Analytical solution of the strain-controlled magnetic domain wall motion in bilayer piezoelectric/magnetostrictive nanostructures

The one-dimensional propagation of magnetic domain walls in an isotropic, linearly elastic, magnetostrictive material is investigated in the framework of the extended Landau-Lifshitz-Gilbert equation where the effects of a spin-polarized current and a rate-independent dry-friction dissipation are ta...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physics Vol. 121; no. 4
Main Authors Consolo, Giancarlo, Valenti, Giovanna
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 28.01.2017
Subjects
Online AccessGet full text
ISSN0021-8979
1089-7550
DOI10.1063/1.4974534

Cover

Abstract The one-dimensional propagation of magnetic domain walls in an isotropic, linearly elastic, magnetostrictive material is investigated in the framework of the extended Landau-Lifshitz-Gilbert equation where the effects of a spin-polarized current and a rate-independent dry-friction dissipation are taken into account. In our analysis, it is assumed that the ferromagnet is subject to a spatially uniform biaxial in-plain stress generated by a piezoelectric substrate combined with the former in a multiferroic heterostructure. Moreover, a possible connection between the dry-friction mechanism and the piezo-induced strains is conjectured. By adopting the traveling waves ansatz, the effect of such a stress on the domain wall dynamics is explored in both steady and precessional regimes. In particular, it is proved that the magnetoelastic contribution, while it does not formally modify the classical solution, affects both the propagation threshold and the Walker Breakdown conditions involved in the steady regime, in agreement with recent experimental results. In the precessional regime, it is shown that the existence of a correlation between the piezo-induced strains and dry-friction leads to an upward shift of the domain wall velocity.
AbstractList The one-dimensional propagation of magnetic domain walls in an isotropic, linearly elastic, magnetostrictive material is investigated in the framework of the extended Landau-Lifshitz-Gilbert equation where the effects of a spin-polarized current and a rate-independent dry-friction dissipation are taken into account. In our analysis, it is assumed that the ferromagnet is subject to a spatially uniform biaxial in-plain stress generated by a piezoelectric substrate combined with the former in a multiferroic heterostructure. Moreover, a possible connection between the dry-friction mechanism and the piezo-induced strains is conjectured. By adopting the traveling waves ansatz, the effect of such a stress on the domain wall dynamics is explored in both steady and precessional regimes. In particular, it is proved that the magnetoelastic contribution, while it does not formally modify the classical solution, affects both the propagation threshold and the Walker Breakdown conditions involved in the steady regime, in agreement with recent experimental results. In the precessional regime, it is shown that the existence of a correlation between the piezo-induced strains and dry-friction leads to an upward shift of the domain wall velocity.
Author Valenti, Giovanna
Consolo, Giancarlo
Author_xml – sequence: 1
  givenname: Giancarlo
  surname: Consolo
  fullname: Consolo, Giancarlo
  email: gconsolo@unime.it
  organization: University of Messina
– sequence: 2
  givenname: Giovanna
  surname: Valenti
  fullname: Valenti, Giovanna
  organization: University of Messina
BookMark eNp9kMFqGzEQhkVxIHaSQ95A0FMKa0urXa90DCZpC4FekvMyK82mCrLkSloH55Y3726dUihNT8PPfP_AfAsy88EjIZecLTlbixVfVqqpalF9IHPOpCqaumYzMmes5IVUjToli5SeGONcCjUnr9ce3CFbDY6m4IZsg6ehp_k70pQjWF_o4HMMzqGhW3j0OMLUhO24os_gHN2GX6UxdtbBASPdWXwJ6FDnaPXqWAppCtnukXrwUxp0HiKmc3LSg0t48TbPyMPtzf3mS3H37fPXzfVdoYUSuVDacOikErKBCowCWVeNWTclih5Zh1oBdFB3faMMNyhlb-oSuTJalNVa9uKMfDze3cXwY8CU26cwxPH71JZ8RJTiTTVSV0dKx5BSxL7dRbuFeGg5ayfDLW_fDI_s6i9W2wyTjEmc-2fj07GRfpP_Pf8uvA_xD9juTC9-Al_4oB4
CODEN JAPIAU
CitedBy_id crossref_primary_10_1103_PhysRevB_103_134431
crossref_primary_10_1002_aelm_201800467
crossref_primary_10_1007_s10409_024_23613_x
crossref_primary_10_1063_1_5119085
crossref_primary_10_1007_s00707_024_04069_9
crossref_primary_10_1002_zamm_202300783
crossref_primary_10_1016_j_amc_2021_126894
crossref_primary_10_3390_act10060134
crossref_primary_10_3233_JCM_215576
crossref_primary_10_1007_s00033_022_01911_9
crossref_primary_10_1002_mma_9487
crossref_primary_10_1007_s11587_020_00484_x
crossref_primary_10_1063_5_0103237
crossref_primary_10_1088_1402_4896_ad9c2e
crossref_primary_10_1080_15376494_2022_2111731
crossref_primary_10_1016_j_apm_2020_02_014
crossref_primary_10_1007_s00033_024_02289_6
crossref_primary_10_1007_s11587_018_0374_z
crossref_primary_10_1177_1081286518810741
crossref_primary_10_1080_15376494_2023_2283787
crossref_primary_10_1088_1402_4896_ad6cae
crossref_primary_10_1103_PhysRevB_101_014405
crossref_primary_10_1002_apxr_202200106
Cites_doi 10.1016/j.cam.2006.03.043
10.1016/j.apm.2013.07.032
10.1016/j.mechmat.2003.04.004
10.1143/JPSJ.75.064708
10.1103/PhysRevB.82.041301
10.1063/1.4817645
10.1007/s10440-012-9733-z
10.1063/1.3354104
10.1063/1.4942388
10.1063/1.333530
10.1088/0957-4484/25/43/435701
10.1038/nmat3657
10.1103/PhysRevLett.93.127204
10.1109/LMAG.2011.2159484
10.1063/1.4903216
10.1038/ncomms2386
10.1016/j.apm.2011.12.024
10.1103/PhysRevB.85.144411
10.1016/j.ssc.2013.12.019
10.1209/epl/i2004-10452-6
10.1103/PhysRevB.75.014440
10.1109/TMAG.2002.1017766
10.1109/TMAG.2013.2288911
10.1021/acs.nanolett.5b05046
10.1016/S0921-4526(97)00322-0
10.1063/1.352599
10.1063/1.1363604
10.1063/1.1663252
10.1140/epjb/e20020080
10.1016/j.actamat.2005.03.002
10.1103/PhysRevLett.95.187206
10.1143/JPSJ.76.054707
10.1088/1367-2630/11/1/013021
ContentType Journal Article
Copyright Author(s)
2017 Author(s). Published by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2017 Author(s). Published by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/1.4974534
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1089-7550
ExternalDocumentID 10_1063_1_4974534
jap
GroupedDBID -DZ
-~X
.DC
1UP
2-P
29J
4.4
53G
5GY
5VS
85S
AAAAW
AABDS
AAEUA
AAIKC
AAMNW
AAPUP
AAYIH
ABFTF
ABJNI
ABRJW
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
RXW
SC5
TAE
TN5
TWZ
UCJ
UHB
UPT
WH7
XSW
YQT
YZZ
ZCA
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c393t-9cd1ab89387a4ad9a8547d672e3fe0bec9aaba5bf79d1de88fd52e19dc32468f3
ISSN 0021-8979
IngestDate Mon Jun 30 05:36:23 EDT 2025
Wed Oct 01 04:29:31 EDT 2025
Thu Apr 24 23:12:58 EDT 2025
Fri Jun 21 00:16:07 EDT 2024
Sun Jul 14 11:27:01 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License 0021-8979/2017/121(4)/043903/10/$30.00
Published by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c393t-9cd1ab89387a4ad9a8547d672e3fe0bec9aaba5bf79d1de88fd52e19dc32468f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2124699174
PQPubID 2050677
PageCount 10
ParticipantIDs crossref_primary_10_1063_1_4974534
scitation_primary_10_1063_1_4974534
crossref_citationtrail_10_1063_1_4974534
proquest_journals_2124699174
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-28
PublicationDateYYYYMMDD 2017-01-28
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-28
  day: 28
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Journal of applied physics
PublicationYear 2017
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Consolo, Currò, Valenti (c18) 2014
De Ranieri (c4) 2013
Brandl (c6) 2014
Zhu (c30) 2001
Zhang, Chen (c31) 2005
Tatara (c32) 2006
Zhang, Li (c13) 2004
Consolo, Valenti (c25) 2012
Yamanouchi (c34) 2011
Landau, Lifshitz (c9) 1935
Consolo (c24) 2012
Thiaville (c14) 2005
Visintin (c21) 1997
Gilbert (c10) 1955
Liang (c28) 2014
Mballa-Mballa (c29) 2014
Bryan (c16) 2012
Baltensperger, Helman (c20) 1993
Podio-Guidugli, Tomassetti (c22) 2002
Tiberkevich, Slavin (c23) 2007
Liu (c2) 2010
Tatara (c15) 2007
Shu, Lin, Wu (c26) 2004
Consolo, Currò, Valenti (c17) 2014
Zighem (c5) 2013
Mathurin (c7) 2016
Berger (c12) 1984
Haghgoo (c35) 2010
Masmanidis (c36) 2005
Lei (c3) 2013
Schryer, Walker (c11) 1974
Weiler (c1) 2009
Hu (c8) 2016
Banas (c27) 2008
Chen, Pardo, Sanchez (c33) 2002
(2023062512585185500_c21) 1997; 233
(2023062512585185500_c2) 2010; 107
(2023062512585185500_c15) 2007; 76
(2023062512585185500_c19) 1979
(2023062512585185500_c30) 2001; 89
(2023062512585185500_c25) 2012; 122
(2023062512585185500_c35) 2010; 82
(2023062512585185500_c4) 2013; 12
(2023062512585185500_c36) 2005; 95
(2023062512585185500_c31) 2005; 53
(2023062512585185500_c20) 1993; 73
(2023062512585185500_c10) 1955; 100
(2023062512585185500_c23) 2007; 75
(2023062512585185500_c3) 2013; 4
(2023062512585185500_c1) 2009; 11
(2023062512585185500_c8) 2016; 16
(2023062512585185500_c6) 2014; 198
(2023062512585185500_c24) 2012; 36
(2023062512585185500_c22) 2002; 26
(2023062512585185500_c7) 2016; 108
(2023062512585185500_c16) 2012; 85
(2023062512585185500_c5) 2013; 114
(2023062512585185500_c13) 2004; 93
(2023062512585185500_c14) 2005; 69
(2023062512585185500_c33) 2002; 38
(2023062512585185500_c9) 1935; 8
(2023062512585185500_c27) 2008; 215
(2023062512585185500_c29) 2014; 50
(2023062512585185500_c11) 1974; 45
(2023062512585185500_c34) 2011; 2
(2023062512585185500_c28) 2014; 25
(2023062512585185500_c26) 2004; 36
(2023062512585185500_c32) 2006; 75
(2023062512585185500_c12) 1984; 55
(2023062512585185500_c18) 2014; 38
(2023062512585185500_c17) 2014; 116
References_xml – start-page: 808
  year: 2013
  ident: c4
  publication-title: Nat. Mater.
– start-page: 6516
  year: 1993
  ident: c20
  publication-title: J. Appl. Phys.
– start-page: 1742
  year: 2002
  ident: c33
  publication-title: IEEE Trans. Magn.
– start-page: 13
  year: 2014
  ident: c6
  publication-title: Solid State Commun.
– start-page: 041301 (R)
  year: 2010
  ident: c35
  publication-title: Phys. Rev. B
– start-page: 975
  year: 2004
  ident: c26
  publication-title: Mech. Mater.
– start-page: 3000304
  year: 2011
  ident: c34
  publication-title: IEEE Magn. Lett.
– start-page: 187206
  year: 2005
  ident: c36
  publication-title: Phys. Rev. Lett.
– start-page: 014440
  year: 2007
  ident: c23
  publication-title: Phys. Rev. B
– start-page: 064708
  year: 2006
  ident: c32
  publication-title: J. Phys. Soc. Jpn.
– start-page: 213908
  year: 2014
  ident: c17
  publication-title: J. Appl. Phys.
– start-page: 1954
  year: 1984
  ident: c12
  publication-title: J. Appl. Phys.
– start-page: 435701
  year: 2014
  ident: c28
  publication-title: Nanotechnology
– start-page: 2341
  year: 2016
  ident: c8
  publication-title: Nano Lett.
– start-page: 1243
  year: 1955
  ident: c10
  publication-title: Phys. Rev.
– start-page: 127204
  year: 2004
  ident: c13
  publication-title: Phys. Rev. Lett.
– start-page: 7009
  year: 2001
  ident: c30
  publication-title: J. Appl. Phys.
– start-page: 5406
  year: 1974
  ident: c11
  publication-title: J. Appl. Phys.
– start-page: 990
  year: 2005
  ident: c14
  publication-title: Europhys. Lett.
– start-page: 4876
  year: 2012
  ident: c24
  publication-title: Appl. Math. Modelling
– start-page: 013021
  year: 2009
  ident: c1
  publication-title: New J. Phys.
– start-page: 1378
  year: 2013
  ident: c3
  publication-title: Nat. Commun.
– start-page: 054707
  year: 2007
  ident: c15
  publication-title: J. Phys. Soc. Jpn.
– start-page: 073916
  year: 2010
  ident: c2
  publication-title: J. Appl. Phys.
– start-page: 304
  year: 2008
  ident: c27
  publication-title: J. Comp. Appl. Math.
– start-page: 365
  year: 1997
  ident: c21
  publication-title: Physica B
– start-page: 073902
  year: 2013
  ident: c5
  publication-title: J. Appl. Phys.
– start-page: 7100104
  year: 2014
  ident: c29
  publication-title: IEEE Trans. Magn.
– start-page: 2845
  year: 2005
  ident: c31
  publication-title: Acta Mater.
– start-page: 101
  year: 1935
  ident: c9
  publication-title: Phys. Z. Sowjet
– start-page: 144411
  year: 2012
  ident: c16
  publication-title: Phys. Rev. B
– start-page: 141
  year: 2012
  ident: c25
  publication-title: Acta Appl. Math.
– start-page: 1001
  year: 2014
  ident: c18
  publication-title: Appl. Math. Modell.
– start-page: 082401
  year: 2016
  ident: c7
  publication-title: Appl. Phys. Lett.
– start-page: 191
  year: 2002
  ident: c22
  publication-title: Eur. Phys. J. B
– volume: 8
  start-page: 101
  year: 1935
  ident: 2023062512585185500_c9
  publication-title: Phys. Z. Sowjet
– volume: 215
  start-page: 304
  year: 2008
  ident: 2023062512585185500_c27
  publication-title: J. Comp. Appl. Math.
  doi: 10.1016/j.cam.2006.03.043
– volume: 38
  start-page: 1001
  year: 2014
  ident: 2023062512585185500_c18
  publication-title: Appl. Math. Modell.
  doi: 10.1016/j.apm.2013.07.032
– volume: 36
  start-page: 975
  year: 2004
  ident: 2023062512585185500_c26
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2003.04.004
– volume: 75
  start-page: 064708
  year: 2006
  ident: 2023062512585185500_c32
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.75.064708
– volume: 82
  start-page: 041301 (R)
  year: 2010
  ident: 2023062512585185500_c35
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.041301
– volume: 100
  start-page: 1243
  year: 1955
  ident: 2023062512585185500_c10
  publication-title: Phys. Rev.
– volume: 114
  start-page: 073902
  year: 2013
  ident: 2023062512585185500_c5
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4817645
– volume: 122
  start-page: 141
  year: 2012
  ident: 2023062512585185500_c25
  publication-title: Acta Appl. Math.
  doi: 10.1007/s10440-012-9733-z
– volume: 107
  start-page: 073916
  year: 2010
  ident: 2023062512585185500_c2
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3354104
– volume: 108
  start-page: 082401
  year: 2016
  ident: 2023062512585185500_c7
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4942388
– volume: 55
  start-page: 1954
  year: 1984
  ident: 2023062512585185500_c12
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.333530
– volume: 25
  start-page: 435701
  year: 2014
  ident: 2023062512585185500_c28
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/25/43/435701
– volume-title: Magnetic Domain Walls in Bubble Materials
  year: 1979
  ident: 2023062512585185500_c19
– volume: 12
  start-page: 808
  year: 2013
  ident: 2023062512585185500_c4
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3657
– volume: 93
  start-page: 127204
  year: 2004
  ident: 2023062512585185500_c13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.127204
– volume: 2
  start-page: 3000304
  year: 2011
  ident: 2023062512585185500_c34
  publication-title: IEEE Magn. Lett.
  doi: 10.1109/LMAG.2011.2159484
– volume: 116
  start-page: 213908
  year: 2014
  ident: 2023062512585185500_c17
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4903216
– volume: 4
  start-page: 1378
  year: 2013
  ident: 2023062512585185500_c3
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2386
– volume: 36
  start-page: 4876
  year: 2012
  ident: 2023062512585185500_c24
  publication-title: Appl. Math. Modelling
  doi: 10.1016/j.apm.2011.12.024
– volume: 85
  start-page: 144411
  year: 2012
  ident: 2023062512585185500_c16
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.144411
– volume: 198
  start-page: 13
  year: 2014
  ident: 2023062512585185500_c6
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2013.12.019
– volume: 69
  start-page: 990
  year: 2005
  ident: 2023062512585185500_c14
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i2004-10452-6
– volume: 75
  start-page: 014440
  year: 2007
  ident: 2023062512585185500_c23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.014440
– volume: 38
  start-page: 1742
  year: 2002
  ident: 2023062512585185500_c33
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2002.1017766
– volume: 50
  start-page: 7100104
  year: 2014
  ident: 2023062512585185500_c29
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2013.2288911
– volume: 16
  start-page: 2341
  year: 2016
  ident: 2023062512585185500_c8
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b05046
– volume: 233
  start-page: 365
  year: 1997
  ident: 2023062512585185500_c21
  publication-title: Physica B
  doi: 10.1016/S0921-4526(97)00322-0
– volume: 73
  start-page: 6516
  year: 1993
  ident: 2023062512585185500_c20
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.352599
– volume: 89
  start-page: 7009
  year: 2001
  ident: 2023062512585185500_c30
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1363604
– volume: 45
  start-page: 5406
  year: 1974
  ident: 2023062512585185500_c11
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1663252
– volume: 26
  start-page: 191
  year: 2002
  ident: 2023062512585185500_c22
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e20020080
– volume: 53
  start-page: 2845
  year: 2005
  ident: 2023062512585185500_c31
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2005.03.002
– volume: 95
  start-page: 187206
  year: 2005
  ident: 2023062512585185500_c36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.187206
– volume: 76
  start-page: 054707
  year: 2007
  ident: 2023062512585185500_c15
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.76.054707
– volume: 11
  start-page: 013021
  year: 2009
  ident: 2023062512585185500_c1
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/11/1/013021
SSID ssj0011839
Score 2.3600166
Snippet The one-dimensional propagation of magnetic domain walls in an isotropic, linearly elastic, magnetostrictive material is investigated in the framework of the...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Applied physics
Axial stress
Bilayers
Domain walls
Ferromagnetism
Friction
Heterostructures
Isotropic material
Magnetic domains
Magnetostriction
Piezoelectricity
Propagation
Substrates
Traveling waves
Title Analytical solution of the strain-controlled magnetic domain wall motion in bilayer piezoelectric/magnetostrictive nanostructures
URI http://dx.doi.org/10.1063/1.4974534
https://www.proquest.com/docview/2124699174
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1089-7550
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011839
  issn: 0021-8979
  databaseCode: ADMLS
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJwQ8IBggBgNZwANS5a5ubvYTmrhNiCEkNrS3yI4dVNTFVdeBtDf-Occ5dtqyCg1eoiZ2nNTns_P5-FwIeZGpKjU6F6yCzztLx6ZmIpc5S2tRc17Jka687_Dhp_zgOP1wkp30eq9WrJbOF3pYXWz0K_kfqcI1kKv3kv0HyXaNwgX4DfKFI0gYjleScRtRBJXR8UFxz_-szf3AgiX6FGjlqfrWeI_FgXGnUDT46TelMYmPV3royVQB_R7MJvbCYXKcSQWvhrc5n96jnRoHjWocRp09nwcDxMvkVgVyi4qTjrf79KAON3vet9qU-dTFsq_KfwAnWOaA4GNe76iS4N52Nbp4RxcBzoTELDFDizPrSEhWZBhltpt60Ts6YCzdOKUDh_LahWEKK58sKD7XI2R_V7NrZGsM0_qoT7b23xx-_NJtJHkCiFY--EYxuFSe7HVNrlOS5TrjBpAQtIdYoRxHd8jt0J10HwV_l_Rss01urUSQ3CbXP2MH3yO_lmCgEQzU1RTAQC-BgUYwUAQD9WCgCAYKpwEMdA0Me39Cga5D4T45fvf26PUBC_k1WJXIZMFkZbjSQFhFoVJlpBJZWpi8GNuktiMY3FIprTJdF9JwY4WoTTa2XJoKWHgu6uQB6TeusQ8JlXbMjdbCtKZzApYdSvg4UAWvYcArvkNexi4uY6f6vz4tWyOIPCl5GaSxQ551VWcYcWVTpd0opzIMyLMSWFiaw3qngOLnnez-1siGWj_cfFmjnJn60ZXaekxuLkfCLulD39snQFcX-mmA5G-WoZ_o
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytical+solution+of+the+strain-controlled+magnetic+domain+wall+motion+in+bilayer+piezoelectric%2Fmagnetostrictive+nanostructures&rft.jtitle=Journal+of+applied+physics&rft.au=Consolo%2C+Giancarlo&rft.au=Valenti%2C+Giovanna&rft.date=2017-01-28&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=121&rft.issue=4&rft_id=info:doi/10.1063%2F1.4974534&rft.externalDocID=jap
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon