On the nonlinear trapping nature of undamped, coherent structures in collisionless plasmas and its impact on stability

An outstanding notion for collisionless plasmas is the essential nonlinear character of their coherent structures, which in the stationary, weak amplitude limit are described by a continuum of cnoidal electron and ion hole modes governed by a multiparametric nonlinear dispersion relation. The well-k...

Full description

Saved in:
Bibliographic Details
Published inPhysics of plasmas Vol. 24; no. 3
Main Authors Schamel, Hans, Mandal, Debraj, Sharma, Devendra
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.03.2017
Subjects
Online AccessGet full text
ISSN1070-664X
1089-7674
DOI10.1063/1.4978477

Cover

Abstract An outstanding notion for collisionless plasmas is the essential nonlinear character of their coherent structures, which in the stationary, weak amplitude limit are described by a continuum of cnoidal electron and ion hole modes governed by a multiparametric nonlinear dispersion relation. The well-known discrete structure of undamped linear plasma modes is seamlessly embedded in this nonlinear continuum as the microscopic texture of plasma begins to reveal itself in the high temperature collisionless plasma limit. This transforms the linear-threshold-based operating mechanism of plasma turbulence into a fundamental nonlinear, multifaceted one. Based on a comprehensive three-level description of increasing profundity, a proof of this novel dictum is presented, which makes use of the joint properties of such structures, their coherency and stationarity, and uses in succession a fluid, linear Vlasov and a full Vlasov description. It unifies discrete and continuum limits by resolving the inevitable resonant region and shows that coherent electrostatic equilibria are generally controlled by kinetic particle trapping and are hence fundamentally nonlinear. By forging a link between damped and growing wave solutions, these modes render plasma stability complex and difficult to evaluate due to the entangled pattern of the stability boundary in function and parameter space, respectively. A direct consequence is the existence of negative energy modes of arbitrarily small amplitudes in the subcritical region of the two-stream instability as well as the failure of linear Landau (Vlasov, van Kampen) theory, whenever resonant particles are involved, in addressing the onset of instability in a current-carrying plasma. Responsible for this subtle phase space behavior is hence the thresholdless omnipresence of the trapping nonlinearity originating from coherency. A high resolution, exact-mass-ratio, multispecies, and collisionless plasma simulation is employed to illustrate exemplarily how tiny seed fluctuations in phase-space can act as a triggering agent for a subcritical plasma excitation verifying an access to these modes in the noisy, collisionless plasma limit.
AbstractList An outstanding notion for collisionless plasmas is the essential nonlinear character of their coherent structures, which in the stationary, weak amplitude limit are described by a continuum of cnoidal electron and ion hole modes governed by a multiparametric nonlinear dispersion relation. The well-known discrete structure of undamped linear plasma modes is seamlessly embedded in this nonlinear continuum as the microscopic texture of plasma begins to reveal itself in the high temperature collisionless plasma limit. This transforms the linear-threshold-based operating mechanism of plasma turbulence into a fundamental nonlinear, multifaceted one. Based on a comprehensive three-level description of increasing profundity, a proof of this novel dictum is presented, which makes use of the joint properties of such structures, their coherency and stationarity, and uses in succession a fluid, linear Vlasov and a full Vlasov description. It unifies discrete and continuum limits by resolving the inevitable resonant region and shows that coherent electrostatic equilibria are generally controlled by kinetic particle trapping and are hence fundamentally nonlinear. By forging a link between damped and growing wave solutions, these modes render plasma stability complex and difficult to evaluate due to the entangled pattern of the stability boundary in function and parameter space, respectively. A direct consequence is the existence of negative energy modes of arbitrarily small amplitudes in the subcritical region of the two-stream instability as well as the failure of linear Landau (Vlasov, van Kampen) theory, whenever resonant particles are involved, in addressing the onset of instability in a current-carrying plasma. Responsible for this subtle phase space behavior is hence the thresholdless omnipresence of the trapping nonlinearity originating from coherency. A high resolution, exact-mass-ratio, multispecies, and collisionless plasma simulation is employed to illustrate exemplarily how tiny seed fluctuations in phase-space can act as a triggering agent for a subcritical plasma excitation verifying an access to these modes in the noisy, collisionless plasma limit.
