Adaptive Neural Output Feedback Control of Output-Constrained Nonlinear Systems With Unknown Output Nonlinearity

This paper addresses the problem of adaptive neural output-feedback control for a class of special nonlinear systems with the hysteretic output mechanism and the unmeasured states. A modified Bouc-Wen model is first employed to capture the output hysteresis phenomenon in the design procedure. For it...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 26; no. 8; pp. 1789 - 1802
Main Authors Zhi Liu, Guanyu Lai, Yun Zhang, Chen, Chun Lung Philip
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2015
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
DOI10.1109/TNNLS.2015.2420661

Cover

Abstract This paper addresses the problem of adaptive neural output-feedback control for a class of special nonlinear systems with the hysteretic output mechanism and the unmeasured states. A modified Bouc-Wen model is first employed to capture the output hysteresis phenomenon in the design procedure. For its fusion with the neural networks and the Nussbaum-type function, two key lemmas are established using some extended properties of this model. To avoid the bad system performance caused by the output nonlinearity, a barrier Lyapunov function technique is introduced to guarantee the prescribed constraint of the tracking error. In addition, a robust filtering method is designed to cancel the restriction that all the system states require to be measured. Based on the Lyapunov synthesis, a new neural adaptive controller is constructed to guarantee the prescribed convergence of the tracking error and the semiglobal uniform ultimate boundedness of all the signals in the closed-loop system. Simulations are implemented to evaluate the performance of the proposed neural control algorithm in this paper.
AbstractList This paper addresses the problem of adaptive neural output-feedback control for a class of special nonlinear systems with the hysteretic output mechanism and the unmeasured states. A modified Bouc-Wen model is first employed to capture the output hysteresis phenomenon in the design procedure. For its fusion with the neural networks and the Nussbaum-type function, two key lemmas are established using some extended properties of this model. To avoid the bad system performance caused by the output nonlinearity, a barrier Lyapunov function technique is introduced to guarantee the prescribed constraint of the tracking error. In addition, a robust filtering method is designed to cancel the restriction that all the system states require to be measured. Based on the Lyapunov synthesis, a new neural adaptive controller is constructed to guarantee the prescribed convergence of the tracking error and the semiglobal uniform ultimate boundedness of all the signals in the closed-loop system. Simulations are implemented to evaluate the performance of the proposed neural control algorithm in this paper.
Author Zhi Liu
Guanyu Lai
Chen, Chun Lung Philip
Yun Zhang
Author_xml – sequence: 1
  surname: Zhi Liu
  fullname: Zhi Liu
  email: lz@gdut.edu.cn
  organization: Fac. of Autom., Guangdong Univ. of Technol., Guangzhou, China
– sequence: 2
  surname: Guanyu Lai
  fullname: Guanyu Lai
  email: lgy124@foxmail.com
  organization: Fac. of Autom., Guangdong Univ. of Technol., Guangzhou, China
– sequence: 3
  surname: Yun Zhang
  fullname: Yun Zhang
  email: yz@gdut.edu.cn
  organization: Fac. of Autom., Guangdong Univ. of Technol., Guangzhou, China
– sequence: 4
  givenname: Chun Lung Philip
  surname: Chen
  fullname: Chen, Chun Lung Philip
  email: philip.chen@ieee.org
  organization: Fac. of Sci. & Technol., Univ. of Macau, Macau, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25915964$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAURi1UREvpC4CEvGSTwddOnHhZjWhBGk0XHQQ7y4lvhGnGDrYDmrdvhvlZsMAbX9nnfIv7vSYXPngk5C2wBQBTHzfr9epxwRlUC15yJiW8IFccJC-4aJqL81x_vyQ3Kf1k85GskqV6RS55paBSsrwi4601Y3a_ka5ximagD1Mep0zvEG1ruie6DD7HMNDQH7-K-SXlaJxHS9fBD_NgIn3cpYzbRL-5_IN-9U8-_PGnsDPl8u4NedmbIeHN8b4mm7tPm-XnYvVw_2V5uyo6oUQu6tJaaFXTqr4uG8lBGRSsVRb6jvWsaqVqGygrCwZqY-q-MdBaY7tesJJZcU0-HGLHGH5NmLLeutThMBiPYUoapKo5B1DVjL4_olO7RavH6LYm7vRpSTPQHIAuhpQi9rpz2WS334xxgwam95Xov5XofSX6WMms8n_UU_p_pXcHySHiWaiZKgUT4hkUepke
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TCYB_2017_2707178
crossref_primary_10_1109_TIE_2020_2991929
crossref_primary_10_1109_TCYB_2019_2903869
crossref_primary_10_1016_j_jfranklin_2018_05_064
crossref_primary_10_1016_j_ast_2024_109519
crossref_primary_10_1109_TSMC_2019_2958072
crossref_primary_10_1002_acs_2795
crossref_primary_10_1002_asjc_3171
crossref_primary_10_1109_JAS_2021_1003877
crossref_primary_10_1016_j_ins_2021_07_023
crossref_primary_10_1155_2017_6893521
crossref_primary_10_1016_j_jfranklin_2019_12_025
crossref_primary_10_1109_TFUZZ_2022_3228012
crossref_primary_10_1016_j_neucom_2017_07_034
crossref_primary_10_1016_j_oceaneng_2023_114545
crossref_primary_10_1002_asjc_3203
crossref_primary_10_1109_TSMC_2018_2841063
crossref_primary_10_1109_TSMC_2019_2922393
crossref_primary_10_1155_2018_5082401
crossref_primary_10_1002_acs_3772
crossref_primary_10_1109_TCYB_2021_3063481
crossref_primary_10_59277_PRA_SER_A_25_3_07
crossref_primary_10_1016_j_isatra_2021_11_035
crossref_primary_10_1109_TMECH_2024_3375459
crossref_primary_10_1016_j_jfranklin_2024_107359
crossref_primary_10_1002_rnc_5251
crossref_primary_10_1007_s11063_021_10575_x
crossref_primary_10_1016_j_jfranklin_2021_07_023
crossref_primary_10_1109_TSMC_2017_2703921
crossref_primary_10_1007_s11424_023_1455_y
crossref_primary_10_1109_TSMC_2015_2508962
crossref_primary_10_3390_math11081884
crossref_primary_10_1109_ACCESS_2018_2877798
crossref_primary_10_1109_TFUZZ_2022_3215483
crossref_primary_10_1109_TNNLS_2021_3126320
crossref_primary_10_1109_TCYB_2019_2933700
crossref_primary_10_1002_acs_3140
crossref_primary_10_1016_j_automatica_2016_11_034
crossref_primary_10_3934_math_2020261
crossref_primary_10_1002_rnc_6258
crossref_primary_10_1109_TSMC_2017_2738155
crossref_primary_10_1007_s11071_016_3196_0
crossref_primary_10_1016_j_neucom_2022_09_072
crossref_primary_10_1080_00207721_2020_1783385
crossref_primary_10_1109_TSMC_2020_3036120
crossref_primary_10_1016_j_jfranklin_2024_107341
crossref_primary_10_1109_JAS_2023_123831
crossref_primary_10_1109_ACCESS_2020_3010027
crossref_primary_10_1109_TNNLS_2017_2707244
crossref_primary_10_1080_00207721_2021_2017063
crossref_primary_10_1109_TNNLS_2022_3143655
crossref_primary_10_1109_TFUZZ_2017_2765627
crossref_primary_10_1002_acs_3554
crossref_primary_10_1109_TICPS_2023_3283232
crossref_primary_10_1016_j_amc_2021_126175
crossref_primary_10_1016_j_neucom_2019_04_060
crossref_primary_10_1016_j_jfranklin_2019_09_042
crossref_primary_10_3390_s19112576
crossref_primary_10_1109_ACCESS_2020_3030666
crossref_primary_10_1109_TFUZZ_2018_2798577
crossref_primary_10_1177_00202940221126177
crossref_primary_10_1080_02564602_2022_2162453
crossref_primary_10_1109_TFUZZ_2018_2883374
crossref_primary_10_1109_TNNLS_2018_2886023
crossref_primary_10_1016_j_ins_2021_01_034
crossref_primary_10_1049_cth2_12250
crossref_primary_10_1016_j_automatica_2021_109545
crossref_primary_10_1007_s11071_020_05674_8
crossref_primary_10_1016_j_neucom_2015_10_114
crossref_primary_10_1109_TFUZZ_2019_2952783
crossref_primary_10_1109_TFUZZ_2020_3021733
crossref_primary_10_1109_TSMC_2016_2606159
crossref_primary_10_1109_TSMC_2022_3223910
crossref_primary_10_1109_TSMC_2019_2917056
crossref_primary_10_1109_TCYB_2020_3001341
crossref_primary_10_1109_TSMC_2020_3043147
crossref_primary_10_1109_TFUZZ_2021_3133903
crossref_primary_10_1109_TFUZZ_2020_2986705
crossref_primary_10_1080_00207179_2023_2188432
crossref_primary_10_1109_ACCESS_2018_2884080
crossref_primary_10_1109_TCYB_2020_3042613
crossref_primary_10_1080_00207179_2020_1769865
crossref_primary_10_1109_TFUZZ_2022_3200457
crossref_primary_10_1007_s12555_018_0745_y
crossref_primary_10_1016_j_automatica_2019_108689
crossref_primary_10_1109_TIE_2018_2826450
crossref_primary_10_1016_j_neucom_2020_01_108
crossref_primary_10_1109_TCYB_2018_2799683
crossref_primary_10_1016_j_ins_2019_09_043
crossref_primary_10_1016_j_conengprac_2020_104378
crossref_primary_10_3934_math_20231389
crossref_primary_10_1016_j_neucom_2021_12_091
crossref_primary_10_1109_TNNLS_2020_2986281
crossref_primary_10_1109_TNSE_2022_3196316
crossref_primary_10_1109_TSMC_2021_3062419
crossref_primary_10_1155_2018_1872493
crossref_primary_10_1016_j_jsv_2023_118088
crossref_primary_10_1109_TNNLS_2018_2793968
crossref_primary_10_1016_j_engappai_2024_108126
crossref_primary_10_1016_j_automatica_2017_03_033
crossref_primary_10_1016_j_isatra_2019_11_028
crossref_primary_10_1109_TNNLS_2019_2899589
crossref_primary_10_1109_TCYB_2021_3128231
crossref_primary_10_1109_TSMC_2017_2755377
crossref_primary_10_1109_TFUZZ_2018_2889014
crossref_primary_10_1002_rnc_5001
crossref_primary_10_1109_TCYB_2019_2944761
crossref_primary_10_1080_00207721_2020_1837993
crossref_primary_10_1049_iet_cta_2017_0556
crossref_primary_10_1109_TNNLS_2019_2919641
crossref_primary_10_1002_acs_2823
crossref_primary_10_1002_rnc_5504
crossref_primary_10_1016_j_automatica_2018_03_063
crossref_primary_10_1109_TSMC_2017_2675540
crossref_primary_10_1109_TFUZZ_2017_2750619
crossref_primary_10_1007_s11071_016_3088_3
crossref_primary_10_1016_j_neucom_2020_12_050
crossref_primary_10_1080_00207179_2022_2067787
crossref_primary_10_1016_j_sna_2024_115541
crossref_primary_10_1016_j_ins_2019_02_063
crossref_primary_10_1109_TSMC_2016_2586193
Cites_doi 10.1049/iet-cta.2010.0711
10.1016/j.neucom.2013.05.042
10.1109/3468.895898
10.1109/TSMCB.2008.2006368
10.1109/TAC.2005.860260
10.1016/j.fss.2004.05.008
10.1109/TFUZZ.2002.806317
10.1109/TAC.2012.2190208
10.1016/j.automatica.2006.08.003
10.1016/j.automatica.2005.02.009
10.1109/TSMCB.2008.918568
10.1109/TCST.2004.839562
10.1016/S0005-1098(01)00056-5
10.1109/TSMCB.2012.2196432
10.1109/TNN.2005.863416
10.1016/j.laa.2007.11.012
10.1016/j.automatica.2009.01.012
10.1109/TSMCB.2009.2033808
10.1109/TAC.2006.890473
10.1016/j.ins.2011.10.004
10.1109/TNN.2010.2042611
10.1016/j.fss.2009.03.008
10.1109/TAC.2011.2122730
10.1109/TFUZZ.2012.2204065
10.1016/j.automatica.2006.12.014
10.1016/j.automatica.2009.02.025
10.1016/j.fss.2009.10.026
10.1109/TNN.2005.844907
10.1109/3477.891149
10.1109/TFUZZ.2004.839663
10.1016/j.automatica.2009.02.021
10.1109/TSMCB.2011.2159111
10.1016/j.automatica.2006.10.012
10.1109/TCYB.2013.2276043
10.1109/TSMCB.2012.2196039
