Perspectives on cold atmospheric plasma (CAP) applications in medicine

Plasma medicine is an innovative research field combining plasma physics, life science, and clinical medicine. It is mainly focused on the application cold atmospheric plasma (CAP) in therapeutic settings. Based on its ability to inactivate microorganisms but also to stimulate tissue regeneration, c...

Full description

Saved in:
Bibliographic Details
Published inPhysics of plasmas Vol. 27; no. 7
Main Authors von Woedtke, Thomas, Emmert, Steffen, Metelmann, Hans-Robert, Rupf, Stefan, Weltmann, Klaus-Dieter
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.07.2020
Subjects
Online AccessGet full text
ISSN1070-664X
1089-7674
DOI10.1063/5.0008093

Cover

More Information
Summary:Plasma medicine is an innovative research field combining plasma physics, life science, and clinical medicine. It is mainly focused on the application cold atmospheric plasma (CAP) in therapeutic settings. Based on its ability to inactivate microorganisms but also to stimulate tissue regeneration, current medical applications are focused on the treatment of wounds and skin diseases. Since CAP is also able to inactivate cancer cells, its use in cancer therapy is expected to be the next field of clinical plasma application. Other promising applications are expected in oral medicine and ophthalmology. It is the current state of knowledge that biological CAP effects are mainly based on the action of reactive oxygen and nitrogen species supported by electrical fields and UV radiation. However, continuing basic research is not only essential to improve, optimize, and enlarge the spectrum of medical CAP applications and their safety, but it is also the basis for identification and definition of a single parameter or set of parameters to monitor and control plasma treatment and its effects. In the field of CAP plasma devices, research and application are currently dominated by two basic types: dielectric barrier discharges and plasma jets. Its individual adaptation to specific medical needs, including its combination with technical units for continuous and real-time monitoring of both plasma performance and the target that is treated, will lead to a new generation of CAP-based therapeutic systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1070-664X
1089-7674
DOI:10.1063/5.0008093