Analytical solution of the strain-controlled magnetic domain wall motion in bilayer piezoelectric/magnetostrictive nanostructures
The one-dimensional propagation of magnetic domain walls in an isotropic, linearly elastic, magnetostrictive material is investigated in the framework of the extended Landau-Lifshitz-Gilbert equation where the effects of a spin-polarized current and a rate-independent dry-friction dissipation are ta...
        Saved in:
      
    
          | Published in | Journal of applied physics Vol. 121; no. 4 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Melville
          American Institute of Physics
    
        28.01.2017
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0021-8979 1089-7550  | 
| DOI | 10.1063/1.4974534 | 
Cover
| Abstract | The one-dimensional propagation of magnetic domain walls in an isotropic, linearly elastic, magnetostrictive material is investigated in the framework of the extended Landau-Lifshitz-Gilbert equation where the effects of a spin-polarized current and a rate-independent dry-friction dissipation are taken into account. In our analysis, it is assumed that the ferromagnet is subject to a spatially uniform biaxial in-plain stress generated by a piezoelectric substrate combined with the former in a multiferroic heterostructure. Moreover, a possible connection between the dry-friction mechanism and the piezo-induced strains is conjectured. By adopting the traveling waves ansatz, the effect of such a stress on the domain wall dynamics is explored in both steady and precessional regimes. In particular, it is proved that the magnetoelastic contribution, while it does not formally modify the classical solution, affects both the propagation threshold and the Walker Breakdown conditions involved in the steady regime, in agreement with recent experimental results. In the precessional regime, it is shown that the existence of a correlation between the piezo-induced strains and dry-friction leads to an upward shift of the domain wall velocity. | 
    
|---|---|
| AbstractList | The one-dimensional propagation of magnetic domain walls in an isotropic, linearly elastic, magnetostrictive material is investigated in the framework of the extended Landau-Lifshitz-Gilbert equation where the effects of a spin-polarized current and a rate-independent dry-friction dissipation are taken into account. In our analysis, it is assumed that the ferromagnet is subject to a spatially uniform biaxial in-plain stress generated by a piezoelectric substrate combined with the former in a multiferroic heterostructure. Moreover, a possible connection between the dry-friction mechanism and the piezo-induced strains is conjectured. By adopting the traveling waves ansatz, the effect of such a stress on the domain wall dynamics is explored in both steady and precessional regimes. In particular, it is proved that the magnetoelastic contribution, while it does not formally modify the classical solution, affects both the propagation threshold and the Walker Breakdown conditions involved in the steady regime, in agreement with recent experimental results. In the precessional regime, it is shown that the existence of a correlation between the piezo-induced strains and dry-friction leads to an upward shift of the domain wall velocity. | 
    
| Author | Valenti, Giovanna Consolo, Giancarlo  | 
    
| Author_xml | – sequence: 1 givenname: Giancarlo surname: Consolo fullname: Consolo, Giancarlo email: gconsolo@unime.it organization: University of Messina – sequence: 2 givenname: Giovanna surname: Valenti fullname: Valenti, Giovanna organization: University of Messina  | 
    
| BookMark | eNp9kMFqGzEQhkVxIHaSQ95A0FMKa0urXa90DCZpC4FekvMyK82mCrLkSloH55Y3726dUihNT8PPfP_AfAsy88EjIZecLTlbixVfVqqpalF9IHPOpCqaumYzMmes5IVUjToli5SeGONcCjUnr9ce3CFbDY6m4IZsg6ehp_k70pQjWF_o4HMMzqGhW3j0OMLUhO24os_gHN2GX6UxdtbBASPdWXwJ6FDnaPXqWAppCtnukXrwUxp0HiKmc3LSg0t48TbPyMPtzf3mS3H37fPXzfVdoYUSuVDacOikErKBCowCWVeNWTclih5Zh1oBdFB3faMMNyhlb-oSuTJalNVa9uKMfDze3cXwY8CU26cwxPH71JZ8RJTiTTVSV0dKx5BSxL7dRbuFeGg5ayfDLW_fDI_s6i9W2wyTjEmc-2fj07GRfpP_Pf8uvA_xD9juTC9-Al_4oB4 | 
    
| CODEN | JAPIAU | 
    
| CitedBy_id | crossref_primary_10_1103_PhysRevB_103_134431 crossref_primary_10_1002_aelm_201800467 crossref_primary_10_1007_s10409_024_23613_x crossref_primary_10_1063_1_5119085 crossref_primary_10_1007_s00707_024_04069_9 crossref_primary_10_1002_zamm_202300783 crossref_primary_10_1016_j_amc_2021_126894 crossref_primary_10_3390_act10060134 crossref_primary_10_3233_JCM_215576 crossref_primary_10_1007_s00033_022_01911_9 crossref_primary_10_1002_mma_9487 crossref_primary_10_1007_s11587_020_00484_x crossref_primary_10_1063_5_0103237 crossref_primary_10_1088_1402_4896_ad9c2e crossref_primary_10_1080_15376494_2022_2111731 crossref_primary_10_1016_j_apm_2020_02_014 crossref_primary_10_1007_s00033_024_02289_6 crossref_primary_10_1007_s11587_018_0374_z crossref_primary_10_1177_1081286518810741 crossref_primary_10_1080_15376494_2023_2283787 crossref_primary_10_1088_1402_4896_ad6cae crossref_primary_10_1103_PhysRevB_101_014405 crossref_primary_10_1002_apxr_202200106  | 
    
| Cites_doi | 10.1016/j.cam.2006.03.043 10.1016/j.apm.2013.07.032 10.1016/j.mechmat.2003.04.004 10.1143/JPSJ.75.064708 10.1103/PhysRevB.82.041301 10.1063/1.4817645 10.1007/s10440-012-9733-z 10.1063/1.3354104 10.1063/1.4942388 10.1063/1.333530 10.1088/0957-4484/25/43/435701 10.1038/nmat3657 10.1103/PhysRevLett.93.127204 10.1109/LMAG.2011.2159484 10.1063/1.4903216 10.1038/ncomms2386 10.1016/j.apm.2011.12.024 10.1103/PhysRevB.85.144411 10.1016/j.ssc.2013.12.019 10.1209/epl/i2004-10452-6 10.1103/PhysRevB.75.014440 10.1109/TMAG.2002.1017766 10.1109/TMAG.2013.2288911 10.1021/acs.nanolett.5b05046 10.1016/S0921-4526(97)00322-0 10.1063/1.352599 10.1063/1.1363604 10.1063/1.1663252 10.1140/epjb/e20020080 10.1016/j.actamat.2005.03.002 10.1103/PhysRevLett.95.187206 10.1143/JPSJ.76.054707 10.1088/1367-2630/11/1/013021  | 
    
| ContentType | Journal Article | 
    
| Copyright | Author(s) 2017 Author(s). Published by AIP Publishing.  | 
    
| Copyright_xml | – notice: Author(s) – notice: 2017 Author(s). Published by AIP Publishing.  | 
    
| DBID | AAYXX CITATION 8FD H8D L7M  | 
    
| DOI | 10.1063/1.4974534 | 
    
| DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitleList | CrossRef Technology Research Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Physics  | 
    
| EISSN | 1089-7550 | 
    
| ExternalDocumentID | 10_1063_1_4974534 jap  | 
    
| GroupedDBID | -DZ -~X .DC 1UP 2-P 29J 4.4 53G 5GY 5VS 85S AAAAW AABDS AAEUA AAIKC AAMNW AAPUP AAYIH ABFTF ABJNI ABRJW ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS RXW SC5 TAE TN5 TWZ UCJ UHB UPT WH7 XSW YQT YZZ ZCA ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M  | 
    
| ID | FETCH-LOGICAL-c393t-9cd1ab89387a4ad9a8547d672e3fe0bec9aaba5bf79d1de88fd52e19dc32468f3 | 
    
| ISSN | 0021-8979 | 
    
| IngestDate | Mon Jun 30 05:36:23 EDT 2025 Wed Oct 01 04:29:31 EDT 2025 Thu Apr 24 23:12:58 EDT 2025 Fri Jun 21 00:16:07 EDT 2024 Sun Jul 14 11:27:01 EDT 2019  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| License | 0021-8979/2017/121(4)/043903/10/$30.00 Published by AIP Publishing.  | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c393t-9cd1ab89387a4ad9a8547d672e3fe0bec9aaba5bf79d1de88fd52e19dc32468f3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2124699174 | 
    
| PQPubID | 2050677 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | crossref_primary_10_1063_1_4974534 scitation_primary_10_1063_1_4974534 crossref_citationtrail_10_1063_1_4974534 proquest_journals_2124699174  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2017-01-28 | 
    
| PublicationDateYYYYMMDD | 2017-01-28 | 
    
| PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-28 day: 28  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Melville | 
    
| PublicationPlace_xml | – name: Melville | 
    
| PublicationTitle | Journal of applied physics | 
    
| PublicationYear | 2017 | 
    
| Publisher | American Institute of Physics | 
    
| Publisher_xml | – name: American Institute of Physics | 
    
| References | Consolo, Currò, Valenti (c18) 2014 De Ranieri (c4) 2013 Brandl (c6) 2014 Zhu (c30) 2001 Zhang, Chen (c31) 2005 Tatara (c32) 2006 Zhang, Li (c13) 2004 Consolo, Valenti (c25) 2012 Yamanouchi (c34) 2011 Landau, Lifshitz (c9) 1935 Consolo (c24) 2012 Thiaville (c14) 2005 Visintin (c21) 1997 Gilbert (c10) 1955 Liang (c28) 2014 Mballa-Mballa (c29) 2014 Bryan (c16) 2012 Baltensperger, Helman (c20) 1993 Podio-Guidugli, Tomassetti (c22) 2002 Tiberkevich, Slavin (c23) 2007 Liu (c2) 2010 Tatara (c15) 2007 Shu, Lin, Wu (c26) 2004 Consolo, Currò, Valenti (c17) 2014 Zighem (c5) 2013 Mathurin (c7) 2016 Berger (c12) 1984 Haghgoo (c35) 2010 Masmanidis (c36) 2005 Lei (c3) 2013 Schryer, Walker (c11) 1974 Weiler (c1) 2009 Hu (c8) 2016 Banas (c27) 2008 Chen, Pardo, Sanchez (c33) 2002 (2023062512585185500_c21) 1997; 233 (2023062512585185500_c2) 2010; 107 (2023062512585185500_c15) 2007; 76 (2023062512585185500_c19) 1979 (2023062512585185500_c30) 2001; 89 (2023062512585185500_c25) 2012; 122 (2023062512585185500_c35) 2010; 82 (2023062512585185500_c4) 2013; 12 (2023062512585185500_c36) 2005; 95 (2023062512585185500_c31) 2005; 53 (2023062512585185500_c20) 1993; 73 (2023062512585185500_c10) 1955; 100 (2023062512585185500_c23) 2007; 75 (2023062512585185500_c3) 2013; 4 (2023062512585185500_c1) 2009; 11 (2023062512585185500_c8) 2016; 16 (2023062512585185500_c6) 2014; 198 (2023062512585185500_c24) 2012; 36 (2023062512585185500_c22) 2002; 26 (2023062512585185500_c7) 2016; 108 (2023062512585185500_c16) 2012; 85 (2023062512585185500_c5) 2013; 114 (2023062512585185500_c13) 2004; 93 (2023062512585185500_c14) 2005; 69 (2023062512585185500_c33) 2002; 38 (2023062512585185500_c9) 1935; 8 (2023062512585185500_c27) 2008; 215 (2023062512585185500_c29) 2014; 50 (2023062512585185500_c11) 1974; 45 (2023062512585185500_c34) 2011; 2 (2023062512585185500_c28) 2014; 25 (2023062512585185500_c26) 2004; 36 (2023062512585185500_c32) 2006; 75 (2023062512585185500_c12) 1984; 55 (2023062512585185500_c18) 2014; 38 (2023062512585185500_c17) 2014; 116  | 
    
| References_xml | – start-page: 808 year: 2013 ident: c4 publication-title: Nat. Mater. – start-page: 6516 year: 1993 ident: c20 publication-title: J. Appl. Phys. – start-page: 1742 year: 2002 ident: c33 publication-title: IEEE Trans. Magn. – start-page: 13 year: 2014 ident: c6 publication-title: Solid State Commun. – start-page: 041301 (R) year: 2010 ident: c35 publication-title: Phys. Rev. B – start-page: 975 year: 2004 ident: c26 publication-title: Mech. Mater. – start-page: 3000304 year: 2011 ident: c34 publication-title: IEEE Magn. Lett. – start-page: 187206 year: 2005 ident: c36 publication-title: Phys. Rev. Lett. – start-page: 014440 year: 2007 ident: c23 publication-title: Phys. Rev. B – start-page: 064708 year: 2006 ident: c32 publication-title: J. Phys. Soc. Jpn. – start-page: 213908 year: 2014 ident: c17 publication-title: J. Appl. Phys. – start-page: 1954 year: 1984 ident: c12 publication-title: J. Appl. Phys. – start-page: 435701 year: 2014 ident: c28 publication-title: Nanotechnology – start-page: 2341 year: 2016 ident: c8 publication-title: Nano Lett. – start-page: 1243 year: 1955 ident: c10 publication-title: Phys. Rev. – start-page: 127204 year: 2004 ident: c13 publication-title: Phys. Rev. Lett. – start-page: 7009 year: 2001 ident: c30 publication-title: J. Appl. Phys. – start-page: 5406 year: 1974 ident: c11 publication-title: J. Appl. Phys. – start-page: 990 year: 2005 ident: c14 publication-title: Europhys. Lett. – start-page: 4876 year: 2012 ident: c24 publication-title: Appl. Math. Modelling – start-page: 013021 year: 2009 ident: c1 publication-title: New J. Phys. – start-page: 1378 year: 2013 ident: c3 publication-title: Nat. Commun. – start-page: 054707 year: 2007 ident: c15 publication-title: J. Phys. Soc. Jpn. – start-page: 073916 year: 2010 ident: c2 publication-title: J. Appl. Phys. – start-page: 304 year: 2008 ident: c27 publication-title: J. Comp. Appl. Math. – start-page: 365 year: 1997 ident: c21 publication-title: Physica B – start-page: 073902 year: 2013 ident: c5 publication-title: J. Appl. Phys. – start-page: 7100104 year: 2014 ident: c29 publication-title: IEEE Trans. Magn. – start-page: 2845 year: 2005 ident: c31 publication-title: Acta Mater. – start-page: 101 year: 1935 ident: c9 publication-title: Phys. Z. Sowjet – start-page: 144411 year: 2012 ident: c16 publication-title: Phys. Rev. B – start-page: 141 year: 2012 ident: c25 publication-title: Acta Appl. Math. – start-page: 1001 year: 2014 ident: c18 publication-title: Appl. Math. Modell. – start-page: 082401 year: 2016 ident: c7 publication-title: Appl. Phys. Lett. – start-page: 191 year: 2002 ident: c22 publication-title: Eur. Phys. J. B – volume: 8 start-page: 101 year: 1935 ident: 2023062512585185500_c9 publication-title: Phys. Z. Sowjet – volume: 215 start-page: 304 year: 2008 ident: 2023062512585185500_c27 publication-title: J. Comp. Appl. Math. doi: 10.1016/j.cam.2006.03.043 – volume: 38 start-page: 1001 year: 2014 ident: 2023062512585185500_c18 publication-title: Appl. Math. Modell. doi: 10.1016/j.apm.2013.07.032 – volume: 36 start-page: 975 year: 2004 ident: 2023062512585185500_c26 publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2003.04.004 – volume: 75 start-page: 064708 year: 2006 ident: 2023062512585185500_c32 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.75.064708 – volume: 82 start-page: 041301 (R) year: 2010 ident: 2023062512585185500_c35 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.041301 – volume: 100 start-page: 1243 year: 1955 ident: 2023062512585185500_c10 publication-title: Phys. Rev. – volume: 114 start-page: 073902 year: 2013 ident: 2023062512585185500_c5 publication-title: J. Appl. Phys. doi: 10.1063/1.4817645 – volume: 122 start-page: 141 year: 2012 ident: 2023062512585185500_c25 publication-title: Acta Appl. Math. doi: 10.1007/s10440-012-9733-z – volume: 107 start-page: 073916 year: 2010 ident: 2023062512585185500_c2 publication-title: J. Appl. Phys. doi: 10.1063/1.3354104 – volume: 108 start-page: 082401 year: 2016 ident: 2023062512585185500_c7 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4942388 – volume: 55 start-page: 1954 year: 1984 ident: 2023062512585185500_c12 publication-title: J. Appl. Phys. doi: 10.1063/1.333530 – volume: 25 start-page: 435701 year: 2014 ident: 2023062512585185500_c28 publication-title: Nanotechnology doi: 10.1088/0957-4484/25/43/435701 – volume-title: Magnetic Domain Walls in Bubble Materials year: 1979 ident: 2023062512585185500_c19 – volume: 12 start-page: 808 year: 2013 ident: 2023062512585185500_c4 publication-title: Nat. Mater. doi: 10.1038/nmat3657 – volume: 93 start-page: 127204 year: 2004 ident: 2023062512585185500_c13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.127204 – volume: 2 start-page: 3000304 year: 2011 ident: 2023062512585185500_c34 publication-title: IEEE Magn. Lett. doi: 10.1109/LMAG.2011.2159484 – volume: 116 start-page: 213908 year: 2014 ident: 2023062512585185500_c17 publication-title: J. Appl. Phys. doi: 10.1063/1.4903216 – volume: 4 start-page: 1378 year: 2013 ident: 2023062512585185500_c3 publication-title: Nat. Commun. doi: 10.1038/ncomms2386 – volume: 36 start-page: 4876 year: 2012 ident: 2023062512585185500_c24 publication-title: Appl. Math. Modelling doi: 10.1016/j.apm.2011.12.024 – volume: 85 start-page: 144411 year: 2012 ident: 2023062512585185500_c16 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.144411 – volume: 198 start-page: 13 year: 2014 ident: 2023062512585185500_c6 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2013.12.019 – volume: 69 start-page: 990 year: 2005 ident: 2023062512585185500_c14 publication-title: Europhys. Lett. doi: 10.1209/epl/i2004-10452-6 – volume: 75 start-page: 014440 year: 2007 ident: 2023062512585185500_c23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.014440 – volume: 38 start-page: 1742 year: 2002 ident: 2023062512585185500_c33 publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2002.1017766 – volume: 50 start-page: 7100104 year: 2014 ident: 2023062512585185500_c29 publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2013.2288911 – volume: 16 start-page: 2341 year: 2016 ident: 2023062512585185500_c8 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b05046 – volume: 233 start-page: 365 year: 1997 ident: 2023062512585185500_c21 publication-title: Physica B doi: 10.1016/S0921-4526(97)00322-0 – volume: 73 start-page: 6516 year: 1993 ident: 2023062512585185500_c20 publication-title: J. Appl. Phys. doi: 10.1063/1.352599 – volume: 89 start-page: 7009 year: 2001 ident: 2023062512585185500_c30 publication-title: J. Appl. Phys. doi: 10.1063/1.1363604 – volume: 45 start-page: 5406 year: 1974 ident: 2023062512585185500_c11 publication-title: J. Appl. Phys. doi: 10.1063/1.1663252 – volume: 26 start-page: 191 year: 2002 ident: 2023062512585185500_c22 publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e20020080 – volume: 53 start-page: 2845 year: 2005 ident: 2023062512585185500_c31 publication-title: Acta Mater. doi: 10.1016/j.actamat.2005.03.002 – volume: 95 start-page: 187206 year: 2005 ident: 2023062512585185500_c36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.187206 – volume: 76 start-page: 054707 year: 2007 ident: 2023062512585185500_c15 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.76.054707 – volume: 11 start-page: 013021 year: 2009 ident: 2023062512585185500_c1 publication-title: New J. Phys. doi: 10.1088/1367-2630/11/1/013021  | 
    
| SSID | ssj0011839 | 
    
| Score | 2.3600166 | 
    
| Snippet | The one-dimensional propagation of magnetic domain walls in an isotropic, linearly elastic, magnetostrictive material is investigated in the framework of the... | 
    
| SourceID | proquest crossref scitation  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| SubjectTerms | Applied physics Axial stress Bilayers Domain walls Ferromagnetism Friction Heterostructures Isotropic material Magnetic domains Magnetostriction Piezoelectricity Propagation Substrates Traveling waves  | 
    
| Title | Analytical solution of the strain-controlled magnetic domain wall motion in bilayer piezoelectric/magnetostrictive nanostructures | 
    
| URI | http://dx.doi.org/10.1063/1.4974534 https://www.proquest.com/docview/2124699174  | 
    
| Volume | 121 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1089-7550 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011839 issn: 0021-8979 databaseCode: ADMLS dateStart: 19850101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJwQ8IBggBgNZwANS5a5ubvYTmrhNiCEkNrS3yI4dVNTFVdeBtDf-Occ5dtqyCg1eoiZ2nNTns_P5-FwIeZGpKjU6F6yCzztLx6ZmIpc5S2tRc17Jka687_Dhp_zgOP1wkp30eq9WrJbOF3pYXWz0K_kfqcI1kKv3kv0HyXaNwgX4DfKFI0gYjleScRtRBJXR8UFxz_-szf3AgiX6FGjlqfrWeI_FgXGnUDT46TelMYmPV3royVQB_R7MJvbCYXKcSQWvhrc5n96jnRoHjWocRp09nwcDxMvkVgVyi4qTjrf79KAON3vet9qU-dTFsq_KfwAnWOaA4GNe76iS4N52Nbp4RxcBzoTELDFDizPrSEhWZBhltpt60Ts6YCzdOKUDh_LahWEKK58sKD7XI2R_V7NrZGsM0_qoT7b23xx-_NJtJHkCiFY--EYxuFSe7HVNrlOS5TrjBpAQtIdYoRxHd8jt0J10HwV_l_Rss01urUSQ3CbXP2MH3yO_lmCgEQzU1RTAQC-BgUYwUAQD9WCgCAYKpwEMdA0Me39Cga5D4T45fvf26PUBC_k1WJXIZMFkZbjSQFhFoVJlpBJZWpi8GNuktiMY3FIprTJdF9JwY4WoTTa2XJoKWHgu6uQB6TeusQ8JlXbMjdbCtKZzApYdSvg4UAWvYcArvkNexi4uY6f6vz4tWyOIPCl5GaSxQ551VWcYcWVTpd0opzIMyLMSWFiaw3qngOLnnez-1siGWj_cfFmjnJn60ZXaekxuLkfCLulD39snQFcX-mmA5G-WoZ_o | 
    
| linkProvider | EBSCOhost | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytical+solution+of+the+strain-controlled+magnetic+domain+wall+motion+in+bilayer+piezoelectric%2Fmagnetostrictive+nanostructures&rft.jtitle=Journal+of+applied+physics&rft.au=Consolo%2C+Giancarlo&rft.au=Valenti%2C+Giovanna&rft.date=2017-01-28&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=121&rft.issue=4&rft_id=info:doi/10.1063%2F1.4974534&rft.externalDocID=jap | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon |