Sampling from a Log-Concave Distribution with Projected Langevin Monte Carlo

We extend the Langevin Monte Carlo (LMC) algorithm to compactly supported measures via a projection step, akin to projected stochastic gradient descent (SGD). We show that (projected) LMC allows to sample in polynomial time from a log-concave distribution with smooth potential. This gives a new Mark...

Full description

Saved in:
Bibliographic Details
Published inDiscrete & computational geometry Vol. 59; no. 4; pp. 757 - 783
Main Authors Bubeck, Sébastien, Eldan, Ronen, Lehec, Joseph
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2018
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text
ISSN0179-5376
1432-0444
DOI10.1007/s00454-018-9992-1

Cover

Abstract We extend the Langevin Monte Carlo (LMC) algorithm to compactly supported measures via a projection step, akin to projected stochastic gradient descent (SGD). We show that (projected) LMC allows to sample in polynomial time from a log-concave distribution with smooth potential. This gives a new Markov chain to sample from a log-concave distribution. Our main result shows in particular that when the target distribution is uniform, LMC mixes in O ~ ( n 7 ) steps (where n is the dimension). We also provide preliminary experimental evidence that LMC performs at least as well as hit-and-run, for which a better mixing time of O ~ ( n 4 ) was proved by Lovász and Vempala.
AbstractList We extend the Langevin Monte Carlo (LMC) algorithm to compactly supported measures via a projection step, akin to projected stochastic gradient descent (SGD). We show that (projected) LMC allows to sample in polynomial time from a log-concave distribution with smooth potential. This gives a new Markov chain to sample from a log-concave distribution. Our main result shows in particular that when the target distribution is uniform, LMC mixes in O~(n7) steps (where n is the dimension). We also provide preliminary experimental evidence that LMC performs at least as well as hit-and-run, for which a better mixing time of O~(n4) was proved by Lovász and Vempala.
We extend the Langevin Monte Carlo (LMC) algorithm to compactly supported measures via a projection step, akin to projected Stochastic Gradient Descent (SGD). We show that (projected) LMC allows to sample in polynomial time from a log-concave distribution with smooth potential. This gives a new Markov chain to sample from a log-concave distribution. Our main result shows in particular that when the target distribution is uniform, LMC mixes in O(n 7) steps (where n is the dimension). We also provide preliminary experimental evidence that LMC performs at least as well as hit-and-run, for which a better mixing time of O(n 4) was proved by Lovász and Vempala.
We extend the Langevin Monte Carlo (LMC) algorithm to compactly supported measures via a projection step, akin to projected stochastic gradient descent (SGD). We show that (projected) LMC allows to sample in polynomial time from a log-concave distribution with smooth potential. This gives a new Markov chain to sample from a log-concave distribution. Our main result shows in particular that when the target distribution is uniform, LMC mixes in O ~ ( n 7 ) steps (where n is the dimension). We also provide preliminary experimental evidence that LMC performs at least as well as hit-and-run, for which a better mixing time of O ~ ( n 4 ) was proved by Lovász and Vempala.
Author Bubeck, Sébastien
Lehec, Joseph
Eldan, Ronen
Author_xml – sequence: 1
  givenname: Sébastien
  surname: Bubeck
  fullname: Bubeck, Sébastien
  organization: Microsoft Research
– sequence: 2
  givenname: Ronen
  orcidid: 0000-0002-0678-741X
  surname: Eldan
  fullname: Eldan, Ronen
  email: roneneldan@gmail.com
  organization: Faculty of Mathematics and Computer Science, The Weizmann Institute of Science
– sequence: 3
  givenname: Joseph
  surname: Lehec
  fullname: Lehec, Joseph
  organization: CEREMADE, Université Paris-Dauphine
BackLink https://hal.science/hal-01428950$$DView record in HAL
BookMark eNp9kEFr2zAYhsVooUnaH9CbYKcetH6SZcs6BrddBx4rdDsL2ZYTBUfKJCVl_342XikM2pPg43leXr1LdOa8MwhdU_hCAcRtBOA5J0BLIqVkhH5CC8ozRoBzfoYWQIUkeSaKC7SMcQcjLqFcoPpZ7w-DdRvcB7_HGtd-QyrvWn0y-M7GFGxzTNY7_GLTFj8FvzNtMh2utduYk3X4u3fJ4EqHwV-i814P0Vz9e1fo18P9z-qR1D--fqvWNWkzmSUis6JoZdf1AiRrmDZtB1CyvgTeSdr0Gdd9LnpJSymYKZuOctFIJosGuGBZm63QzZy71YM6BLvX4Y_y2qrHda2mG1DOSpnDiY7s55k9BP_7aGJSO38MbqynGDDG80JIPlJiptrgYwymV61Nevp3CtoOioKaZlbzzGN-qaaZ1ZRP_zNfC33ksNmJIzvOGN46vS_9BVhkjz8
CitedBy_id crossref_primary_10_1016_j_spa_2019_02_016
crossref_primary_10_1145_3589505
crossref_primary_10_1214_23_AAP1935
crossref_primary_10_1007_s10994_020_05904_5
crossref_primary_10_1080_01621459_2020_1847120
crossref_primary_10_1016_j_aim_2021_107810
crossref_primary_10_3150_22_BEJ1576
crossref_primary_10_1137_22M1502240
crossref_primary_10_1007_s10208_025_09693_y
crossref_primary_10_1007_s13160_024_00667_1
crossref_primary_10_1063_5_0066059
crossref_primary_10_1137_17M1145999
crossref_primary_10_1007_s11222_023_10254_y
crossref_primary_10_3150_22_BEJ1526
crossref_primary_10_1007_s10898_022_01202_7
crossref_primary_10_1137_23M1556538
crossref_primary_10_1109_TQE_2021_3138453
crossref_primary_10_1214_23_STS919
crossref_primary_10_1214_22_AAP1856
crossref_primary_10_3150_21_BEJ1400
crossref_primary_10_3150_21_BEJ1377
crossref_primary_10_3150_19_BEJ1178
Cites_doi 10.1214/aop/1176992442
10.1145/2746539.2746563
10.1002/rsa.20135
10.1007/978-3-642-20212-4
10.1214/aoms/1177729586
10.1137/S009753970544727X
10.1287/moor.1110.0519
10.32917/hmj/1206135203
10.1137/1106035
10.1145/102782.102783
10.1111/rssb.12183
10.1137/0324039
10.1214/11-AIHP464
10.2307/3318418
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Discrete & Computational Geometry is a copyright of Springer, (2018). All Rights Reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Discrete & Computational Geometry is a copyright of Springer, (2018). All Rights Reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PADUT
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
1XC
VOOES
DOI 10.1007/s00454-018-9992-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest - Research Library
Science Database (ProQuest)
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Research Library China
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Research Library China
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Research Library Prep


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1432-0444
EndPage 783
ExternalDocumentID oai_HAL_hal_01428950v1
10_1007_s00454_018_9992_1
GroupedDBID -52
-5D
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.4S
.86
.DC
06D
0R~
0VY
199
1N0
1SB
203
28-
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
692
6NX
78A
88I
8AO
8FE
8FG
8FW
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AAKPC
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACIPV
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
C1A
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
KQ8
L6V
LAS
LLZTM
LO0
M0N
M2O
M2P
M4Y
M7S
MA-
MQGED
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P62
P9R
PADUT
PF0
PKN
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
REI
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YIN
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
1XC
VOOES
ID FETCH-LOGICAL-c393t-9366c9ddf7092b2aecd0082f804d91bf34af57f918972e8bd147b9296b04723c3
IEDL.DBID 8FG
ISSN 0179-5376
IngestDate Fri Sep 12 12:52:03 EDT 2025
Sat Aug 23 15:01:11 EDT 2025
Wed Oct 01 02:25:19 EDT 2025
Thu Apr 24 23:01:43 EDT 2025
Fri Feb 21 02:43:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 68W20
Langevin Monte Carlo
Rapidly-mixing random walks
Log-concave measures
Sampling and optimization
68W25
47N10
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-9366c9ddf7092b2aecd0082f804d91bf34af57f918972e8bd147b9296b04723c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0678-741X
0000-0001-6182-9427
OpenAccessLink https://hal.science/hal-01428950
PQID 2022456794
PQPubID 31658
PageCount 27
ParticipantIDs hal_primary_oai_HAL_hal_01428950v1
proquest_journals_2022456794
crossref_citationtrail_10_1007_s00454_018_9992_1
crossref_primary_10_1007_s00454_018_9992_1
springer_journals_10_1007_s00454_018_9992_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180600
2018-6-00
20180601
2018-06
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 6
  year: 2018
  text: 20180600
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Discrete & computational geometry
PublicationTitleAbbrev Discrete Comput Geom
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References Cousins, B., Vempala, S.: Bypassing KLS: Gaussian cooling and an O∗(n3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm O}}^*(n^3)$$\end{document} volume algorithm. In: Proceedings of the 47th Annual ACM Symposium on Theory of Computing (STOC’15), pp. 539–548. ACM, New York (2015)
LovászLVempalaSHit-and-run from a cornerSIAM J. Comput.20063549851005220373510.1137/S009753970544727X1103.52002
Welling, M., Teh, Y.W.: Bayesian learning via stochastic gradient Langevin dynamics. In: Proceedings of the 28th International Conference on International Conference on Machine Learning (ICML’11), pp. 681–688. Omnipress (2011)
KannanRNarayananHRandom walks on polytopes and an affine interior point method for linear programmingMath. Oper. Res.201237120289114410.1287/moor.1110.05191243.65033
Dalalyan, A.S.: Theoretical guarantees for approximate sampling from a smooth and log-concave densities. J. R. Stat. Soc. Stat. Methodol. Ser. B. https://doi.org/10.1111/rssb.12183
NemirovskyASYudinDBProblem Complexity and Method Efficiency in Optimization.1983New YorkWiley
LovászLVempalaSThe geometry of logconcave functions and sampling algorithmsRandom Struct. Algorithm.2007303307358230962110.1002/rsa.201351122.65012
Bach, F., Moulines, E.: Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm O}}(1/n)$$\end{document}. In: Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS’13), vol. 1, pp. 773–781. Curran Associates (2013)
LindvallTRogersLCGCoupling of multidimensional diffusions by reflectionAnn. Probab.198614386087284158810.1214/aop/11769924420593.60076
LehecJRepresentation formula for the entropy and functional inequalitiesAnn. Inst. Henri Poincaré Probab. Stat.2013493885899311243810.1214/11-AIHP4641279.39011
RobbinsHMonroSA stochastic approximation methodAnn. Math. Stat.1951224004074266810.1214/aoms/11777295860054.05901
Pflug, G.Ch.: Stochastic minimization with constant step-size: asymptotic laws. SIAM J. Control Optim. 24(4), 655–666 (1986)
LedouxMTalagrandMProbability in Banach Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete1991BerlinSpringer
DyerMFriezeAKannanRA random polynomial-time algorithm for approximating the volume of convex bodiesJ. Assoc. Comput. Mach.1991381117109591610.1145/102782.1027830799.68107
Ahn, S., Korattikara, A., Welling, M.: Bayesian posterior sampling via stochastic gradient Fisher scoring. In: Proceedings of the 29th International Conference on Machine Learning (ICML’12), pp. 782–846. IMLS (2012)
LevinDAPeresYWilmerELMarkov Chains and Mixing Times2009ProvidenceAmerican Mathematical Society1160.60001
RobertsGOTweedieRLExponential convergence of Langevin distributions and their discrete approximationsBernoulli199624341363144027310.2307/33184180870.60027
TanakaHStochastic differential equations with reflecting boundary condition in convex regionsHiroshima Math. J.1979911631775293320423.60055
SkorokhodAVStochastic equations for diffusion processes in a bounded regionTheory Probab. Appl.196163264274163099910.1137/11060350215.53501
R Kannan (9992_CR6) 2012; 37
M Ledoux (9992_CR7) 1991
AS Nemirovsky (9992_CR13) 1983
M Dyer (9992_CR5) 1991; 38
9992_CR4
DA Levin (9992_CR9) 2009
9992_CR3
L Lovász (9992_CR12) 2007; 30
9992_CR2
9992_CR1
H Robbins (9992_CR15) 1951; 22
L Lovász (9992_CR11) 2006; 35
H Tanaka (9992_CR18) 1979; 9
9992_CR19
GO Roberts (9992_CR16) 1996; 2
9992_CR14
T Lindvall (9992_CR10) 1986; 14
J Lehec (9992_CR8) 2013; 49
AV Skorokhod (9992_CR17) 1961; 6
References_xml – reference: SkorokhodAVStochastic equations for diffusion processes in a bounded regionTheory Probab. Appl.196163264274163099910.1137/11060350215.53501
– reference: LevinDAPeresYWilmerELMarkov Chains and Mixing Times2009ProvidenceAmerican Mathematical Society1160.60001
– reference: LehecJRepresentation formula for the entropy and functional inequalitiesAnn. Inst. Henri Poincaré Probab. Stat.2013493885899311243810.1214/11-AIHP4641279.39011
– reference: Welling, M., Teh, Y.W.: Bayesian learning via stochastic gradient Langevin dynamics. In: Proceedings of the 28th International Conference on International Conference on Machine Learning (ICML’11), pp. 681–688. Omnipress (2011)
– reference: Dalalyan, A.S.: Theoretical guarantees for approximate sampling from a smooth and log-concave densities. J. R. Stat. Soc. Stat. Methodol. Ser. B. https://doi.org/10.1111/rssb.12183
– reference: Bach, F., Moulines, E.: Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm O}}(1/n)$$\end{document}. In: Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS’13), vol. 1, pp. 773–781. Curran Associates (2013)
– reference: KannanRNarayananHRandom walks on polytopes and an affine interior point method for linear programmingMath. Oper. Res.201237120289114410.1287/moor.1110.05191243.65033
– reference: RobertsGOTweedieRLExponential convergence of Langevin distributions and their discrete approximationsBernoulli199624341363144027310.2307/33184180870.60027
– reference: NemirovskyASYudinDBProblem Complexity and Method Efficiency in Optimization.1983New YorkWiley
– reference: Ahn, S., Korattikara, A., Welling, M.: Bayesian posterior sampling via stochastic gradient Fisher scoring. In: Proceedings of the 29th International Conference on Machine Learning (ICML’12), pp. 782–846. IMLS (2012)
– reference: LovászLVempalaSHit-and-run from a cornerSIAM J. Comput.20063549851005220373510.1137/S009753970544727X1103.52002
– reference: RobbinsHMonroSA stochastic approximation methodAnn. Math. Stat.1951224004074266810.1214/aoms/11777295860054.05901
– reference: LovászLVempalaSThe geometry of logconcave functions and sampling algorithmsRandom Struct. Algorithm.2007303307358230962110.1002/rsa.201351122.65012
– reference: Cousins, B., Vempala, S.: Bypassing KLS: Gaussian cooling and an O∗(n3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm O}}^*(n^3)$$\end{document} volume algorithm. In: Proceedings of the 47th Annual ACM Symposium on Theory of Computing (STOC’15), pp. 539–548. ACM, New York (2015)
– reference: LindvallTRogersLCGCoupling of multidimensional diffusions by reflectionAnn. Probab.198614386087284158810.1214/aop/11769924420593.60076
– reference: LedouxMTalagrandMProbability in Banach Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete1991BerlinSpringer
– reference: Pflug, G.Ch.: Stochastic minimization with constant step-size: asymptotic laws. SIAM J. Control Optim. 24(4), 655–666 (1986)
– reference: TanakaHStochastic differential equations with reflecting boundary condition in convex regionsHiroshima Math. J.1979911631775293320423.60055
– reference: DyerMFriezeAKannanRA random polynomial-time algorithm for approximating the volume of convex bodiesJ. Assoc. Comput. Mach.1991381117109591610.1145/102782.1027830799.68107
– volume: 14
  start-page: 860
  issue: 3
  year: 1986
  ident: 9992_CR10
  publication-title: Ann. Probab.
  doi: 10.1214/aop/1176992442
– ident: 9992_CR3
  doi: 10.1145/2746539.2746563
– volume-title: Problem Complexity and Method Efficiency in Optimization.
  year: 1983
  ident: 9992_CR13
– volume: 30
  start-page: 307
  issue: 3
  year: 2007
  ident: 9992_CR12
  publication-title: Random Struct. Algorithm.
  doi: 10.1002/rsa.20135
– volume-title: Probability in Banach Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete
  year: 1991
  ident: 9992_CR7
  doi: 10.1007/978-3-642-20212-4
– volume: 22
  start-page: 400
  year: 1951
  ident: 9992_CR15
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177729586
– volume: 35
  start-page: 985
  issue: 4
  year: 2006
  ident: 9992_CR11
  publication-title: SIAM J. Comput.
  doi: 10.1137/S009753970544727X
– volume: 37
  start-page: 1
  year: 2012
  ident: 9992_CR6
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1110.0519
– volume: 9
  start-page: 163
  issue: 1
  year: 1979
  ident: 9992_CR18
  publication-title: Hiroshima Math. J.
  doi: 10.32917/hmj/1206135203
– volume: 6
  start-page: 264
  issue: 3
  year: 1961
  ident: 9992_CR17
  publication-title: Theory Probab. Appl.
  doi: 10.1137/1106035
– ident: 9992_CR1
– ident: 9992_CR2
– volume: 38
  start-page: 1
  issue: 1
  year: 1991
  ident: 9992_CR5
  publication-title: J. Assoc. Comput. Mach.
  doi: 10.1145/102782.102783
– volume-title: Markov Chains and Mixing Times
  year: 2009
  ident: 9992_CR9
– ident: 9992_CR4
  doi: 10.1111/rssb.12183
– ident: 9992_CR14
  doi: 10.1137/0324039
– ident: 9992_CR19
– volume: 49
  start-page: 885
  issue: 3
  year: 2013
  ident: 9992_CR8
  publication-title: Ann. Inst. Henri Poincaré Probab. Stat.
  doi: 10.1214/11-AIHP464
– volume: 2
  start-page: 341
  issue: 4
  year: 1996
  ident: 9992_CR16
  publication-title: Bernoulli
  doi: 10.2307/3318418
SSID ssj0004908
Score 2.5474055
Snippet We extend the Langevin Monte Carlo (LMC) algorithm to compactly supported measures via a projection step, akin to projected stochastic gradient descent (SGD)....
We extend the Langevin Monte Carlo (LMC) algorithm to compactly supported measures via a projection step, akin to projected Stochastic Gradient Descent (SGD)....
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 757
SubjectTerms Combinatorics
Computational Mathematics and Numerical Analysis
Markov chains
Mathematics
Mathematics and Statistics
Monte Carlo simulation
Probability
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3JTsMwEEBHUC5woKyibLIQJ5BREmfzsSpLBS1CopXgFNmOUxBVirod-Ho82VgESFwbJ2k8Y3vGnnkDcCyDIFAy9KmWwqVmltQ0VDajnDsyCM36l8N0urd-u-9eP3gPRR73pIx2L48ks5m6SnbLaHHG9TUDFEMmjcuz5KF_UoOl5tXjzcVHOiTPCtGhrlGklZSHmT895MtytPiEwZCfLM1vh6PZmnNZh175b_NQk5ez2VSeqbdvIMd_fs4arBY2KGnmSrMOCzrdgHpZ34EUw30DVroV03WyCZ17gdHn6YBgSgoRpDMa0NYoVWKuyTnyd4vSWQT3dsldvsWjY9LB_IX5c0q6SMIiLTEejragf3nRa7VpUYuBKsbZlHLm-4rHcRJYRoqO0CpG6yEJLTfmtkyYKxIvSLht5OvoUMa2G0hjevkScZRMsW2opaNU7wBBaCCzEpvFDjpsIkw0DzUiJG1hFk3RAKsUSaQKUDnWyxhGFWI567vI9F2EfRfZDTipbnnNKR1_NT4ycq7aIV-73exE-JuF_DnuWXPTaL9Ug6gY1ZPIQYPH880U1oDTUqofl3994-6_Wu_BsoNqkW317ENtOp7pA2P5TOVhoenvutP03g
  priority: 102
  providerName: Springer Nature
Title Sampling from a Log-Concave Distribution with Projected Langevin Monte Carlo
URI https://link.springer.com/article/10.1007/s00454-018-9992-1
https://www.proquest.com/docview/2022456794
https://hal.science/hal-01428950
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-0444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004908
  issn: 0179-5376
  databaseCode: AFBBN
  dateStart: 19860301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1432-0444
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0004908
  issn: 0179-5376
  databaseCode: BENPR
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1432-0444
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0004908
  issn: 0179-5376
  databaseCode: 8FG
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-0444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004908
  issn: 0179-5376
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-0444
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004908
  issn: 0179-5376
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED8N-rI9MChMFBiyJp5AluI4TeIn1HYt1dZWCFYJniLbcQCpSgot_fvnS5yWTYInS7GTSHdn3_k-fgdwpqIo0ioOqVEyoPaUNDTWjFMhfBXFVv9VYDrjSTicBr_u2nfO4bZwaZX1mVge1Gmh0UeOl3SM0VnxuZw_U-wahdFV10JjCxrMt5KEleKDq01dpCg70qHQUYQtqaOaXgUi2sb8C7vdMQGT_aOXth4xK_KNyflflLRUPoNd2HFWI-lUbN6DTyZvwte6IwNxG7QJX8ZrFNbFPoxuJeaL5w8Ei0iIJKPigfaKXMuVIT8RMdc1uyLojSXXlVPGpGSEFQerp5yMEbuK9OTLrDiA6aD_pzekrnsC1VzwJRU8DLVI0yzyLN19aXSK-j6LvSAVTGU8kFk7ygSzHPFNrFIWRMoaS6FCAEmu-TfYzovcHAJBmD_uZYynPl6xZJwZERsEfWTSqjnZAq-mXaIdtDh2uJgla1DkktyJJXeC5E5YC87Xr8wrXI2PFv-wDFmvQ0TsYWeU4DMPEeNE21vZRSc1vxK3DxfJRmpacFHzcDP97h-PPv7YMXz2UXRKb8wJbC9fXs13a5ws1WkpgafQ6Ay63QmOV_e_-3bs9ifXN3Z26nf-Aqge4Qg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xOBQOtKUgArSsqvYCWsn2Orb3gBBKGkJxUCVA4rbsrtcBKbIDCUH8KX4jO34kLVK55Wqv19bMeGZ2Ht8A_FBhGGoVBdQo6VOrJQ2NtMso554KI2v_SjCd3nnQvfJ_XzevF-Cl7oXBsspaJxaKOsk1xsjxkI45Ois-R8N7ilOjMLtaj9AoxeLMPD_ZI9vo8LRt-fvT8zq_LltdWk0VoJpxNqacBYHmSZKGjv0eTxqdoB1MI8dPuKtS5su0GabctV_qmUglrh8q60QECoEVmWZ230VY9hljiNUfdU5mfZi8mICHQk4RJqXOojolaGkT6z2sesGCT_cfO7h4i1WYf7m4b7KyhbHrfIK1ykslx6VYfYYFk63Dx3oCBKkUwjqs9qaor6MvEF9IrE_P-gSbVogkcd6nrTzTcmJIGxF6q-FaBKO_5E8ZBDIJibHDYXKXkR5iZZGWfBjkG3A1F7puwlKWZ2YLCMIKMid1WeLhkU5GqeGRQZBJV1qzKhvg1LQTuoIyx4kaAzEFYS7ILSy5BZJbuA3Ynz4yLHE83lv83TJkug4RuLvHscBrDiLU8aYzsYt2a36J6r8fiZmUNuCg5uHs9n_fuP3-ZnvwoXvZi0V8en62AyseilERCdqFpfHDo_lqHaOx-lZII4GbeYv_K4jHF5w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tnYTgYcAAUTbAQvACskjiNIkfJjTaVR1LqwqYtDfPX9kmTclYu078i_xV-BKnBST2ttfEcZK78519H78DeKvSNNUqS6hVMqZOS1qa6ZBRziOVZs7-NWA640kyOoq_HPeO1-BXWwuDaZWtTqwVtak0-sjxkI4xOic-HwufFjEdDD9d_qDYQQojrW07DenbLJjdGm7MF3kc2p837jg32z0YON6_i6Lh_vf-iPqOA1QzzuaUsyTR3JgiDdy3RtJqgzayyILY8FAVLJZFLy146P4ispkyYZwqt8FIFIIuMs3cvOuwkWK9aAc2Pu9Ppl9XVZq87o-HS4AiiEobYw0aSNMeZoM45YPpoOFfVnL9DHM0_9gA_xOzrU3h8BFs-j0s2WuE7jGs2XILHrb9IYhXF1vwYLzEhJ09gfybxOz18pRgSQuRJK9Oab8qtVxYMkD8Xt96i6BvmEwbF5E1JMf6h8V5ScaIpEX68uqiegpHd0LZZ9Apq9I-B4KggywoQmYiPPDJrLA8swhBGUpndGUXgpZ2Qnugc-y3cSGWEM01uYUjt0Byi7AL75ePXDYoH7cNfuMYshyH-NyjvVzgtQDx63gvWLhBOy2_hNcKM7GS4S58aHm4uv3fN764fbLXcM8tBZEfTA634X6EUlS7iXagM7-6ti_drmmuXnlxJHBy1yvgN222InY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sampling+from+a+Log-Concave+Distribution+with+Projected+Langevin+Monte+Carlo&rft.jtitle=Discrete+%26+computational+geometry&rft.au=Bubeck%2C+S%C3%A9bastien&rft.au=Eldan%2C+Ronen&rft.au=Lehec%2C+Joseph&rft.date=2018-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0179-5376&rft.eissn=1432-0444&rft.volume=59&rft.issue=4&rft.spage=757&rft.epage=783&rft_id=info:doi/10.1007%2Fs00454-018-9992-1&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0179-5376&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0179-5376&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0179-5376&client=summon