Author Mandal, Debraj
Schamel, Hans
Sharma, Devendra
Author_xml – sequence: 1
  givenname: Hans
  surname: Schamel
  fullname: Schamel, Hans
  email: hans.schamel@uni-bayreuth.de, www.hans-schamel.de
  organization: Universität Bayreuth
– sequence: 2
  givenname: Debraj
  surname: Mandal
  fullname: Mandal, Debraj
  organization: Institute for Plasma Research
– sequence: 3
  givenname: Devendra
  surname: Sharma
  fullname: Sharma, Devendra
  organization: Institute for Plasma Research
BookMark eNp9kF1LwzAUhoNMcJte-A8CXil2S9K0aS9l-AWD3Sh4V7L01GV0SU3Swf69GZsIol7lkDzvE847QgNjDSB0ScmEkjyd0gkvRcGFOEFDSooyEbngg_0sSJLn_O0MjbxfE0J4nhVDtF0YHFaAo6bVBqTDwcmu0-YdGxl6B9g2uDe13HRQ32JlV-DABOyD69X-3WNt4nXbaq-jA7zHXSv9RnosTY11iMCmkypga2JKLnWrw-4cnTay9XBxPMfo9eH-ZfaUzBePz7O7eaLSMg2JEKTMOJMZIcuaiWJZ1CBZyUBQVma0yVMFkNOUpCpnvJaM1XFmghaKgaybdIyuDt7O2Y8efKjWtncmflkxyniWRg-J1PWBUs5676CpOqc30u0qSqp9rRWtjrVGdvqDVTrIEHePxen218TNIeG_yH_1f8Jb677BqovbfQLr95jz
CODEN PHPAEN
CitedBy_id crossref_primary_10_1007_s41614_022_00109_w
crossref_primary_10_1063_1_5051824
crossref_primary_10_1016_j_jcp_2019_04_054
crossref_primary_10_1088_1402_4896_ab725d
crossref_primary_10_1063_1_5090595
crossref_primary_10_1016_j_physleta_2017_06_056
crossref_primary_10_1063_1_5121530
crossref_primary_10_1016_j_physleta_2018_06_042
crossref_primary_10_1002_andp_202300102
crossref_primary_10_1063_1_5037315
crossref_primary_10_1088_1367_2630_aaccc5
crossref_primary_10_1007_s13538_023_01325_6
crossref_primary_10_3390_plasma3040012
crossref_primary_10_1063_1_5059364
crossref_primary_10_1103_PhysRevE_107_065203
crossref_primary_10_1016_j_physleta_2017_11_004
crossref_primary_10_7566_JPSJ_90_114501
crossref_primary_10_1063_1_5025589
Cites_doi 10.1016/j.physrep.2005.05.002
10.1063/1.4941976
10.1017/S0022377800019280
10.1029/2004JA010793
10.1017/S0022377800026295
10.1063/1.4916774
10.1103/PhysRevE.87.031101
10.1063/1.864100
10.1103/PhysRevLett.79.2811
10.1017/S0022377800004141
10.1063/1.4913426
10.1063/1.3615032
10.1063/1.4867237
10.1063/1.2140228
10.1515/zna-1958-1102
10.1103/PhysRevSTAB.7.044402
10.1063/1.4794727
10.1063/1.2921791
10.1103/PhysRevLett.105.165002
10.1238/Physica.Topical.075a00023
10.1063/1.3682047
10.1063/1.864430
10.1088/0741-3335/56/7/075005
10.1016/S0010-4655(98)00146-5
10.1103/PhysRevSTAB.5.024201
10.1016/0370-1573(86)90043-8
10.1088/0031-8949/20/3-4/006
10.1063/1.874206
10.1063/1.4882875
10.1063/1.4794728
10.1007/s11214-006-5382-8
10.1063/1.3501994
10.1103/PhysRev.108.546
10.1103/PhysRevLett.48.1249
10.1088/0029-5515/56/5/056009
10.1088/0031-8949/1982/T2A/030
10.1103/PhysRevLett.48.481
10.1063/1.871006
10.1063/1.4936267
10.1063/1.873550
10.1007/s11511-011-0068-9
10.1063/1.1316767
10.1063/1.865176
10.1063/1.871198
10.1088/0032-1028/14/10/002
10.1017/S0022377800019292
10.1063/1.1706174
ContentType Journal Article
Copyright Author(s)
2017 Author(s). Published by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2017 Author(s). Published by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/1.4978477
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1089-7674
ExternalDocumentID 10_1063_1_4978477
pop
GroupedDBID -~X
0ZJ
123
1UP
2-P
29O
4.4
5VS
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABEFF
ABJNI
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACXMS
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BPZLN
CS3
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
N9A
NEUPN
NPSNA
O-B
P2P
RDFOP
RIP
RNS
ROL
RQS
T9H
TN5
WH7
XFK
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c393t-7709542a500bd278b8dea292e712951f63cee61303c624da22d3032718c2eadf3
ISSN 1070-664X
IngestDate Mon Jun 30 05:01:35 EDT 2025
Thu Apr 24 22:58:42 EDT 2025
Tue Jul 01 00:34:52 EDT 2025
Fri Jun 21 00:15:53 EDT 2024
Sun Jul 14 10:30:44 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License 1070-664X/2017/24(3)/032109/12/$30.00
Published by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c393t-7709542a500bd278b8dea292e712951f63cee61303c624da22d3032718c2eadf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2486-9547
PQID 2124531290
PQPubID 2050668
PageCount 12
ParticipantIDs scitation_primary_10_1063_1_4978477
proquest_journals_2124531290
crossref_primary_10_1063_1_4978477
crossref_citationtrail_10_1063_1_4978477
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170300
2017-03-01
20170301
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 20170300
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Physics of plasmas
PublicationYear 2017
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Montgomery, Joyce (c29) 1969
Lesur, Diamond, Kosuga (c4) 2014
Fijalkow (c11) 1999
Bernstein, Greene, Kruskal (c18) 1957
Villani (c37) 2014
Berk, Breizman, Candy, Pekker, Petviashvili (c2) 1999
Mouhot, Villani (c36) 2011
Dupree (c1) 1983
Valentini, Perrone, Califano, Pegoraro, Veltri, Morrison, O'Neil (c35) 2013
Schamel (c32) 1982
Korn, Schamel (c22) 1996
Hou, Chen, Yu, Wu, Wu (c40) 2015
Hou, Ma, Yu (c39) 2011
Schamel (c49) 1997
Landau (c28) 1946
Mandal, Sharma (c14) 2016
Schamel (c34) 2013
Berman, Tetreault, Dupree (c42) 1985
Berk, Breizman, Pekker (c7) 1995
Tetreault (c31) 1983
Luque, Schamel (c21) 2005
Gurevich (c17) 1968
Berman, Tetreault, Dupree, Ghali (c41) 1982
Schamel, Luque (c44) 2005
Schamel (c19) 1982
Khotyaintsev, Vaivads, Andre, Fujimoto, Retino, Owen (c45) 2010
Schamel (c30) 1979
Korn, Schamel (c23) 1996
Lesur, Diamond (c3) 2013
Moody, Driscoll (c55) 1995
Karimabadi, Roytershteyn, Vu, Omelchenko, Scudder, Daughton, Dimmock, Nykyri, Wan, Sibeck (c56) 2014
Blaskiewicz, Wei, Luque, Schamel (c52) 2004
Wesson (c33) 2015
Schamel (c9) 2015
Schamel (c47) 1998
Fried, Gould (c12) 1961
Schamel (c16) 1972
Schamel (c20) 1986
Schamel (c8) 2012
Luque, Schamel, Eliasson, Shukla (c43) 2005
Belmont, Mottez, Chust, Hess (c38) 2008
Kar, Mukherjee, Ravi, Saxena (c46) 2010
Bujarbarua, Schamel (c15) 1981
Schamel, Fedele (c50) 2000
Sagdeev (c25) 1966
Grießmeier, Schamel, Fedele (c51) 2002
Schamel (c10) 2000
Petkaki, Freeman, Kirk, Watt, Horne (c5) 2006
Lesur, Itoh, Ido, Itoh, Kosuga, Sasaki, Inagaki, Osakabe, Ogawa, Shimizu, Ida (c6) 2016
Davies, Lüst, Schlüter (c24) 1958
(2023070122202648700_c40) 2015; 22
(2023070122202648700_c26) 1961
(2023070122202648700_c4) 2014; 56
(2023070122202648700_c11) 1999; 116
(2023070122202648700_c29) 1969; 3
(2023070122202648700_c8) 2012; 19
(2023070122202648700_c5) 2006; 111
(2023070122202648700_c18) 1957; 108
(2023070122202648700_c33) 2015; 22
(2023070122202648700_c38) 2008; 15
(2023070122202648700_c17) 1968; 26
(2023070122202648700_c41) 1982; 48
(2023070122202648700_c52) 2004; 7
(2023070122202648700_c12) 1961; 4
(2023070122202648700_c55) 1995; 2
(2023070122202648700_c27) 1967
(2023070122202648700_c32) 1982; 48
(2023070122202648700_c36) 2011; 207
(2023070122202648700_c20) 1986; 140
(2023070122202648700_c48) 1996
(2023070122202648700_c42) 1985; 28
(2023070122202648700_c44) 2005; 121
(2023070122202648700_c19) 1982; T2/1
(2023070122202648700_c30) 1979; 20
(2023070122202648700_c15) 1981; 25
(2023070122202648700_c3) 2013; 87
(2023070122202648700_c50) 2000; 7
(2023070122202648700_c47) 1998; T75
(2023070122202648700_c13) 1986
(2023070122202648700_c35) 2013; 20
(2023070122202648700_c49) 1997; 79
(2023070122202648700_c21) 2005; 415
(2023070122202648700_c53) 1987
(2023070122202648700_c10) 2000; 7
(2023070122202648700_c45) 2010; 105
(2023070122202648700_c28) 1946; 10
(2023070122202648700_c54) 1995
(2023070122202648700_c1) 1983; 26
(2023070122202648700_c22) 1996; 56
(2023070122202648700_c51) 2002; 5
(2023070122202648700_c6) 2016; 56
(2023070122202648700_c9) 2015; 22
(2023070122202648700_c56) 2014; 21
(2023070122202648700_c14) 2016; 23
(2023070122202648700_c37) 2014; 21
(2023070122202648700_c31) 1983; 26
(2023070122202648700_c34) 2013; 20
(2023070122202648700_c25) 1966; 4
(2023070122202648700_c39) 2011; 18
(2023070122202648700_c2) 1999; 6
(2023070122202648700_c46) 2010; 17
(2023070122202648700_c23) 1996; 56
(2023070122202648700_c24) 1958; 13
(2023070122202648700_c7) 1995; 2
(2023070122202648700_c16) 1972; 14
(2023070122202648700_c43) 2005; 12
References_xml – start-page: 020501
  year: 2012
  ident: c8
  publication-title: Phys. Plasmas
– start-page: 23
  year: 1998
  ident: c47
  publication-title: Phys. Scr. Vol.
– start-page: 075005
  year: 2014
  ident: c4
  publication-title: Plasma Phys. Controlled Fusion
– start-page: 122101
  year: 2015
  ident: c40
  publication-title: Phys. Plasmas
– start-page: 481
  year: 1982
  ident: c32
  publication-title: Phys. Rev. Lett.
– start-page: 905
  year: 1972
  ident: c16
  publication-title: Plasma Phys.
– start-page: 165002
  year: 2010
  ident: c45
  publication-title: Phys. Rev. Lett.
– start-page: A01205
  year: 2006
  ident: c5
  publication-title: J. Geophys. Res.
– start-page: 336
  year: 1979
  ident: c30
  publication-title: Phys. Scr.
– start-page: 1249
  year: 1982
  ident: c41
  publication-title: Phys. Rev. Lett.
– start-page: 044402
  year: 2004
  ident: c52
  publication-title: Phys. Rev. Spec. Top. Accel. Beams
– start-page: 034701
  year: 2013
  ident: c34
  publication-title: Phys. Plasmas
– start-page: 155
  year: 1985
  ident: c42
  publication-title: Phys. Fluids
– start-page: 23
  year: 1966
  ident: c25
  publication-title: Rev. Plasma Phys.
– start-page: 030901
  year: 2014
  ident: c37
  publication-title: Phys. Plasmas
– start-page: 4482
  year: 1995
  ident: c55
  publication-title: Phys. Plasmas
– start-page: 2460
  year: 1983
  ident: c1
  publication-title: Phys. Fluids
– start-page: 3421
  year: 2000
  ident: c50
  publication-title: Phys. Plasmas
– start-page: 024201
  year: 2002
  ident: c51
  publication-title: Phys. Rev. Spec. Top. Accel. Beams
– start-page: 056009
  year: 2016
  ident: c6
  publication-title: Nucl. Fusion
– start-page: 022519
  year: 2015
  ident: c33
  publication-title: Phys. Plasmas
– start-page: 515
  year: 1981
  ident: c15
  publication-title: J. Plasma Phys.
– start-page: 25
  year: 1946
  ident: c28
  publication-title: J. Phys. USSR
– start-page: 034702
  year: 2013
  ident: c35
  publication-title: Phys. Plasmas
– start-page: 022108
  year: 2016
  ident: c14
  publication-title: Phys. Plasmas
– start-page: 228
  year: 1982
  ident: c19
  publication-title: Phys. Scr.
– start-page: 916
  year: 1958
  ident: c24
  publication-title: Z. Naturforsch. A
– start-page: 339
  year: 1996
  ident: c23
  publication-title: J. Plasma Phys.
– start-page: 122307
  year: 2005
  ident: c43
  publication-title: Phys. Plasmas
– start-page: 1
  year: 1969
  ident: c29
  publication-title: J. Plasma Phys.
– start-page: 319
  year: 1999
  ident: c11
  publication-title: Comput. Phys. Commun.
– start-page: 29
  year: 2011
  ident: c36
  publication-title: Acta Math.
– start-page: 052310
  year: 2008
  ident: c38
  publication-title: Phys. Plasmas
– start-page: 161
  year: 1986
  ident: c20
  publication-title: Phys. Rep.
– start-page: 546
  year: 1957
  ident: c18
  publication-title: Phys. Rev.
– start-page: 3102
  year: 1999
  ident: c2
  publication-title: Phys. Plasmas
– start-page: 313
  year: 2005
  ident: c44
  publication-title: Space Sci. Rev.
– start-page: 3247
  year: 1983
  ident: c31
  publication-title: Phys. Fluids
– start-page: 2811
  year: 1997
  ident: c49
  publication-title: Phys. Rev. Lett.
– start-page: 062308
  year: 2014
  ident: c56
  publication-title: Phys. Plasmas
– start-page: 031101
  year: 2013
  ident: c3
  publication-title: Phys. Rev. E
– start-page: 261
  year: 2005
  ident: c21
  publication-title: Phys. Rep.
– start-page: 4831
  year: 2000
  ident: c10
  publication-title: Phys. Plasmas
– start-page: 575
  year: 1968
  ident: c17
  publication-title: Sov. Phys JETP
– start-page: 042301
  year: 2015
  ident: c9
  publication-title: Phys. Plasmas
– start-page: 102113
  year: 2010
  ident: c46
  publication-title: Phys. Plasmas
– start-page: 307
  year: 1996
  ident: c22
  publication-title: J. Plasma Phys.
– start-page: 139
  year: 1961
  ident: c12
  publication-title: Phys. Fluids
– start-page: 082101
  year: 2011
  ident: c39
  publication-title: Phys. Plasmas
– start-page: 3007
  year: 1995
  ident: c7
  publication-title: Phys. Plasmas
– volume: 415
  start-page: 261
  year: 2005
  ident: 2023070122202648700_c21
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2005.05.002
– volume-title: Theoretical Methods in Plasma Physics
  year: 1967
  ident: 2023070122202648700_c27
– volume: 23
  start-page: 022108
  year: 2016
  ident: 2023070122202648700_c14
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4941976
– volume: 56
  start-page: 307
  year: 1996
  ident: 2023070122202648700_c22
  publication-title: J. Plasma Phys.
  doi: 10.1017/S0022377800019280
– volume: 111
  start-page: A01205
  year: 2006
  ident: 2023070122202648700_c5
  publication-title: J. Geophys. Res.
  doi: 10.1029/2004JA010793
– volume: 25
  start-page: 515
  year: 1981
  ident: 2023070122202648700_c15
  publication-title: J. Plasma Phys.
  doi: 10.1017/S0022377800026295
– volume: 22
  start-page: 042301
  year: 2015
  ident: 2023070122202648700_c9
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4916774
– start-page: 2379
  volume-title: Proceedings of the PAC 1995, Dallas, TX
  year: 1995
  ident: 2023070122202648700_c54
– volume: 87
  start-page: 031101
  year: 2013
  ident: 2023070122202648700_c3
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.87.031101
– volume: 26
  start-page: 3247
  year: 1983
  ident: 2023070122202648700_c31
  publication-title: Phys. Fluids
  doi: 10.1063/1.864100
– volume: 79
  start-page: 2811
  year: 1997
  ident: 2023070122202648700_c49
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.79.2811
– volume: 3
  start-page: 1
  year: 1969
  ident: 2023070122202648700_c29
  publication-title: J. Plasma Phys.
  doi: 10.1017/S0022377800004141
– volume: 22
  start-page: 022519
  year: 2015
  ident: 2023070122202648700_c33
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4913426
– volume: 18
  start-page: 082101
  year: 2011
  ident: 2023070122202648700_c39
  publication-title: Phys. Plasmas
  doi: 10.1063/1.3615032
– volume: 21
  start-page: 030901
  year: 2014
  ident: 2023070122202648700_c37
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4867237
– volume: 26
  start-page: 575
  year: 1968
  ident: 2023070122202648700_c17
  publication-title: Sov. Phys JETP
– volume: 12
  start-page: 122307
  year: 2005
  ident: 2023070122202648700_c43
  publication-title: Phys. Plasmas
  doi: 10.1063/1.2140228
– volume-title: Principles of Plasma Physics
  year: 1986
  ident: 2023070122202648700_c13
– volume: 13
  start-page: 916
  year: 1958
  ident: 2023070122202648700_c24
  publication-title: Z. Naturforsch. A
  doi: 10.1515/zna-1958-1102
– volume: 7
  start-page: 044402
  year: 2004
  ident: 2023070122202648700_c52
  publication-title: Phys. Rev. Spec. Top. Accel. Beams
  doi: 10.1103/PhysRevSTAB.7.044402
– volume: 20
  start-page: 034701
  year: 2013
  ident: 2023070122202648700_c34
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4794727
– start-page: 289
  volume-title: Proceedings of the Joint US-CERN Accelerator School, Texas, 1986, Lecture Notes on Physics
  year: 1987
  ident: 2023070122202648700_c53
– volume: 15
  start-page: 052310
  year: 2008
  ident: 2023070122202648700_c38
  publication-title: Phys. Plasmas
  doi: 10.1063/1.2921791
– volume: 105
  start-page: 165002
  year: 2010
  ident: 2023070122202648700_c45
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.165002
– volume: T75
  start-page: 23
  year: 1998
  ident: 2023070122202648700_c47
  publication-title: Phys. Scr. Vol.
  doi: 10.1238/Physica.Topical.075a00023
– volume: 19
  start-page: 020501
  year: 2012
  ident: 2023070122202648700_c8
  publication-title: Phys. Plasmas
  doi: 10.1063/1.3682047
– volume: 26
  start-page: 2460
  year: 1983
  ident: 2023070122202648700_c1
  publication-title: Phys. Fluids
  doi: 10.1063/1.864430
– volume: 56
  start-page: 075005
  year: 2014
  ident: 2023070122202648700_c4
  publication-title: Plasma Phys. Controlled Fusion
  doi: 10.1088/0741-3335/56/7/075005
– volume-title: The Plasma Dispersion Function
  year: 1961
  ident: 2023070122202648700_c26
– volume: 116
  start-page: 319
  year: 1999
  ident: 2023070122202648700_c11
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/S0010-4655(98)00146-5
– volume: 5
  start-page: 024201
  year: 2002
  ident: 2023070122202648700_c51
  publication-title: Phys. Rev. Spec. Top. Accel. Beams
  doi: 10.1103/PhysRevSTAB.5.024201
– volume: 140
  start-page: 161
  year: 1986
  ident: 2023070122202648700_c20
  publication-title: Phys. Rep.
  doi: 10.1016/0370-1573(86)90043-8
– volume: 20
  start-page: 336
  year: 1979
  ident: 2023070122202648700_c30
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/20/3-4/006
– volume: 7
  start-page: 3421
  year: 2000
  ident: 2023070122202648700_c50
  publication-title: Phys. Plasmas
  doi: 10.1063/1.874206
– volume: 21
  start-page: 062308
  year: 2014
  ident: 2023070122202648700_c56
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4882875
– volume: 20
  start-page: 034702
  year: 2013
  ident: 2023070122202648700_c35
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4794728
– volume: 121
  start-page: 313
  year: 2005
  ident: 2023070122202648700_c44
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-006-5382-8
– volume: 17
  start-page: 102113
  year: 2010
  ident: 2023070122202648700_c46
  publication-title: Phys. Plasmas
  doi: 10.1063/1.3501994
– volume: 108
  start-page: 546
  year: 1957
  ident: 2023070122202648700_c18
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.108.546
– volume: 48
  start-page: 1249
  year: 1982
  ident: 2023070122202648700_c41
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.48.1249
– volume: 56
  start-page: 056009
  year: 2016
  ident: 2023070122202648700_c6
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/56/5/056009
– volume: T2/1
  start-page: 228
  year: 1982
  ident: 2023070122202648700_c19
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/1982/T2A/030
– volume: 48
  start-page: 481
  year: 1982
  ident: 2023070122202648700_c32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.48.481
– volume: 2
  start-page: 4482
  year: 1995
  ident: 2023070122202648700_c55
  publication-title: Phys. Plasmas
  doi: 10.1063/1.871006
– volume: 10
  start-page: 25
  year: 1946
  ident: 2023070122202648700_c28
  publication-title: J. Phys. USSR
– volume: 22
  start-page: 122101
  year: 2015
  ident: 2023070122202648700_c40
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4936267
– volume: 6
  start-page: 3102
  year: 1999
  ident: 2023070122202648700_c2
  publication-title: Phys. Plasmas
  doi: 10.1063/1.873550
– volume: 4
  start-page: 23
  year: 1966
  ident: 2023070122202648700_c25
  publication-title: Rev. Plasma Phys.
– volume: 207
  start-page: 29
  year: 2011
  ident: 2023070122202648700_c36
  publication-title: Acta Math.
  doi: 10.1007/s11511-011-0068-9
– volume: 7
  start-page: 4831
  year: 2000
  ident: 2023070122202648700_c10
  publication-title: Phys. Plasmas
  doi: 10.1063/1.1316767
– volume: 28
  start-page: 155
  year: 1985
  ident: 2023070122202648700_c42
  publication-title: Phys. Fluids
  doi: 10.1063/1.865176
– volume: 2
  start-page: 3007
  year: 1995
  ident: 2023070122202648700_c7
  publication-title: Phys. Plasmas
  doi: 10.1063/1.871198
– volume: 14
  start-page: 905
  year: 1972
  ident: 2023070122202648700_c16
  publication-title: Plasma Phys.
  doi: 10.1088/0032-1028/14/10/002
– volume: 56
  start-page: 339
  year: 1996
  ident: 2023070122202648700_c23
  publication-title: J. Plasma Phys.
  doi: 10.1017/S0022377800019292
– volume: 4
  start-page: 139
  year: 1961
  ident: 2023070122202648700_c12
  publication-title: Phys. Fluids
  doi: 10.1063/1.1706174
– start-page: 356
  volume-title: Proceeding of the Tamura Symposium
  year: 1996
  ident: 2023070122202648700_c48
SSID ssj0004658
Score 2.3196294
Snippet An outstanding notion for collisionless plasmas is the essential nonlinear character of their coherent structures, which in the stationary, weak amplitude...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Amplitudes
Coherence
Collisionless plasmas
Current carrying plasmas
Fluid dynamics
Fluid flow
Forging
Nonlinearity
Plasma
Plasma physics
Plasma turbulence
Stability
Stability analysis
Trapping
Variation
Title On the nonlinear trapping nature of undamped, coherent structures in collisionless plasmas and its impact on stability
URI http://dx.doi.org/10.1063/1.4978477
https://www.proquest.com/docview/2124531290
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1089-7674
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004658
  issn: 1070-664X
  databaseCode: ADMLS
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKJ8QuiE9RGMgChDiQ0tipkxwn2FShdj3QSr1FTuxqoC7NumoH-Od5z3acRKom4BKl1ms-_H55_tl-H4S8D1UqIzWSAYynSRCNlQjyQgGR06NY4fgbKtzRnV2IyTL6thqver3f7eiSfT4sfh2MK_kfrUIb6BWjZP9Bs_6i0ADnoF84gobh-Fc6nlsfxdKmu5A7LPhQmQAom68TmSBGegA1NoostpfaZGOyWWNBwnjDIhZMiPkGzV4FfPpK3vhdhTqOssRlB-NK29kJNi6khXEIcf9s9nYu5ZV1ApjI0jfPcO1ig4ZuJ396WZNB2xpAML9qJ9vLETDEeX-sVgSALLu-Du5RWnYWLE0ghHXOHGrXlqQB5hZqG2cbYO1AyA_afCBZuPwwxFp5kasJ08mrfTHPzpfTabY4Wy0-VNcBlhzDrXlXf-UeOWKxEKxPjk6_zqbfW2G1YxtJ6Z61Tkwl-Gd_ty6daeYoD4DAWF-KFl1ZPCIP3TyDnlrQPCY9XT4h910PPSW385ICdKiHDq2hQy106HZNa-h8ojVwaAMc-qOkHeBQp34K-qUAHGqBQ7cl9cB5RpbnZ4svk8CV4AgKnvI9zL2AgkcMy2bkisVJnigtWcp0DDxxHK4FB5KFU1BeCBYpyZiCcwaEp2Bgo9b8OenDm-gXhKowlyyOk0RzHDXCRMOPXEcslzxiRT4gH-uezOq-wzIpm8z4SQiehZnr9AF560Urm5TlkNBJrY7MfbM3GRC1CEYdlo4G5J1X0V0XOSB1u901Elml1i_vvtUrctx8KSekD5rSr4HK7vM3DnJ_ADMVpmE
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+nonlinear+trapping+nature+of+undamped%2C+coherent+structures+in+collisionless+plasmas+and+its+impact+on+stability&rft.jtitle=Physics+of+plasmas&rft.au=Schamel%2C+Hans&rft.au=Mandal+Debraj&rft.au=Sharma%2C+Devendra&rft.date=2017-03-01&rft.pub=American+Institute+of+Physics&rft.issn=1070-664X&rft.eissn=1089-7674&rft.volume=24&rft.issue=3&rft_id=info:doi/10.1063%2F1.4978477&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-664X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-664X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-664X&client=summon