10.1109/TFUZZ.2010.2046329
10.1109/TNN.2004.839354
10.1109/9.895588
10.1109/9.788536
10.1016/j.automatica.2008.11.017
10.1109/TNN.2004.826215
10.1049/iet-cta.2011.0543
10.1109/TAC.2012.2204160
10.1109/TFUZZ.2012.2190048
10.1016/j.automatica.2007.10.037
10.1016/j.fss.2008.09.004
10.1109/TAC.2004.835398
10.1016/S0005-1098(00)00116-3
10.1109/9.935057
10.1109/TFUZZ.2013.2286837
10.1109/TNN.2009.2038999
10.1016/j.ins.2012.02.050
10.1109/TAC.2010.2061090
10.1109/TSMCB.2009.2033563
10.1109/TAC.2005.854652
10.1109/TFUZZ.2012.2213259
10.1109/TNN.2006.888368
10.1109/TSMCB.2010.2086443
10.1016/j.fss.2005.06.011
10.1109/TNN.2010.2047115
10.1109/TNNLS.2012.2213305
10.1109/TAC.2000.880994
10.1109/TNN.2006.888373
10.1109/TSMCB.2008.2005204
10.1109/TFUZZ.2012.2197215
10.1109/TFUZZ.2011.2171189
10.1109/TNN.2004.826130
10.1109/TSMCB.2011.2179981
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TNNLS.2015.2420661
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 1802
ExternalDocumentID 25915964
10_1109_TNNLS_2015_2420661
7094303
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Guangdong Province for Distinguished Young Scholars
  grantid: S20120011437
– fundername: Doctoral Fund of Ministry of Education of China
  grantid: 20124420130001
– fundername: 973 Program of China
  grantid: 2011CB013104
– fundername: Ministry of Education through the New Century Excellent Talent
  grantid: NCET-12-0637
– fundername: National Natural Science Foundation of China
  grantid: U1134004
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
ID FETCH-LOGICAL-c393t-74dd1b98b9f7486219ae30b9d1fc0f05b69b8145d1a17aa7f8a1bdadcf3040d3
IEDL.DBID RIE
ISSN 2162-237X
IngestDate Mon Sep 29 05:24:50 EDT 2025
Thu Apr 03 06:58:23 EDT 2025
Wed Oct 01 00:44:38 EDT 2025
Thu Apr 24 22:49:15 EDT 2025
Tue Aug 26 16:37:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Keywords barrier Lyapunov function (BLF)
neural networks (NNs)
Bouc–Wen hysteresis model
Adaptive control
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-74dd1b98b9f7486219ae30b9d1fc0f05b69b8145d1a17aa7f8a1bdadcf3040d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25915964
PQID 1697221195
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_1697221195
crossref_citationtrail_10_1109_TNNLS_2015_2420661
ieee_primary_7094303
crossref_primary_10_1109_TNNLS_2015_2420661
pubmed_primary_25915964
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-08-01
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref52
ref55
ref11
ref10
hua (ref47) 2009; 39
ref17
ref16
ref19
ref18
ref50
ref46
ref45
ref48
ref42
ref41
ref44
ref43
ref49
ren (ref24) 2010; 21
fei (ref51) 2012; 42
tee (ref23) 2009; 45
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ren (ref65) 2009; 39
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
li (ref21) 2010; 40
ref68
ref67
wang (ref54) 2000; 30
ref26
ref25
ref64
ref20
ref63
ref66
ref22
ref28
ref27
su (ref53) 2012; 42
ref29
ref60
ref62
ref61
References_xml – ident: ref45
  doi: 10.1049/iet-cta.2010.0711
– ident: ref60
  doi: 10.1016/j.neucom.2013.05.042
– ident: ref49
  doi: 10.1109/3468.895898
– volume: 39
  start-page: 431
  year: 2009
  ident: ref65
  article-title: Adaptive neural control for a class of uncertain nonlinear systems in pure-feedback form with hysteresis input
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2008.2006368
– ident: ref66
  doi: 10.1109/TAC.2005.860260
– ident: ref55
  doi: 10.1016/j.fss.2004.05.008
– ident: ref38
  doi: 10.1109/TFUZZ.2002.806317
– ident: ref39
  doi: 10.1109/TAC.2012.2190208
– ident: ref63
  doi: 10.1016/j.automatica.2006.08.003
– ident: ref35
  doi: 10.1016/j.automatica.2005.02.009
– ident: ref14
  doi: 10.1109/TSMCB.2008.918568
– ident: ref62
  doi: 10.1109/TCST.2004.839562
– ident: ref18
  doi: 10.1016/S0005-1098(01)00056-5
– ident: ref17
  doi: 10.1109/TSMCB.2012.2196432
– ident: ref34
  doi: 10.1109/TNN.2005.863416
– ident: ref28
  doi: 10.1016/j.laa.2007.11.012
– ident: ref46
  doi: 10.1016/j.automatica.2009.01.012
– ident: ref8
  doi: 10.1109/TSMCB.2009.2033808
– ident: ref41
  doi: 10.1109/TAC.2006.890473
– ident: ref40
  doi: 10.1016/j.ins.2011.10.004
– ident: ref37
  doi: 10.1109/TNN.2010.2042611
– ident: ref11
  doi: 10.1016/j.fss.2009.03.008
– ident: ref36
  doi: 10.1109/TAC.2011.2122730
– ident: ref33
  doi: 10.1109/TFUZZ.2012.2204065
– ident: ref30
  doi: 10.1016/j.automatica.2006.12.014
– ident: ref12
  doi: 10.1016/j.automatica.2009.02.025
– ident: ref59
  doi: 10.1016/j.fss.2009.10.026
– ident: ref20
  doi: 10.1109/TNN.2005.844907
– volume: 30
  start-page: 878
  year: 2000
  ident: ref54
  article-title: Adaptive fuzzy control for strict-feedback canonical nonlinear systems with $H_\infty $ tracking performance
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/3477.891149
– ident: ref7
  doi: 10.1109/TFUZZ.2004.839663
– ident: ref13
  doi: 10.1016/j.automatica.2009.02.021
– ident: ref15
  doi: 10.1109/TSMCB.2011.2159111
– ident: ref43
  doi: 10.1016/j.automatica.2006.10.012
– ident: ref68
  doi: 10.1109/TCYB.2013.2276043
– volume: 42
  start-page: 1599
  year: 2012
  ident: ref51
  article-title: Robust adaptive control of MEMS triaxial gyroscope using fuzzy compensator
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2012.2196039
– ident: ref1
  doi: 10.1109/TFUZZ.2010.2046329
– ident: ref3
  doi: 10.1109/TNN.2004.839354
– ident: ref42
  doi: 10.1109/9.895588
– ident: ref5
  doi: 10.1109/9.788536
– volume: 45
  start-page: 918
  year: 2009
  ident: ref23
  article-title: Barrier Lyapunov functions for the control of output-constrained nonlinear systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2008.11.017
– ident: ref57
  doi: 10.1109/TNN.2004.826215
– ident: ref25
  doi: 10.1049/iet-cta.2011.0543
– ident: ref10
  doi: 10.1109/TAC.2012.2204160
– ident: ref22
  doi: 10.1109/TFUZZ.2012.2190048
– ident: ref31
  doi: 10.1016/j.automatica.2007.10.037
– ident: ref9
  doi: 10.1016/j.fss.2008.09.004
– ident: ref44
  doi: 10.1109/TAC.2004.835398
– ident: ref50
  doi: 10.1016/S0005-1098(00)00116-3
– ident: ref27
  doi: 10.1109/9.935057
– ident: ref64
  doi: 10.1109/TFUZZ.2013.2286837
– ident: ref2
  doi: 10.1109/TNN.2009.2038999
– ident: ref67
  doi: 10.1016/j.ins.2012.02.050
– ident: ref61
  doi: 10.1109/TAC.2010.2061090
– volume: 40
  start-page: 915
  year: 2010
  ident: ref21
  article-title: A DSC approach to robust adaptive NN tracking control for strict-feedback nonlinear systems
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2009.2033563
– ident: ref26
  doi: 10.1109/TAC.2005.854652
– ident: ref16
  doi: 10.1109/TFUZZ.2012.2213259
– ident: ref52
  doi: 10.1109/TNN.2006.888368
– ident: ref48
  doi: 10.1109/TSMCB.2010.2086443
– ident: ref29
  doi: 10.1016/j.fss.2005.06.011
– volume: 21
  start-page: 1339
  year: 2010
  ident: ref24
  article-title: Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2010.2047115
– ident: ref58
  doi: 10.1109/TNNLS.2012.2213305
– ident: ref4
  doi: 10.1109/TAC.2000.880994
– ident: ref19
  doi: 10.1109/TNN.2006.888373
– volume: 39
  start-page: 363
  year: 2009
  ident: ref47
  article-title: Adaptive fuzzy output-feedback controller design for nonlinear time-delay systems with unknown control direction
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2008.2005204
– ident: ref56
  doi: 10.1109/TFUZZ.2012.2197215
– ident: ref32
  doi: 10.1109/TFUZZ.2011.2171189
– ident: ref6
  doi: 10.1109/TNN.2004.826130
– volume: 42
  start-page: 864
  year: 2012
  ident: ref53
  article-title: Cooperative output regulation with application to multi-agent consensus under switching network
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2011.2179981
SSID ssj0000605649
Score 2.5263896
Snippet This paper addresses the problem of adaptive neural output-feedback control for a class of special nonlinear systems with the hysteretic output mechanism and...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1789
SubjectTerms Adaptation models
Adaptive control
Adaptive systems
Algorithms
Artificial neural networks
barrier Lyapunov function (BLF)
Bouc-Wen hysteresis model
Closed loop systems
Computer Simulation
Feedback
Hysteresis
Magnetic hysteresis
Neural Networks (Computer)
neural networks (NNs)
Nonlinear Dynamics
Nonlinear systems
Research Design - statistics & numerical data
Title Adaptive Neural Output Feedback Control of Output-Constrained Nonlinear Systems With Unknown Output Nonlinearity
URI https://ieeexplore.ieee.org/document/7094303
https://www.ncbi.nlm.nih.gov/pubmed/25915964
https://www.proquest.com/docview/1697221195
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVKT1xaSltYaJGReoNs4zix42NVdVUhuj2wVfcW-VOgouwKkgu_nhk7iUQFqLdIGTuxZuwZ2zPvEXImhagc8ywTdRGwJIdndVXYLJReGGeRZxKrkW-W4vqu_LSu1jvk41QL472PyWd-jo_xLt9tbI9HZecS0-AQ2vOZrEWq1ZrOU3KIy0WMdgsmiqzgcj3WyOTqfLVcfv6CiVzVHHwSuFlkiIHIH5y5KP9wSZFj5d_hZnQ7i31yM_5wyjZ5mPedmdtfj7AcnzqiF2RviD_pRTKYA7Lj25dkf-R2oMNUPyTbC6e3uBRShO-AFrd9ByJ0Ad7OaPtAL1OOO92E4VWG3J-RccI7ukwIHBp6TJDo9P5b95XetXiG146dTVKwFTgiq8XV6vI6G9gZMssV7zJZOseMqo0KsoR9EVPa89wox4LNQ14ZoUzNSrAEzaTWMtSaGaedDRwWDsePyW67af1rQnlhKymDRn-NhJZa8RAglHB1ARYT9IywUT-NHZDLcTjfm7iDyVUT1dugeptBvTPyYWqzTbgd_5U-RN1MkoNaZuT9aAYNzDq8StGt3_Q_GyaULBAcr5qRV8k-psajWb35e6dvyXP8dEoiPCG73Y_en0Jg05l30aJ_A2kx85M
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaq9gAXCpTHQgEjcYNs49ix42NVsVpgNxzYir1FfqqoKLuC5NJfX4-dRAIB4hYpY8vWjD1je-b7EHojOC8tcSTjVeGhJIdmVVmYzDPHtTXAMwnVyOuaLy_Zx225PUDvploY51xMPnNz-Ixv-XZnergqOxOQBgfQnkclY6xM1VrTjUoeInMe492C8CIrqNiOVTK5PNvU9eoLpHKV8-CVgqMFjpgQ-wd3ztkvTimyrPw94IyOZ3GM1uOQU77J9bzv9Nzc_Ibm-L9zuo_uDREoPk8m8wAduPYhOh7ZHfCw2E_Q_tyqPWyGGAA8QovPfRdE8CL4O63MNb5IWe5454dfGbB_Rs4JZ3GdMDhU6DGBouOv37orfNnCLV47djZJhcPAI7RZvN9cLLOBnyEzVNIuE8xaomWlpRcsnIyIVI7mWlriTe7zUnOpK8KCLSgilBK-UkRbZY2nYeuw9DE6bHete4owLUwphFfgsYHSUknqfQgmbFUEm_Fqhsion8YM2OUwne9NPMPksonqbUC9zaDeGXo7tdkn5I5_Sp-AbibJQS0z9Ho0gyasO3hMUa3b9T8bwqUoAB6vnKEnyT6mxqNZPftzp6_QneVmvWpWH-pPz9FdGEZKKTxFh92P3r0IYU6nX0brvgVM3_bg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Neural+Output+Feedback+Control+of+Output-Constrained+Nonlinear+Systems+With+Unknown+Output+Nonlinearity&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhi+Liu&rft.au=Guanyu+Lai&rft.au=Yun+Zhang&rft.au=Chen%2C+Chun+Lung+Philip&rft.date=2015-08-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=26&rft.issue=8&rft.spage=1789&rft.epage=1802&rft_id=info:doi/10.1109%2FTNNLS.2015.2420661&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2015_2420661
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon