On the nonlinear trapping nature of undamped, coherent structures in collisionless plasmas and its impact on stability
An outstanding notion for collisionless plasmas is the essential nonlinear character of their coherent structures, which in the stationary, weak amplitude limit are described by a continuum of cnoidal electron and ion hole modes governed by a multiparametric nonlinear dispersion relation. The well-k...
Saved in:
Published in | Physics of plasmas Vol. 24; no. 3 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.03.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1070-664X 1089-7674 |
DOI | 10.1063/1.4978477 |
Cover
Abstract | An outstanding notion for collisionless plasmas is the essential nonlinear character of their coherent structures, which in the stationary, weak amplitude limit are described by a continuum of cnoidal electron and ion hole modes governed by a multiparametric nonlinear dispersion relation. The well-known discrete structure of undamped linear plasma modes is seamlessly embedded in this nonlinear continuum as the microscopic texture of plasma begins to reveal itself in the high temperature collisionless plasma limit. This transforms the linear-threshold-based operating mechanism of plasma turbulence into a fundamental nonlinear, multifaceted one. Based on a comprehensive three-level description of increasing profundity, a proof of this novel dictum is presented, which makes use of the joint properties of such structures, their coherency and stationarity, and uses in succession a fluid, linear Vlasov and a full Vlasov description. It unifies discrete and continuum limits by resolving the inevitable resonant region and shows that coherent electrostatic equilibria are generally controlled by kinetic particle trapping and are hence fundamentally nonlinear. By forging a link between damped and growing wave solutions, these modes render plasma stability complex and difficult to evaluate due to the entangled pattern of the stability boundary in function and parameter space, respectively. A direct consequence is the existence of negative energy modes of arbitrarily small amplitudes in the subcritical region of the two-stream instability as well as the failure of linear Landau (Vlasov, van Kampen) theory, whenever resonant particles are involved, in addressing the onset of instability in a current-carrying plasma. Responsible for this subtle phase space behavior is hence the thresholdless omnipresence of the trapping nonlinearity originating from coherency. A high resolution, exact-mass-ratio, multispecies, and collisionless plasma simulation is employed to illustrate exemplarily how tiny seed fluctuations in phase-space can act as a triggering agent for a subcritical plasma excitation verifying an access to these modes in the noisy, collisionless plasma limit. |
---|---|
AbstractList | An outstanding notion for collisionless plasmas is the essential nonlinear character of their coherent structures, which in the stationary, weak amplitude limit are described by a continuum of cnoidal electron and ion hole modes governed by a multiparametric nonlinear dispersion relation. The well-known discrete structure of undamped linear plasma modes is seamlessly embedded in this nonlinear continuum as the microscopic texture of plasma begins to reveal itself in the high temperature collisionless plasma limit. This transforms the linear-threshold-based operating mechanism of plasma turbulence into a fundamental nonlinear, multifaceted one. Based on a comprehensive three-level description of increasing profundity, a proof of this novel dictum is presented, which makes use of the joint properties of such structures, their coherency and stationarity, and uses in succession a fluid, linear Vlasov and a full Vlasov description. It unifies discrete and continuum limits by resolving the inevitable resonant region and shows that coherent electrostatic equilibria are generally controlled by kinetic particle trapping and are hence fundamentally nonlinear. By forging a link between damped and growing wave solutions, these modes render plasma stability complex and difficult to evaluate due to the entangled pattern of the stability boundary in function and parameter space, respectively. A direct consequence is the existence of negative energy modes of arbitrarily small amplitudes in the subcritical region of the two-stream instability as well as the failure of linear Landau (Vlasov, van Kampen) theory, whenever resonant particles are involved, in addressing the onset of instability in a current-carrying plasma. Responsible for this subtle phase space behavior is hence the thresholdless omnipresence of the trapping nonlinearity originating from coherency. A high resolution, exact-mass-ratio, multispecies, and collisionless plasma simulation is employed to illustrate exemplarily how tiny seed fluctuations in phase-space can act as a triggering agent for a subcritical plasma excitation verifying an access to these modes in the noisy, collisionless plasma limit. |
Author | Mandal, Debraj Schamel, Hans Sharma, Devendra |
Author_xml | – sequence: 1 givenname: Hans surname: Schamel fullname: Schamel, Hans email: hans.schamel@uni-bayreuth.de, www.hans-schamel.de organization: Universität Bayreuth – sequence: 2 givenname: Debraj surname: Mandal fullname: Mandal, Debraj organization: Institute for Plasma Research – sequence: 3 givenname: Devendra surname: Sharma fullname: Sharma, Devendra organization: Institute for Plasma Research |
BookMark | eNp9kF1LwzAUhoNMcJte-A8CXil2S9K0aS9l-AWD3Sh4V7L01GV0SU3Swf69GZsIol7lkDzvE847QgNjDSB0ScmEkjyd0gkvRcGFOEFDSooyEbngg_0sSJLn_O0MjbxfE0J4nhVDtF0YHFaAo6bVBqTDwcmu0-YdGxl6B9g2uDe13HRQ32JlV-DABOyD69X-3WNt4nXbaq-jA7zHXSv9RnosTY11iMCmkypga2JKLnWrw-4cnTay9XBxPMfo9eH-ZfaUzBePz7O7eaLSMg2JEKTMOJMZIcuaiWJZ1CBZyUBQVma0yVMFkNOUpCpnvJaM1XFmghaKgaybdIyuDt7O2Y8efKjWtncmflkxyniWRg-J1PWBUs5676CpOqc30u0qSqp9rRWtjrVGdvqDVTrIEHePxen218TNIeG_yH_1f8Jb677BqovbfQLr95jz |
CODEN | PHPAEN |
CitedBy_id | crossref_primary_10_1007_s41614_022_00109_w crossref_primary_10_1063_1_5051824 crossref_primary_10_1016_j_jcp_2019_04_054 crossref_primary_10_1088_1402_4896_ab725d crossref_primary_10_1063_1_5090595 crossref_primary_10_1016_j_physleta_2017_06_056 crossref_primary_10_1063_1_5121530 crossref_primary_10_1016_j_physleta_2018_06_042 crossref_primary_10_1002_andp_202300102 crossref_primary_10_1063_1_5037315 crossref_primary_10_1088_1367_2630_aaccc5 crossref_primary_10_1007_s13538_023_01325_6 crossref_primary_10_3390_plasma3040012 crossref_primary_10_1063_1_5059364 crossref_primary_10_1103_PhysRevE_107_065203 crossref_primary_10_1016_j_physleta_2017_11_004 crossref_primary_10_7566_JPSJ_90_114501 crossref_primary_10_1063_1_5025589 |
Cites_doi | 10.1016/j.physrep.2005.05.002 10.1063/1.4941976 10.1017/S0022377800019280 10.1029/2004JA010793 10.1017/S0022377800026295 10.1063/1.4916774 10.1103/PhysRevE.87.031101 10.1063/1.864100 10.1103/PhysRevLett.79.2811 10.1017/S0022377800004141 10.1063/1.4913426 10.1063/1.3615032 10.1063/1.4867237 10.1063/1.2140228 10.1515/zna-1958-1102 10.1103/PhysRevSTAB.7.044402 10.1063/1.4794727 10.1063/1.2921791 10.1103/PhysRevLett.105.165002 10.1238/Physica.Topical.075a00023 10.1063/1.3682047 10.1063/1.864430 10.1088/0741-3335/56/7/075005 10.1016/S0010-4655(98)00146-5 10.1103/PhysRevSTAB.5.024201 10.1016/0370-1573(86)90043-8 10.1088/0031-8949/20/3-4/006 10.1063/1.874206 10.1063/1.4882875 10.1063/1.4794728 10.1007/s11214-006-5382-8 10.1063/1.3501994 10.1103/PhysRev.108.546 10.1103/PhysRevLett.48.1249 10.1088/0029-5515/56/5/056009 10.1088/0031-8949/1982/T2A/030 10.1103/PhysRevLett.48.481 10.1063/1.871006 10.1063/1.4936267 10.1063/1.873550 10.1007/s11511-011-0068-9 10.1063/1.1316767 10.1063/1.865176 10.1063/1.871198 10.1088/0032-1028/14/10/002 10.1017/S0022377800019292 10.1063/1.1706174 |
ContentType | Journal Article |
Copyright | Author(s) 2017 Author(s). Published by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2017 Author(s). Published by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/1.4978477 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1089-7674 |
ExternalDocumentID | 10_1063_1_4978477 pop |
GroupedDBID | -~X 0ZJ 123 1UP 2-P 29O 4.4 5VS AAAAW AABDS AAEUA AAPUP AAYIH ABEFF ABJNI ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACXMS ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BPZLN CS3 EBS EJD ESX F5P FDOHQ FFFMQ HAM H~9 M6X M71 M73 N9A NEUPN NPSNA O-B P2P RDFOP RIP RNS ROL RQS T9H TN5 WH7 XFK AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c393t-7709542a500bd278b8dea292e712951f63cee61303c624da22d3032718c2eadf3 |
ISSN | 1070-664X |
IngestDate | Mon Jun 30 05:01:35 EDT 2025 Thu Apr 24 22:58:42 EDT 2025 Tue Jul 01 00:34:52 EDT 2025 Fri Jun 21 00:15:53 EDT 2024 Sun Jul 14 10:30:44 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | 1070-664X/2017/24(3)/032109/12/$30.00 Published by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c393t-7709542a500bd278b8dea292e712951f63cee61303c624da22d3032718c2eadf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2486-9547 |
PQID | 2124531290 |
PQPubID | 2050668 |
PageCount | 12 |
ParticipantIDs | scitation_primary_10_1063_1_4978477 proquest_journals_2124531290 crossref_primary_10_1063_1_4978477 crossref_citationtrail_10_1063_1_4978477 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170300 2017-03-01 20170301 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: 20170300 |
PublicationDecade | 2010 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Physics of plasmas |
PublicationYear | 2017 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Montgomery, Joyce (c29) 1969 Lesur, Diamond, Kosuga (c4) 2014 Fijalkow (c11) 1999 Bernstein, Greene, Kruskal (c18) 1957 Villani (c37) 2014 Berk, Breizman, Candy, Pekker, Petviashvili (c2) 1999 Mouhot, Villani (c36) 2011 Dupree (c1) 1983 Valentini, Perrone, Califano, Pegoraro, Veltri, Morrison, O'Neil (c35) 2013 Schamel (c32) 1982 Korn, Schamel (c22) 1996 Hou, Chen, Yu, Wu, Wu (c40) 2015 Hou, Ma, Yu (c39) 2011 Schamel (c49) 1997 Landau (c28) 1946 Mandal, Sharma (c14) 2016 Schamel (c34) 2013 Berman, Tetreault, Dupree (c42) 1985 Berk, Breizman, Pekker (c7) 1995 Tetreault (c31) 1983 Luque, Schamel (c21) 2005 Gurevich (c17) 1968 Berman, Tetreault, Dupree, Ghali (c41) 1982 Schamel, Luque (c44) 2005 Schamel (c19) 1982 Khotyaintsev, Vaivads, Andre, Fujimoto, Retino, Owen (c45) 2010 Schamel (c30) 1979 Korn, Schamel (c23) 1996 Lesur, Diamond (c3) 2013 Moody, Driscoll (c55) 1995 Karimabadi, Roytershteyn, Vu, Omelchenko, Scudder, Daughton, Dimmock, Nykyri, Wan, Sibeck (c56) 2014 Blaskiewicz, Wei, Luque, Schamel (c52) 2004 Wesson (c33) 2015 Schamel (c9) 2015 Schamel (c47) 1998 Fried, Gould (c12) 1961 Schamel (c16) 1972 Schamel (c20) 1986 Schamel (c8) 2012 Luque, Schamel, Eliasson, Shukla (c43) 2005 Belmont, Mottez, Chust, Hess (c38) 2008 Kar, Mukherjee, Ravi, Saxena (c46) 2010 Bujarbarua, Schamel (c15) 1981 Schamel, Fedele (c50) 2000 Sagdeev (c25) 1966 Grießmeier, Schamel, Fedele (c51) 2002 Schamel (c10) 2000 Petkaki, Freeman, Kirk, Watt, Horne (c5) 2006 Lesur, Itoh, Ido, Itoh, Kosuga, Sasaki, Inagaki, Osakabe, Ogawa, Shimizu, Ida (c6) 2016 Davies, Lüst, Schlüter (c24) 1958 (2023070122202648700_c40) 2015; 22 (2023070122202648700_c26) 1961 (2023070122202648700_c4) 2014; 56 (2023070122202648700_c11) 1999; 116 (2023070122202648700_c29) 1969; 3 (2023070122202648700_c8) 2012; 19 (2023070122202648700_c5) 2006; 111 (2023070122202648700_c18) 1957; 108 (2023070122202648700_c33) 2015; 22 (2023070122202648700_c38) 2008; 15 (2023070122202648700_c17) 1968; 26 (2023070122202648700_c41) 1982; 48 (2023070122202648700_c52) 2004; 7 (2023070122202648700_c12) 1961; 4 (2023070122202648700_c55) 1995; 2 (2023070122202648700_c27) 1967 (2023070122202648700_c32) 1982; 48 (2023070122202648700_c36) 2011; 207 (2023070122202648700_c20) 1986; 140 (2023070122202648700_c48) 1996 (2023070122202648700_c42) 1985; 28 (2023070122202648700_c44) 2005; 121 (2023070122202648700_c19) 1982; T2/1 (2023070122202648700_c30) 1979; 20 (2023070122202648700_c15) 1981; 25 (2023070122202648700_c3) 2013; 87 (2023070122202648700_c50) 2000; 7 (2023070122202648700_c47) 1998; T75 (2023070122202648700_c13) 1986 (2023070122202648700_c35) 2013; 20 (2023070122202648700_c49) 1997; 79 (2023070122202648700_c21) 2005; 415 (2023070122202648700_c53) 1987 (2023070122202648700_c10) 2000; 7 (2023070122202648700_c45) 2010; 105 (2023070122202648700_c28) 1946; 10 (2023070122202648700_c54) 1995 (2023070122202648700_c1) 1983; 26 (2023070122202648700_c22) 1996; 56 (2023070122202648700_c51) 2002; 5 (2023070122202648700_c6) 2016; 56 (2023070122202648700_c9) 2015; 22 (2023070122202648700_c56) 2014; 21 (2023070122202648700_c14) 2016; 23 (2023070122202648700_c37) 2014; 21 (2023070122202648700_c31) 1983; 26 (2023070122202648700_c34) 2013; 20 (2023070122202648700_c25) 1966; 4 (2023070122202648700_c39) 2011; 18 (2023070122202648700_c2) 1999; 6 (2023070122202648700_c46) 2010; 17 (2023070122202648700_c23) 1996; 56 (2023070122202648700_c24) 1958; 13 (2023070122202648700_c7) 1995; 2 (2023070122202648700_c16) 1972; 14 (2023070122202648700_c43) 2005; 12 |
References_xml | – start-page: 020501 year: 2012 ident: c8 publication-title: Phys. Plasmas – start-page: 23 year: 1998 ident: c47 publication-title: Phys. Scr. Vol. – start-page: 075005 year: 2014 ident: c4 publication-title: Plasma Phys. Controlled Fusion – start-page: 122101 year: 2015 ident: c40 publication-title: Phys. Plasmas – start-page: 481 year: 1982 ident: c32 publication-title: Phys. Rev. Lett. – start-page: 905 year: 1972 ident: c16 publication-title: Plasma Phys. – start-page: 165002 year: 2010 ident: c45 publication-title: Phys. Rev. Lett. – start-page: A01205 year: 2006 ident: c5 publication-title: J. Geophys. Res. – start-page: 336 year: 1979 ident: c30 publication-title: Phys. Scr. – start-page: 1249 year: 1982 ident: c41 publication-title: Phys. Rev. Lett. – start-page: 044402 year: 2004 ident: c52 publication-title: Phys. Rev. Spec. Top. Accel. Beams – start-page: 034701 year: 2013 ident: c34 publication-title: Phys. Plasmas – start-page: 155 year: 1985 ident: c42 publication-title: Phys. Fluids – start-page: 23 year: 1966 ident: c25 publication-title: Rev. Plasma Phys. – start-page: 030901 year: 2014 ident: c37 publication-title: Phys. Plasmas – start-page: 4482 year: 1995 ident: c55 publication-title: Phys. Plasmas – start-page: 2460 year: 1983 ident: c1 publication-title: Phys. Fluids – start-page: 3421 year: 2000 ident: c50 publication-title: Phys. Plasmas – start-page: 024201 year: 2002 ident: c51 publication-title: Phys. Rev. Spec. Top. Accel. Beams – start-page: 056009 year: 2016 ident: c6 publication-title: Nucl. Fusion – start-page: 022519 year: 2015 ident: c33 publication-title: Phys. Plasmas – start-page: 515 year: 1981 ident: c15 publication-title: J. Plasma Phys. – start-page: 25 year: 1946 ident: c28 publication-title: J. Phys. USSR – start-page: 034702 year: 2013 ident: c35 publication-title: Phys. Plasmas – start-page: 022108 year: 2016 ident: c14 publication-title: Phys. Plasmas – start-page: 228 year: 1982 ident: c19 publication-title: Phys. Scr. – start-page: 916 year: 1958 ident: c24 publication-title: Z. Naturforsch. A – start-page: 339 year: 1996 ident: c23 publication-title: J. Plasma Phys. – start-page: 122307 year: 2005 ident: c43 publication-title: Phys. Plasmas – start-page: 1 year: 1969 ident: c29 publication-title: J. Plasma Phys. – start-page: 319 year: 1999 ident: c11 publication-title: Comput. Phys. Commun. – start-page: 29 year: 2011 ident: c36 publication-title: Acta Math. – start-page: 052310 year: 2008 ident: c38 publication-title: Phys. Plasmas – start-page: 161 year: 1986 ident: c20 publication-title: Phys. Rep. – start-page: 546 year: 1957 ident: c18 publication-title: Phys. Rev. – start-page: 3102 year: 1999 ident: c2 publication-title: Phys. Plasmas – start-page: 313 year: 2005 ident: c44 publication-title: Space Sci. Rev. – start-page: 3247 year: 1983 ident: c31 publication-title: Phys. Fluids – start-page: 2811 year: 1997 ident: c49 publication-title: Phys. Rev. Lett. – start-page: 062308 year: 2014 ident: c56 publication-title: Phys. Plasmas – start-page: 031101 year: 2013 ident: c3 publication-title: Phys. Rev. E – start-page: 261 year: 2005 ident: c21 publication-title: Phys. Rep. – start-page: 4831 year: 2000 ident: c10 publication-title: Phys. Plasmas – start-page: 575 year: 1968 ident: c17 publication-title: Sov. Phys JETP – start-page: 042301 year: 2015 ident: c9 publication-title: Phys. Plasmas – start-page: 102113 year: 2010 ident: c46 publication-title: Phys. Plasmas – start-page: 307 year: 1996 ident: c22 publication-title: J. Plasma Phys. – start-page: 139 year: 1961 ident: c12 publication-title: Phys. Fluids – start-page: 082101 year: 2011 ident: c39 publication-title: Phys. Plasmas – start-page: 3007 year: 1995 ident: c7 publication-title: Phys. Plasmas – volume: 415 start-page: 261 year: 2005 ident: 2023070122202648700_c21 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2005.05.002 – volume-title: Theoretical Methods in Plasma Physics year: 1967 ident: 2023070122202648700_c27 – volume: 23 start-page: 022108 year: 2016 ident: 2023070122202648700_c14 publication-title: Phys. Plasmas doi: 10.1063/1.4941976 – volume: 56 start-page: 307 year: 1996 ident: 2023070122202648700_c22 publication-title: J. Plasma Phys. doi: 10.1017/S0022377800019280 – volume: 111 start-page: A01205 year: 2006 ident: 2023070122202648700_c5 publication-title: J. Geophys. Res. doi: 10.1029/2004JA010793 – volume: 25 start-page: 515 year: 1981 ident: 2023070122202648700_c15 publication-title: J. Plasma Phys. doi: 10.1017/S0022377800026295 – volume: 22 start-page: 042301 year: 2015 ident: 2023070122202648700_c9 publication-title: Phys. Plasmas doi: 10.1063/1.4916774 – start-page: 2379 volume-title: Proceedings of the PAC 1995, Dallas, TX year: 1995 ident: 2023070122202648700_c54 – volume: 87 start-page: 031101 year: 2013 ident: 2023070122202648700_c3 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.87.031101 – volume: 26 start-page: 3247 year: 1983 ident: 2023070122202648700_c31 publication-title: Phys. Fluids doi: 10.1063/1.864100 – volume: 79 start-page: 2811 year: 1997 ident: 2023070122202648700_c49 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.79.2811 – volume: 3 start-page: 1 year: 1969 ident: 2023070122202648700_c29 publication-title: J. Plasma Phys. doi: 10.1017/S0022377800004141 – volume: 22 start-page: 022519 year: 2015 ident: 2023070122202648700_c33 publication-title: Phys. Plasmas doi: 10.1063/1.4913426 – volume: 18 start-page: 082101 year: 2011 ident: 2023070122202648700_c39 publication-title: Phys. Plasmas doi: 10.1063/1.3615032 – volume: 21 start-page: 030901 year: 2014 ident: 2023070122202648700_c37 publication-title: Phys. Plasmas doi: 10.1063/1.4867237 – volume: 26 start-page: 575 year: 1968 ident: 2023070122202648700_c17 publication-title: Sov. Phys JETP – volume: 12 start-page: 122307 year: 2005 ident: 2023070122202648700_c43 publication-title: Phys. Plasmas doi: 10.1063/1.2140228 – volume-title: Principles of Plasma Physics year: 1986 ident: 2023070122202648700_c13 – volume: 13 start-page: 916 year: 1958 ident: 2023070122202648700_c24 publication-title: Z. Naturforsch. A doi: 10.1515/zna-1958-1102 – volume: 7 start-page: 044402 year: 2004 ident: 2023070122202648700_c52 publication-title: Phys. Rev. Spec. Top. Accel. Beams doi: 10.1103/PhysRevSTAB.7.044402 – volume: 20 start-page: 034701 year: 2013 ident: 2023070122202648700_c34 publication-title: Phys. Plasmas doi: 10.1063/1.4794727 – start-page: 289 volume-title: Proceedings of the Joint US-CERN Accelerator School, Texas, 1986, Lecture Notes on Physics year: 1987 ident: 2023070122202648700_c53 – volume: 15 start-page: 052310 year: 2008 ident: 2023070122202648700_c38 publication-title: Phys. Plasmas doi: 10.1063/1.2921791 – volume: 105 start-page: 165002 year: 2010 ident: 2023070122202648700_c45 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.165002 – volume: T75 start-page: 23 year: 1998 ident: 2023070122202648700_c47 publication-title: Phys. Scr. Vol. doi: 10.1238/Physica.Topical.075a00023 – volume: 19 start-page: 020501 year: 2012 ident: 2023070122202648700_c8 publication-title: Phys. Plasmas doi: 10.1063/1.3682047 – volume: 26 start-page: 2460 year: 1983 ident: 2023070122202648700_c1 publication-title: Phys. Fluids doi: 10.1063/1.864430 – volume: 56 start-page: 075005 year: 2014 ident: 2023070122202648700_c4 publication-title: Plasma Phys. Controlled Fusion doi: 10.1088/0741-3335/56/7/075005 – volume-title: The Plasma Dispersion Function year: 1961 ident: 2023070122202648700_c26 – volume: 116 start-page: 319 year: 1999 ident: 2023070122202648700_c11 publication-title: Comput. Phys. Commun. doi: 10.1016/S0010-4655(98)00146-5 – volume: 5 start-page: 024201 year: 2002 ident: 2023070122202648700_c51 publication-title: Phys. Rev. Spec. Top. Accel. Beams doi: 10.1103/PhysRevSTAB.5.024201 – volume: 140 start-page: 161 year: 1986 ident: 2023070122202648700_c20 publication-title: Phys. Rep. doi: 10.1016/0370-1573(86)90043-8 – volume: 20 start-page: 336 year: 1979 ident: 2023070122202648700_c30 publication-title: Phys. Scr. doi: 10.1088/0031-8949/20/3-4/006 – volume: 7 start-page: 3421 year: 2000 ident: 2023070122202648700_c50 publication-title: Phys. Plasmas doi: 10.1063/1.874206 – volume: 21 start-page: 062308 year: 2014 ident: 2023070122202648700_c56 publication-title: Phys. Plasmas doi: 10.1063/1.4882875 – volume: 20 start-page: 034702 year: 2013 ident: 2023070122202648700_c35 publication-title: Phys. Plasmas doi: 10.1063/1.4794728 – volume: 121 start-page: 313 year: 2005 ident: 2023070122202648700_c44 publication-title: Space Sci. Rev. doi: 10.1007/s11214-006-5382-8 – volume: 17 start-page: 102113 year: 2010 ident: 2023070122202648700_c46 publication-title: Phys. Plasmas doi: 10.1063/1.3501994 – volume: 108 start-page: 546 year: 1957 ident: 2023070122202648700_c18 publication-title: Phys. Rev. doi: 10.1103/PhysRev.108.546 – volume: 48 start-page: 1249 year: 1982 ident: 2023070122202648700_c41 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.48.1249 – volume: 56 start-page: 056009 year: 2016 ident: 2023070122202648700_c6 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/56/5/056009 – volume: T2/1 start-page: 228 year: 1982 ident: 2023070122202648700_c19 publication-title: Phys. Scr. doi: 10.1088/0031-8949/1982/T2A/030 – volume: 48 start-page: 481 year: 1982 ident: 2023070122202648700_c32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.48.481 – volume: 2 start-page: 4482 year: 1995 ident: 2023070122202648700_c55 publication-title: Phys. Plasmas doi: 10.1063/1.871006 – volume: 10 start-page: 25 year: 1946 ident: 2023070122202648700_c28 publication-title: J. Phys. USSR – volume: 22 start-page: 122101 year: 2015 ident: 2023070122202648700_c40 publication-title: Phys. Plasmas doi: 10.1063/1.4936267 – volume: 6 start-page: 3102 year: 1999 ident: 2023070122202648700_c2 publication-title: Phys. Plasmas doi: 10.1063/1.873550 – volume: 4 start-page: 23 year: 1966 ident: 2023070122202648700_c25 publication-title: Rev. Plasma Phys. – volume: 207 start-page: 29 year: 2011 ident: 2023070122202648700_c36 publication-title: Acta Math. doi: 10.1007/s11511-011-0068-9 – volume: 7 start-page: 4831 year: 2000 ident: 2023070122202648700_c10 publication-title: Phys. Plasmas doi: 10.1063/1.1316767 – volume: 28 start-page: 155 year: 1985 ident: 2023070122202648700_c42 publication-title: Phys. Fluids doi: 10.1063/1.865176 – volume: 2 start-page: 3007 year: 1995 ident: 2023070122202648700_c7 publication-title: Phys. Plasmas doi: 10.1063/1.871198 – volume: 14 start-page: 905 year: 1972 ident: 2023070122202648700_c16 publication-title: Plasma Phys. doi: 10.1088/0032-1028/14/10/002 – volume: 56 start-page: 339 year: 1996 ident: 2023070122202648700_c23 publication-title: J. Plasma Phys. doi: 10.1017/S0022377800019292 – volume: 4 start-page: 139 year: 1961 ident: 2023070122202648700_c12 publication-title: Phys. Fluids doi: 10.1063/1.1706174 – start-page: 356 volume-title: Proceeding of the Tamura Symposium year: 1996 ident: 2023070122202648700_c48 |
SSID | ssj0004658 |
Score | 2.3196294 |
Snippet | An outstanding notion for collisionless plasmas is the essential nonlinear character of their coherent structures, which in the stationary, weak amplitude... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Amplitudes Coherence Collisionless plasmas Current carrying plasmas Fluid dynamics Fluid flow Forging Nonlinearity Plasma Plasma physics Plasma turbulence Stability Stability analysis Trapping Variation |
Title | On the nonlinear trapping nature of undamped, coherent structures in collisionless plasmas and its impact on stability |
URI | http://dx.doi.org/10.1063/1.4978477 https://www.proquest.com/docview/2124531290 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1089-7674 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004658 issn: 1070-664X databaseCode: ADMLS dateStart: 19940101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKJ8QuiE9RGMgChDiQ0tipkxwn2FShdj3QSr1FTuxqoC7NumoH-Od5z3acRKom4BKl1ms-_H55_tl-H4S8D1UqIzWSAYynSRCNlQjyQgGR06NY4fgbKtzRnV2IyTL6thqver3f7eiSfT4sfh2MK_kfrUIb6BWjZP9Bs_6i0ADnoF84gobh-Fc6nlsfxdKmu5A7LPhQmQAom68TmSBGegA1NoostpfaZGOyWWNBwnjDIhZMiPkGzV4FfPpK3vhdhTqOssRlB-NK29kJNi6khXEIcf9s9nYu5ZV1ApjI0jfPcO1ig4ZuJ396WZNB2xpAML9qJ9vLETDEeX-sVgSALLu-Du5RWnYWLE0ghHXOHGrXlqQB5hZqG2cbYO1AyA_afCBZuPwwxFp5kasJ08mrfTHPzpfTabY4Wy0-VNcBlhzDrXlXf-UeOWKxEKxPjk6_zqbfW2G1YxtJ6Z61Tkwl-Gd_ty6daeYoD4DAWF-KFl1ZPCIP3TyDnlrQPCY9XT4h910PPSW385ICdKiHDq2hQy106HZNa-h8ojVwaAMc-qOkHeBQp34K-qUAHGqBQ7cl9cB5RpbnZ4svk8CV4AgKnvI9zL2AgkcMy2bkisVJnigtWcp0DDxxHK4FB5KFU1BeCBYpyZiCcwaEp2Bgo9b8OenDm-gXhKowlyyOk0RzHDXCRMOPXEcslzxiRT4gH-uezOq-wzIpm8z4SQiehZnr9AF560Urm5TlkNBJrY7MfbM3GRC1CEYdlo4G5J1X0V0XOSB1u901Elml1i_vvtUrctx8KSekD5rSr4HK7vM3DnJ_ADMVpmE |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+nonlinear+trapping+nature+of+undamped%2C+coherent+structures+in+collisionless+plasmas+and+its+impact+on+stability&rft.jtitle=Physics+of+plasmas&rft.au=Schamel%2C+Hans&rft.au=Mandal+Debraj&rft.au=Sharma%2C+Devendra&rft.date=2017-03-01&rft.pub=American+Institute+of+Physics&rft.issn=1070-664X&rft.eissn=1089-7674&rft.volume=24&rft.issue=3&rft_id=info:doi/10.1063%2F1.4978477&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-664X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-664X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-664X&client=summon |