A method to obtain scattering phase function based on particle size distribution and refractive index retrieved from Aurora 4000 multi-angle scattering measurements: A numerical study
Scattering phase function of aerosol particles is crucial to the accurate estimation of aerosol direct radiative forcing, and is also of great interest in the field of remote sensing. One feasible and promising way to obtain scattering phase function on a long-term scale with satisfying temporal res...
Saved in:
| Published in | Atmospheric environment (1994) Vol. 315; p. 120138 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
15.12.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1352-2310 1873-2844 |
| DOI | 10.1016/j.atmosenv.2023.120138 |
Cover
| Abstract | Scattering phase function of aerosol particles is crucial to the accurate estimation of aerosol direct radiative forcing, and is also of great interest in the field of remote sensing. One feasible and promising way to obtain scattering phase function on a long-term scale with satisfying temporal resolution is based upon the particle size distribution (PSD) and the refractive index (m = n + ik) simultaneously retrieved from multi-wavelength multi-angle scattering detected by Aurora 4000, a commercially available and easily operated, as well as lab- and field-deployable instrument. In this study, a retrieval algorithm was specifically developed according to the characteristics of Aurora 4000 measurements, using the regularization method. The algorithm was systematically evaluated for its applicability, capability and limitation by a series of designed numerical experiments, considering both monomodal and bimodal log-normal distributions with various settings of parameters and different m, in order to be prepared for its application in field studies. The retrieval algorithm has exhibited a successful performance in deriving the PSDs and the real part of the refractive index (n) without a priori assumptions about the shape of the PSDs and the value of n, and consequently in obtaining scattering phase function, for aerosol particles from purely scattering to slightly absorbing (the imaginary part of the refractive index k ≤ 0.01) both without and with assumed measurement errors (when ±ψs≤±3%). Under such circumstances, relative errors in retrieved effective diameter (De), total surface area concentration (Sa), total volume concentration (Va) are almost within ±20%, relative errors in retrieved total number concentration (Na) stay roughly within ±50%, and absolute errors of n are well within ±0.02. Moreover, relative errors in backscattering ratio (BSR) and the defined parameter to describe relative errors in scattering phase function (δP), as good indicators for demonstrating how well scattering phase function can be captured, averagely locate within ±20% and ±10%, respectively. In contrast, relative errors in the widely used parameters of the asymmetry parameter (g) and hemispheric backscattering ratio (HBSR) remain still quite small even when considerable deviations can be observed in the forward and backward scattering regimes. Hopefully, when applied in field studies in the next step, the retrieval algorithm established in this study will improve our knowledge and understanding on angular scattering properties of ambient aerosol particles, as well as the associated impacts on aerosol direct radiative forcing.
•An algorithm is developed for Aurora 4000 to retrieve particle size distribution and estimate refractive index.•The algorithm is systematically evaluated by a series of numerical experiments.•Aerosol scattering phase function is obtained from retrieved parameters. |
|---|---|
| AbstractList | Scattering phase function of aerosol particles is crucial to the accurate estimation of aerosol direct radiative forcing, and is also of great interest in the field of remote sensing. One feasible and promising way to obtain scattering phase function on a long-term scale with satisfying temporal resolution is based upon the particle size distribution (PSD) and the refractive index (m = n + ik) simultaneously retrieved from multi-wavelength multi-angle scattering detected by Aurora 4000, a commercially available and easily operated, as well as lab- and field-deployable instrument. In this study, a retrieval algorithm was specifically developed according to the characteristics of Aurora 4000 measurements, using the regularization method. The algorithm was systematically evaluated for its applicability, capability and limitation by a series of designed numerical experiments, considering both monomodal and bimodal log-normal distributions with various settings of parameters and different m, in order to be prepared for its application in field studies. The retrieval algorithm has exhibited a successful performance in deriving the PSDs and the real part of the refractive index (n) without a priori assumptions about the shape of the PSDs and the value of n, and consequently in obtaining scattering phase function, for aerosol particles from purely scattering to slightly absorbing (the imaginary part of the refractive index k ≤ 0.01) both without and with assumed measurement errors (when ±ψₛ≤±3%). Under such circumstances, relative errors in retrieved effective diameter (Dₑ), total surface area concentration (Sₐ), total volume concentration (Vₐ) are almost within ±20%, relative errors in retrieved total number concentration (Nₐ) stay roughly within ±50%, and absolute errors of n are well within ±0.02. Moreover, relative errors in backscattering ratio (BSR) and the defined parameter to describe relative errors in scattering phase function (δP), as good indicators for demonstrating how well scattering phase function can be captured, averagely locate within ±20% and ±10%, respectively. In contrast, relative errors in the widely used parameters of the asymmetry parameter (g) and hemispheric backscattering ratio (HBSR) remain still quite small even when considerable deviations can be observed in the forward and backward scattering regimes. Hopefully, when applied in field studies in the next step, the retrieval algorithm established in this study will improve our knowledge and understanding on angular scattering properties of ambient aerosol particles, as well as the associated impacts on aerosol direct radiative forcing. Scattering phase function of aerosol particles is crucial to the accurate estimation of aerosol direct radiative forcing, and is also of great interest in the field of remote sensing. One feasible and promising way to obtain scattering phase function on a long-term scale with satisfying temporal resolution is based upon the particle size distribution (PSD) and the refractive index (m = n + ik) simultaneously retrieved from multi-wavelength multi-angle scattering detected by Aurora 4000, a commercially available and easily operated, as well as lab- and field-deployable instrument. In this study, a retrieval algorithm was specifically developed according to the characteristics of Aurora 4000 measurements, using the regularization method. The algorithm was systematically evaluated for its applicability, capability and limitation by a series of designed numerical experiments, considering both monomodal and bimodal log-normal distributions with various settings of parameters and different m, in order to be prepared for its application in field studies. The retrieval algorithm has exhibited a successful performance in deriving the PSDs and the real part of the refractive index (n) without a priori assumptions about the shape of the PSDs and the value of n, and consequently in obtaining scattering phase function, for aerosol particles from purely scattering to slightly absorbing (the imaginary part of the refractive index k ≤ 0.01) both without and with assumed measurement errors (when ±ψs≤±3%). Under such circumstances, relative errors in retrieved effective diameter (De), total surface area concentration (Sa), total volume concentration (Va) are almost within ±20%, relative errors in retrieved total number concentration (Na) stay roughly within ±50%, and absolute errors of n are well within ±0.02. Moreover, relative errors in backscattering ratio (BSR) and the defined parameter to describe relative errors in scattering phase function (δP), as good indicators for demonstrating how well scattering phase function can be captured, averagely locate within ±20% and ±10%, respectively. In contrast, relative errors in the widely used parameters of the asymmetry parameter (g) and hemispheric backscattering ratio (HBSR) remain still quite small even when considerable deviations can be observed in the forward and backward scattering regimes. Hopefully, when applied in field studies in the next step, the retrieval algorithm established in this study will improve our knowledge and understanding on angular scattering properties of ambient aerosol particles, as well as the associated impacts on aerosol direct radiative forcing. •An algorithm is developed for Aurora 4000 to retrieve particle size distribution and estimate refractive index.•The algorithm is systematically evaluated by a series of numerical experiments.•Aerosol scattering phase function is obtained from retrieved parameters. |
| ArticleNumber | 120138 |
| Author | Ran, Liang Zhou, Minqiang Deng, Zhaoze Wang, Pucai Zhou, Fang |
| Author_xml | – sequence: 1 givenname: Liang orcidid: 0000-0003-1890-0448 surname: Ran fullname: Ran, Liang organization: LAGEO & CNRC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China – sequence: 2 givenname: Fang surname: Zhou fullname: Zhou, Fang organization: LAGEO & CNRC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China – sequence: 3 givenname: Zhaoze orcidid: 0000-0002-0955-6350 surname: Deng fullname: Deng, Zhaoze email: dengzz@mail.iap.ac.cn organization: LAGEO & CNRC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China – sequence: 4 givenname: Minqiang orcidid: 0000-0003-3427-5873 surname: Zhou fullname: Zhou, Minqiang organization: LAGEO & CNRC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China – sequence: 5 givenname: Pucai surname: Wang fullname: Wang, Pucai organization: LAGEO & CNRC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China |
| BookMark | eNqNkMtu1TAQhrMoEm3hFZCXbHLwJVfEgqOKm1SJTbu2Js649VFiB18OHF6sr1eHgJDYlJXt8f_NjL6L4sw6i0XxitEdo6x5c9hBnF1Ae9xxysWOccpEd1acM1HzkgtGnxcXIRwopaLt2_PiYU9mjPduJNERN0QwlgQFMaI39o4s9xCQ6GRVNM6SIb9Gki8L-GjUhCSYn0hGE6I3Q_qVATsSj9pDRo5IjB3xRy7kAB4zrL2byT5554FUeQ0ypymaEuzd2u3v5BkhJI8z2hjekj2xac4fCiYSYhpPL4pnGqaAL3-fl8Xtxw83V5_L66-fvlztr0slehHLvh-w142mbaNRcVF1ohEDHbjOxaob2pqLrma8r5kC5JUAzXAQveKNHqsKxWXRbn2TXeD0HaZJLt7M4E-SUbk6lwf5x7lcncvNeSZfb-Ti3beEIcrZBIXTBBZdClKwumJdxdo1-m6LKu9CyPKkMhFWm9GDmZ6e1PyD__eK7zcQs8GjQS-DMmgVjsajinJ05qkWj96Cy54 |
| CitedBy_id | crossref_primary_10_1007_s40726_024_00292_z |
| Cites_doi | 10.1080/02786826.2015.1131809 10.1080/02786826.2013.775400 10.1016/j.atmosres.2022.106519 10.1016/j.jaerosci.2010.07.007 10.1175/1520-0426(1996)013<0967:PCOAHS>2.0.CO;2 10.5194/amt-10-811-2017 10.1364/AO.20.003661 10.5194/acp-12-2381-2012 10.5194/amt-15-3161-2022 10.1016/j.scitotenv.2021.146443 10.1029/2004GL021596 10.1080/02786828808959207 10.5194/amt-5-657-2012 10.1100/2011/310769 10.5194/acp-18-3737-2018 10.5194/acp-15-13113-2015 10.2138/am-2017-6144 10.1364/AO.38.002346 10.5194/acp-18-5235-2018 10.5194/amt-6-2349-2013 10.1029/2001JD900068 10.5194/acp-19-14417-2019 10.5194/acp-19-11985-2019 10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2 10.1080/02786826.2016.1155105 10.1016/j.atmosenv.2008.06.022 10.5194/acp-10-7325-2010 10.1098/rspa.1990.0107 10.5194/amt-4-1291-2011 10.1175/1520-0426(1996)013<0987:DAAOTI>2.0.CO;2 |
| ContentType | Journal Article |
| Copyright | 2023 |
| Copyright_xml | – notice: 2023 |
| DBID | AAYXX CITATION 7S9 L.6 ADTOC UNPAY |
| DOI | 10.1016/j.atmosenv.2023.120138 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| ExternalDocumentID | 10.1016/j.atmosenv.2023.120138 10_1016_j_atmosenv_2023_120138 S1352231023005642 |
| GroupedDBID | --- --K --M -DZ -~X ..I .DC .HR .~1 0R~ 0SF 186 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAFWJ AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABEFU ABFNM ABFYP ABLJU ABLST ABMAC ABQEM ABQYD ABXDB ACDAQ ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD ADVLN AEBSH AEKER AENEX AFFNX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A NCXOZ O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCU SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K T9H TAE VH1 WUQ ~02 ~G- AATTM AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD 7S9 L.6 ADTOC AGCQF UNPAY |
| ID | FETCH-LOGICAL-c393t-99be9f6f076fec2348363b0b2ff6f48b75238512951cae243af1eb39c26fd44e3 |
| IEDL.DBID | UNPAY |
| ISSN | 1352-2310 1873-2844 |
| IngestDate | Tue Aug 19 17:23:55 EDT 2025 Thu Oct 02 12:12:32 EDT 2025 Wed Oct 29 21:27:50 EDT 2025 Thu Apr 24 23:11:31 EDT 2025 Tue Dec 03 03:45:22 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Aurora 4000 Particle size distribution Scattering phase function Regularization |
| Language | English |
| License | cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c393t-99be9f6f076fec2348363b0b2ff6f48b75238512951cae243af1eb39c26fd44e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-1890-0448 0000-0002-0955-6350 0000-0003-3427-5873 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.atmosenv.2023.120138 |
| PQID | 3154184178 |
| PQPubID | 24069 |
| ParticipantIDs | unpaywall_primary_10_1016_j_atmosenv_2023_120138 proquest_miscellaneous_3154184178 crossref_citationtrail_10_1016_j_atmosenv_2023_120138 crossref_primary_10_1016_j_atmosenv_2023_120138 elsevier_sciencedirect_doi_10_1016_j_atmosenv_2023_120138 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-15 |
| PublicationDateYYYYMMDD | 2023-12-15 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Atmospheric environment (1994) |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Barkey, Paulson, Liou (bib4) 2012; vol. 6 Heintzenberg, Charlson (bib15) 1996; 13 McCrowey, Tinilau, Calderon, Koo, Curtis (bib24) 2013; 47 Jenkins, White (bib18) 2001 Jurányi, Weller (bib19) 2019; 19 Volten, Muñoz, Rol, de Haan, Vassen, Hovenier, Muinonen, Nousiainen (bib34) 2001; 106 Chamberlain-Ward, Sharp (bib9) 2011; 11 Liou (bib21) 2002 Zhao, Hu, Fang, Tan, Xiao, Du, Zheng, Shang, Wu, Guo, Zhao (bib39) 2021; 779 Korras-Carraca, Hatzianastassiou, Matsoukas, Gkikas, Papadimas (bib20) 2015; 15 Barnard, Fast, Paredes-Miranda, Arnott, Laskin (bib5) 2010; 10 (bib17) 2021 Espinosa, Martins, Remer, Puthukkudy, Orozco, Dolgos (bib13) 2018; 18 Cai, Snider, Wechsler (bib8) 2013; 6 Marinescu, Levin, Collins, Kreidenweis, van den Heever (bib23) 2019; 19 Romshoo, Müller, Pfeifer, Saturno, Nowak, Ciupek, Quincey, Wiedensohler (bib29) 2021; 21 Shepherd, King, Marks, Brough, Ward (bib31) 2018; 18 Burkart, Steiner, Reischl, Moshammer, Neuberger, Hitzenberger (bib7) 2010; 41 Chang, Charalampopoulos (bib10) 1990; 430 Gao, Telg, McLaughlin, Ciciora, Watts, Richardson, Schwarz, Perring, Thornberry, Rollins, Markovic, Bates, Johnson, Fahey (bib14) 2016; 50 Wehner, Wiedensohler, Tuch, Wu, Hu, Slanina, Kiang (bib35) 2004; 31 Ananth, Wilson (bib3) 1988; 9 Bohren, Huffman (bib6) 1998 Müller, Wandinger, Ansmann (bib25) 1999; 38 Shannon, Lafuente, Shannon, Downs, Fischer (bib30) 2017; 102 Wiedensohler, Birmili, Nowak, Sonntag, Weinhold, Merkel, Wehner, Tuch, Pfeifer, Fiebig, Fjäraa, Asmi, Sellegri, Depuy, Venzac, Villani, Laj, Aalto, Ogren, Swietlicki, Williams, Roldin, Quincey, Hüglin, Fierz-Schmidhauser, Gysel, Weingartner, Riccohono, Santos, Grüning, Faloon, Beddows, Harrison, Monahan, Jennings, O'Dowd, Marinoni, Horn, Keck, Jiang, Scheckman, McMurry, Deng, Zhao, Moerman, Henzing, de Leeuw, Löschau, Bastian (bib36) 2012; 5 Müller, Paixão, Pfeifer, Wiedensohler (bib26) 2012 Ackerman, Toon (bib1) 1981; 20 Teri, Müller, Gasteiger, Valentini, Horvath, Vecchi, Bauer, Walser, Weinzierl (bib32) 2022; 15 Espinosa, Remer, Dubovik, Ziemba, Beyersdorf, Orozco, Schuster, Lapyonok, Fuertes, Martins (bib12) 2017; 10 Twomey (bib33) 1977 Wu, Hu, Lin, Liu, Wehner, Wiedensohler (bib37) 2008; 42 Chen, Zhao, Shen, Fan (bib11) 2023; 282 Yue, Hu, Wu, Wang, Guo, Wehner, Nowak, Achtert, Wiedensohler, Jung, Kim, Liu (bib38) 2009; 114 Anderson, Covert, Marshall, Laucks, Charlson, Waggoner, Ogren, Caldow, Holm, Quant, Sem, Wiedensohler, Ahlquist, Bates (bib2) 1996; 13 Ma, Zhao, Müller, Cheng, Liu, Deng, Xu, Ran, Nekat, van Pinxteren, Gnauk, Müller, Herrmann, Yan, Zhou, Wiedensohler (bib22) 2012; 12 Hess, Koepke, Schult (bib16) 1998; 79 Müller, Laborde, Kassell, Wiedensohler (bib27) 2011; 4 Nakagawa, Nakayama, Sasago, Ueda, Venables, Matsumi (bib28) 2016; 50 Espinosa (10.1016/j.atmosenv.2023.120138_bib13) 2018; 18 Volten (10.1016/j.atmosenv.2023.120138_bib34) 2001; 106 Twomey (10.1016/j.atmosenv.2023.120138_bib33) 1977 Heintzenberg (10.1016/j.atmosenv.2023.120138_bib15) 1996; 13 Nakagawa (10.1016/j.atmosenv.2023.120138_bib28) 2016; 50 Wehner (10.1016/j.atmosenv.2023.120138_bib35) 2004; 31 Anderson (10.1016/j.atmosenv.2023.120138_bib2) 1996; 13 Chen (10.1016/j.atmosenv.2023.120138_bib11) 2023; 282 Ma (10.1016/j.atmosenv.2023.120138_bib22) 2012; 12 Cai (10.1016/j.atmosenv.2023.120138_bib8) 2013; 6 Shannon (10.1016/j.atmosenv.2023.120138_bib30) 2017; 102 (10.1016/j.atmosenv.2023.120138_bib17) 2021 Ackerman (10.1016/j.atmosenv.2023.120138_bib1) 1981; 20 Müller (10.1016/j.atmosenv.2023.120138_bib26) 2012 Chang (10.1016/j.atmosenv.2023.120138_bib10) 1990; 430 Gao (10.1016/j.atmosenv.2023.120138_bib14) 2016; 50 Zhao (10.1016/j.atmosenv.2023.120138_bib39) 2021; 779 Jenkins (10.1016/j.atmosenv.2023.120138_bib18) 2001 Teri (10.1016/j.atmosenv.2023.120138_bib32) 2022; 15 Müller (10.1016/j.atmosenv.2023.120138_bib27) 2011; 4 Ananth (10.1016/j.atmosenv.2023.120138_bib3) 1988; 9 Bohren (10.1016/j.atmosenv.2023.120138_bib6) 1998 Burkart (10.1016/j.atmosenv.2023.120138_bib7) 2010; 41 Liou (10.1016/j.atmosenv.2023.120138_bib21) 2002 Wiedensohler (10.1016/j.atmosenv.2023.120138_bib36) 2012; 5 Jurányi (10.1016/j.atmosenv.2023.120138_bib19) 2019; 19 Yue (10.1016/j.atmosenv.2023.120138_bib38) 2009; 114 Espinosa (10.1016/j.atmosenv.2023.120138_bib12) 2017; 10 Müller (10.1016/j.atmosenv.2023.120138_bib25) 1999; 38 Korras-Carraca (10.1016/j.atmosenv.2023.120138_bib20) 2015; 15 Barnard (10.1016/j.atmosenv.2023.120138_bib5) 2010; 10 Hess (10.1016/j.atmosenv.2023.120138_bib16) 1998; 79 Shepherd (10.1016/j.atmosenv.2023.120138_bib31) 2018; 18 Wu (10.1016/j.atmosenv.2023.120138_bib37) 2008; 42 Barkey (10.1016/j.atmosenv.2023.120138_bib4) 2012; vol. 6 Chamberlain-Ward (10.1016/j.atmosenv.2023.120138_bib9) 2011; 11 Marinescu (10.1016/j.atmosenv.2023.120138_bib23) 2019; 19 McCrowey (10.1016/j.atmosenv.2023.120138_bib24) 2013; 47 |
| References_xml | – volume: 4 start-page: 1291 year: 2011 end-page: 1303 ident: bib27 article-title: Design and performance of a three-wavelength LED-based total scatter and backscatter integrating nephelometer publication-title: Atmos. Meas. Tech. – volume: 41 start-page: 953 year: 2010 end-page: 962 ident: bib7 article-title: Characterizing the performance of two optical particle counters (Grimm OPC1.108 and OPC1.109) under urban aerosol conditions publication-title: J. Aerosol Sci. – volume: 15 start-page: 3161 year: 2022 end-page: 3187 ident: bib32 article-title: Impact of particle size, refractive index, and shape on the determination of the particle scattering coefficient - an optical closure study evaluating different nephelometer angular truncation and illumination corrections publication-title: Atmos. Meas. Tech. – volume: 15 start-page: 13113 year: 2015 end-page: 13132 ident: bib20 article-title: The regime of aerosol asymmetry parameter over Europe, the Mediterranean and the Middle East based on MODIS satellite data: evaluation against surface AERONET measurements publication-title: Atmos. Chem. Phys. – volume: 42 start-page: 7967 year: 2008 end-page: 7980 ident: bib37 article-title: Particle number size distribution in the urban atmosphere of Beijing, China publication-title: Atmos. Environ. – volume: 13 start-page: 987 year: 1996 end-page: 1000 ident: bib15 article-title: Design and applications of the integrating nephelometer: a review publication-title: J. Atmos. Ocean. Technol. – volume: 18 start-page: 5235 year: 2018 end-page: 5252 ident: bib31 article-title: Determination of the refractive index of insoluble organic extracts from atmospheric aerosol over the visible wavelength range using optical tweezers publication-title: Atmos. Chem. Phys. – volume: 282 year: 2023 ident: bib11 article-title: Influence of aerosol properties and surface albedo on radiative forcing efficiency of key aerosol types using global AERONET data publication-title: Atmos. Res. – volume: 79 start-page: 831 year: 1998 end-page: 844 ident: bib16 article-title: Optical properties of aerosols and clouds: the software package OPAC publication-title: Bull. Am. Meteorol. Soc. – volume: 10 start-page: 7325 year: 2010 end-page: 7340 ident: bib5 article-title: Technical note: evaluation of the WRF-chem "aerosol chemical to aerosol optical properties" module using data from the MILAGRO campaign publication-title: Atmos. Chem. Phys. – volume: 47 start-page: 592 year: 2013 end-page: 605 ident: bib24 article-title: A portable high-resolution polar nephelometer for measurement of the angular scattering properties of atmospheric aerosol: design and validation publication-title: Aerosol Sci. Technol. – start-page: 583 year: 2002 ident: bib21 article-title: An Introduction to Atmospheric Radiation – volume: 50 start-page: 88 year: 2016 end-page: 99 ident: bib14 article-title: A light-weight, high-sensitivity particle spectrometer for PM2.5 aerosol measurements publication-title: Aerosol Sci. Technol. – volume: 13 start-page: 967 year: 1996 end-page: 986 ident: bib2 article-title: Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer publication-title: J. Atmos. Ocean. Technol. – volume: 12 start-page: 2381 year: 2012 end-page: 2397 ident: bib22 article-title: A new method to determine the mixing state of light absorbing carbonaceous using the measured aerosol optical properties and number size distributions publication-title: Atmos. Chem. Phys. – year: 2012 ident: bib26 article-title: Scattering coefficients and asymmetry parameters derived from the polar nephelometer Aurora 4000 publication-title: European Aerosol Conference EAC 2012 – volume: 430 start-page: 577 year: 1990 end-page: 591 ident: bib10 article-title: Determination of the wavelength dependence of refractive indices of flame soot publication-title: Proc. Roy. Soc. Lond. A – volume: 19 start-page: 14417 year: 2019 end-page: 14430 ident: bib19 article-title: One year of aerosol refractive index measurement from a coastal Antarctic site publication-title: Atmos. Chem. Phys. – year: 2021 ident: bib17 article-title: Climate Change 2021: the Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change – volume: 19 start-page: 11985 year: 2019 end-page: 12006 ident: bib23 article-title: Quantifying aerosol size distributions and their temporal variability in the Southern Great Plains, USA publication-title: Atmos. Chem. Phys. – volume: 20 start-page: 3661 year: 1981 end-page: 3668 ident: bib1 article-title: Absorption of visible radiation in atmosphere containing mixtures of absorbing and nonabsorbing particles publication-title: Appl. Opt. – volume: 102 start-page: 1906 year: 2017 end-page: 1914 ident: bib30 article-title: Refractive indices of minerals and synthetic compounds publication-title: Am. Mineral. – volume: 31 year: 2004 ident: bib35 article-title: Variability of the aerosol number size distribution in Beijing, China: new particle formation, dust storms, and high continental background publication-title: Geophys. Res. Lett. – volume: 5 start-page: 657 year: 2012 end-page: 685 ident: bib36 article-title: Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions publication-title: Atmos. Meas. Tech. – volume: 6 start-page: 2349 year: 2013 end-page: 2358 ident: bib8 article-title: Calibration of the passive cavity aerosol spectrometer probe for airborne determination of the size distribution publication-title: Atmos. Meas. Tech. – volume: 38 start-page: 2346 year: 1999 end-page: 2357 ident: bib25 article-title: Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory publication-title: Appl. Opt. – start-page: 766 year: 2001 ident: bib18 article-title: Fundamentals of Optics – volume: 9 start-page: 189 year: 1988 end-page: 199 ident: bib3 article-title: Theoretical analysis of the performance of the TSI Aerodynamic Particle Sizer the effect of density on response publication-title: Aerosol. Sci. Technol. – volume: 21 start-page: 12989 year: 2021 end-page: 13010 ident: bib29 article-title: Optical properties of coated black carbon aggregates: numerical simulations, radiative forcing estimates, and size-resolved parameterization scheme publication-title: Atmos. Chem. Phys. – volume: 18 start-page: 3737 year: 2018 end-page: 3754 ident: bib13 article-title: In situ measurements of angular-dependent light scattering by aerosols over the contiguous United States publication-title: Atmos. Chem. Phys. – volume: 106 start-page: 17375 year: 2001 end-page: 17401 ident: bib34 article-title: Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm publication-title: J. Geophys. Res. – start-page: 544 year: 1998 ident: bib6 article-title: Absorption and Scattering of Light by Small Particles – volume: 11 start-page: 2530 year: 2011 end-page: 2535 ident: bib9 article-title: Advances in nephelometry through the Ecotech Aurora nephelometer publication-title: Sci. World J. – volume: 50 start-page: 392 year: 2016 end-page: 404 ident: bib28 article-title: Design and characterization of a novel single-particle polar nephelometer publication-title: Aerosol Sci. Technol. – volume: 10 start-page: 811 year: 2017 end-page: 824 ident: bib12 article-title: Retrievals of aerosol optical and microphysical properties from Imaging Polar Nephelometer scattering measurements publication-title: Atmos. Meas. Tech. – start-page: 243 year: 1977 ident: bib33 article-title: Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements – volume: 114 start-page: D00G12 year: 2009 ident: bib38 article-title: Characteristics of aerosol size distributions and new particle formation in the summer in Beijing publication-title: J. Geophys. Res. – volume: vol. 6 year: 2012 ident: bib4 article-title: Polar nephelometers for light scattering by ice crystals and aerosols: design and measurements publication-title: Light Scattering Reviews – volume: 779 year: 2021 ident: bib39 article-title: Larger than expected variation range in the real part of the refractive index for ambient aerosols in China publication-title: Sci. Total Environ. – volume: 50 start-page: 88 year: 2016 ident: 10.1016/j.atmosenv.2023.120138_bib14 article-title: A light-weight, high-sensitivity particle spectrometer for PM2.5 aerosol measurements publication-title: Aerosol Sci. Technol. doi: 10.1080/02786826.2015.1131809 – start-page: 544 year: 1998 ident: 10.1016/j.atmosenv.2023.120138_bib6 – volume: 47 start-page: 592 year: 2013 ident: 10.1016/j.atmosenv.2023.120138_bib24 article-title: A portable high-resolution polar nephelometer for measurement of the angular scattering properties of atmospheric aerosol: design and validation publication-title: Aerosol Sci. Technol. doi: 10.1080/02786826.2013.775400 – volume: 282 year: 2023 ident: 10.1016/j.atmosenv.2023.120138_bib11 article-title: Influence of aerosol properties and surface albedo on radiative forcing efficiency of key aerosol types using global AERONET data publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2022.106519 – volume: 41 start-page: 953 year: 2010 ident: 10.1016/j.atmosenv.2023.120138_bib7 article-title: Characterizing the performance of two optical particle counters (Grimm OPC1.108 and OPC1.109) under urban aerosol conditions publication-title: J. Aerosol Sci. doi: 10.1016/j.jaerosci.2010.07.007 – volume: 114 start-page: D00G12 year: 2009 ident: 10.1016/j.atmosenv.2023.120138_bib38 article-title: Characteristics of aerosol size distributions and new particle formation in the summer in Beijing publication-title: J. Geophys. Res. – volume: 13 start-page: 967 year: 1996 ident: 10.1016/j.atmosenv.2023.120138_bib2 article-title: Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/1520-0426(1996)013<0967:PCOAHS>2.0.CO;2 – year: 2021 ident: 10.1016/j.atmosenv.2023.120138_bib17 – volume: 10 start-page: 811 year: 2017 ident: 10.1016/j.atmosenv.2023.120138_bib12 article-title: Retrievals of aerosol optical and microphysical properties from Imaging Polar Nephelometer scattering measurements publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-10-811-2017 – volume: 20 start-page: 3661 year: 1981 ident: 10.1016/j.atmosenv.2023.120138_bib1 article-title: Absorption of visible radiation in atmosphere containing mixtures of absorbing and nonabsorbing particles publication-title: Appl. Opt. doi: 10.1364/AO.20.003661 – start-page: 766 year: 2001 ident: 10.1016/j.atmosenv.2023.120138_bib18 – volume: 12 start-page: 2381 year: 2012 ident: 10.1016/j.atmosenv.2023.120138_bib22 article-title: A new method to determine the mixing state of light absorbing carbonaceous using the measured aerosol optical properties and number size distributions publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-12-2381-2012 – start-page: 243 year: 1977 ident: 10.1016/j.atmosenv.2023.120138_bib33 – volume: 15 start-page: 3161 year: 2022 ident: 10.1016/j.atmosenv.2023.120138_bib32 article-title: Impact of particle size, refractive index, and shape on the determination of the particle scattering coefficient - an optical closure study evaluating different nephelometer angular truncation and illumination corrections publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-15-3161-2022 – start-page: 583 year: 2002 ident: 10.1016/j.atmosenv.2023.120138_bib21 – volume: 779 year: 2021 ident: 10.1016/j.atmosenv.2023.120138_bib39 article-title: Larger than expected variation range in the real part of the refractive index for ambient aerosols in China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.146443 – volume: 31 year: 2004 ident: 10.1016/j.atmosenv.2023.120138_bib35 article-title: Variability of the aerosol number size distribution in Beijing, China: new particle formation, dust storms, and high continental background publication-title: Geophys. Res. Lett. doi: 10.1029/2004GL021596 – year: 2012 ident: 10.1016/j.atmosenv.2023.120138_bib26 article-title: Scattering coefficients and asymmetry parameters derived from the polar nephelometer Aurora 4000 – volume: 9 start-page: 189 year: 1988 ident: 10.1016/j.atmosenv.2023.120138_bib3 article-title: Theoretical analysis of the performance of the TSI Aerodynamic Particle Sizer the effect of density on response publication-title: Aerosol. Sci. Technol. doi: 10.1080/02786828808959207 – volume: 5 start-page: 657 year: 2012 ident: 10.1016/j.atmosenv.2023.120138_bib36 article-title: Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-5-657-2012 – volume: 11 start-page: 2530 year: 2011 ident: 10.1016/j.atmosenv.2023.120138_bib9 article-title: Advances in nephelometry through the Ecotech Aurora nephelometer publication-title: Sci. World J. doi: 10.1100/2011/310769 – volume: 18 start-page: 3737 year: 2018 ident: 10.1016/j.atmosenv.2023.120138_bib13 article-title: In situ measurements of angular-dependent light scattering by aerosols over the contiguous United States publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-18-3737-2018 – volume: 15 start-page: 13113 year: 2015 ident: 10.1016/j.atmosenv.2023.120138_bib20 article-title: The regime of aerosol asymmetry parameter over Europe, the Mediterranean and the Middle East based on MODIS satellite data: evaluation against surface AERONET measurements publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-15-13113-2015 – volume: 102 start-page: 1906 year: 2017 ident: 10.1016/j.atmosenv.2023.120138_bib30 article-title: Refractive indices of minerals and synthetic compounds publication-title: Am. Mineral. doi: 10.2138/am-2017-6144 – volume: 38 start-page: 2346 year: 1999 ident: 10.1016/j.atmosenv.2023.120138_bib25 article-title: Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory publication-title: Appl. Opt. doi: 10.1364/AO.38.002346 – volume: vol. 6 year: 2012 ident: 10.1016/j.atmosenv.2023.120138_bib4 article-title: Polar nephelometers for light scattering by ice crystals and aerosols: design and measurements – volume: 18 start-page: 5235 year: 2018 ident: 10.1016/j.atmosenv.2023.120138_bib31 article-title: Determination of the refractive index of insoluble organic extracts from atmospheric aerosol over the visible wavelength range using optical tweezers publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-18-5235-2018 – volume: 6 start-page: 2349 year: 2013 ident: 10.1016/j.atmosenv.2023.120138_bib8 article-title: Calibration of the passive cavity aerosol spectrometer probe for airborne determination of the size distribution publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-6-2349-2013 – volume: 106 start-page: 17375 year: 2001 ident: 10.1016/j.atmosenv.2023.120138_bib34 article-title: Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm publication-title: J. Geophys. Res. doi: 10.1029/2001JD900068 – volume: 19 start-page: 14417 year: 2019 ident: 10.1016/j.atmosenv.2023.120138_bib19 article-title: One year of aerosol refractive index measurement from a coastal Antarctic site publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-19-14417-2019 – volume: 19 start-page: 11985 year: 2019 ident: 10.1016/j.atmosenv.2023.120138_bib23 article-title: Quantifying aerosol size distributions and their temporal variability in the Southern Great Plains, USA publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-19-11985-2019 – volume: 79 start-page: 831 year: 1998 ident: 10.1016/j.atmosenv.2023.120138_bib16 article-title: Optical properties of aerosols and clouds: the software package OPAC publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2 – volume: 50 start-page: 392 year: 2016 ident: 10.1016/j.atmosenv.2023.120138_bib28 article-title: Design and characterization of a novel single-particle polar nephelometer publication-title: Aerosol Sci. Technol. doi: 10.1080/02786826.2016.1155105 – volume: 42 start-page: 7967 year: 2008 ident: 10.1016/j.atmosenv.2023.120138_bib37 article-title: Particle number size distribution in the urban atmosphere of Beijing, China publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2008.06.022 – volume: 10 start-page: 7325 year: 2010 ident: 10.1016/j.atmosenv.2023.120138_bib5 article-title: Technical note: evaluation of the WRF-chem "aerosol chemical to aerosol optical properties" module using data from the MILAGRO campaign publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-10-7325-2010 – volume: 430 start-page: 577 year: 1990 ident: 10.1016/j.atmosenv.2023.120138_bib10 article-title: Determination of the wavelength dependence of refractive indices of flame soot publication-title: Proc. Roy. Soc. Lond. A doi: 10.1098/rspa.1990.0107 – volume: 4 start-page: 1291 year: 2011 ident: 10.1016/j.atmosenv.2023.120138_bib27 article-title: Design and performance of a three-wavelength LED-based total scatter and backscatter integrating nephelometer publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-4-1291-2011 – volume: 13 start-page: 987 year: 1996 ident: 10.1016/j.atmosenv.2023.120138_bib15 article-title: Design and applications of the integrating nephelometer: a review publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/1520-0426(1996)013<0987:DAAOTI>2.0.CO;2 |
| SSID | ssj0003797 |
| Score | 2.4540641 |
| Snippet | Scattering phase function of aerosol particles is crucial to the accurate estimation of aerosol direct radiative forcing, and is also of great interest in the... |
| SourceID | unpaywall proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 120138 |
| SubjectTerms | aerosols algorithms asymmetry Aurora 4000 environment Particle size distribution refractive index Regularization Scattering phase function surface area |
| SummonAdditionalLinks | – databaseName: Science Direct dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqXoADKoWK_oAGiWt2k9hx1r2tqlYVBy5QqbfIdhzYautEzWYRHHgtXo-ZxOluD1WRuCWWJ3Ey45mxPfMNYx9NWunKKRPpGXeRqLIsUiKxkXQEVi51LHWP9vlZXl6JT9fZ9Q47G3NhKKwy6P5Bp_faOrRMw9-cNovF9EtCvgMn6AHCsxSkh4XIqYrB5PcmzIPnQ4EV7BxR760s4RvkyG3dOr-eUBHxSZLSsd1jBmrLAX3W-Ub__KGXyy1bdLHHXgYnEubDOF-xHef32YstaMF9dnC-yWDDrmEKt6_ZnzkMVaNhVUNtaGcAWtujbCIhNN_RrAFZO-IYkJErAS-a8FOgXfxyUBLcbqiUBdqXgJ_Rp1utHfT4i9hAlbrWSEwJLDDv7lDWAKdyDH0MY6T9N3ra5s23m93K9hTm4LvhMGkJPQTuG3Z1cf717DIK1RsiyxVfRUoZpypZxbmsnE25mHHJTYzCgY1iZnJcAs_I3cgSq10quK4SXNkrm8qqFMLxA7bra-_eMrAqMbzUGrWrExad0rIyBE2Wm1JqzvUhy0aWFTZAm1OFjWUxxrDdFCOrC2J1MbD6kE3v6ZoB3ONJCjVKRPFATAu0QE_SfhhFqMA5TAcz2ru6awuOfiyutJMc-8T3svWPQzr6jyEds-d0R-E5SXbCdld3nXuHTtbKvO9n0V9jbSsR priority: 102 providerName: Elsevier |
| Title | A method to obtain scattering phase function based on particle size distribution and refractive index retrieved from Aurora 4000 multi-angle scattering measurements: A numerical study |
| URI | https://dx.doi.org/10.1016/j.atmosenv.2023.120138 https://www.proquest.com/docview/3154184178 https://doi.org/10.1016/j.atmosenv.2023.120138 |
| UnpaywallVersion | publishedVersion |
| Volume | 315 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 1352-2310 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003797 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 1352-2310 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003797 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection issn: 1352-2310 databaseCode: AIKHN dateStart: 20161201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003797 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 1352-2310 databaseCode: ACRLP dateStart: 20161201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003797 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 1352-2310 databaseCode: AKRWK dateStart: 19940101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003797 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj5RAEO64Mwf14GN14_qYlInXRqCbBrwRs5tRk9GDk6wn0g2Nr1mYLDDGPfi3_HtW8dgZjWbXGxCKAfqbqq_pqq8Ye2b8Qhc2NlxHwnJZBAGPpZdxZUmsXGlX6U7tc6HmS_n6JDgZJopUC_Pb-n2Xh6Wb06q25cahRt-O59PS2h6bqgC594RNl4t3yYduVhX4nMgKbUeh4Oh35U5J8N8v9K9otMM2r7flWn__plerncBzfJu9HW-5zzf56rSNcbLzP9Qcr_5Md9itgYNC0oPmLrtmy312c0eZcJ8dHG0L4PDUwQPU99jPBPqm09BUUBn6sAB11ol0oiGsP2FUBAqWNOBAMTIH3FgPCIX687mFnNR6h0ZboMsc8MV01VobC518Ix6gRl8bNKb6F0jaM4QqoCdwoUuB5Lr8SFfb_vLp9mNn_QISKNt-LWoFnYLufbY8Pnr_cs6H5g88E7FoeBwbGxeqcENV2MwXMhJKGBexhQdlZEKcQUfEVgIv09aXQheeNSLOfFXkUlpxwCZlVdoHDLLYMyLXGp2zlRly2rwwpGwWmlxpIfQhC0YQpNmgjE4NOlbpmAL3JR1HLKURS_sRO2TPL-zWvTbIpRbxiLF0YDg9c0kRI5faPh1BmaILoHUdXdqqrVOBNBgn6l6I57gXaL3iLT38f5NH7AbtUVKPFzxmk-astU-QmjVmxvacH96MTZNXb-aL2fDv_AW_lzwj |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcigcEBQqWl6DxDW7Sew4a26rqtUCpRdaqTfLTmzYaptEzWarcuBv8feYyaO7HFCRuEWOJ3Ey45mxPfMNY-9t7I13ygZmwl0gfJIESkRZIB2BlUsTStOifZ7K2bn4dJFcbLHDIReGwip73d_p9FZb9y3j_m-Oq_l8_DUi34ET9ADhWQrUww9EEqe0Ahv9XMd58LSrsIK9A-q-kSZ8iSy5KmtXrEZURXwUxXRu9zcLteGB7jRFZW5vzGKxYYyOn7DHvRcJ026gT9mWK3bZow1swV22d7ROYcOu_Ryun7FfU-jKRsOyhNLS1gDUWQuziYRQfUe7BmTuiGVAVi4HvKj6vwL1_IeDnPB2-1JZYIoc8DPafKuVgxaAERuoVNcKiSmDBabNNQob4FwOoQ1iDEzxjZ62fvPVeruy_gBTKJruNGkBLQbuc3Z-fHR2OAv68g1BxhVfBkpZp7z0YSq9y2IuJlxyG6J0YKOY2BTXwBPyN5IoMy4W3PgIl_Yqi6XPhXB8j20XZeFeMMhUZHluDKpXJzL0SnNvCZsstbk0nJt9lgws01mPbU4lNhZ6CGK71AOrNbFad6zeZ-M7uqpD97iXQg0Sof-QU40m6F7ad4MIaZzEdDJjClc2teboyOJSO0qxT3gnW_84pIP_GNJbtjM7-3KiTz6efn7JHtIditWJkldse3nduNfocS3tm3ZG_QZsIi40 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgewAOPAoV5aVB4uoliR0n4RahVhWHwoGVyimyHRso22TVJIvoH-PvMZNHd0GgllsSZbJJ_O3M53jmG8Zemchr7zLDdSoclz6OeSZDy5UjsXKlA6V7tc9jdbSQ707ik3GiSLUwv63f93lYuj2rG1et59Toex5GtLR2k-2oGLn3jO0sjj_kn_pZVRxxIiu0nSaCo9-VWyXBf7_Qv6LRFtu81VUr_eO7Xi63As_hPfZ-uuUh3-TbvGvN3F78oeZ4_We6z-6OHBTyATQP2A1X7bI7W8qEu2zvYFMAh6eOHqB5yH7mMDSdhraG2tCHBWhsL9KJhrD6glERKFjSgAPFyBJwYzUiFJqvFw5KUusdG22BrkrAF9NXa60d9PKNeIAafa3RmOpfIO_OEaqAniCAPgWS6-ozXW3zy2ebj53NG8ih6oa1qCX0CrqP2OLw4OPbIz42f-BWZKLlWWZc5pUPEuWdjYRMhRImQGzhQZmaBGfQKbGVOLTaRVJoHzojMhspX0rpxB6bVXXlHjOwWWhEqTU6ZyctctrSG1I2S0yptBB6n8UTCAo7KqNTg45lMaXAnRbTiBU0YsUwYvvs9aXdatAGudIimzBWjAxnYC4FYuRK25cTKAt0AbSuoytXd00hkAbjRD1M8JzgEq3XvKUn_2_ylN2mPUrqCeNnbNaed-45UrPWvBj_j78AjMs5lw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+method+to+obtain+scattering+phase+function+based+on+particle+size+distribution+and+refractive+index+retrieved+from+Aurora+4000+multi-angle+scattering+measurements%3A+A+numerical+study&rft.jtitle=Atmospheric+environment+%281994%29&rft.au=Ran%2C+Liang&rft.au=Zhou%2C+Fang&rft.au=Deng%2C+Zhaoze&rft.au=Zhou%2C+Minqiang&rft.date=2023-12-15&rft.issn=1352-2310&rft.volume=315&rft.spage=120138&rft_id=info:doi/10.1016%2Fj.atmosenv.2023.120138&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_atmosenv_2023_120138 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1352-2310&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1352-2310&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1352-2310&client=summon |