A method to obtain scattering phase function based on particle size distribution and refractive index retrieved from Aurora 4000 multi-angle scattering measurements: A numerical study

Scattering phase function of aerosol particles is crucial to the accurate estimation of aerosol direct radiative forcing, and is also of great interest in the field of remote sensing. One feasible and promising way to obtain scattering phase function on a long-term scale with satisfying temporal res...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric environment (1994) Vol. 315; p. 120138
Main Authors Ran, Liang, Zhou, Fang, Deng, Zhaoze, Zhou, Minqiang, Wang, Pucai
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.12.2023
Subjects
Online AccessGet full text
ISSN1352-2310
1873-2844
DOI10.1016/j.atmosenv.2023.120138

Cover

Abstract Scattering phase function of aerosol particles is crucial to the accurate estimation of aerosol direct radiative forcing, and is also of great interest in the field of remote sensing. One feasible and promising way to obtain scattering phase function on a long-term scale with satisfying temporal resolution is based upon the particle size distribution (PSD) and the refractive index (m = n + ik) simultaneously retrieved from multi-wavelength multi-angle scattering detected by Aurora 4000, a commercially available and easily operated, as well as lab- and field-deployable instrument. In this study, a retrieval algorithm was specifically developed according to the characteristics of Aurora 4000 measurements, using the regularization method. The algorithm was systematically evaluated for its applicability, capability and limitation by a series of designed numerical experiments, considering both monomodal and bimodal log-normal distributions with various settings of parameters and different m, in order to be prepared for its application in field studies. The retrieval algorithm has exhibited a successful performance in deriving the PSDs and the real part of the refractive index (n) without a priori assumptions about the shape of the PSDs and the value of n, and consequently in obtaining scattering phase function, for aerosol particles from purely scattering to slightly absorbing (the imaginary part of the refractive index k ≤ 0.01) both without and with assumed measurement errors (when ±ψs≤±3%). Under such circumstances, relative errors in retrieved effective diameter (De), total surface area concentration (Sa), total volume concentration (Va) are almost within ±20%, relative errors in retrieved total number concentration (Na) stay roughly within ±50%, and absolute errors of n are well within ±0.02. Moreover, relative errors in backscattering ratio (BSR) and the defined parameter to describe relative errors in scattering phase function (δP), as good indicators for demonstrating how well scattering phase function can be captured, averagely locate within ±20% and ±10%, respectively. In contrast, relative errors in the widely used parameters of the asymmetry parameter (g) and hemispheric backscattering ratio (HBSR) remain still quite small even when considerable deviations can be observed in the forward and backward scattering regimes. Hopefully, when applied in field studies in the next step, the retrieval algorithm established in this study will improve our knowledge and understanding on angular scattering properties of ambient aerosol particles, as well as the associated impacts on aerosol direct radiative forcing. •An algorithm is developed for Aurora 4000 to retrieve particle size distribution and estimate refractive index.•The algorithm is systematically evaluated by a series of numerical experiments.•Aerosol scattering phase function is obtained from retrieved parameters.
AbstractList Scattering phase function of aerosol particles is crucial to the accurate estimation of aerosol direct radiative forcing, and is also of great interest in the field of remote sensing. One feasible and promising way to obtain scattering phase function on a long-term scale with satisfying temporal resolution is based upon the particle size distribution (PSD) and the refractive index (m = n + ik) simultaneously retrieved from multi-wavelength multi-angle scattering detected by Aurora 4000, a commercially available and easily operated, as well as lab- and field-deployable instrument. In this study, a retrieval algorithm was specifically developed according to the characteristics of Aurora 4000 measurements, using the regularization method. The algorithm was systematically evaluated for its applicability, capability and limitation by a series of designed numerical experiments, considering both monomodal and bimodal log-normal distributions with various settings of parameters and different m, in order to be prepared for its application in field studies. The retrieval algorithm has exhibited a successful performance in deriving the PSDs and the real part of the refractive index (n) without a priori assumptions about the shape of the PSDs and the value of n, and consequently in obtaining scattering phase function, for aerosol particles from purely scattering to slightly absorbing (the imaginary part of the refractive index k ≤ 0.01) both without and with assumed measurement errors (when ±ψₛ≤±3%). Under such circumstances, relative errors in retrieved effective diameter (Dₑ), total surface area concentration (Sₐ), total volume concentration (Vₐ) are almost within ±20%, relative errors in retrieved total number concentration (Nₐ) stay roughly within ±50%, and absolute errors of n are well within ±0.02. Moreover, relative errors in backscattering ratio (BSR) and the defined parameter to describe relative errors in scattering phase function (δP), as good indicators for demonstrating how well scattering phase function can be captured, averagely locate within ±20% and ±10%, respectively. In contrast, relative errors in the widely used parameters of the asymmetry parameter (g) and hemispheric backscattering ratio (HBSR) remain still quite small even when considerable deviations can be observed in the forward and backward scattering regimes. Hopefully, when applied in field studies in the next step, the retrieval algorithm established in this study will improve our knowledge and understanding on angular scattering properties of ambient aerosol particles, as well as the associated impacts on aerosol direct radiative forcing.
Scattering phase function of aerosol particles is crucial to the accurate estimation of aerosol direct radiative forcing, and is also of great interest in the field of remote sensing. One feasible and promising way to obtain scattering phase function on a long-term scale with satisfying temporal resolution is based upon the particle size distribution (PSD) and the refractive index (m = n + ik) simultaneously retrieved from multi-wavelength multi-angle scattering detected by Aurora 4000, a commercially available and easily operated, as well as lab- and field-deployable instrument. In this study, a retrieval algorithm was specifically developed according to the characteristics of Aurora 4000 measurements, using the regularization method. The algorithm was systematically evaluated for its applicability, capability and limitation by a series of designed numerical experiments, considering both monomodal and bimodal log-normal distributions with various settings of parameters and different m, in order to be prepared for its application in field studies. The retrieval algorithm has exhibited a successful performance in deriving the PSDs and the real part of the refractive index (n) without a priori assumptions about the shape of the PSDs and the value of n, and consequently in obtaining scattering phase function, for aerosol particles from purely scattering to slightly absorbing (the imaginary part of the refractive index k ≤ 0.01) both without and with assumed measurement errors (when ±ψs≤±3%). Under such circumstances, relative errors in retrieved effective diameter (De), total surface area concentration (Sa), total volume concentration (Va) are almost within ±20%, relative errors in retrieved total number concentration (Na) stay roughly within ±50%, and absolute errors of n are well within ±0.02. Moreover, relative errors in backscattering ratio (BSR) and the defined parameter to describe relative errors in scattering phase function (δP), as good indicators for demonstrating how well scattering phase function can be captured, averagely locate within ±20% and ±10%, respectively. In contrast, relative errors in the widely used parameters of the asymmetry parameter (g) and hemispheric backscattering ratio (HBSR) remain still quite small even when considerable deviations can be observed in the forward and backward scattering regimes. Hopefully, when applied in field studies in the next step, the retrieval algorithm established in this study will improve our knowledge and understanding on angular scattering properties of ambient aerosol particles, as well as the associated impacts on aerosol direct radiative forcing. •An algorithm is developed for Aurora 4000 to retrieve particle size distribution and estimate refractive index.•The algorithm is systematically evaluated by a series of numerical experiments.•Aerosol scattering phase function is obtained from retrieved parameters.
ArticleNumber 120138
Author Ran, Liang
Zhou, Minqiang
Deng, Zhaoze
Wang, Pucai
Zhou, Fang
Author_xml – sequence: 1
  givenname: Liang
  orcidid: 0000-0003-1890-0448
  surname: Ran
  fullname: Ran, Liang
  organization: LAGEO & CNRC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
– sequence: 2
  givenname: Fang
  surname: Zhou
  fullname: Zhou, Fang
  organization: LAGEO & CNRC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
– sequence: 3
  givenname: Zhaoze
  orcidid: 0000-0002-0955-6350
  surname: Deng
  fullname: Deng, Zhaoze
  email: dengzz@mail.iap.ac.cn
  organization: LAGEO & CNRC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
– sequence: 4
  givenname: Minqiang
  orcidid: 0000-0003-3427-5873
  surname: Zhou
  fullname: Zhou, Minqiang
  organization: LAGEO & CNRC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
– sequence: 5
  givenname: Pucai
  surname: Wang
  fullname: Wang, Pucai
  organization: LAGEO & CNRC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
BookMark eNqNkMtu1TAQhrMoEm3hFZCXbHLwJVfEgqOKm1SJTbu2Js649VFiB18OHF6sr1eHgJDYlJXt8f_NjL6L4sw6i0XxitEdo6x5c9hBnF1Ae9xxysWOccpEd1acM1HzkgtGnxcXIRwopaLt2_PiYU9mjPduJNERN0QwlgQFMaI39o4s9xCQ6GRVNM6SIb9Gki8L-GjUhCSYn0hGE6I3Q_qVATsSj9pDRo5IjB3xRy7kAB4zrL2byT5554FUeQ0ypymaEuzd2u3v5BkhJI8z2hjekj2xac4fCiYSYhpPL4pnGqaAL3-fl8Xtxw83V5_L66-fvlztr0slehHLvh-w142mbaNRcVF1ohEDHbjOxaob2pqLrma8r5kC5JUAzXAQveKNHqsKxWXRbn2TXeD0HaZJLt7M4E-SUbk6lwf5x7lcncvNeSZfb-Ti3beEIcrZBIXTBBZdClKwumJdxdo1-m6LKu9CyPKkMhFWm9GDmZ6e1PyD__eK7zcQs8GjQS-DMmgVjsajinJ05qkWj96Cy54
CitedBy_id crossref_primary_10_1007_s40726_024_00292_z
Cites_doi 10.1080/02786826.2015.1131809
10.1080/02786826.2013.775400
10.1016/j.atmosres.2022.106519
10.1016/j.jaerosci.2010.07.007
10.1175/1520-0426(1996)013<0967:PCOAHS>2.0.CO;2
10.5194/amt-10-811-2017
10.1364/AO.20.003661
10.5194/acp-12-2381-2012
10.5194/amt-15-3161-2022
10.1016/j.scitotenv.2021.146443
10.1029/2004GL021596
10.1080/02786828808959207
10.5194/amt-5-657-2012
10.1100/2011/310769
10.5194/acp-18-3737-2018
10.5194/acp-15-13113-2015
10.2138/am-2017-6144
10.1364/AO.38.002346
10.5194/acp-18-5235-2018
10.5194/amt-6-2349-2013
10.1029/2001JD900068
10.5194/acp-19-14417-2019
10.5194/acp-19-11985-2019
10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2
10.1080/02786826.2016.1155105
10.1016/j.atmosenv.2008.06.022
10.5194/acp-10-7325-2010
10.1098/rspa.1990.0107
10.5194/amt-4-1291-2011
10.1175/1520-0426(1996)013<0987:DAAOTI>2.0.CO;2
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
7S9
L.6
ADTOC
UNPAY
DOI 10.1016/j.atmosenv.2023.120138
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
ExternalDocumentID 10.1016/j.atmosenv.2023.120138
10_1016_j_atmosenv_2023_120138
S1352231023005642
GroupedDBID ---
--K
--M
-DZ
-~X
..I
.DC
.HR
.~1
0R~
0SF
186
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABEFU
ABFNM
ABFYP
ABLJU
ABLST
ABMAC
ABQEM
ABQYD
ABXDB
ACDAQ
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADVLN
AEBSH
AEKER
AENEX
AFFNX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
T9H
TAE
VH1
WUQ
~02
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
7S9
L.6
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c393t-99be9f6f076fec2348363b0b2ff6f48b75238512951cae243af1eb39c26fd44e3
IEDL.DBID UNPAY
ISSN 1352-2310
1873-2844
IngestDate Tue Aug 19 17:23:55 EDT 2025
Thu Oct 02 12:12:32 EDT 2025
Wed Oct 29 21:27:50 EDT 2025
Thu Apr 24 23:11:31 EDT 2025
Tue Dec 03 03:45:22 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Aurora 4000
Particle size distribution
Scattering phase function
Regularization
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-99be9f6f076fec2348363b0b2ff6f48b75238512951cae243af1eb39c26fd44e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1890-0448
0000-0002-0955-6350
0000-0003-3427-5873
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.atmosenv.2023.120138
PQID 3154184178
PQPubID 24069
ParticipantIDs unpaywall_primary_10_1016_j_atmosenv_2023_120138
proquest_miscellaneous_3154184178
crossref_citationtrail_10_1016_j_atmosenv_2023_120138
crossref_primary_10_1016_j_atmosenv_2023_120138
elsevier_sciencedirect_doi_10_1016_j_atmosenv_2023_120138
PublicationCentury 2000
PublicationDate 2023-12-15
PublicationDateYYYYMMDD 2023-12-15
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Atmospheric environment (1994)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Barkey, Paulson, Liou (bib4) 2012; vol. 6
Heintzenberg, Charlson (bib15) 1996; 13
McCrowey, Tinilau, Calderon, Koo, Curtis (bib24) 2013; 47
Jenkins, White (bib18) 2001
Jurányi, Weller (bib19) 2019; 19
Volten, Muñoz, Rol, de Haan, Vassen, Hovenier, Muinonen, Nousiainen (bib34) 2001; 106
Chamberlain-Ward, Sharp (bib9) 2011; 11
Liou (bib21) 2002
Zhao, Hu, Fang, Tan, Xiao, Du, Zheng, Shang, Wu, Guo, Zhao (bib39) 2021; 779
Korras-Carraca, Hatzianastassiou, Matsoukas, Gkikas, Papadimas (bib20) 2015; 15
Barnard, Fast, Paredes-Miranda, Arnott, Laskin (bib5) 2010; 10
(bib17) 2021
Espinosa, Martins, Remer, Puthukkudy, Orozco, Dolgos (bib13) 2018; 18
Cai, Snider, Wechsler (bib8) 2013; 6
Marinescu, Levin, Collins, Kreidenweis, van den Heever (bib23) 2019; 19
Romshoo, Müller, Pfeifer, Saturno, Nowak, Ciupek, Quincey, Wiedensohler (bib29) 2021; 21
Shepherd, King, Marks, Brough, Ward (bib31) 2018; 18
Burkart, Steiner, Reischl, Moshammer, Neuberger, Hitzenberger (bib7) 2010; 41
Chang, Charalampopoulos (bib10) 1990; 430
Gao, Telg, McLaughlin, Ciciora, Watts, Richardson, Schwarz, Perring, Thornberry, Rollins, Markovic, Bates, Johnson, Fahey (bib14) 2016; 50
Wehner, Wiedensohler, Tuch, Wu, Hu, Slanina, Kiang (bib35) 2004; 31
Ananth, Wilson (bib3) 1988; 9
Bohren, Huffman (bib6) 1998
Müller, Wandinger, Ansmann (bib25) 1999; 38
Shannon, Lafuente, Shannon, Downs, Fischer (bib30) 2017; 102
Wiedensohler, Birmili, Nowak, Sonntag, Weinhold, Merkel, Wehner, Tuch, Pfeifer, Fiebig, Fjäraa, Asmi, Sellegri, Depuy, Venzac, Villani, Laj, Aalto, Ogren, Swietlicki, Williams, Roldin, Quincey, Hüglin, Fierz-Schmidhauser, Gysel, Weingartner, Riccohono, Santos, Grüning, Faloon, Beddows, Harrison, Monahan, Jennings, O'Dowd, Marinoni, Horn, Keck, Jiang, Scheckman, McMurry, Deng, Zhao, Moerman, Henzing, de Leeuw, Löschau, Bastian (bib36) 2012; 5
Müller, Paixão, Pfeifer, Wiedensohler (bib26) 2012
Ackerman, Toon (bib1) 1981; 20
Teri, Müller, Gasteiger, Valentini, Horvath, Vecchi, Bauer, Walser, Weinzierl (bib32) 2022; 15
Espinosa, Remer, Dubovik, Ziemba, Beyersdorf, Orozco, Schuster, Lapyonok, Fuertes, Martins (bib12) 2017; 10
Twomey (bib33) 1977
Wu, Hu, Lin, Liu, Wehner, Wiedensohler (bib37) 2008; 42
Chen, Zhao, Shen, Fan (bib11) 2023; 282
Yue, Hu, Wu, Wang, Guo, Wehner, Nowak, Achtert, Wiedensohler, Jung, Kim, Liu (bib38) 2009; 114
Anderson, Covert, Marshall, Laucks, Charlson, Waggoner, Ogren, Caldow, Holm, Quant, Sem, Wiedensohler, Ahlquist, Bates (bib2) 1996; 13
Ma, Zhao, Müller, Cheng, Liu, Deng, Xu, Ran, Nekat, van Pinxteren, Gnauk, Müller, Herrmann, Yan, Zhou, Wiedensohler (bib22) 2012; 12
Hess, Koepke, Schult (bib16) 1998; 79
Müller, Laborde, Kassell, Wiedensohler (bib27) 2011; 4
Nakagawa, Nakayama, Sasago, Ueda, Venables, Matsumi (bib28) 2016; 50
Espinosa (10.1016/j.atmosenv.2023.120138_bib13) 2018; 18
Volten (10.1016/j.atmosenv.2023.120138_bib34) 2001; 106
Twomey (10.1016/j.atmosenv.2023.120138_bib33) 1977
Heintzenberg (10.1016/j.atmosenv.2023.120138_bib15) 1996; 13
Nakagawa (10.1016/j.atmosenv.2023.120138_bib28) 2016; 50
Wehner (10.1016/j.atmosenv.2023.120138_bib35) 2004; 31
Anderson (10.1016/j.atmosenv.2023.120138_bib2) 1996; 13
Chen (10.1016/j.atmosenv.2023.120138_bib11) 2023; 282
Ma (10.1016/j.atmosenv.2023.120138_bib22) 2012; 12
Cai (10.1016/j.atmosenv.2023.120138_bib8) 2013; 6
Shannon (10.1016/j.atmosenv.2023.120138_bib30) 2017; 102
(10.1016/j.atmosenv.2023.120138_bib17) 2021
Ackerman (10.1016/j.atmosenv.2023.120138_bib1) 1981; 20
Müller (10.1016/j.atmosenv.2023.120138_bib26) 2012
Chang (10.1016/j.atmosenv.2023.120138_bib10) 1990; 430
Gao (10.1016/j.atmosenv.2023.120138_bib14) 2016; 50
Zhao (10.1016/j.atmosenv.2023.120138_bib39) 2021; 779
Jenkins (10.1016/j.atmosenv.2023.120138_bib18) 2001
Teri (10.1016/j.atmosenv.2023.120138_bib32) 2022; 15
Müller (10.1016/j.atmosenv.2023.120138_bib27) 2011; 4
Ananth (10.1016/j.atmosenv.2023.120138_bib3) 1988; 9
Bohren (10.1016/j.atmosenv.2023.120138_bib6) 1998
Burkart (10.1016/j.atmosenv.2023.120138_bib7) 2010; 41
Liou (10.1016/j.atmosenv.2023.120138_bib21) 2002
Wiedensohler (10.1016/j.atmosenv.2023.120138_bib36) 2012; 5
Jurányi (10.1016/j.atmosenv.2023.120138_bib19) 2019; 19
Yue (10.1016/j.atmosenv.2023.120138_bib38) 2009; 114
Espinosa (10.1016/j.atmosenv.2023.120138_bib12) 2017; 10
Müller (10.1016/j.atmosenv.2023.120138_bib25) 1999; 38
Korras-Carraca (10.1016/j.atmosenv.2023.120138_bib20) 2015; 15
Barnard (10.1016/j.atmosenv.2023.120138_bib5) 2010; 10
Hess (10.1016/j.atmosenv.2023.120138_bib16) 1998; 79
Shepherd (10.1016/j.atmosenv.2023.120138_bib31) 2018; 18
Wu (10.1016/j.atmosenv.2023.120138_bib37) 2008; 42
Barkey (10.1016/j.atmosenv.2023.120138_bib4) 2012; vol. 6
Chamberlain-Ward (10.1016/j.atmosenv.2023.120138_bib9) 2011; 11
Marinescu (10.1016/j.atmosenv.2023.120138_bib23) 2019; 19
McCrowey (10.1016/j.atmosenv.2023.120138_bib24) 2013; 47
References_xml – volume: 4
  start-page: 1291
  year: 2011
  end-page: 1303
  ident: bib27
  article-title: Design and performance of a three-wavelength LED-based total scatter and backscatter integrating nephelometer
  publication-title: Atmos. Meas. Tech.
– volume: 41
  start-page: 953
  year: 2010
  end-page: 962
  ident: bib7
  article-title: Characterizing the performance of two optical particle counters (Grimm OPC1.108 and OPC1.109) under urban aerosol conditions
  publication-title: J. Aerosol Sci.
– volume: 15
  start-page: 3161
  year: 2022
  end-page: 3187
  ident: bib32
  article-title: Impact of particle size, refractive index, and shape on the determination of the particle scattering coefficient - an optical closure study evaluating different nephelometer angular truncation and illumination corrections
  publication-title: Atmos. Meas. Tech.
– volume: 15
  start-page: 13113
  year: 2015
  end-page: 13132
  ident: bib20
  article-title: The regime of aerosol asymmetry parameter over Europe, the Mediterranean and the Middle East based on MODIS satellite data: evaluation against surface AERONET measurements
  publication-title: Atmos. Chem. Phys.
– volume: 42
  start-page: 7967
  year: 2008
  end-page: 7980
  ident: bib37
  article-title: Particle number size distribution in the urban atmosphere of Beijing, China
  publication-title: Atmos. Environ.
– volume: 13
  start-page: 987
  year: 1996
  end-page: 1000
  ident: bib15
  article-title: Design and applications of the integrating nephelometer: a review
  publication-title: J. Atmos. Ocean. Technol.
– volume: 18
  start-page: 5235
  year: 2018
  end-page: 5252
  ident: bib31
  article-title: Determination of the refractive index of insoluble organic extracts from atmospheric aerosol over the visible wavelength range using optical tweezers
  publication-title: Atmos. Chem. Phys.
– volume: 282
  year: 2023
  ident: bib11
  article-title: Influence of aerosol properties and surface albedo on radiative forcing efficiency of key aerosol types using global AERONET data
  publication-title: Atmos. Res.
– volume: 79
  start-page: 831
  year: 1998
  end-page: 844
  ident: bib16
  article-title: Optical properties of aerosols and clouds: the software package OPAC
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 10
  start-page: 7325
  year: 2010
  end-page: 7340
  ident: bib5
  article-title: Technical note: evaluation of the WRF-chem "aerosol chemical to aerosol optical properties" module using data from the MILAGRO campaign
  publication-title: Atmos. Chem. Phys.
– volume: 47
  start-page: 592
  year: 2013
  end-page: 605
  ident: bib24
  article-title: A portable high-resolution polar nephelometer for measurement of the angular scattering properties of atmospheric aerosol: design and validation
  publication-title: Aerosol Sci. Technol.
– start-page: 583
  year: 2002
  ident: bib21
  article-title: An Introduction to Atmospheric Radiation
– volume: 50
  start-page: 88
  year: 2016
  end-page: 99
  ident: bib14
  article-title: A light-weight, high-sensitivity particle spectrometer for PM2.5 aerosol measurements
  publication-title: Aerosol Sci. Technol.
– volume: 13
  start-page: 967
  year: 1996
  end-page: 986
  ident: bib2
  article-title: Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer
  publication-title: J. Atmos. Ocean. Technol.
– volume: 12
  start-page: 2381
  year: 2012
  end-page: 2397
  ident: bib22
  article-title: A new method to determine the mixing state of light absorbing carbonaceous using the measured aerosol optical properties and number size distributions
  publication-title: Atmos. Chem. Phys.
– year: 2012
  ident: bib26
  article-title: Scattering coefficients and asymmetry parameters derived from the polar nephelometer Aurora 4000
  publication-title: European Aerosol Conference EAC 2012
– volume: 430
  start-page: 577
  year: 1990
  end-page: 591
  ident: bib10
  article-title: Determination of the wavelength dependence of refractive indices of flame soot
  publication-title: Proc. Roy. Soc. Lond. A
– volume: 19
  start-page: 14417
  year: 2019
  end-page: 14430
  ident: bib19
  article-title: One year of aerosol refractive index measurement from a coastal Antarctic site
  publication-title: Atmos. Chem. Phys.
– year: 2021
  ident: bib17
  article-title: Climate Change 2021: the Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
– volume: 19
  start-page: 11985
  year: 2019
  end-page: 12006
  ident: bib23
  article-title: Quantifying aerosol size distributions and their temporal variability in the Southern Great Plains, USA
  publication-title: Atmos. Chem. Phys.
– volume: 20
  start-page: 3661
  year: 1981
  end-page: 3668
  ident: bib1
  article-title: Absorption of visible radiation in atmosphere containing mixtures of absorbing and nonabsorbing particles
  publication-title: Appl. Opt.
– volume: 102
  start-page: 1906
  year: 2017
  end-page: 1914
  ident: bib30
  article-title: Refractive indices of minerals and synthetic compounds
  publication-title: Am. Mineral.
– volume: 31
  year: 2004
  ident: bib35
  article-title: Variability of the aerosol number size distribution in Beijing, China: new particle formation, dust storms, and high continental background
  publication-title: Geophys. Res. Lett.
– volume: 5
  start-page: 657
  year: 2012
  end-page: 685
  ident: bib36
  article-title: Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions
  publication-title: Atmos. Meas. Tech.
– volume: 6
  start-page: 2349
  year: 2013
  end-page: 2358
  ident: bib8
  article-title: Calibration of the passive cavity aerosol spectrometer probe for airborne determination of the size distribution
  publication-title: Atmos. Meas. Tech.
– volume: 38
  start-page: 2346
  year: 1999
  end-page: 2357
  ident: bib25
  article-title: Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory
  publication-title: Appl. Opt.
– start-page: 766
  year: 2001
  ident: bib18
  article-title: Fundamentals of Optics
– volume: 9
  start-page: 189
  year: 1988
  end-page: 199
  ident: bib3
  article-title: Theoretical analysis of the performance of the TSI Aerodynamic Particle Sizer the effect of density on response
  publication-title: Aerosol. Sci. Technol.
– volume: 21
  start-page: 12989
  year: 2021
  end-page: 13010
  ident: bib29
  article-title: Optical properties of coated black carbon aggregates: numerical simulations, radiative forcing estimates, and size-resolved parameterization scheme
  publication-title: Atmos. Chem. Phys.
– volume: 18
  start-page: 3737
  year: 2018
  end-page: 3754
  ident: bib13
  article-title: In situ measurements of angular-dependent light scattering by aerosols over the contiguous United States
  publication-title: Atmos. Chem. Phys.
– volume: 106
  start-page: 17375
  year: 2001
  end-page: 17401
  ident: bib34
  article-title: Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm
  publication-title: J. Geophys. Res.
– start-page: 544
  year: 1998
  ident: bib6
  article-title: Absorption and Scattering of Light by Small Particles
– volume: 11
  start-page: 2530
  year: 2011
  end-page: 2535
  ident: bib9
  article-title: Advances in nephelometry through the Ecotech Aurora nephelometer
  publication-title: Sci. World J.
– volume: 50
  start-page: 392
  year: 2016
  end-page: 404
  ident: bib28
  article-title: Design and characterization of a novel single-particle polar nephelometer
  publication-title: Aerosol Sci. Technol.
– volume: 10
  start-page: 811
  year: 2017
  end-page: 824
  ident: bib12
  article-title: Retrievals of aerosol optical and microphysical properties from Imaging Polar Nephelometer scattering measurements
  publication-title: Atmos. Meas. Tech.
– start-page: 243
  year: 1977
  ident: bib33
  article-title: Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements
– volume: 114
  start-page: D00G12
  year: 2009
  ident: bib38
  article-title: Characteristics of aerosol size distributions and new particle formation in the summer in Beijing
  publication-title: J. Geophys. Res.
– volume: vol. 6
  year: 2012
  ident: bib4
  article-title: Polar nephelometers for light scattering by ice crystals and aerosols: design and measurements
  publication-title: Light Scattering Reviews
– volume: 779
  year: 2021
  ident: bib39
  article-title: Larger than expected variation range in the real part of the refractive index for ambient aerosols in China
  publication-title: Sci. Total Environ.
– volume: 50
  start-page: 88
  year: 2016
  ident: 10.1016/j.atmosenv.2023.120138_bib14
  article-title: A light-weight, high-sensitivity particle spectrometer for PM2.5 aerosol measurements
  publication-title: Aerosol Sci. Technol.
  doi: 10.1080/02786826.2015.1131809
– start-page: 544
  year: 1998
  ident: 10.1016/j.atmosenv.2023.120138_bib6
– volume: 47
  start-page: 592
  year: 2013
  ident: 10.1016/j.atmosenv.2023.120138_bib24
  article-title: A portable high-resolution polar nephelometer for measurement of the angular scattering properties of atmospheric aerosol: design and validation
  publication-title: Aerosol Sci. Technol.
  doi: 10.1080/02786826.2013.775400
– volume: 282
  year: 2023
  ident: 10.1016/j.atmosenv.2023.120138_bib11
  article-title: Influence of aerosol properties and surface albedo on radiative forcing efficiency of key aerosol types using global AERONET data
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2022.106519
– volume: 41
  start-page: 953
  year: 2010
  ident: 10.1016/j.atmosenv.2023.120138_bib7
  article-title: Characterizing the performance of two optical particle counters (Grimm OPC1.108 and OPC1.109) under urban aerosol conditions
  publication-title: J. Aerosol Sci.
  doi: 10.1016/j.jaerosci.2010.07.007
– volume: 114
  start-page: D00G12
  year: 2009
  ident: 10.1016/j.atmosenv.2023.120138_bib38
  article-title: Characteristics of aerosol size distributions and new particle formation in the summer in Beijing
  publication-title: J. Geophys. Res.
– volume: 13
  start-page: 967
  year: 1996
  ident: 10.1016/j.atmosenv.2023.120138_bib2
  article-title: Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/1520-0426(1996)013<0967:PCOAHS>2.0.CO;2
– year: 2021
  ident: 10.1016/j.atmosenv.2023.120138_bib17
– volume: 10
  start-page: 811
  year: 2017
  ident: 10.1016/j.atmosenv.2023.120138_bib12
  article-title: Retrievals of aerosol optical and microphysical properties from Imaging Polar Nephelometer scattering measurements
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-10-811-2017
– volume: 20
  start-page: 3661
  year: 1981
  ident: 10.1016/j.atmosenv.2023.120138_bib1
  article-title: Absorption of visible radiation in atmosphere containing mixtures of absorbing and nonabsorbing particles
  publication-title: Appl. Opt.
  doi: 10.1364/AO.20.003661
– start-page: 766
  year: 2001
  ident: 10.1016/j.atmosenv.2023.120138_bib18
– volume: 12
  start-page: 2381
  year: 2012
  ident: 10.1016/j.atmosenv.2023.120138_bib22
  article-title: A new method to determine the mixing state of light absorbing carbonaceous using the measured aerosol optical properties and number size distributions
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-12-2381-2012
– start-page: 243
  year: 1977
  ident: 10.1016/j.atmosenv.2023.120138_bib33
– volume: 15
  start-page: 3161
  year: 2022
  ident: 10.1016/j.atmosenv.2023.120138_bib32
  article-title: Impact of particle size, refractive index, and shape on the determination of the particle scattering coefficient - an optical closure study evaluating different nephelometer angular truncation and illumination corrections
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-15-3161-2022
– start-page: 583
  year: 2002
  ident: 10.1016/j.atmosenv.2023.120138_bib21
– volume: 779
  year: 2021
  ident: 10.1016/j.atmosenv.2023.120138_bib39
  article-title: Larger than expected variation range in the real part of the refractive index for ambient aerosols in China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.146443
– volume: 31
  year: 2004
  ident: 10.1016/j.atmosenv.2023.120138_bib35
  article-title: Variability of the aerosol number size distribution in Beijing, China: new particle formation, dust storms, and high continental background
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2004GL021596
– year: 2012
  ident: 10.1016/j.atmosenv.2023.120138_bib26
  article-title: Scattering coefficients and asymmetry parameters derived from the polar nephelometer Aurora 4000
– volume: 9
  start-page: 189
  year: 1988
  ident: 10.1016/j.atmosenv.2023.120138_bib3
  article-title: Theoretical analysis of the performance of the TSI Aerodynamic Particle Sizer the effect of density on response
  publication-title: Aerosol. Sci. Technol.
  doi: 10.1080/02786828808959207
– volume: 5
  start-page: 657
  year: 2012
  ident: 10.1016/j.atmosenv.2023.120138_bib36
  article-title: Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-5-657-2012
– volume: 11
  start-page: 2530
  year: 2011
  ident: 10.1016/j.atmosenv.2023.120138_bib9
  article-title: Advances in nephelometry through the Ecotech Aurora nephelometer
  publication-title: Sci. World J.
  doi: 10.1100/2011/310769
– volume: 18
  start-page: 3737
  year: 2018
  ident: 10.1016/j.atmosenv.2023.120138_bib13
  article-title: In situ measurements of angular-dependent light scattering by aerosols over the contiguous United States
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-18-3737-2018
– volume: 15
  start-page: 13113
  year: 2015
  ident: 10.1016/j.atmosenv.2023.120138_bib20
  article-title: The regime of aerosol asymmetry parameter over Europe, the Mediterranean and the Middle East based on MODIS satellite data: evaluation against surface AERONET measurements
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-15-13113-2015
– volume: 102
  start-page: 1906
  year: 2017
  ident: 10.1016/j.atmosenv.2023.120138_bib30
  article-title: Refractive indices of minerals and synthetic compounds
  publication-title: Am. Mineral.
  doi: 10.2138/am-2017-6144
– volume: 38
  start-page: 2346
  year: 1999
  ident: 10.1016/j.atmosenv.2023.120138_bib25
  article-title: Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory
  publication-title: Appl. Opt.
  doi: 10.1364/AO.38.002346
– volume: vol. 6
  year: 2012
  ident: 10.1016/j.atmosenv.2023.120138_bib4
  article-title: Polar nephelometers for light scattering by ice crystals and aerosols: design and measurements
– volume: 18
  start-page: 5235
  year: 2018
  ident: 10.1016/j.atmosenv.2023.120138_bib31
  article-title: Determination of the refractive index of insoluble organic extracts from atmospheric aerosol over the visible wavelength range using optical tweezers
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-18-5235-2018
– volume: 6
  start-page: 2349
  year: 2013
  ident: 10.1016/j.atmosenv.2023.120138_bib8
  article-title: Calibration of the passive cavity aerosol spectrometer probe for airborne determination of the size distribution
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-6-2349-2013
– volume: 106
  start-page: 17375
  year: 2001
  ident: 10.1016/j.atmosenv.2023.120138_bib34
  article-title: Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm
  publication-title: J. Geophys. Res.
  doi: 10.1029/2001JD900068
– volume: 19
  start-page: 14417
  year: 2019
  ident: 10.1016/j.atmosenv.2023.120138_bib19
  article-title: One year of aerosol refractive index measurement from a coastal Antarctic site
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-19-14417-2019
– volume: 19
  start-page: 11985
  year: 2019
  ident: 10.1016/j.atmosenv.2023.120138_bib23
  article-title: Quantifying aerosol size distributions and their temporal variability in the Southern Great Plains, USA
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-19-11985-2019
– volume: 79
  start-page: 831
  year: 1998
  ident: 10.1016/j.atmosenv.2023.120138_bib16
  article-title: Optical properties of aerosols and clouds: the software package OPAC
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2
– volume: 50
  start-page: 392
  year: 2016
  ident: 10.1016/j.atmosenv.2023.120138_bib28
  article-title: Design and characterization of a novel single-particle polar nephelometer
  publication-title: Aerosol Sci. Technol.
  doi: 10.1080/02786826.2016.1155105
– volume: 42
  start-page: 7967
  year: 2008
  ident: 10.1016/j.atmosenv.2023.120138_bib37
  article-title: Particle number size distribution in the urban atmosphere of Beijing, China
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2008.06.022
– volume: 10
  start-page: 7325
  year: 2010
  ident: 10.1016/j.atmosenv.2023.120138_bib5
  article-title: Technical note: evaluation of the WRF-chem "aerosol chemical to aerosol optical properties" module using data from the MILAGRO campaign
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-10-7325-2010
– volume: 430
  start-page: 577
  year: 1990
  ident: 10.1016/j.atmosenv.2023.120138_bib10
  article-title: Determination of the wavelength dependence of refractive indices of flame soot
  publication-title: Proc. Roy. Soc. Lond. A
  doi: 10.1098/rspa.1990.0107
– volume: 4
  start-page: 1291
  year: 2011
  ident: 10.1016/j.atmosenv.2023.120138_bib27
  article-title: Design and performance of a three-wavelength LED-based total scatter and backscatter integrating nephelometer
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-4-1291-2011
– volume: 13
  start-page: 987
  year: 1996
  ident: 10.1016/j.atmosenv.2023.120138_bib15
  article-title: Design and applications of the integrating nephelometer: a review
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/1520-0426(1996)013<0987:DAAOTI>2.0.CO;2
SSID ssj0003797
Score 2.4540641
Snippet Scattering phase function of aerosol particles is crucial to the accurate estimation of aerosol direct radiative forcing, and is also of great interest in the...
SourceID unpaywall
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 120138
SubjectTerms aerosols
algorithms
asymmetry
Aurora 4000
environment
Particle size distribution
refractive index
Regularization
Scattering phase function
surface area
SummonAdditionalLinks – databaseName: Science Direct
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqXoADKoWK_oAGiWt2k9hx1r2tqlYVBy5QqbfIdhzYautEzWYRHHgtXo-ZxOluD1WRuCWWJ3Ey45mxPfMNYx9NWunKKRPpGXeRqLIsUiKxkXQEVi51LHWP9vlZXl6JT9fZ9Q47G3NhKKwy6P5Bp_faOrRMw9-cNovF9EtCvgMn6AHCsxSkh4XIqYrB5PcmzIPnQ4EV7BxR760s4RvkyG3dOr-eUBHxSZLSsd1jBmrLAX3W-Ub__KGXyy1bdLHHXgYnEubDOF-xHef32YstaMF9dnC-yWDDrmEKt6_ZnzkMVaNhVUNtaGcAWtujbCIhNN_RrAFZO-IYkJErAS-a8FOgXfxyUBLcbqiUBdqXgJ_Rp1utHfT4i9hAlbrWSEwJLDDv7lDWAKdyDH0MY6T9N3ra5s23m93K9hTm4LvhMGkJPQTuG3Z1cf717DIK1RsiyxVfRUoZpypZxbmsnE25mHHJTYzCgY1iZnJcAs_I3cgSq10quK4SXNkrm8qqFMLxA7bra-_eMrAqMbzUGrWrExad0rIyBE2Wm1JqzvUhy0aWFTZAm1OFjWUxxrDdFCOrC2J1MbD6kE3v6ZoB3ONJCjVKRPFATAu0QE_SfhhFqMA5TAcz2ru6awuOfiyutJMc-8T3svWPQzr6jyEds-d0R-E5SXbCdld3nXuHTtbKvO9n0V9jbSsR
  priority: 102
  providerName: Elsevier
Title A method to obtain scattering phase function based on particle size distribution and refractive index retrieved from Aurora 4000 multi-angle scattering measurements: A numerical study
URI https://dx.doi.org/10.1016/j.atmosenv.2023.120138
https://www.proquest.com/docview/3154184178
https://doi.org/10.1016/j.atmosenv.2023.120138
UnpaywallVersion publishedVersion
Volume 315
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 1352-2310
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0003797
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 1352-2310
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0003797
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection
  issn: 1352-2310
  databaseCode: AIKHN
  dateStart: 20161201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0003797
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 1352-2310
  databaseCode: ACRLP
  dateStart: 20161201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0003797
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 1352-2310
  databaseCode: AKRWK
  dateStart: 19940101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003797
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj5RAEO64Mwf14GN14_qYlInXRqCbBrwRs5tRk9GDk6wn0g2Nr1mYLDDGPfi3_HtW8dgZjWbXGxCKAfqbqq_pqq8Ye2b8Qhc2NlxHwnJZBAGPpZdxZUmsXGlX6U7tc6HmS_n6JDgZJopUC_Pb-n2Xh6Wb06q25cahRt-O59PS2h6bqgC594RNl4t3yYduVhX4nMgKbUeh4Oh35U5J8N8v9K9otMM2r7flWn__plerncBzfJu9HW-5zzf56rSNcbLzP9Qcr_5Md9itgYNC0oPmLrtmy312c0eZcJ8dHG0L4PDUwQPU99jPBPqm09BUUBn6sAB11ol0oiGsP2FUBAqWNOBAMTIH3FgPCIX687mFnNR6h0ZboMsc8MV01VobC518Ix6gRl8bNKb6F0jaM4QqoCdwoUuB5Lr8SFfb_vLp9mNn_QISKNt-LWoFnYLufbY8Pnr_cs6H5g88E7FoeBwbGxeqcENV2MwXMhJKGBexhQdlZEKcQUfEVgIv09aXQheeNSLOfFXkUlpxwCZlVdoHDLLYMyLXGp2zlRly2rwwpGwWmlxpIfQhC0YQpNmgjE4NOlbpmAL3JR1HLKURS_sRO2TPL-zWvTbIpRbxiLF0YDg9c0kRI5faPh1BmaILoHUdXdqqrVOBNBgn6l6I57gXaL3iLT38f5NH7AbtUVKPFzxmk-astU-QmjVmxvacH96MTZNXb-aL2fDv_AW_lzwj
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcigcEBQqWl6DxDW7Sew4a26rqtUCpRdaqTfLTmzYaptEzWarcuBv8feYyaO7HFCRuEWOJ3Ey45mxPfMNY-9t7I13ygZmwl0gfJIESkRZIB2BlUsTStOifZ7K2bn4dJFcbLHDIReGwip73d_p9FZb9y3j_m-Oq_l8_DUi34ET9ADhWQrUww9EEqe0Ahv9XMd58LSrsIK9A-q-kSZ8iSy5KmtXrEZURXwUxXRu9zcLteGB7jRFZW5vzGKxYYyOn7DHvRcJ026gT9mWK3bZow1swV22d7ROYcOu_Ryun7FfU-jKRsOyhNLS1gDUWQuziYRQfUe7BmTuiGVAVi4HvKj6vwL1_IeDnPB2-1JZYIoc8DPafKuVgxaAERuoVNcKiSmDBabNNQob4FwOoQ1iDEzxjZ62fvPVeruy_gBTKJruNGkBLQbuc3Z-fHR2OAv68g1BxhVfBkpZp7z0YSq9y2IuJlxyG6J0YKOY2BTXwBPyN5IoMy4W3PgIl_Yqi6XPhXB8j20XZeFeMMhUZHluDKpXJzL0SnNvCZsstbk0nJt9lgws01mPbU4lNhZ6CGK71AOrNbFad6zeZ-M7uqpD97iXQg0Sof-QU40m6F7ad4MIaZzEdDJjClc2teboyOJSO0qxT3gnW_84pIP_GNJbtjM7-3KiTz6efn7JHtIditWJkldse3nduNfocS3tm3ZG_QZsIi40
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgewAOPAoV5aVB4uoliR0n4RahVhWHwoGVyimyHRso22TVJIvoH-PvMZNHd0GgllsSZbJJ_O3M53jmG8Zemchr7zLDdSoclz6OeSZDy5UjsXKlA6V7tc9jdbSQ707ik3GiSLUwv63f93lYuj2rG1et59Toex5GtLR2k-2oGLn3jO0sjj_kn_pZVRxxIiu0nSaCo9-VWyXBf7_Qv6LRFtu81VUr_eO7Xi63As_hPfZ-uuUh3-TbvGvN3F78oeZ4_We6z-6OHBTyATQP2A1X7bI7W8qEu2zvYFMAh6eOHqB5yH7mMDSdhraG2tCHBWhsL9KJhrD6glERKFjSgAPFyBJwYzUiFJqvFw5KUusdG22BrkrAF9NXa60d9PKNeIAafa3RmOpfIO_OEaqAniCAPgWS6-ozXW3zy2ebj53NG8ih6oa1qCX0CrqP2OLw4OPbIz42f-BWZKLlWWZc5pUPEuWdjYRMhRImQGzhQZmaBGfQKbGVOLTaRVJoHzojMhspX0rpxB6bVXXlHjOwWWhEqTU6ZyctctrSG1I2S0yptBB6n8UTCAo7KqNTg45lMaXAnRbTiBU0YsUwYvvs9aXdatAGudIimzBWjAxnYC4FYuRK25cTKAt0AbSuoytXd00hkAbjRD1M8JzgEq3XvKUn_2_ylN2mPUrqCeNnbNaed-45UrPWvBj_j78AjMs5lw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+method+to+obtain+scattering+phase+function+based+on+particle+size+distribution+and+refractive+index+retrieved+from+Aurora+4000+multi-angle+scattering+measurements%3A+A+numerical+study&rft.jtitle=Atmospheric+environment+%281994%29&rft.au=Ran%2C+Liang&rft.au=Zhou%2C+Fang&rft.au=Deng%2C+Zhaoze&rft.au=Zhou%2C+Minqiang&rft.date=2023-12-15&rft.issn=1352-2310&rft.volume=315&rft.spage=120138&rft_id=info:doi/10.1016%2Fj.atmosenv.2023.120138&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_atmosenv_2023_120138
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1352-2310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1352-2310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1352-2310&client=summon