the following results on how to optimally choose the population size, the mutation probability, and the crossover bias both in a static and a dynamic fashion. For the mutation probability and the crossover bias depending on λ as in Doerr et al. (2015), we improve the previous runtime bound to O(max{nlog(n)/λ,nλloglog(λ)/log(λ)}). This expression is minimized by a value of λ slightly larger than what the previous result suggested and gives an expected optimization time of Onlog(n)logloglog(n)/loglog(n). We show that no static choice in the three-dimensional parameter space of offspring population, mutation probability, and crossover bias gives an asymptotically better runtime. We also prove that the self-adjusting parameter choice suggested in Doerr et al. (2015) outperforms all static choices and yields the conjectured linear expected runtime. This is asymptotically optimal among all possible parameter choices. The ( 1 + ( λ , λ ) ) genetic algorithm proposed in Doerr et al. (Theor Comput Sci 567:87–104, 2015 ) is one of the few examples for which a super-constant speed-up of the expected optimization time through the use of crossover could be rigorously demonstrated. It was proven that the expected optimization time of this algorithm on OneMax is O ( max { n log ( n ) / λ , λ n } ) for any offspring population size λ ∈ { 1 , … , n } (and the other parameters suitably dependent on λ ) and it was shown experimentally that a self-adjusting choice of λ leads to a better, most likely linear, runtime. In this work, we study more precisely how the optimization time depends on the parameter choices, leading to the following results on how to optimally choose the population size, the mutation probability, and the crossover bias both in a static and a dynamic fashion. For the mutation probability and the crossover bias depending on λ as in Doerr et al. ( 2015 ), we improve the previous runtime bound to O ( max { n log ( n ) / λ , n λ log log ( λ ) / log ( λ ) } ) . This expression is minimized by a value of λ slightly larger than what the previous result suggested and gives an expected optimization time of O n log ( n ) log log log ( n ) / log log ( n ) . We show that no static choice in the three-dimensional parameter space of offspring population, mutation probability, and crossover bias gives an asymptotically better runtime. We also prove that the self-adjusting parameter choice suggested in Doerr et al. ( 2015 ) outperforms all static choices and yields the conjectured linear expected runtime. This is asymptotically optimal among all possible parameter choices.  | 
    
| Author | Doerr, Carola Doerr, Benjamin  | 
    
| Author_xml | – sequence: 1 givenname: Benjamin surname: Doerr fullname: Doerr, Benjamin organization: École Polytechnique, LIX - UMR 7161 – sequence: 2 givenname: Carola surname: Doerr fullname: Doerr, Carola email: Carola.Doerr@mpi-inf.mpg.de organization: Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606  | 
    
| BackLink | https://hal.science/hal-01668262$$DView record in HAL | 
    
| BookMark | eNqNkdFqFDEUhoNUcFt9AO8C3nTR6DmTzEzncllsKyxUqF54FbKZk91ZZjNrklX6bH2HPlMzTKEgKF4Fkv_7z_n_nLITP3hi7C3CRwSoP0UAVUoBWAuQpRLNCzZDJQsBpcITNssPF0JVWL9ipzHuALCom2rGftwcUrc3Pb9NJnWWG9_yW-qdWLS7Y0yd3_CvJpg9JQp8uR06S5G7IfC0JX6O788f7j883M_n_Io8jQaLfjOELm33r9lLZ_pIb57OM_b98vO35bVY3Vx9WS5WwspGJmEMOCyxVZZUY5WtxhyK0JbK2UICrGlNjavXhmoglChLaB1KqaSDyrXyjBWT79EfzN1v0_f6EHKkcKcR9FiOnsrRuQM9lqObDM0naGue5YPp9PVipcc7wKq6KKriF2btu0l7CMPPI8Wkd8Mx-JxJF9kyT5BQZRVOKhuGGAO5_9qi_oOx3fgNg0_BdP0_yafQMU_xGwrPO_0degREYaPd | 
    
| CitedBy_id | crossref_primary_10_1007_s00453_020_00731_5 crossref_primary_10_1007_s00453_024_01249_w crossref_primary_10_1007_s00500_019_04414_4 crossref_primary_10_1145_3472304 crossref_primary_10_1016_j_tcs_2018_09_024 crossref_primary_10_1016_j_artint_2024_104098 crossref_primary_10_1109_TEVC_2020_2985450 crossref_primary_10_1016_j_asoc_2019_106027 crossref_primary_10_1162_evco_a_00313 crossref_primary_10_1145_3675783 crossref_primary_10_1007_s00453_018_0477_7 crossref_primary_10_1016_j_tcs_2023_114181 crossref_primary_10_1109_ACCESS_2021_3058128 crossref_primary_10_1155_2021_6672773 crossref_primary_10_1007_s00453_020_00726_2 crossref_primary_10_1007_s00453_022_00957_5 crossref_primary_10_1007_s00453_022_00933_z crossref_primary_10_1145_3469800 crossref_primary_10_1016_j_ic_2023_105125 crossref_primary_10_1109_TEVC_2021_3068574 crossref_primary_10_1145_3564755 crossref_primary_10_1016_j_artint_2023_104061 crossref_primary_10_1088_1742_6596_1852_3_032054 crossref_primary_10_1109_TCYB_2019_2930979 crossref_primary_10_1109_TEVC_2019_2917014 crossref_primary_10_1109_TEVC_2019_2956633 crossref_primary_10_1007_s00453_021_00854_3 crossref_primary_10_1007_s00453_023_01153_9 crossref_primary_10_1007_s43069_023_00261_0 crossref_primary_10_3103_S0146411621070208 crossref_primary_10_1007_s00453_021_00907_7 crossref_primary_10_1016_j_geits_2022_100002 crossref_primary_10_1016_j_artint_2023_104016 crossref_primary_10_1109_TEVC_2022_3191698 crossref_primary_10_1007_s00453_023_01098_z crossref_primary_10_1155_2022_5112950 crossref_primary_10_1007_s00453_020_00775_7  | 
    
| Cites_doi | 10.1145/1527125.1527135 10.1142/9789814282673_0002 10.1145/2739482.2768487 10.1109/TAC.1968.1098903 10.1145/1068009.1068202 10.1162/EVCO_a_00055 10.1145/2463372.2463480 10.1016/j.tcs.2014.11.028 10.1007/3-540-49543-6_13 10.1109/ICEC.1995.489123 10.1007/978-3-662-05094-1 10.1016/S0004-3702(01)00058-3 10.1016/j.ipl.2013.09.013 10.1007/s00453-011-9585-3 10.1016/j.jda.2005.01.002 10.1007/11513575_14 10.1145/1527125.1527132 10.1007/978-3-319-45823-6_77 10.1145/2330163.2330260 10.1007/978-3-540-24854-5_109 10.1007/978-3-319-45823-6_73 10.1145/2576768.2598350 10.1162/106365605774666921 10.1145/1967654.1967669 10.1145/1569901.1569937 10.1145/1967654.1967671 10.1007/978-3-540-87700-4_12 10.1145/2739480.2754683 10.1007/978-3-319-45823-6_75 10.1007/11523468_48 10.1145/2908812.2908956 10.1145/2739480.2754684 10.1007/s00453-002-0940-2 10.1145/1570256.1570342 10.1016/j.tcs.2014.03.015 10.1109/TEVC.2014.2308294 10.1007/s00453-012-9616-8 10.1145/2908812.2908885 10.1145/2576768.2598364 10.1109/CEC.2009.4983114 10.1007/s00224-004-1177-z 10.1016/j.tcs.2012.10.059 10.1145/2739480.2754738 10.1007/978-3-319-10762-2_88 10.1017/S0963548312000600 10.1023/B:NACO.0000023416.59689.4e 10.1109/4235.771166 10.1007/978-3-642-17339-4 10.1007/978-3-642-15844-5_1 10.1016/j.tcs.2010.10.035 10.1007/978-3-319-45823-6_83 10.1016/S0304-3975(01)00182-7 10.1007/978-3-642-15844-5_18 10.1007/s00453-012-9622-x 10.1007/3-540-48224-5_6  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer Science+Business Media, LLC 2017 Copyright Springer Science & Business Media 2018 Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| Copyright_xml | – notice: Springer Science+Business Media, LLC 2017 – notice: Copyright Springer Science & Business Media 2018 – notice: Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| DBID | AAYXX CITATION JQ2 1XC VOOES ADTOC UNPAY  | 
    
| DOI | 10.1007/s00453-017-0354-9 | 
    
| DatabaseName | CrossRef ProQuest Computer Science Collection Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef ProQuest Computer Science Collection  | 
    
| DatabaseTitleList | ProQuest Computer Science Collection  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1432-0541 | 
    
| EndPage | 1709 | 
    
| ExternalDocumentID | oai:HAL:hal-01668262v1 10_1007_s00453_017_0354_9  | 
    
| GrantInformation_xml | – fundername: Agence Nationale de la Recherche grantid: ANR-11-LABX-0056-LMH funderid: http://dx.doi.org/10.13039/501100001665  | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFSI ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP E.L EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9O PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UQL UTJUX UZXMN VC2 VFIZW VH1 VXZ W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 1XC VOOES ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c393t-aa0f151d4ce49c4c604534e1c54fc2300bebe9f7bae70e131350df13343f06fd3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0178-4617 1432-0541  | 
    
| IngestDate | Sun Oct 26 03:48:29 EDT 2025 Tue Oct 14 20:46:14 EDT 2025 Thu Oct 02 15:01:56 EDT 2025 Thu Apr 24 23:09:11 EDT 2025 Wed Oct 01 05:50:28 EDT 2025 Fri Feb 21 02:43:09 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 5 | 
    
| Keywords | Parameter choice Theory of randomized search heuristics Runtime analysis Parameter control Genetic algorithms  | 
    
| Language | English | 
    
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 other-oa  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c393t-aa0f151d4ce49c4c604534e1c54fc2300bebe9f7bae70e131350df13343f06fd3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-4981-3227 0000-0002-9786-220X  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://hal.science/hal-01668262 | 
    
| PQID | 2017100306 | 
    
| PQPubID | 2043795 | 
    
| PageCount | 52 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s00453_017_0354_9 hal_primary_oai_HAL_hal_01668262v1 proquest_journals_2017100306 crossref_primary_10_1007_s00453_017_0354_9 crossref_citationtrail_10_1007_s00453_017_0354_9 springer_journals_10_1007_s00453_017_0354_9  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2018-05-01 | 
    
| PublicationDateYYYYMMDD | 2018-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | Algorithmica | 
    
| PublicationTitleAbbrev | Algorithmica | 
    
| PublicationYear | 2018 | 
    
| Publisher | Springer US Springer Nature B.V Springer Verlag  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer Verlag  | 
    
| References | DrosteSJansenTWegenerIOn the analysis of the (1+1) evolutionary algorithmTheor. Comput. Sci.20022765181189634710.1016/S0304-3975(01)00182-71002.68037 JansenTWegenerIOn the analysis of a dynamic evolutionary algorithmJ. Discrete Algorithms20064181199221174510.1016/j.jda.2005.01.0021128.68118 Dang, D., Friedrich, T., Kötzing, T., Krejca, M.S., Lehre, P.K., Oliveto, P.S., Sudholt, D., Sutton, A.M.: Escaping local optima with diversity mechanisms and crossover. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’16), pp. 645–652. ACM (2016) Doerr, B., Johannsen, D., Kötzing, T., Lehre, P.K., Wagner, M., Winzen, C.: Faster black-box algorithms through higher arity operators. In: Proceedings of Foundations of Genetic Algorithms (FOGA’11), pp. 163–172. ACM (2011) DoerrBJansenTSudholtDWinzenCZargesCMutation rate matters even when optimizing monotonic functionsEvol. Comput.20132112710.1162/EVCO_a_00055 EibenAEHinterdingRMichalewiczZParameter control in evolutionary algorithmsIEEE Trans. Evol. Comput.1999312414110.1109/4235.771166 Wegener, I.: Theoretical aspects of evolutionary algorithms. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) Proc. of the 28th International Colloquium on Automata, Languages and Programming (ICALP’01), Lecture Notes in Computer Science, vol. 2076, pp. 64–78. Springer (2001) DrosteSJansenTWegenerIUpper and lower bounds for randomized search heuristics in black-box optimizationTheory Comput. Syst.200639525544223751210.1007/s00224-004-1177-z1103.68115 Doerr, B., Doerr, C., Kötzing, T.: Provably optimal self-adjusting step sizes for multi-valued decision variables. In: Proceedings of Parallel Problem Solving from Nature (PPSN’16), Lecture Notes in Computer Science, vol. 9921, pp. 782–791. Springer (2016) De Jong, K.A.: An analysis of the behavior of a class of genetic adaptive systems. Ph.D. thesis, Ann Arbor, MI, USA (1975) Doerr, B.: Optimal parameter settings for the (1+(λ,λ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+(\lambda , \lambda ))$$\end{document} genetic algorithm. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’16), pp. 1107–1114. ACM (2016) DoerrBJohannsenDKötzingTNeumannFTheileMMore effective crossover operators for the all-pairs shortest path problemTheor. Comput. Sci.20134711226300615910.1016/j.tcs.2012.10.0591259.68180 Devroye, L.: The compound random search. Ph.D. dissertation, Purdue University, West Lafayette, IN (1972) DoerrBDoerrCEbelFFrom black-box complexity to designing new genetic algorithmsTheor. Comput. Sci.201556787104329562610.1016/j.tcs.2014.11.0281314.68290 KernSMüllerSDHansenNBücheDOcenasekJKoumoutsakosPLearning probability distributions in continuous evolutionary algorithms–a comparative reviewNat. Comput.2004377112211328410.1023/B:NACO.0000023416.59689.4e1074.68063 Kötzing, T.: Concentration of first hitting times under additive drift. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’14), pp. 1391–1398. ACM (2014) Badkobeh, G., Lehre, P.K., Sudholt, D.: Unbiased black-box complexity of parallel search. In: Proceedings of Parallel Problem Solving from Nature (PPSN’14), Lecture Notes in Computer Science, vol. 8672, pp. 892–901. Springer (2014) Gießen, C., Witt, C.: Population size vs. mutation strength for the (1+λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}) EA on OneMax. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’15), pp. 1439–1446. ACM (2015) Dang, D., Friedrich, T., Kötzing, T., Krejca, M.S., Lehre, P.K., Oliveto, P.S., Sudholt, D., Sutton, A.M.: Emergence of diversity and its benefits for crossover in genetic algorithms. In: Proceedings of Parallel Problem Solving from Nature (PPSN’16), Lecture Notes in Computer Science, vol. 9921, pp. 890–900. Springer (2016) Doerr, B., Doerr, C., Kötzing, T.: The right mutation strength for multi-valued decision variables. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’16), pp. 1115–1122. ACM (2016). http://arxiv.org/abs/1604.03277 KarafotiasGHoogendoornMEibenAParameter control in evolutionary algorithms: trends and challengesIEEE Trans. Evol. Comput.20151916718710.1109/TEVC.2014.2308294 SchumerMASteiglitzKAdaptive step size random searchIEEE Trans. Autom. Control19681327027610.1109/TAC.1968.1098903 Lässig, J., Sudholt, D.: Adaptive population models for offspring populations and parallel evolutionary algorithms. In: Proceedings of Foundations of Genetic Algorithms (FOGA’11), pp. 181–192. ACM (2011) Oliveto, P.S., Lehre, P.K., Neumann, F.: Theoretical analysis of rank-based mutation—combining exploration and exploitation. In: Proceedings of Congress on Evolutionary Computation (CEC’09), pp. 1455–1462. IEEE (2009) Doerr, B., Doerr, C.: A tight runtime analysis of the (1+(λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document})) genetic algorithm on OneMax. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’15), pp. 1423–1430. ACM (2015) DoerrBKünnemannMOptimizing linear functions with the (1+λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}) evolutionary algorithm-different asymptotic runtimes for different instancesTheor. Comput. Sci.2015561323328218110.1016/j.tcs.2014.03.0151303.68120 Mironovich, V., Buzdalov, M.: Hard test generation for maximum flow algorithms with the fast crossover-based evolutionary algorithm. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’15) (Companion Material), pp. 1229–1232. ACM (2015) Dang, D.C., Lehre, P.K.: Self-adaptation of mutation rates in non-elitist populations. In: Proceedings of Parallel Problem Solving from Nature (PPSN’16), Lecture Notes in Computer Science, vol. 9921, pp. 803–813. Springer (2016) Doerr, B.: Analyzing randomized search heuristics: tools from probability theory. In: Auger, A., Doerr, B. (eds.) Theory of Randomized Search Heuristics, pp. 1–20. World Scientific Publishing (2011). http://www.worldscientific.com/doi/suppl/10.1142/7438/suppl_file/7438_chap01.pdf Zarges, C.: Rigorous runtime analysis of inversely fitness proportional mutation rates. In: Proceedings of Parallel Problem Solving from Nature (PPSN’08), Lecture Notes in Computer Science, vol. 5199, pp. 112–122. Springer (2008) Doerr, B., Doerr, C.: Optimal parameter choices through self-adjustment: Applying the 1/5-th rule in discrete settings. In: Proceedigns of Genetic and Evolutionary Computation Conference (GECCO’15), pp. 1335–1342. ACM (2015) Auger, A.: Benchmarking the (1+1) evolution strategy with one-fifth success rule on the BBOB-2009 function testbed. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’09), (Companion), pp. 2447–2452. ACM (2009) Sudholt, D.: Crossover speeds up building-block assembly. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’12), pp. 689–702. ACM (2012) DoerrBGoldbergLAAdaptive drift analysisAlgorithmica201365224250300480510.1007/s00453-011-9585-31277.68289 WittCTight bounds on the optimization time of a randomized search heuristic on linear functionsComb. Probab. Comput.201322294318302133610.1017/S09635483120006001258.68183 LehrePKWittCBlack-box search by unbiased variationAlgorithmica201264623642298946810.1007/s00453-012-9616-81264.68221 RechenbergIEvolutionsstrategie1973StuttgartFriedrich Fromman Verlag (Günther Holzboog KG) Zarges, C.: On the utility of the population size for inversely fitness proportional mutation rates. In: Proceedings of Foundations of Genetic Algorithms (FOGA’09), pp. 39–46. ACM (2009) Doerr, B., Doerr, C., Yang, J.: k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-bit mutation with self-adjusting k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} outperforms standard bit mutation. In: Proceedings of Parallel Problem Solving from Nature (PPSN’16), Lecture Notes in Computer Science, vol. 9921, pp. 824–834. Springer (2016) Auger, A., Hansen, N.: Linear Convergence on Positively Homogeneous Functions of a Comparison Based Step-size Adaptive Randomized Search: The (1+1) ES with Generalized One-fifth Success Rule (2013). http://arxiv.org/abs/1310.8397 DoerrBHappEKleinCCrossover can provably be useful in evolutionary computationTheor. Comput. Sci.20124251733289156110.1016/j.tcs.2010.10.0351267.68210 ErdősPRényiAOn two problems of information theoryMagyar Tudományos Akadémia Matematikai Kutató Intézet Közleményei196382292431659880119.34001 HeJYaoXDrift analysis and average time complexity of evolutionary algorithmsArtif. Intell.20011275785183176110.1016/S0004-3702(01)00058-30971.68129 Anil, G., Wiegand, R.P.: Black-box search by elimin 354_CR34 354_CR35 354_CR36 PK Lehre (354_CR48) 2012; 64 B Doerr (354_CR21) 2013; 65 C Witt (354_CR62) 2014; 114 T Jansen (354_CR43) 2006; 4 G Karafotias (354_CR44) 2015; 19 354_CR28 T Jansen (354_CR40) 2013 354_CR3 354_CR2 354_CR1 354_CR46 354_CR47 B Doerr (354_CR22) 2012; 425 354_CR9 354_CR8 354_CR7 354_CR6 354_CR5 354_CR4 B Doerr (354_CR16) 2015; 567 I Wegener (354_CR59) 2002 T Jansen (354_CR42) 2002; 34 354_CR37 354_CR39 C Witt (354_CR61) 2013; 22 354_CR11 354_CR12 354_CR56 354_CR13 354_CR57 354_CR14 354_CR58 354_CR51 354_CR53 354_CR10 B Doerr (354_CR23) 2013; 21 AE Eiben (354_CR31) 1999; 3 354_CR50 P Erdős (354_CR33) 1963; 8 S Kern (354_CR45) 2004; 3 PS Oliveto (354_CR52) 2011 B Doerr (354_CR27) 2015; 561 354_CR49 354_CR24 354_CR63 354_CR20 354_CR64 J He (354_CR38) 2001; 127 B Doerr (354_CR26) 2012; 64 354_CR60 B Doerr (354_CR25) 2013; 471 AE Eiben (354_CR32) 2003 S Droste (354_CR29) 2002; 276 I Rechenberg (354_CR54) 1973 MA Schumer (354_CR55) 1968; 13 354_CR19 354_CR15 T Jansen (354_CR41) 2005; 13 354_CR17 S Droste (354_CR30) 2006; 39 354_CR18  | 
    
| References_xml | – reference: Badkobeh, G., Lehre, P.K., Sudholt, D.: Unbiased black-box complexity of parallel search. In: Proceedings of Parallel Problem Solving from Nature (PPSN’14), Lecture Notes in Computer Science, vol. 8672, pp. 892–901. Springer (2014) – reference: OlivetoPSYaoXAugerADoerrBRuntime analysis of evolutionary algorithms for discrete optimizationTheory of Randomized Search Heuristics2011SingaporeWorld Scientific Publishing215210.1142/9789814282673_0002 – reference: Wegener, I.: Theoretical aspects of evolutionary algorithms. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) Proc. of the 28th International Colloquium on Automata, Languages and Programming (ICALP’01), Lecture Notes in Computer Science, vol. 2076, pp. 64–78. Springer (2001) – reference: Doerr, B., Doerr, C., Kötzing, T.: The right mutation strength for multi-valued decision variables. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’16), pp. 1115–1122. ACM (2016). http://arxiv.org/abs/1604.03277 – reference: Mitchell, M., Holland, J.H., Forrest, S.: When will a genetic algorithm outperform hill climbing? In: Proceedings of the 7th Neural Information Processing Systems Conference (NIPS’93), Advances in Neural Information Processing Systems, vol. 6, pp. 51–58. Morgan Kaufmann (1993) – reference: SchumerMASteiglitzKAdaptive step size random searchIEEE Trans. Autom. Control19681327027610.1109/TAC.1968.1098903 – reference: JansenTDe JongKAWegenerIOn the choice of the offspring population size in evolutionary algorithmsEvol. Comput.20051341344010.1162/106365605774666921 – reference: DoerrBHappEKleinCCrossover can provably be useful in evolutionary computationTheor. Comput. Sci.20124251733289156110.1016/j.tcs.2010.10.0351267.68210 – reference: Doerr, B., Johannsen, D., Kötzing, T., Lehre, P.K., Wagner, M., Winzen, C.: Faster black-box algorithms through higher arity operators. In: Proceedings of Foundations of Genetic Algorithms (FOGA’11), pp. 163–172. ACM (2011) – reference: Hansen, N., Gawelczyk, A., Ostermeier, A.: Sizing the population with respect to the local progress in (1,λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \lambda $$\end{document})-evolution strategies—a theoretical analysis. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC’95), pp. 80–85. IEEE (1995) – reference: Doerr, B., Doerr, C., Yang, J.: k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-bit mutation with self-adjusting k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} outperforms standard bit mutation. In: Proceedings of Parallel Problem Solving from Nature (PPSN’16), Lecture Notes in Computer Science, vol. 9921, pp. 824–834. Springer (2016) – reference: Raab, M., Steger, A.: “Balls into bins”—a simple and tight analysis. In: Proceedings of Randomization and Approximation Techniques in Computer Science (RANDOM’98), Lecture Notes in Computer Science, vol. 1518, pp. 159–170. Springer (1998) – reference: LehrePKWittCBlack-box search by unbiased variationAlgorithmica201264623642298946810.1007/s00453-012-9616-81264.68221 – reference: Fischer, S., Wegener, I.: The Ising model on the ring: mutation versus recombination. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’04), Lecture Notes in Computer Science, vol. 3102, pp. 1113–1124. Springer (2004) – reference: DoerrBJohannsenDWinzenCMultiplicative drift analysisAlgorithmica201264673697298947010.1007/s00453-012-9622-x1264.68220 – reference: Zarges, C.: Rigorous runtime analysis of inversely fitness proportional mutation rates. In: Proceedings of Parallel Problem Solving from Nature (PPSN’08), Lecture Notes in Computer Science, vol. 5199, pp. 112–122. Springer (2008) – reference: DoerrBJansenTSudholtDWinzenCZargesCMutation rate matters even when optimizing monotonic functionsEvol. Comput.20132112710.1162/EVCO_a_00055 – reference: DrosteSJansenTWegenerIUpper and lower bounds for randomized search heuristics in black-box optimizationTheory Comput. Syst.200639525544223751210.1007/s00224-004-1177-z1103.68115 – reference: DoerrBGoldbergLAAdaptive drift analysisAlgorithmica201365224250300480510.1007/s00453-011-9585-31277.68289 – reference: Dang, D., Friedrich, T., Kötzing, T., Krejca, M.S., Lehre, P.K., Oliveto, P.S., Sudholt, D., Sutton, A.M.: Escaping local optima with diversity mechanisms and crossover. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’16), pp. 645–652. ACM (2016) – reference: Anil, G., Wiegand, R.P.: Black-box search by elimination of fitness functions. In: Proceedings of Foundations of Genetic Algorithms (FOGA’09), pp. 67–78. ACM (2009) – reference: Doerr, B., Theile, M.: Improved analysis methods for crossover-based algorithms. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’09), pp. 247–254. ACM (2009) – reference: Doerr, B., Goldberg, L.A.: Drift analysis with tail bounds. In: Proceedings of Parallel Problem Solving from Nature (PPSN’10), Lecture Notes in Computer Science, vol. 6238, pp. 174–183. Springer (2010) – reference: Jägersküpper, J.: Rigorous runtime analysis of the (1+1) ES: 1/5-rule and ellipsoidal fitness landscapes. In: Proceedings of Foundations of Genetic Algorithms (FOGA’05), Lecture Notes in Computer Science, vol. 3469, pp. 260–281. Springer (2005) – reference: Gießen, C., Witt, C.: Population size vs. mutation strength for the (1+λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}) EA on OneMax. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’15), pp. 1439–1446. ACM (2015) – reference: RechenbergIEvolutionsstrategie1973StuttgartFriedrich Fromman Verlag (Günther Holzboog KG) – reference: KarafotiasGHoogendoornMEibenAParameter control in evolutionary algorithms: trends and challengesIEEE Trans. Evol. Comput.20151916718710.1109/TEVC.2014.2308294 – reference: Dang, D.C., Lehre, P.K.: Self-adaptation of mutation rates in non-elitist populations. In: Proceedings of Parallel Problem Solving from Nature (PPSN’16), Lecture Notes in Computer Science, vol. 9921, pp. 803–813. Springer (2016) – reference: KernSMüllerSDHansenNBücheDOcenasekJKoumoutsakosPLearning probability distributions in continuous evolutionary algorithms–a comparative reviewNat. Comput.2004377112211328410.1023/B:NACO.0000023416.59689.4e1074.68063 – reference: Doerr, B.: Optimal parameter settings for the (1+(λ,λ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+(\lambda , \lambda ))$$\end{document} genetic algorithm. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’16), pp. 1107–1114. ACM (2016) – reference: EibenAESmithJEIntroduction to Evolutionary Computing2003BerlinSpringer10.1007/978-3-662-05094-11028.68022 – reference: DoerrBJohannsenDKötzingTNeumannFTheileMMore effective crossover operators for the all-pairs shortest path problemTheor. Comput. Sci.20134711226300615910.1016/j.tcs.2012.10.0591259.68180 – reference: Sudholt, D.: Crossover is provably essential for the Ising model on trees. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’05), pp. 1161–1167. ACM Press (2005) – reference: HeJYaoXDrift analysis and average time complexity of evolutionary algorithmsArtif. Intell.20011275785183176110.1016/S0004-3702(01)00058-30971.68129 – reference: Wegener, I.: Simulated annealing beats metropolis in combinatorial optimization. In: Proceedings of International Colloquium on Automata, Languages and Programming (ICALP’05), Lecture Notes in Computer Science, vol. 3580, pp. 589–601. Springer (2005) – reference: JansenTAnalyzing Evolutionary Algorithms: The Computer Science Perspective2013BerlinSpringer10.1007/978-3-642-17339-41282.68008 – reference: Doerr, B., Doerr, C., Ebel, F.: Lessons from the black-box: Fast crossover-based genetic algorithms. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’13), pp. 781–788. ACM (2013) – reference: Doerr, B., Doerr, C.: Optimal parameter choices through self-adjustment: Applying the 1/5-th rule in discrete settings. In: Proceedigns of Genetic and Evolutionary Computation Conference (GECCO’15), pp. 1335–1342. ACM (2015) – reference: Doerr, B.: Analyzing randomized search heuristics: tools from probability theory. In: Auger, A., Doerr, B. (eds.) Theory of Randomized Search Heuristics, pp. 1–20. World Scientific Publishing (2011). http://www.worldscientific.com/doi/suppl/10.1142/7438/suppl_file/7438_chap01.pdf – reference: DrosteSJansenTWegenerIOn the analysis of the (1+1) evolutionary algorithmTheor. Comput. Sci.20022765181189634710.1016/S0304-3975(01)00182-71002.68037 – reference: Doerr, B., Doerr, C.: A tight runtime analysis of the (1+(λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document})) genetic algorithm on OneMax. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’15), pp. 1423–1430. ACM (2015) – reference: Mironovich, V., Buzdalov, M.: Hard test generation for maximum flow algorithms with the fast crossover-based evolutionary algorithm. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’15) (Companion Material), pp. 1229–1232. ACM (2015) – reference: Auger, A., Hansen, N.: Linear Convergence on Positively Homogeneous Functions of a Comparison Based Step-size Adaptive Randomized Search: The (1+1) ES with Generalized One-fifth Success Rule (2013). http://arxiv.org/abs/1310.8397 – reference: DoerrBDoerrCEbelFFrom black-box complexity to designing new genetic algorithmsTheor. Comput. Sci.201556787104329562610.1016/j.tcs.2014.11.0281314.68290 – reference: Doerr, B., Doerr, C., Kötzing, T.: Provably optimal self-adjusting step sizes for multi-valued decision variables. In: Proceedings of Parallel Problem Solving from Nature (PPSN’16), Lecture Notes in Computer Science, vol. 9921, pp. 782–791. Springer (2016) – reference: Zarges, C.: On the utility of the population size for inversely fitness proportional mutation rates. In: Proceedings of Foundations of Genetic Algorithms (FOGA’09), pp. 39–46. ACM (2009) – reference: Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mutation rates for the LeadingOnes problem. In: Proceedings of Parallel Problem Solving from Nature (PPSN’10), Lecture Notes in Computer Science, vol. 6238, pp. 1–10. Springer (2010) – reference: WegenerISarkerRMohammadianMYaoXMethods for the analysis of evolutionary algorithms on pseudo-Boolean functionsEvolutionary Optimization2002BerlinKluwer349369 – reference: Auger, A.: Benchmarking the (1+1) evolution strategy with one-fifth success rule on the BBOB-2009 function testbed. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’09), (Companion), pp. 2447–2452. ACM (2009) – reference: Lässig, J., Sudholt, D.: Adaptive population models for offspring populations and parallel evolutionary algorithms. In: Proceedings of Foundations of Genetic Algorithms (FOGA’11), pp. 181–192. ACM (2011) – reference: JansenTWegenerIThe analysis of evolutionary algorithms–a proof that crossover really can helpAlgorithmica2002344766191292710.1007/s00453-002-0940-21016.68030 – reference: WittCFitness levels with tail bounds for the analysis of randomized search heuristicsInf. Process. Lett.20141143841312838810.1016/j.ipl.2013.09.0131329.68281 – reference: Oliveto, P.S., Lehre, P.K., Neumann, F.: Theoretical analysis of rank-based mutation—combining exploration and exploitation. In: Proceedings of Congress on Evolutionary Computation (CEC’09), pp. 1455–1462. IEEE (2009) – reference: ErdősPRényiAOn two problems of information theoryMagyar Tudományos Akadémia Matematikai Kutató Intézet Közleményei196382292431659880119.34001 – reference: Dang, D., Friedrich, T., Kötzing, T., Krejca, M.S., Lehre, P.K., Oliveto, P.S., Sudholt, D., Sutton, A.M.: Emergence of diversity and its benefits for crossover in genetic algorithms. In: Proceedings of Parallel Problem Solving from Nature (PPSN’16), Lecture Notes in Computer Science, vol. 9921, pp. 890–900. Springer (2016) – reference: Sudholt, D.: Crossover speeds up building-block assembly. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’12), pp. 689–702. ACM (2012) – reference: DoerrBKünnemannMOptimizing linear functions with the (1+λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}) evolutionary algorithm-different asymptotic runtimes for different instancesTheor. Comput. Sci.2015561323328218110.1016/j.tcs.2014.03.0151303.68120 – reference: Devroye, L.: The compound random search. Ph.D. dissertation, Purdue University, West Lafayette, IN (1972) – reference: Goldman, B.W., Punch, W.F.: Parameter-less population pyramid. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’14), pp. 785–792. ACM (2014) – reference: JansenTWegenerIOn the analysis of a dynamic evolutionary algorithmJ. Discrete Algorithms20064181199221174510.1016/j.jda.2005.01.0021128.68118 – reference: EibenAEHinterdingRMichalewiczZParameter control in evolutionary algorithmsIEEE Trans. Evol. Comput.1999312414110.1109/4235.771166 – reference: De Jong, K.A.: An analysis of the behavior of a class of genetic adaptive systems. Ph.D. thesis, Ann Arbor, MI, USA (1975) – reference: Kötzing, T.: Concentration of first hitting times under additive drift. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’14), pp. 1391–1398. ACM (2014) – reference: WittCTight bounds on the optimization time of a randomized search heuristic on linear functionsComb. Probab. Comput.201322294318302133610.1017/S09635483120006001258.68183 – ident: 354_CR1 doi: 10.1145/1527125.1527135 – start-page: 21 volume-title: Theory of Randomized Search Heuristics year: 2011 ident: 354_CR52 doi: 10.1142/9789814282673_0002 – ident: 354_CR49 doi: 10.1145/2739482.2768487 – volume: 13 start-page: 270 year: 1968 ident: 354_CR55 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.1968.1098903 – ident: 354_CR56 doi: 10.1145/1068009.1068202 – volume: 21 start-page: 1 year: 2013 ident: 354_CR23 publication-title: Evol. Comput. doi: 10.1162/EVCO_a_00055 – ident: 354_CR9 – ident: 354_CR15 doi: 10.1145/2463372.2463480 – volume: 567 start-page: 87 year: 2015 ident: 354_CR16 publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2014.11.028 – ident: 354_CR53 doi: 10.1007/3-540-49543-6_13 – ident: 354_CR10 – ident: 354_CR37 doi: 10.1109/ICEC.1995.489123 – volume-title: Introduction to Evolutionary Computing year: 2003 ident: 354_CR32 doi: 10.1007/978-3-662-05094-1 – volume: 127 start-page: 57 year: 2001 ident: 354_CR38 publication-title: Artif. Intell. doi: 10.1016/S0004-3702(01)00058-3 – volume: 114 start-page: 38 year: 2014 ident: 354_CR62 publication-title: Inf. Process. Lett. doi: 10.1016/j.ipl.2013.09.013 – volume: 8 start-page: 229 year: 1963 ident: 354_CR33 publication-title: Magyar Tudományos Akadémia Matematikai Kutató Intézet Közleményei – start-page: 349 volume-title: Evolutionary Optimization year: 2002 ident: 354_CR59 – volume: 65 start-page: 224 year: 2013 ident: 354_CR21 publication-title: Algorithmica doi: 10.1007/s00453-011-9585-3 – volume: 4 start-page: 181 year: 2006 ident: 354_CR43 publication-title: J. Discrete Algorithms doi: 10.1016/j.jda.2005.01.002 – ident: 354_CR39 doi: 10.1007/11513575_14 – ident: 354_CR64 doi: 10.1145/1527125.1527132 – ident: 354_CR19 doi: 10.1007/978-3-319-45823-6_77 – ident: 354_CR57 doi: 10.1145/2330163.2330260 – ident: 354_CR34 doi: 10.1007/978-3-540-24854-5_109 – volume-title: Evolutionsstrategie year: 1973 ident: 354_CR54 – ident: 354_CR11 – ident: 354_CR17 doi: 10.1007/978-3-319-45823-6_73 – ident: 354_CR36 doi: 10.1145/2576768.2598350 – volume: 13 start-page: 413 year: 2005 ident: 354_CR41 publication-title: Evol. Comput. doi: 10.1162/106365605774666921 – ident: 354_CR24 doi: 10.1145/1967654.1967669 – ident: 354_CR28 doi: 10.1145/1569901.1569937 – ident: 354_CR47 doi: 10.1145/1967654.1967671 – ident: 354_CR63 doi: 10.1007/978-3-540-87700-4_12 – ident: 354_CR14 doi: 10.1145/2739480.2754683 – ident: 354_CR8 doi: 10.1007/978-3-319-45823-6_75 – ident: 354_CR60 doi: 10.1007/11523468_48 – ident: 354_CR7 doi: 10.1145/2908812.2908956 – ident: 354_CR13 doi: 10.1145/2739480.2754684 – ident: 354_CR50 – volume: 34 start-page: 47 year: 2002 ident: 354_CR42 publication-title: Algorithmica doi: 10.1007/s00453-002-0940-2 – ident: 354_CR2 doi: 10.1145/1570256.1570342 – volume: 561 start-page: 3 year: 2015 ident: 354_CR27 publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2014.03.015 – volume: 19 start-page: 167 year: 2015 ident: 354_CR44 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2308294 – volume: 64 start-page: 623 year: 2012 ident: 354_CR48 publication-title: Algorithmica doi: 10.1007/s00453-012-9616-8 – ident: 354_CR12 doi: 10.1145/2908812.2908885 – ident: 354_CR46 doi: 10.1145/2576768.2598364 – ident: 354_CR51 doi: 10.1109/CEC.2009.4983114 – ident: 354_CR3 – volume: 39 start-page: 525 year: 2006 ident: 354_CR30 publication-title: Theory Comput. Syst. doi: 10.1007/s00224-004-1177-z – volume: 471 start-page: 12 year: 2013 ident: 354_CR25 publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2012.10.059 – ident: 354_CR35 doi: 10.1145/2739480.2754738 – ident: 354_CR4 doi: 10.1007/978-3-319-10762-2_88 – volume: 22 start-page: 294 year: 2013 ident: 354_CR61 publication-title: Comb. Probab. Comput. doi: 10.1017/S0963548312000600 – volume: 3 start-page: 77 year: 2004 ident: 354_CR45 publication-title: Nat. Comput. doi: 10.1023/B:NACO.0000023416.59689.4e – volume: 3 start-page: 124 year: 1999 ident: 354_CR31 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.771166 – volume-title: Analyzing Evolutionary Algorithms: The Computer Science Perspective year: 2013 ident: 354_CR40 doi: 10.1007/978-3-642-17339-4 – ident: 354_CR18 – ident: 354_CR5 doi: 10.1007/978-3-642-15844-5_1 – volume: 425 start-page: 17 year: 2012 ident: 354_CR22 publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2010.10.035 – ident: 354_CR6 doi: 10.1007/978-3-319-45823-6_83 – volume: 276 start-page: 51 year: 2002 ident: 354_CR29 publication-title: Theor. Comput. Sci. doi: 10.1016/S0304-3975(01)00182-7 – ident: 354_CR20 doi: 10.1007/978-3-642-15844-5_18 – volume: 64 start-page: 673 year: 2012 ident: 354_CR26 publication-title: Algorithmica doi: 10.1007/s00453-012-9622-x – ident: 354_CR58 doi: 10.1007/3-540-48224-5_6  | 
    
| SSID | ssj0012796 | 
    
| Score | 2.554081 | 
    
| Snippet | The
(
1
+
(
λ
,
λ
)
)
 genetic algorithm proposed in Doerr et al. (Theor Comput Sci 567:87–104,
2015
) is one of the few examples for which a super-constant... The (1+(λ,λ)) genetic algorithm proposed in Doerr et al. (Theor Comput Sci 567:87–104, 2015) is one of the few examples for which a super-constant speed-up of... The (1 + (λ, λ)) genetic algorithm (GA) proposed in [Doerr, Doerr, and Ebel. From black-box complexity to designing new genetic algorithms. Theoretical...  | 
    
| SourceID | unpaywall hal proquest crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1658 | 
    
| SubjectTerms | Algorithm Analysis and Problem Complexity Algorithms Bias Computer Science Computer Systems Organization and Communication Networks Data Structures and Algorithms Data Structures and Information Theory Genetic algorithms Mathematics of Computing Mutation Neural and Evolutionary Computing Optimization Parameters Run time (computers) Special Issue on Genetic and Evolutionary Computation Theory of Computation  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB5BOLQcCvQhUgJaoR6g6Upr79qOjxYCRaiFSm0kerLs9S6hMk6URyt-W_5DfhMzjm2ohKi4eh-2Z2ZnvtHMzgB8UjokSZEcFaHkSqY-T8Oe5q4l-VLKZj5dcP524fcH6vzKu6rucU_rbPc6JFlq6uayG6EPyv0JuJCe4uE6bHhUzQuFeOBGTejADcqmXNR2niu0z3Uo86kt_jFG60NKhXyEM5vQ6Ca8mhfj5O5vkuePrM_ZNrypYCOLVnzegTVTvIWtuiUDq07oO_h1iSrgFmcSiLzRLCky9sPklkfZb-rbVVyz7wnlY9Gqk-GI1ARD3MoQB7Ijp3u0XHxZLo6PGZWjpg2i_Ho0uZkNb9_D4Oz050mfV90TuJahnPEkERbNeaa0UaFW2qd_V8bRnrIaHQ-RIv9CG6SJCYRxpCM9kVl0WZW0wreZ_ACtYlSYXWCBxkFNOYjWIwDSk5mSIsmEFY5RRrZB1GSMdVVanDpc5HFTFLmkfIyUj4nycdiGz82S8aquxnOTD5E3zTyqiN2Pvsb0DBGrjx6S-8dpQ6dmXVydw2nsUjmg0i9qQ7dm58PwM2_sNhz___d9fNHee_AaP6u3yprsQGs2mZt9RDaz9KCU5Hspkuo1 priority: 102 providerName: Springer Nature  | 
    
| Title | Optimal Static and Self-Adjusting Parameter Choices for the (1+(λ,λ)) Genetic Algorithm | 
    
| URI | https://link.springer.com/article/10.1007/s00453-017-0354-9 https://www.proquest.com/docview/2017100306 https://hal.science/hal-01668262  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 80 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-0541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012796 issn: 0178-4617 databaseCode: AFBBN dateStart: 19861101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-0541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012796 issn: 0178-4617 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-0541 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012796 issn: 0178-4617 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtNAEB21yQPwQLmKlBKtkB8S0q3W2bUTP7pVQ8QlVIJIrYRk2WtvU-o6VeuAQOLL-Ae-iRnfKDwEIUtry56VLzM7e0aePQNgKe2RpUiOjlByJSOXR95Y86Eh-1LKxC4tcH47c6dz9erYOd4AVq-FWSDirHw_HWOk67qIgNHJtl0H0XYL2vPZkX9SZCZiAKTcoqguzvpDjujDrn9cipIn1KFkoREX0lHc-2Pq2VxQ4uMNVNn8CL0Dt1bZZfj1S5imN-aayVaZ83hdUBRSisn53iqP9vS3vwgc173GPbhbAU3ml5ZxHzaS7AFs1UUcWDWmH8L3d-g0LlCSYOeZZmEWs_dJargff6JKX9kpOwopg4t6HSyW5FgYIl2GyJFZVs8e9D6iVUVxyHbrg37fsliP2WyA7c8fbJeaPm5Eck038dPT5dVZvrh4BPPJ4YeDKa9qMnAtPZnzMBQGQUKsdKI8rbRL31gltnaU0RjOiAitwjOjKExGIrGlLR0RGwyElTTCNbF8DK1smSVPgI00XtSU2WgcgjVjGSspwlgYYScqkR0QtboCXRGWU92MNGiolgsNB6jhgDQceB140XS5LNk61gk_R9U0csSzPfXfBHSuVtdnuwM7tYkE1ei-DoZEMlREWx0Y1Gbz-_KaOw4ay_r3823_l_RTuI2PNS5zMXeglV-tkmeIl_KoC21_sr8_o_3Lk9eHXdicD_1uNZB-AQaVCcU | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fT9RAEJ_I8YA-iH_jKerG-ACeS7bdbXt9bAhwyoEmHgk8bdrtLoeWHoGeRr8a34HP5MxdW9AYDK_t7na6Ozv7m8zsbwDeKhOTpkiOhlByJbOQZ3HfcN-Rfinl8pAuOO_uhYN99fEgOKjvcZ832e5NSHJmqdvLboQ-KPcn4kIGiscLsKjQP_E7sJhsH-5stsEDP5qV5aLC81zhCd0EM_81yB_H0cKYkiGvIc02OHoPlqblafrzR1oU186frWUYNZLP006-rU-rbN38-ovU8Za_9gDu13iUJXMFegh3bPkIlptaD6ze-o_h8BPalhNsSej02LC0zNkXWzie5F-pIFh5xD6nlOhFvTbGE7I_DAExQ4DJVr3e6uXF-8uLtTVGPNc0QFIcTc6Oq_HJE9jf2hxtDHhdloEbGcuKp6lwiBNyZayKjTIhCa-sZwLlDHo0IkPFiF2UpTYS1pOeDETu0BdW0onQ5fIpdMpJaZ8Biwy-NJTc6AJCNn2ZKynSXDjhWWVlF0SzOtrUnOVUOqPQLdvybOo0Tp2mqdNxF961XU7nhB03NX6DS962I6rtQTLU9AyhcIiul__d68JKoxG63uDn2ieeoZnD1YVes6hXr2_4Yq9VpP_L9_xWY7-GpcFod6iHH_Z2XsBdFLE_T81cgU51NrUvET5V2at6u_wG4jUJ8A | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1tT9RAEJ4IJiof8D0coG6MH8Bzw7a7ba8fG_RyKiKJXoKfNu2-cJjSu0DB-Nv4D_wmZ-7aionB-LX70nZmdveZzOwzAK-USclSJMeNUHIli5gX6cDw0JN9KeVtTBecP-3Ho7H6cBgdNnVOz9ps9zYkubjTQCxNVb0zs36nu_hGSITygBIuZKR4ugS3FfEkoEGPw6wLI4TJvEAXlaDnCs_qNqz5tyn-OJiWJpQWeQ1zdmHSFbh7Xs3ynz_ysrx2Eg0fwGoDIVm20PlDuOWqR3C_Lc_AmtX6GL59xu3gBHsSoDw2LK8s--JKzzP7nWp4VUfsIKfcLBq1O5nSlsEQwzLEhGwr6G9dXb65utzeZkRNTRNk5dH09LienDyB8fDd190RbyopcCNTWfM8Fx6PdquMU6lRJqZ_Vy4wkfIGnRBRoC5TnxS5S4QLZCAjYT26r0p6EXsrn8JyNa3cGrDEYKOhfEQfERgZSKukyK3wInDKyR6IVozaNDTjVO2i1B1B8lzyGiWvSfI67cHrbshswbFxU-eXqJuuH7Fjj7I9Tc8QvcboLYUXQQ82W9XpZk2e6ZCogeY-Ug_6rTp_N9_wxn6n8X9_3_p_zf0C7hy8Heq99_sfN-AefuFgkUy5Ccv16bl7hoCnLp7PjfoXNczxXQ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ta9RAEF7q9YP6wfqKV6sskg93Xrdsbjd7l4-hWA7RWtCDCkLY7EuvNs2VNqco-Mv8D_4mZ_Jm9cOJBJaQnbBJZnb2GXbyDCGBNDFaimDgCAWTIlMsi6eGjT3al5TeKvzB-c2hms3lq-PoeIPQ9l-YBSDOxvfjOUS6SgECBie7qSJA2z2yOT88Sj5UmYkQAElVFdWFVX_MAH2E7cYlr3lCI0wWmjAuIsniP5aeGwtMfLyGKruN0Nvk5qq40F-_6Dy_ttYcbNU5j1cVRSGmmJztrcpsz3z7i8Bx3WvcJXcaoEmT2jLukQ1X3CdbbREH2szpB-T7W3Aa5yCJsPPUUF1Y-s7lniX2E1b6Kk7okcYMLrxrf7FEx0IB6VJAjjQIBuFo8BGsKrOa7rYnw2EQ0AEN6Qjanz_oLjZDOJDkGgdJ8pPl5Wm5OH9I5gcv3-_PWFOTgRkRi5JpzT2ABCuNk7GRRuE3li40kfQGwhmegVXEfpJpN-EuFKGIuPUQCEvhufJWPCK9Ylm4x4RODHQazGz0EcKaqbBScG2556GTTvQJb9WVmoawHOtm5GlHtVxpOAUNp6jhNO6TF90tFzVbxzrh56CaTg55tmfJ6xSvter6HPbJTmsiaTO7r9IxkgxV0VafjFqz-d29ZsRRZ1n_fr7t_5J-Qm7BY03rXMwd0isvV-4p4KUye9ZMmV9hWgXM | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Static+and+Self-Adjusting+Parameter+Choices+for+the+%28+1+%2B+%28+%CE%BB+%2C+%CE%BB+%29+%29+Genetic+Algorithm&rft.jtitle=Algorithmica&rft.au=Doerr%2C+Benjamin&rft.au=Doerr%2C+Carola&rft.date=2018-05-01&rft.pub=Springer+Verlag&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=80&rft.spage=1658&rft.epage=1709&rft_id=info:doi/10.1007%2Fs00453-017-0354-9&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01668262v1 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon |