Sampling from a Log-Concave Distribution with Projected Langevin Monte Carlo
We extend the Langevin Monte Carlo (LMC) algorithm to compactly supported measures via a projection step, akin to projected stochastic gradient descent (SGD). We show that (projected) LMC allows to sample in polynomial time from a log-concave distribution with smooth potential. This gives a new Mark...
Saved in:
Published in | Discrete & computational geometry Vol. 59; no. 4; pp. 757 - 783 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2018
Springer Nature B.V Springer Verlag |
Subjects | |
Online Access | Get full text |
ISSN | 0179-5376 1432-0444 |
DOI | 10.1007/s00454-018-9992-1 |
Cover
Abstract | We extend the Langevin Monte Carlo (LMC) algorithm to compactly supported measures via a projection step, akin to projected stochastic gradient descent (SGD). We show that (projected) LMC allows to sample in polynomial time from a log-concave distribution with smooth potential. This gives a new Markov chain to sample from a log-concave distribution. Our main result shows in particular that when the target distribution is uniform, LMC mixes in
O
~
(
n
7
)
steps (where
n
is the dimension). We also provide preliminary experimental evidence that LMC performs at least as well as hit-and-run, for which a better mixing time of
O
~
(
n
4
)
was proved by Lovász and Vempala. |
---|---|
AbstractList | We extend the Langevin Monte Carlo (LMC) algorithm to compactly supported measures via a projection step, akin to projected stochastic gradient descent (SGD). We show that (projected) LMC allows to sample in polynomial time from a log-concave distribution with smooth potential. This gives a new Markov chain to sample from a log-concave distribution. Our main result shows in particular that when the target distribution is uniform, LMC mixes in O~(n7) steps (where n is the dimension). We also provide preliminary experimental evidence that LMC performs at least as well as hit-and-run, for which a better mixing time of O~(n4) was proved by Lovász and Vempala. We extend the Langevin Monte Carlo (LMC) algorithm to compactly supported measures via a projection step, akin to projected Stochastic Gradient Descent (SGD). We show that (projected) LMC allows to sample in polynomial time from a log-concave distribution with smooth potential. This gives a new Markov chain to sample from a log-concave distribution. Our main result shows in particular that when the target distribution is uniform, LMC mixes in O(n 7) steps (where n is the dimension). We also provide preliminary experimental evidence that LMC performs at least as well as hit-and-run, for which a better mixing time of O(n 4) was proved by Lovász and Vempala. We extend the Langevin Monte Carlo (LMC) algorithm to compactly supported measures via a projection step, akin to projected stochastic gradient descent (SGD). We show that (projected) LMC allows to sample in polynomial time from a log-concave distribution with smooth potential. This gives a new Markov chain to sample from a log-concave distribution. Our main result shows in particular that when the target distribution is uniform, LMC mixes in O ~ ( n 7 ) steps (where n is the dimension). We also provide preliminary experimental evidence that LMC performs at least as well as hit-and-run, for which a better mixing time of O ~ ( n 4 ) was proved by Lovász and Vempala. |
Author | Bubeck, Sébastien Lehec, Joseph Eldan, Ronen |
Author_xml | – sequence: 1 givenname: Sébastien surname: Bubeck fullname: Bubeck, Sébastien organization: Microsoft Research – sequence: 2 givenname: Ronen orcidid: 0000-0002-0678-741X surname: Eldan fullname: Eldan, Ronen email: roneneldan@gmail.com organization: Faculty of Mathematics and Computer Science, The Weizmann Institute of Science – sequence: 3 givenname: Joseph surname: Lehec fullname: Lehec, Joseph organization: CEREMADE, Université Paris-Dauphine |
BackLink | https://hal.science/hal-01428950$$DView record in HAL |
BookMark | eNp9kEFr2zAYhsVooUnaH9CbYKcetH6SZcs6BrddBx4rdDsL2ZYTBUfKJCVl_342XikM2pPg43leXr1LdOa8MwhdU_hCAcRtBOA5J0BLIqVkhH5CC8ozRoBzfoYWQIUkeSaKC7SMcQcjLqFcoPpZ7w-DdRvcB7_HGtd-QyrvWn0y-M7GFGxzTNY7_GLTFj8FvzNtMh2utduYk3X4u3fJ4EqHwV-i814P0Vz9e1fo18P9z-qR1D--fqvWNWkzmSUis6JoZdf1AiRrmDZtB1CyvgTeSdr0Gdd9LnpJSymYKZuOctFIJosGuGBZm63QzZy71YM6BLvX4Y_y2qrHda2mG1DOSpnDiY7s55k9BP_7aGJSO38MbqynGDDG80JIPlJiptrgYwymV61Nevp3CtoOioKaZlbzzGN-qaaZ1ZRP_zNfC33ksNmJIzvOGN46vS_9BVhkjz8 |
CitedBy_id | crossref_primary_10_1016_j_spa_2019_02_016 crossref_primary_10_1145_3589505 crossref_primary_10_1214_23_AAP1935 crossref_primary_10_1007_s10994_020_05904_5 crossref_primary_10_1080_01621459_2020_1847120 crossref_primary_10_1016_j_aim_2021_107810 crossref_primary_10_3150_22_BEJ1576 crossref_primary_10_1137_22M1502240 crossref_primary_10_1007_s10208_025_09693_y crossref_primary_10_1007_s13160_024_00667_1 crossref_primary_10_1063_5_0066059 crossref_primary_10_1137_17M1145999 crossref_primary_10_1007_s11222_023_10254_y crossref_primary_10_3150_22_BEJ1526 crossref_primary_10_1007_s10898_022_01202_7 crossref_primary_10_1137_23M1556538 crossref_primary_10_1109_TQE_2021_3138453 crossref_primary_10_1214_23_STS919 crossref_primary_10_1214_22_AAP1856 crossref_primary_10_3150_21_BEJ1400 crossref_primary_10_3150_21_BEJ1377 crossref_primary_10_3150_19_BEJ1178 |
Cites_doi | 10.1214/aop/1176992442 10.1145/2746539.2746563 10.1002/rsa.20135 10.1007/978-3-642-20212-4 10.1214/aoms/1177729586 10.1137/S009753970544727X 10.1287/moor.1110.0519 10.32917/hmj/1206135203 10.1137/1106035 10.1145/102782.102783 10.1111/rssb.12183 10.1137/0324039 10.1214/11-AIHP464 10.2307/3318418 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 Discrete & Computational Geometry is a copyright of Springer, (2018). All Rights Reserved. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: Discrete & Computational Geometry is a copyright of Springer, (2018). All Rights Reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ GUQSH HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M2O M2P M7S MBDVC P5Z P62 PADUT PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 1XC VOOES |
DOI | 10.1007/s00454-018-9992-1 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest - Research Library Science Database (ProQuest) Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Research Library China Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Research Library China ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Research Library Prep |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Computer Science |
EISSN | 1432-0444 |
EndPage | 783 |
ExternalDocumentID | oai_HAL_hal_01428950v1 10_1007_s00454_018_9992_1 |
GroupedDBID | -52 -5D -5G -BR -DZ -EM -Y2 -~C -~X .4S .86 .DC 06D 0R~ 0VY 199 1N0 1SB 203 28- 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 692 6NX 78A 88I 8AO 8FE 8FG 8FW 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AAKPC AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIHN ACIPV ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS C1A CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW KQ8 L6V LAS LLZTM LO0 M0N M2O M2P M4Y M7S MA- MQGED N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 P19 P62 P9R PADUT PF0 PKN PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I REI RHV RIG RNI RNS ROL RPX RSV RYB RZK RZZ S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YIN YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U 1XC VOOES |
ID | FETCH-LOGICAL-c393t-9366c9ddf7092b2aecd0082f804d91bf34af57f918972e8bd147b9296b04723c3 |
IEDL.DBID | 8FG |
ISSN | 0179-5376 |
IngestDate | Fri Sep 12 12:52:03 EDT 2025 Sat Aug 23 15:01:11 EDT 2025 Wed Oct 01 02:25:19 EDT 2025 Thu Apr 24 23:01:43 EDT 2025 Fri Feb 21 02:43:20 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | 68W20 Langevin Monte Carlo Rapidly-mixing random walks Log-concave measures Sampling and optimization 68W25 47N10 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c393t-9366c9ddf7092b2aecd0082f804d91bf34af57f918972e8bd147b9296b04723c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0678-741X 0000-0001-6182-9427 |
OpenAccessLink | https://hal.science/hal-01428950 |
PQID | 2022456794 |
PQPubID | 31658 |
PageCount | 27 |
ParticipantIDs | hal_primary_oai_HAL_hal_01428950v1 proquest_journals_2022456794 crossref_citationtrail_10_1007_s00454_018_9992_1 crossref_primary_10_1007_s00454_018_9992_1 springer_journals_10_1007_s00454_018_9992_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180600 2018-6-00 20180601 2018-06 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 6 year: 2018 text: 20180600 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Discrete & computational geometry |
PublicationTitleAbbrev | Discrete Comput Geom |
PublicationYear | 2018 |
Publisher | Springer US Springer Nature B.V Springer Verlag |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer Verlag |
References | Cousins, B., Vempala, S.: Bypassing KLS: Gaussian cooling and an O∗(n3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm O}}^*(n^3)$$\end{document} volume algorithm. In: Proceedings of the 47th Annual ACM Symposium on Theory of Computing (STOC’15), pp. 539–548. ACM, New York (2015) LovászLVempalaSHit-and-run from a cornerSIAM J. Comput.20063549851005220373510.1137/S009753970544727X1103.52002 Welling, M., Teh, Y.W.: Bayesian learning via stochastic gradient Langevin dynamics. In: Proceedings of the 28th International Conference on International Conference on Machine Learning (ICML’11), pp. 681–688. Omnipress (2011) KannanRNarayananHRandom walks on polytopes and an affine interior point method for linear programmingMath. Oper. Res.201237120289114410.1287/moor.1110.05191243.65033 Dalalyan, A.S.: Theoretical guarantees for approximate sampling from a smooth and log-concave densities. J. R. Stat. Soc. Stat. Methodol. Ser. B. https://doi.org/10.1111/rssb.12183 NemirovskyASYudinDBProblem Complexity and Method Efficiency in Optimization.1983New YorkWiley LovászLVempalaSThe geometry of logconcave functions and sampling algorithmsRandom Struct. Algorithm.2007303307358230962110.1002/rsa.201351122.65012 Bach, F., Moulines, E.: Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm O}}(1/n)$$\end{document}. In: Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS’13), vol. 1, pp. 773–781. Curran Associates (2013) LindvallTRogersLCGCoupling of multidimensional diffusions by reflectionAnn. Probab.198614386087284158810.1214/aop/11769924420593.60076 LehecJRepresentation formula for the entropy and functional inequalitiesAnn. Inst. Henri Poincaré Probab. Stat.2013493885899311243810.1214/11-AIHP4641279.39011 RobbinsHMonroSA stochastic approximation methodAnn. Math. Stat.1951224004074266810.1214/aoms/11777295860054.05901 Pflug, G.Ch.: Stochastic minimization with constant step-size: asymptotic laws. SIAM J. Control Optim. 24(4), 655–666 (1986) LedouxMTalagrandMProbability in Banach Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete1991BerlinSpringer DyerMFriezeAKannanRA random polynomial-time algorithm for approximating the volume of convex bodiesJ. Assoc. Comput. Mach.1991381117109591610.1145/102782.1027830799.68107 Ahn, S., Korattikara, A., Welling, M.: Bayesian posterior sampling via stochastic gradient Fisher scoring. In: Proceedings of the 29th International Conference on Machine Learning (ICML’12), pp. 782–846. IMLS (2012) LevinDAPeresYWilmerELMarkov Chains and Mixing Times2009ProvidenceAmerican Mathematical Society1160.60001 RobertsGOTweedieRLExponential convergence of Langevin distributions and their discrete approximationsBernoulli199624341363144027310.2307/33184180870.60027 TanakaHStochastic differential equations with reflecting boundary condition in convex regionsHiroshima Math. J.1979911631775293320423.60055 SkorokhodAVStochastic equations for diffusion processes in a bounded regionTheory Probab. Appl.196163264274163099910.1137/11060350215.53501 R Kannan (9992_CR6) 2012; 37 M Ledoux (9992_CR7) 1991 AS Nemirovsky (9992_CR13) 1983 M Dyer (9992_CR5) 1991; 38 9992_CR4 DA Levin (9992_CR9) 2009 9992_CR3 L Lovász (9992_CR12) 2007; 30 9992_CR2 9992_CR1 H Robbins (9992_CR15) 1951; 22 L Lovász (9992_CR11) 2006; 35 H Tanaka (9992_CR18) 1979; 9 9992_CR19 GO Roberts (9992_CR16) 1996; 2 9992_CR14 T Lindvall (9992_CR10) 1986; 14 J Lehec (9992_CR8) 2013; 49 AV Skorokhod (9992_CR17) 1961; 6 |
References_xml | – reference: SkorokhodAVStochastic equations for diffusion processes in a bounded regionTheory Probab. Appl.196163264274163099910.1137/11060350215.53501 – reference: LevinDAPeresYWilmerELMarkov Chains and Mixing Times2009ProvidenceAmerican Mathematical Society1160.60001 – reference: LehecJRepresentation formula for the entropy and functional inequalitiesAnn. Inst. Henri Poincaré Probab. Stat.2013493885899311243810.1214/11-AIHP4641279.39011 – reference: Welling, M., Teh, Y.W.: Bayesian learning via stochastic gradient Langevin dynamics. In: Proceedings of the 28th International Conference on International Conference on Machine Learning (ICML’11), pp. 681–688. Omnipress (2011) – reference: Dalalyan, A.S.: Theoretical guarantees for approximate sampling from a smooth and log-concave densities. J. R. Stat. Soc. Stat. Methodol. Ser. B. https://doi.org/10.1111/rssb.12183 – reference: Bach, F., Moulines, E.: Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm O}}(1/n)$$\end{document}. In: Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS’13), vol. 1, pp. 773–781. Curran Associates (2013) – reference: KannanRNarayananHRandom walks on polytopes and an affine interior point method for linear programmingMath. Oper. Res.201237120289114410.1287/moor.1110.05191243.65033 – reference: RobertsGOTweedieRLExponential convergence of Langevin distributions and their discrete approximationsBernoulli199624341363144027310.2307/33184180870.60027 – reference: NemirovskyASYudinDBProblem Complexity and Method Efficiency in Optimization.1983New YorkWiley – reference: Ahn, S., Korattikara, A., Welling, M.: Bayesian posterior sampling via stochastic gradient Fisher scoring. In: Proceedings of the 29th International Conference on Machine Learning (ICML’12), pp. 782–846. IMLS (2012) – reference: LovászLVempalaSHit-and-run from a cornerSIAM J. Comput.20063549851005220373510.1137/S009753970544727X1103.52002 – reference: RobbinsHMonroSA stochastic approximation methodAnn. Math. Stat.1951224004074266810.1214/aoms/11777295860054.05901 – reference: LovászLVempalaSThe geometry of logconcave functions and sampling algorithmsRandom Struct. Algorithm.2007303307358230962110.1002/rsa.201351122.65012 – reference: Cousins, B., Vempala, S.: Bypassing KLS: Gaussian cooling and an O∗(n3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm O}}^*(n^3)$$\end{document} volume algorithm. In: Proceedings of the 47th Annual ACM Symposium on Theory of Computing (STOC’15), pp. 539–548. ACM, New York (2015) – reference: LindvallTRogersLCGCoupling of multidimensional diffusions by reflectionAnn. Probab.198614386087284158810.1214/aop/11769924420593.60076 – reference: LedouxMTalagrandMProbability in Banach Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete1991BerlinSpringer – reference: Pflug, G.Ch.: Stochastic minimization with constant step-size: asymptotic laws. SIAM J. Control Optim. 24(4), 655–666 (1986) – reference: TanakaHStochastic differential equations with reflecting boundary condition in convex regionsHiroshima Math. J.1979911631775293320423.60055 – reference: DyerMFriezeAKannanRA random polynomial-time algorithm for approximating the volume of convex bodiesJ. Assoc. Comput. Mach.1991381117109591610.1145/102782.1027830799.68107 – volume: 14 start-page: 860 issue: 3 year: 1986 ident: 9992_CR10 publication-title: Ann. Probab. doi: 10.1214/aop/1176992442 – ident: 9992_CR3 doi: 10.1145/2746539.2746563 – volume-title: Problem Complexity and Method Efficiency in Optimization. year: 1983 ident: 9992_CR13 – volume: 30 start-page: 307 issue: 3 year: 2007 ident: 9992_CR12 publication-title: Random Struct. Algorithm. doi: 10.1002/rsa.20135 – volume-title: Probability in Banach Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete year: 1991 ident: 9992_CR7 doi: 10.1007/978-3-642-20212-4 – volume: 22 start-page: 400 year: 1951 ident: 9992_CR15 publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177729586 – volume: 35 start-page: 985 issue: 4 year: 2006 ident: 9992_CR11 publication-title: SIAM J. Comput. doi: 10.1137/S009753970544727X – volume: 37 start-page: 1 year: 2012 ident: 9992_CR6 publication-title: Math. Oper. Res. doi: 10.1287/moor.1110.0519 – volume: 9 start-page: 163 issue: 1 year: 1979 ident: 9992_CR18 publication-title: Hiroshima Math. J. doi: 10.32917/hmj/1206135203 – volume: 6 start-page: 264 issue: 3 year: 1961 ident: 9992_CR17 publication-title: Theory Probab. Appl. doi: 10.1137/1106035 – ident: 9992_CR1 – ident: 9992_CR2 – volume: 38 start-page: 1 issue: 1 year: 1991 ident: 9992_CR5 publication-title: J. Assoc. Comput. Mach. doi: 10.1145/102782.102783 – volume-title: Markov Chains and Mixing Times year: 2009 ident: 9992_CR9 – ident: 9992_CR4 doi: 10.1111/rssb.12183 – ident: 9992_CR14 doi: 10.1137/0324039 – ident: 9992_CR19 – volume: 49 start-page: 885 issue: 3 year: 2013 ident: 9992_CR8 publication-title: Ann. Inst. Henri Poincaré Probab. Stat. doi: 10.1214/11-AIHP464 – volume: 2 start-page: 341 issue: 4 year: 1996 ident: 9992_CR16 publication-title: Bernoulli doi: 10.2307/3318418 |
SSID | ssj0004908 |
Score | 2.5474055 |
Snippet | We extend the Langevin Monte Carlo (LMC) algorithm to compactly supported measures via a projection step, akin to projected stochastic gradient descent (SGD).... We extend the Langevin Monte Carlo (LMC) algorithm to compactly supported measures via a projection step, akin to projected Stochastic Gradient Descent (SGD).... |
SourceID | hal proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 757 |
SubjectTerms | Combinatorics Computational Mathematics and Numerical Analysis Markov chains Mathematics Mathematics and Statistics Monte Carlo simulation Probability |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3JTsMwEEBHUC5woKyibLIQJ5BREmfzsSpLBS1CopXgFNmOUxBVirod-Ho82VgESFwbJ2k8Y3vGnnkDcCyDIFAy9KmWwqVmltQ0VDajnDsyCM36l8N0urd-u-9eP3gPRR73pIx2L48ks5m6SnbLaHHG9TUDFEMmjcuz5KF_UoOl5tXjzcVHOiTPCtGhrlGklZSHmT895MtytPiEwZCfLM1vh6PZmnNZh175b_NQk5ez2VSeqbdvIMd_fs4arBY2KGnmSrMOCzrdgHpZ34EUw30DVroV03WyCZ17gdHn6YBgSgoRpDMa0NYoVWKuyTnyd4vSWQT3dsldvsWjY9LB_IX5c0q6SMIiLTEejragf3nRa7VpUYuBKsbZlHLm-4rHcRJYRoqO0CpG6yEJLTfmtkyYKxIvSLht5OvoUMa2G0hjevkScZRMsW2opaNU7wBBaCCzEpvFDjpsIkw0DzUiJG1hFk3RAKsUSaQKUDnWyxhGFWI567vI9F2EfRfZDTipbnnNKR1_NT4ycq7aIV-73exE-JuF_DnuWXPTaL9Ug6gY1ZPIQYPH880U1oDTUqofl3994-6_Wu_BsoNqkW317ENtOp7pA2P5TOVhoenvutP03g priority: 102 providerName: Springer Nature |
Title | Sampling from a Log-Concave Distribution with Projected Langevin Monte Carlo |
URI | https://link.springer.com/article/10.1007/s00454-018-9992-1 https://www.proquest.com/docview/2022456794 https://hal.science/hal-01428950 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-0444 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004908 issn: 0179-5376 databaseCode: AFBBN dateStart: 19860301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1432-0444 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0004908 issn: 0179-5376 databaseCode: BENPR dateStart: 20010301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1432-0444 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0004908 issn: 0179-5376 databaseCode: 8FG dateStart: 20010301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-0444 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004908 issn: 0179-5376 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-0444 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004908 issn: 0179-5376 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED8N-rI9MChMFBiyJp5AluI4TeIn1HYt1dZWCFYJniLbcQCpSgot_fvnS5yWTYInS7GTSHdn3_k-fgdwpqIo0ioOqVEyoPaUNDTWjFMhfBXFVv9VYDrjSTicBr_u2nfO4bZwaZX1mVge1Gmh0UeOl3SM0VnxuZw_U-wahdFV10JjCxrMt5KEleKDq01dpCg70qHQUYQtqaOaXgUi2sb8C7vdMQGT_aOXth4xK_KNyflflLRUPoNd2HFWI-lUbN6DTyZvwte6IwNxG7QJX8ZrFNbFPoxuJeaL5w8Ei0iIJKPigfaKXMuVIT8RMdc1uyLojSXXlVPGpGSEFQerp5yMEbuK9OTLrDiA6aD_pzekrnsC1VzwJRU8DLVI0yzyLN19aXSK-j6LvSAVTGU8kFk7ygSzHPFNrFIWRMoaS6FCAEmu-TfYzovcHAJBmD_uZYynPl6xZJwZERsEfWTSqjnZAq-mXaIdtDh2uJgla1DkktyJJXeC5E5YC87Xr8wrXI2PFv-wDFmvQ0TsYWeU4DMPEeNE21vZRSc1vxK3DxfJRmpacFHzcDP97h-PPv7YMXz2UXRKb8wJbC9fXs13a5ws1WkpgafQ6Ay63QmOV_e_-3bs9ifXN3Z26nf-Aqge4Qg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xOBQOtKUgArSsqvYCWsn2Orb3gBBKGkJxUCVA4rbsrtcBKbIDCUH8KX4jO34kLVK55Wqv19bMeGZ2Ht8A_FBhGGoVBdQo6VOrJQ2NtMso554KI2v_SjCd3nnQvfJ_XzevF-Cl7oXBsspaJxaKOsk1xsjxkI45Ois-R8N7ilOjMLtaj9AoxeLMPD_ZI9vo8LRt-fvT8zq_LltdWk0VoJpxNqacBYHmSZKGjv0eTxqdoB1MI8dPuKtS5su0GabctV_qmUglrh8q60QECoEVmWZ230VY9hljiNUfdU5mfZi8mICHQk4RJqXOojolaGkT6z2sesGCT_cfO7h4i1WYf7m4b7KyhbHrfIK1ykslx6VYfYYFk63Dx3oCBKkUwjqs9qaor6MvEF9IrE_P-gSbVogkcd6nrTzTcmJIGxF6q-FaBKO_5E8ZBDIJibHDYXKXkR5iZZGWfBjkG3A1F7puwlKWZ2YLCMIKMid1WeLhkU5GqeGRQZBJV1qzKhvg1LQTuoIyx4kaAzEFYS7ILSy5BZJbuA3Ynz4yLHE83lv83TJkug4RuLvHscBrDiLU8aYzsYt2a36J6r8fiZmUNuCg5uHs9n_fuP3-ZnvwoXvZi0V8en62AyseilERCdqFpfHDo_lqHaOx-lZII4GbeYv_K4jHF5w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tnYTgYcAAUTbAQvACskjiNIkfJjTaVR1LqwqYtDfPX9kmTclYu078i_xV-BKnBST2ttfEcZK78519H78DeKvSNNUqS6hVMqZOS1qa6ZBRziOVZs7-NWA640kyOoq_HPeO1-BXWwuDaZWtTqwVtak0-sjxkI4xOic-HwufFjEdDD9d_qDYQQojrW07DenbLJjdGm7MF3kc2p837jg32z0YON6_i6Lh_vf-iPqOA1QzzuaUsyTR3JgiDdy3RtJqgzayyILY8FAVLJZFLy146P4ispkyYZwqt8FIFIIuMs3cvOuwkWK9aAc2Pu9Ppl9XVZq87o-HS4AiiEobYw0aSNMeZoM45YPpoOFfVnL9DHM0_9gA_xOzrU3h8BFs-j0s2WuE7jGs2XILHrb9IYhXF1vwYLzEhJ09gfybxOz18pRgSQuRJK9Oab8qtVxYMkD8Xt96i6BvmEwbF5E1JMf6h8V5ScaIpEX68uqiegpHd0LZZ9Apq9I-B4KggywoQmYiPPDJrLA8swhBGUpndGUXgpZ2Qnugc-y3cSGWEM01uYUjt0Byi7AL75ePXDYoH7cNfuMYshyH-NyjvVzgtQDx63gvWLhBOy2_hNcKM7GS4S58aHm4uv3fN764fbLXcM8tBZEfTA634X6EUlS7iXagM7-6ti_drmmuXnlxJHBy1yvgN222InY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sampling+from+a+Log-Concave+Distribution+with+Projected+Langevin+Monte+Carlo&rft.jtitle=Discrete+%26+computational+geometry&rft.au=Bubeck%2C+S%C3%A9bastien&rft.au=Eldan%2C+Ronen&rft.au=Lehec%2C+Joseph&rft.date=2018-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0179-5376&rft.eissn=1432-0444&rft.volume=59&rft.issue=4&rft.spage=757&rft.epage=783&rft_id=info:doi/10.1007%2Fs00454-018-9992-1&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0179-5376&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0179-5376&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0179-5376&client=summon |