Chicken Swarm Optimization Based on Elite Opposition-Based Learning
Chicken swarm optimization is a new intelligent bionic algorithm, simulating the chicken swarm searching for food in nature. Basic algorithm is likely to fall into a local optimum and has a slow convergence rate. Aiming at these deficiencies, an improved chicken swarm optimization algorithm based on...
Saved in:
| Published in | Mathematical problems in engineering Vol. 2017; no. 2017; pp. 1 - 20 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cairo, Egypt
Hindawi Publishing Corporation
01.01.2017
Hindawi John Wiley & Sons, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1024-123X 1026-7077 1563-5147 1563-5147 |
| DOI | 10.1155/2017/2734362 |
Cover
| Summary: | Chicken swarm optimization is a new intelligent bionic algorithm, simulating the chicken swarm searching for food in nature. Basic algorithm is likely to fall into a local optimum and has a slow convergence rate. Aiming at these deficiencies, an improved chicken swarm optimization algorithm based on elite opposition-based learning is proposed. In cock swarm, random search based on adaptive t distribution is adopted to replace that based on Gaussian distribution so as to balance the global exploitation ability and local development ability of the algorithm. In hen swarm, elite opposition-based learning is introduced to promote the population diversity. Dimension-by-dimension greedy search mode is used to do local search for individual of optimal chicken swarm in order to improve optimization precision. According to the test results of 18 standard test functions and 2 engineering structure optimization problems, this algorithm has better effect on optimization precision and speed compared with basic chicken algorithm and other intelligent optimization algorithms. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1024-123X 1026-7077 1563-5147 1563-5147 |
| DOI: | 10.1155/2017/2734362 |