Segmental dynamic factor analysis for time series of curves
A new approach is introduced in this article for describing and visualizing time series of curves, where each curve has the particularity of being subject to changes in regime. For this purpose, the curves are represented by a regression model including a latent segmentation, and their temporal evol...
Saved in:
Published in | Statistics and computing Vol. 27; no. 6; pp. 1617 - 1637 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.11.2017
Springer Nature B.V Springer Verlag (Germany) |
Subjects | |
Online Access | Get full text |
ISSN | 0960-3174 1573-1375 |
DOI | 10.1007/s11222-016-9707-5 |
Cover
Abstract | A new approach is introduced in this article for describing and visualizing time series of curves, where each curve has the particularity of being subject to changes in regime. For this purpose, the curves are represented by a regression model including a latent segmentation, and their temporal evolution is modeled through a Gaussian random walk over low-dimensional factors of the regression coefficients. The resulting model is nothing else than a particular state-space model involving discrete and continuous latent variables, whose parameters are estimated across a sequence of curves through a dedicated variational Expectation-Maximization algorithm. The experimental study conducted on simulated data and real time series of curves has shown encouraging results in terms of visualization of their temporal evolution and forecasting. |
---|---|
AbstractList | A new approach is introduced in this article for describing and visualizing time series of curves, where each curve has the particularity of being subject to changes in regime. For this purpose, the curves are represented by a regression model including a latent segmentation, and their temporal evolution is modeled through a Gaussian random walk over low-dimensional factors of the regression coefficients. The resulting model is nothing else than a particular state-space model involving discrete and continuous latent variables, whose parameters are estimated across a sequence of curves through a dedicated variational Expectation-Maximization algorithm. The experimental study conducted on simulated data and real time series of curves has shown encouraging results in terms of visualization of their temporal evolution and forecasting. A new approach is introduced in this article for describing and visualizing time series of curves, where each curve has the particularity of being subject to changes in regime. For this purpose, the curves are represented by a regression model including a latent segmentation, and their temporal evolution is modeled through a Gaussian random walk over low dimensional factors of the regression coefficients. The resulting model is neither else than a particular state-space model involving discrete and continuous latent variables, whose parameters are estimated across a sequence of curves through a dedicated variational Expectation-Maximization algorithm. The experimental study conducted on simulated data and real time series of curves has shown encouraging results in terms of visualization of their temporal evolution and forecasting. |
Author | Govaert, Gérard Samé, Allou |
Author_xml | – sequence: 1 givenname: Allou surname: Samé fullname: Samé, Allou email: allou.same@ifsttar.fr organization: Université Paris-Est, IFSTTAR, COSYS, GRETTIA – sequence: 2 givenname: Gérard surname: Govaert fullname: Govaert, Gérard organization: Laboratoire Heudiasyc, UMR CNRS 7253, Université de Technologie de Compiègne |
BackLink | https://hal.science/hal-01383174$$DView record in HAL |
BookMark | eNp9kMFLwzAYxYNMcJv-Ad4KnjxE8zVNuuBpDHXCwIN6Dlmazoy2mUk22H9vShVEUHJIvvB7H--9CRp1rjMIXQK5AULK2wCQ5zkmwLEoSYnZCRoDKykGWrIRGhPBCaZQFmdoEsKWEABOizG6ezGb1nRRNVl17FRrdVYrHZ3PVKeaY7Ahq9MQbWuyYLw1IXN1pvf-YMI5Oq1VE8zF1z1Fbw_3r4slXj0_Pi3mK6ypoBFzboRmQhW0WBuWE8bUzPCq0CIdPQPOKKhaK7Y2VQFUKE0qxmhVCa5Nnl5TdD3sfVeN3HnbKn-UTlm5nK9k_0eAzvpshzyxVwO78-5jb0KUW7f3KUqQIGgCU-6eKgdKexeCN7XUNqpoXRe9so0EIvtW5dBq2s9l36rsvcAv5beh_zT5oAmJ7TbG__D0p-gTjkyJ_Q |
CitedBy_id | crossref_primary_10_1016_j_knosys_2021_106991 crossref_primary_10_1109_LSP_2022_3185958 crossref_primary_10_1214_22_AOAS1724 crossref_primary_10_1007_s10614_019_09952_5 crossref_primary_10_1109_JSEN_2024_3493893 |
Cites_doi | 10.1214/12-AOAS551 10.1016/j.neunet.2009.06.040 10.1093/comjnl/bxq003 10.1111/j.1467-9892.1982.tb00349.x 10.1016/S0893-6080(99)00066-0 10.1016/j.jeconom.2005.03.005 10.1002/env.611 10.1109/TPAMI.2009.149 10.1111/1467-9469.00215 10.1002/9780470191613 10.1093/biomet/87.3.587 10.1007/978-1-4757-7107-7 10.1007/978-1-4419-7865-3 10.1016/S0167-9473(02)00183-4 10.1017/S037016460002006X 10.1090/S0025-5718-1972-0323087-4 10.1016/j.csda.2006.07.028 10.1115/1.3662552 10.1080/07350015.2014.941467 10.1023/A:1007665907178 10.1080/14786440109462720 10.1109/TAC.2008.2008348 10.1111/j.1467-9868.2007.00601.x 10.1111/j.2517-6161.1977.tb01600.x 10.1111/j.2517-6161.1984.tb01288.x 10.1109/IJCNN.2009.5178921 10.1007/BF02294246 10.1145/1143844.1143859 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2016 Copyright Springer Science & Business Media 2017 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Springer Science+Business Media New York 2016 – notice: Copyright Springer Science & Business Media 2017 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1007/s11222-016-9707-5 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics Computer Science |
EISSN | 1573-1375 |
EndPage | 1637 |
ExternalDocumentID | oai_HAL_hal_01383174v2 10_1007_s11222_016_9707_5 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7U Z7W Z7X Z7Y Z81 Z83 Z87 Z88 Z8O Z8R Z8U Z8W Z91 Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ 1XC VOOES |
ID | FETCH-LOGICAL-c393t-66e9c59a434be52055a8e6d4c9c9cc816531afca5bed4139ac0d553dd96ce2553 |
IEDL.DBID | AGYKE |
ISSN | 0960-3174 |
IngestDate | Fri Sep 12 12:33:51 EDT 2025 Sun Jul 13 04:48:25 EDT 2025 Tue Jul 01 02:17:04 EDT 2025 Thu Apr 24 22:54:31 EDT 2025 Fri Feb 21 02:34:30 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Functional time series Condition monitoring Variational EM Visualization and forecasting Dynamic factor analysis Mixture of regressions RAILWAY CONDITION MONITORING SERIE TEMPORELLE MIXTURE OF REGRESSION DYNAMIC FACTOR ANALYSIS PREVISION VARIATIONAL ALGORITHM FUNCTIONAL DATA VISUALIZATION SEGMENTATION COURBE |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c393t-66e9c59a434be52055a8e6d4c9c9cc816531afca5bed4139ac0d553dd96ce2553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://hal.science/hal-01383174 |
PQID | 1930131162 |
PQPubID | 2043829 |
PageCount | 21 |
ParticipantIDs | hal_primary_oai_HAL_hal_01383174v2 proquest_journals_1930131162 crossref_citationtrail_10_1007_s11222_016_9707_5 crossref_primary_10_1007_s11222_016_9707_5 springer_journals_10_1007_s11222_016_9707_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-11-01 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationTitle | Statistics and computing |
PublicationTitleAbbrev | Stat Comput |
PublicationYear | 2017 |
Publisher | Springer US Springer Nature B.V Springer Verlag (Germany) |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer Verlag (Germany) |
References | Lawley (CR23) 1940; 60 Varah (CR36) 1972; 26 Garnett, Osborne, Reece, Rogers, Roberts (CR13) 2010; 53 Ramsay, Silverman (CR30) 1997 Neal, Hinton, I (CR28) 1998 Geweke, Aigner, Goldberger (CR14) 1977 Hays, Shen, Huang (CR17) 2012; 6 CR35 CR31 Shumway, Stoffer (CR34) 2011 Harvey (CR16) 1989 Green (CR15) 1984; 46 Ferraty, Vieu (CR11) 2006 Gareth, Hastie, Sugar (CR12) 2000; 87 Besse, Cardot, Stephenson (CR4) 2000; 27 Sarkka, Nummenmaa (CR32) 2009; 54 Zuur, Fryer, Jolliffe, Dekker, Beukema (CR37) 2003; 14 Kalman (CR22) 1960; 82 CR3 CR6 Shumway, Stofer (CR33) 1982; 3 CR5 Hyndman, Ullah (CR18) 2007; 51 CR27 Dempster, Laird, Rubin (CR8) 1977; 39 CR26 Pearson (CR29) 1901; 6 Fearnhead, Liu (CR10) 2007; 69 Bai, Wang (CR2) 2015; 33 Jiang, Tanner (CR19) 1999; 12 Jordan, Ghahramani, Jaakkola, Saul (CR21) 1999; 37 Diebold, Li (CR9) 2006; 130 Jolliffe (CR20) 2002 Chamroukhi, Samé, Govaert, Aknin (CR7) 2009; 22 McLachlan, Krishnan (CR24) 2008 McLachlan, Peel, Bean (CR25) 2003; 41 Baek, McLachlan, Flack (CR1) 2010; 32 R Neal (9707_CR28) 1998 AF Zuur (9707_CR37) 2003; 14 RH Shumway (9707_CR34) 2011 P Fearnhead (9707_CR10) 2007; 69 GJ McLachlan (9707_CR25) 2003; 41 AP Dempster (9707_CR8) 1977; 39 GJ McLachlan (9707_CR24) 2008 S Sarkka (9707_CR32) 2009; 54 RJ Hyndman (9707_CR18) 2007; 51 JF Geweke (9707_CR14) 1977 RH Shumway (9707_CR33) 1982; 3 F Ferraty (9707_CR11) 2006 DN Lawley (9707_CR23) 1940; 60 9707_CR35 JM Varah (9707_CR36) 1972; 26 PC Besse (9707_CR4) 2000; 27 K Pearson (9707_CR29) 1901; 6 9707_CR31 MI Jordan (9707_CR21) 1999; 37 R Garnett (9707_CR13) 2010; 53 FX Diebold (9707_CR9) 2006; 130 J Baek (9707_CR1) 2010; 32 F Chamroukhi (9707_CR7) 2009; 22 J Gareth (9707_CR12) 2000; 87 9707_CR26 AC Harvey (9707_CR16) 1989 J Bai (9707_CR2) 2015; 33 W Jiang (9707_CR19) 1999; 12 9707_CR27 P Green (9707_CR15) 1984; 46 RE Kalman (9707_CR22) 1960; 82 9707_CR6 9707_CR5 JO Ramsay (9707_CR30) 1997 S Hays (9707_CR17) 2012; 6 9707_CR3 IT Jolliffe (9707_CR20) 2002 |
References_xml | – volume: 6 start-page: 870 issue: 3 year: 2012 end-page: 894 ident: CR17 article-title: Functional dynamic factor models with application to yield curve forecasting publication-title: Ann. Appl. Stat. doi: 10.1214/12-AOAS551 – volume: 22 start-page: 593 year: 2009 end-page: 602 ident: CR7 article-title: Time series modeling by a regression approach based on a latent process publication-title: Neural Netw. doi: 10.1016/j.neunet.2009.06.040 – volume: 53 start-page: 1430 issue: 9 year: 2010 end-page: 1446 ident: CR13 article-title: Sequential bayesian prediction in the presence of changepoints and faults publication-title: Comput. J. doi: 10.1093/comjnl/bxq003 – volume: 3 start-page: 253 year: 1982 end-page: 264 ident: CR33 article-title: An approach to time series smoothing and forecasting using the EM algorithm publication-title: J. Time Ser. Anal. doi: 10.1111/j.1467-9892.1982.tb00349.x – volume: 12 start-page: 1253 issue: 9 year: 1999 end-page: 1258 ident: CR19 article-title: On the identifiability of mixtures-of-experts publication-title: Neural Netw. doi: 10.1016/S0893-6080(99)00066-0 – volume: 130 start-page: 337 issue: 2 year: 2006 end-page: 364 ident: CR9 article-title: Forecasting the term structure of government bond yields publication-title: J. Econom. doi: 10.1016/j.jeconom.2005.03.005 – volume: 14 start-page: 665 year: 2003 end-page: 685 ident: CR37 article-title: Estimating common trends in multivariate time series using dynamic factor analysis publication-title: Environmetrics doi: 10.1002/env.611 – volume: 32 start-page: 1298 year: 2010 end-page: 1309 ident: CR1 article-title: Mixtures of factor analyzers with common factor loadings: applications to the clustering and visualization of high-dimensional data publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2009.149 – ident: CR35 – ident: CR6 – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: CR8 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. Ser. B – year: 2002 ident: CR20 publication-title: Principal Component Analysis – volume: 27 start-page: 673 year: 2000 end-page: 687 ident: CR4 article-title: Autoregressive forecasting of some functional climatic variations publication-title: Scand. J. Stat. doi: 10.1111/1467-9469.00215 – year: 2008 ident: CR24 publication-title: The EM Algorithm and Extensions doi: 10.1002/9780470191613 – volume: 87 start-page: 587 year: 2000 end-page: 602 ident: CR12 article-title: Principal component models for sparse functional data publication-title: Biometrika doi: 10.1093/biomet/87.3.587 – ident: CR27 – year: 1997 ident: CR30 publication-title: Functional data analysis doi: 10.1007/978-1-4757-7107-7 – year: 2011 ident: CR34 publication-title: Time Series Analysis and Its Applications doi: 10.1007/978-1-4419-7865-3 – volume: 41 start-page: 379 issue: 3–4 year: 2003 end-page: 388 ident: CR25 article-title: Modelling high-dimensional data by mixtures of factor analyzers publication-title: Computat. Stat. Data Anal. doi: 10.1016/S0167-9473(02)00183-4 – volume: 60 start-page: 64 issue: 01 year: 1940 end-page: 82 ident: CR23 article-title: The estimation of factor loadings by the method of maximum likelihood publication-title: Proc. R. Soc. Edinb. doi: 10.1017/S037016460002006X – ident: CR3 – volume: 26 start-page: 859 issue: 120 year: 1972 end-page: 868 ident: CR36 article-title: On the solution of block-tridiagonal systems arising from certain finite-difference equations publication-title: Math. Comput. doi: 10.1090/S0025-5718-1972-0323087-4 – start-page: 365 year: 1977 end-page: 383 ident: CR14 article-title: The dynamic factor analysis of economic time series models publication-title: Latent Variables in Socio-economic Models – volume: 46 start-page: 149 issue: 2 year: 1984 end-page: 192 ident: CR15 article-title: Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternatives publication-title: J. R. Stat. Soc. Ser. B – year: 1998 ident: CR28 article-title: A view of the EM algorithm that justifies incremental, sparse, and other variants publication-title: Learning in Graphical Models – ident: CR31 – volume: 51 start-page: 4942 issue: 10 year: 2007 end-page: 4956 ident: CR18 article-title: Robust forecasting of mortality and fertility rates: a functional data approach publication-title: Comput. Statist. Data Anal. doi: 10.1016/j.csda.2006.07.028 – volume: 82 start-page: 35 issue: 1 year: 1960 end-page: 45 ident: CR22 article-title: A new approach to linear filtering and prediction problems publication-title: J. Basic Eng. doi: 10.1115/1.3662552 – volume: 33 start-page: 221 issue: 2 year: 2015 end-page: 240 ident: CR2 article-title: Identification and bayesian estimation of dynamic factor models publication-title: J. Bus. Econ. Stat. doi: 10.1080/07350015.2014.941467 – ident: CR5 – volume: 37 start-page: 183 issue: 2 year: 1999 end-page: 233 ident: CR21 article-title: An introduction to variational methods for graphical models publication-title: Mach. Learn. doi: 10.1023/A:1007665907178 – volume: 6 start-page: 559 issue: 2 year: 1901 end-page: 572 ident: CR29 article-title: On lines and planes of closest fit to systems of points in space publication-title: Philos. Mag. doi: 10.1080/14786440109462720 – volume: 54 start-page: 596 issue: 3 year: 2009 end-page: 600 ident: CR32 article-title: Recursive noise adaptive kalman filtering by variational bayesian approximations publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2008.2008348 – ident: CR26 – year: 1989 ident: CR16 publication-title: Forecasting Structural Time Series Models and the Kalman Filter – volume: 69 start-page: 589 year: 2007 end-page: 605 ident: CR10 article-title: On-line inference for multiple changepoint problems publication-title: J. R. Stat. Soc. B doi: 10.1111/j.1467-9868.2007.00601.x – year: 2006 ident: CR11 publication-title: Nonparametric Functional Data Analysis – volume-title: Time Series Analysis and Its Applications year: 2011 ident: 9707_CR34 doi: 10.1007/978-1-4419-7865-3 – volume-title: Principal Component Analysis year: 2002 ident: 9707_CR20 – volume-title: Learning in Graphical Models year: 1998 ident: 9707_CR28 – volume-title: The EM Algorithm and Extensions year: 2008 ident: 9707_CR24 doi: 10.1002/9780470191613 – volume: 51 start-page: 4942 issue: 10 year: 2007 ident: 9707_CR18 publication-title: Comput. Statist. Data Anal. doi: 10.1016/j.csda.2006.07.028 – volume: 60 start-page: 64 issue: 01 year: 1940 ident: 9707_CR23 publication-title: Proc. R. Soc. Edinb. doi: 10.1017/S037016460002006X – volume: 27 start-page: 673 year: 2000 ident: 9707_CR4 publication-title: Scand. J. Stat. doi: 10.1111/1467-9469.00215 – volume: 39 start-page: 1 year: 1977 ident: 9707_CR8 publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 41 start-page: 379 issue: 3–4 year: 2003 ident: 9707_CR25 publication-title: Computat. Stat. Data Anal. doi: 10.1016/S0167-9473(02)00183-4 – volume: 130 start-page: 337 issue: 2 year: 2006 ident: 9707_CR9 publication-title: J. Econom. doi: 10.1016/j.jeconom.2005.03.005 – volume: 22 start-page: 593 year: 2009 ident: 9707_CR7 publication-title: Neural Netw. doi: 10.1016/j.neunet.2009.06.040 – volume: 69 start-page: 589 year: 2007 ident: 9707_CR10 publication-title: J. R. Stat. Soc. B doi: 10.1111/j.1467-9868.2007.00601.x – volume: 32 start-page: 1298 year: 2010 ident: 9707_CR1 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2009.149 – volume: 33 start-page: 221 issue: 2 year: 2015 ident: 9707_CR2 publication-title: J. Bus. Econ. Stat. doi: 10.1080/07350015.2014.941467 – volume: 82 start-page: 35 issue: 1 year: 1960 ident: 9707_CR22 publication-title: J. Basic Eng. doi: 10.1115/1.3662552 – volume: 3 start-page: 253 year: 1982 ident: 9707_CR33 publication-title: J. Time Ser. Anal. doi: 10.1111/j.1467-9892.1982.tb00349.x – ident: 9707_CR27 – volume: 37 start-page: 183 issue: 2 year: 1999 ident: 9707_CR21 publication-title: Mach. Learn. doi: 10.1023/A:1007665907178 – volume-title: Forecasting Structural Time Series Models and the Kalman Filter year: 1989 ident: 9707_CR16 – volume: 14 start-page: 665 year: 2003 ident: 9707_CR37 publication-title: Environmetrics doi: 10.1002/env.611 – volume: 6 start-page: 870 issue: 3 year: 2012 ident: 9707_CR17 publication-title: Ann. Appl. Stat. doi: 10.1214/12-AOAS551 – volume-title: Functional data analysis year: 1997 ident: 9707_CR30 doi: 10.1007/978-1-4757-7107-7 – ident: 9707_CR3 – volume: 87 start-page: 587 year: 2000 ident: 9707_CR12 publication-title: Biometrika doi: 10.1093/biomet/87.3.587 – volume: 53 start-page: 1430 issue: 9 year: 2010 ident: 9707_CR13 publication-title: Comput. J. doi: 10.1093/comjnl/bxq003 – start-page: 365 volume-title: Latent Variables in Socio-economic Models year: 1977 ident: 9707_CR14 – volume: 54 start-page: 596 issue: 3 year: 2009 ident: 9707_CR32 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2008.2008348 – volume: 46 start-page: 149 issue: 2 year: 1984 ident: 9707_CR15 publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1984.tb01288.x – ident: 9707_CR6 doi: 10.1109/IJCNN.2009.5178921 – ident: 9707_CR26 doi: 10.1007/BF02294246 – volume-title: Nonparametric Functional Data Analysis year: 2006 ident: 9707_CR11 – volume: 12 start-page: 1253 issue: 9 year: 1999 ident: 9707_CR19 publication-title: Neural Netw. doi: 10.1016/S0893-6080(99)00066-0 – volume: 26 start-page: 859 issue: 120 year: 1972 ident: 9707_CR36 publication-title: Math. Comput. doi: 10.1090/S0025-5718-1972-0323087-4 – volume: 6 start-page: 559 issue: 2 year: 1901 ident: 9707_CR29 publication-title: Philos. Mag. doi: 10.1080/14786440109462720 – ident: 9707_CR31 – ident: 9707_CR5 doi: 10.1145/1143844.1143859 – ident: 9707_CR35 |
SSID | ssj0011634 |
Score | 2.1767828 |
Snippet | A new approach is introduced in this article for describing and visualizing time series of curves, where each curve has the particularity of being subject to... |
SourceID | hal proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1617 |
SubjectTerms | Artificial Intelligence Computer simulation Continuity (mathematics) Economic models Engineering Sciences Evolution Factor analysis Mathematics and Statistics Other Parameter estimation Probability and Statistics in Computer Science Random walk Regression analysis Regression coefficients State space models Statistical Theory and Methods Statistics Statistics and Computing/Statistics Programs Time series |
Title | Segmental dynamic factor analysis for time series of curves |
URI | https://link.springer.com/article/10.1007/s11222-016-9707-5 https://www.proquest.com/docview/1930131162 https://hal.science/hal-01383174 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-1375 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011634 issn: 0960-3174 databaseCode: AFBBN dateStart: 19910901 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-1375 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011634 issn: 0960-3174 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-1375 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011634 issn: 0960-3174 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5se9GD1apYrbKIJyWS1yZZPBVRi1ovWtBT2Gw2CkorTdqDv96ZPFotKpRcQnbz2p3d-YbZ_T6AY-EKh2tPGE6kE8O1fWlIOzAxVLGCyBdWkORiE_17rzdwb574U7mPO61Wu1cpyXymnm92s9CXYejrGcI3fYPXoMEpPqlDo3v9fHs5Sx4gxMhZoxCc4xTju1Uy87eH_HBHtVdaDPkNaS4kR3Ofc9WEx-pri6Umb2eTLDpTnwtEjkv-zgaslxiUdQuj2YQVPWxBs9J3YOVwb8Faf8bpmrZglXBpQeu8BecP-qWQBWBxoWnPCuUeJkuWE4ZomJFyPSMj1ykbJUxNxlOdbsPg6vLxomeUOgyGcoSTGZ6nheJCuo4baW6bnMtAe7GrBB4qsDwcxzJRkkc6Rp8opDJjzp04FiQ3hmc7UB-OhnoXWGQpIsiXAoEbxlqJ8DUGfNzSlGAVKm6DWXVHqEqSctLKeA_n9MrUbiEtTKN2C3kbTma3fBQMHf9VPsI-ntUjbu1e9y6ka5SyJWuZ2m3oVCYQliM6DRHo5tREHhafVj36rfivN-4tVXsfVm3CDflmxw7Us_FEHyDqyaLD0soPoTawu1_NK_SX |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB3R9kA5sBQQZbUQJ1CqLHYSi1OFWgpdLrQSnCLHcUACFURaDnw942xABUgolyh2NnvseaOx3wM44ZQ7TLnccEIVG9T2hCFs38RQxfJDj1t-nIpNDEdub0Kvb9ltvo87KVa7FynJdKb-3OxmoS_D0Nc1uGd6BqtAjVq-T6tQa1_e9Ttl8gAhRsoaheAcpxiPFsnMnx7yzR1VHvRiyC9IcyE5mvqc7hqMi6_Nlpo8tuazsCXfF4gc__k767CaY1DSzoxmA5bUtAFrhb4DyYd7A1aGJadr0oC6xqUZrfMmnN-o-0wWgESZpj3JlHuIyFlOCKJhopXriTZylZDnmMj565tKtmDS7Ywvekauw2BIhzszw3UVl4wL6tBQMdtkTPjKjajkeEjfcnEci1gKFqoIfSIX0owYc6KIa7kxPNuG6vR5qnaAhJbUBPmCI3DDWCvmnsKAj1lKJ1i5jJpgFt0RyJykXGtlPAWf9Mq63QK9ME23W8CacFre8pIxdPxV-Rj7uKynubV77UGgr-mUrbaWN7sJ-4UJBPmITgIEuik1kYvFZ0WPfin-7Y27_6p9BMu98XAQDK5G_T2o2xpDpBsf96E6e52rA0RAs_Awt_gPtcj2nw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60gujBR1WsVl3EkxLMa5Msnopa6hNBC97CZrPRg6Slafv7ncmrVVSQXEJ2k4Wd3cw3zM73AZwIVzhce8JwIp0Yru1LQ9qBiaGKFUS-sIIkF5t4ePR6fff2lb-WOqdZddq9SkkWNQ3E0pSOz4dxcj4rfLPQr2EY7BnCN32DL8KSi66aoq--3anTCAg2cv4ohOn4s_HdKq350ye-OKbFdzoWOYc5v6VJc-_T3YC1EjayTmHnTVjQaRPWK0kGVu7QJqw-1DSsWRNWCEoWTMxbcPGs3womfxYXMvSsENthsiQmYQhgGYnNM1qXOmODhKnJaKqzbeh3r18ue0YpnWAoRzhjw_O0UFxI13EjzW2TcxloL3aVwEsFlodbTyZK8kjH6MaEVGbMuRPHghTC8G4HGukg1bvAIksRp70UiLUwPEqErzFG45amnKhQcQvMat5CVfKKk7zFRzhjRKapDuksGU11yFtwWr8yLEg1_up8jMao-xEddq9zH9IzyrKSWad2C9qVrcJyE2YhYtOcTcjD5rPKfnPNv42496_eR7D8dNUN728e7_ZhxSavn5cqtqExHk30AWKWcXSYr8tP6DXeGQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segmental+dynamic+factor+analysis+for+time+series+of+curves&rft.jtitle=Statistics+and+computing&rft.au=Same%2C+Allou&rft.au=Govaert%2C+G%C3%A9rard&rft.date=2017-11-01&rft.pub=Springer+Verlag+%28Germany%29&rft.issn=0960-3174&rft.eissn=1573-1375&rft.volume=27&rft.issue=6&rft.spage=1617&rft.epage=1637&rft_id=info:doi/10.1007%2Fs11222-016-9707-5&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_01383174v2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon |