Segmental dynamic factor analysis for time series of curves

A new approach is introduced in this article for describing and visualizing time series of curves, where each curve has the particularity of being subject to changes in regime. For this purpose, the curves are represented by a regression model including a latent segmentation, and their temporal evol...

Full description

Saved in:
Bibliographic Details
Published inStatistics and computing Vol. 27; no. 6; pp. 1617 - 1637
Main Authors Samé, Allou, Govaert, Gérard
Format Journal Article
LanguageEnglish
Published New York Springer US 01.11.2017
Springer Nature B.V
Springer Verlag (Germany)
Subjects
Online AccessGet full text
ISSN0960-3174
1573-1375
DOI10.1007/s11222-016-9707-5

Cover

Abstract A new approach is introduced in this article for describing and visualizing time series of curves, where each curve has the particularity of being subject to changes in regime. For this purpose, the curves are represented by a regression model including a latent segmentation, and their temporal evolution is modeled through a Gaussian random walk over low-dimensional factors of the regression coefficients. The resulting model is nothing else than a particular state-space model involving discrete and continuous latent variables, whose parameters are estimated across a sequence of curves through a dedicated variational Expectation-Maximization algorithm. The experimental study conducted on simulated data and real time series of curves has shown encouraging results in terms of visualization of their temporal evolution and forecasting.
AbstractList A new approach is introduced in this article for describing and visualizing time series of curves, where each curve has the particularity of being subject to changes in regime. For this purpose, the curves are represented by a regression model including a latent segmentation, and their temporal evolution is modeled through a Gaussian random walk over low-dimensional factors of the regression coefficients. The resulting model is nothing else than a particular state-space model involving discrete and continuous latent variables, whose parameters are estimated across a sequence of curves through a dedicated variational Expectation-Maximization algorithm. The experimental study conducted on simulated data and real time series of curves has shown encouraging results in terms of visualization of their temporal evolution and forecasting.
A new approach is introduced in this article for describing and visualizing time series of curves, where each curve has the particularity of being subject to changes in regime. For this purpose, the curves are represented by a regression model including a latent segmentation, and their temporal evolution is modeled through a Gaussian random walk over low dimensional factors of the regression coefficients. The resulting model is neither else than a particular state-space model involving discrete and continuous latent variables, whose parameters are estimated across a sequence of curves through a dedicated variational Expectation-Maximization algorithm. The experimental study conducted on simulated data and real time series of curves has shown encouraging results in terms of visualization of their temporal evolution and forecasting.
Author Govaert, Gérard
Samé, Allou
Author_xml – sequence: 1
  givenname: Allou
  surname: Samé
  fullname: Samé, Allou
  email: allou.same@ifsttar.fr
  organization: Université Paris-Est, IFSTTAR, COSYS, GRETTIA
– sequence: 2
  givenname: Gérard
  surname: Govaert
  fullname: Govaert, Gérard
  organization: Laboratoire Heudiasyc, UMR CNRS 7253, Université de Technologie de Compiègne
BackLink https://hal.science/hal-01383174$$DView record in HAL
BookMark eNp9kMFLwzAYxYNMcJv-Ad4KnjxE8zVNuuBpDHXCwIN6Dlmazoy2mUk22H9vShVEUHJIvvB7H--9CRp1rjMIXQK5AULK2wCQ5zkmwLEoSYnZCRoDKykGWrIRGhPBCaZQFmdoEsKWEABOizG6ezGb1nRRNVl17FRrdVYrHZ3PVKeaY7Ahq9MQbWuyYLw1IXN1pvf-YMI5Oq1VE8zF1z1Fbw_3r4slXj0_Pi3mK6ypoBFzboRmQhW0WBuWE8bUzPCq0CIdPQPOKKhaK7Y2VQFUKE0qxmhVCa5Nnl5TdD3sfVeN3HnbKn-UTlm5nK9k_0eAzvpshzyxVwO78-5jb0KUW7f3KUqQIGgCU-6eKgdKexeCN7XUNqpoXRe9so0EIvtW5dBq2s9l36rsvcAv5beh_zT5oAmJ7TbG__D0p-gTjkyJ_Q
CitedBy_id crossref_primary_10_1016_j_knosys_2021_106991
crossref_primary_10_1109_LSP_2022_3185958
crossref_primary_10_1214_22_AOAS1724
crossref_primary_10_1007_s10614_019_09952_5
crossref_primary_10_1109_JSEN_2024_3493893
Cites_doi 10.1214/12-AOAS551
10.1016/j.neunet.2009.06.040
10.1093/comjnl/bxq003
10.1111/j.1467-9892.1982.tb00349.x
10.1016/S0893-6080(99)00066-0
10.1016/j.jeconom.2005.03.005
10.1002/env.611
10.1109/TPAMI.2009.149
10.1111/1467-9469.00215
10.1002/9780470191613
10.1093/biomet/87.3.587
10.1007/978-1-4757-7107-7
10.1007/978-1-4419-7865-3
10.1016/S0167-9473(02)00183-4
10.1017/S037016460002006X
10.1090/S0025-5718-1972-0323087-4
10.1016/j.csda.2006.07.028
10.1115/1.3662552
10.1080/07350015.2014.941467
10.1023/A:1007665907178
10.1080/14786440109462720
10.1109/TAC.2008.2008348
10.1111/j.1467-9868.2007.00601.x
10.1111/j.2517-6161.1977.tb01600.x
10.1111/j.2517-6161.1984.tb01288.x
10.1109/IJCNN.2009.5178921
10.1007/BF02294246
10.1145/1143844.1143859
ContentType Journal Article
Copyright Springer Science+Business Media New York 2016
Copyright Springer Science & Business Media 2017
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer Science+Business Media New York 2016
– notice: Copyright Springer Science & Business Media 2017
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1007/s11222-016-9707-5
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1573-1375
EndPage 1637
ExternalDocumentID oai_HAL_hal_01383174v2
10_1007_s11222_016_9707_5
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7U
Z7W
Z7X
Z7Y
Z81
Z83
Z87
Z88
Z8O
Z8R
Z8U
Z8W
Z91
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
1XC
VOOES
ID FETCH-LOGICAL-c393t-66e9c59a434be52055a8e6d4c9c9cc816531afca5bed4139ac0d553dd96ce2553
IEDL.DBID AGYKE
ISSN 0960-3174
IngestDate Fri Sep 12 12:33:51 EDT 2025
Sun Jul 13 04:48:25 EDT 2025
Tue Jul 01 02:17:04 EDT 2025
Thu Apr 24 22:54:31 EDT 2025
Fri Feb 21 02:34:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Functional time series
Condition monitoring
Variational EM
Visualization and forecasting
Dynamic factor analysis
Mixture of regressions
RAILWAY CONDITION MONITORING
SERIE TEMPORELLE
MIXTURE OF REGRESSION
DYNAMIC FACTOR ANALYSIS
PREVISION
VARIATIONAL ALGORITHM
FUNCTIONAL DATA VISUALIZATION
SEGMENTATION
COURBE
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-66e9c59a434be52055a8e6d4c9c9cc816531afca5bed4139ac0d553dd96ce2553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://hal.science/hal-01383174
PQID 1930131162
PQPubID 2043829
PageCount 21
ParticipantIDs hal_primary_oai_HAL_hal_01383174v2
proquest_journals_1930131162
crossref_citationtrail_10_1007_s11222_016_9707_5
crossref_primary_10_1007_s11222_016_9707_5
springer_journals_10_1007_s11222_016_9707_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-01
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Statistics and computing
PublicationTitleAbbrev Stat Comput
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
Springer Verlag (Germany)
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag (Germany)
References Lawley (CR23) 1940; 60
Varah (CR36) 1972; 26
Garnett, Osborne, Reece, Rogers, Roberts (CR13) 2010; 53
Ramsay, Silverman (CR30) 1997
Neal, Hinton, I (CR28) 1998
Geweke, Aigner, Goldberger (CR14) 1977
Hays, Shen, Huang (CR17) 2012; 6
CR35
CR31
Shumway, Stoffer (CR34) 2011
Harvey (CR16) 1989
Green (CR15) 1984; 46
Ferraty, Vieu (CR11) 2006
Gareth, Hastie, Sugar (CR12) 2000; 87
Besse, Cardot, Stephenson (CR4) 2000; 27
Sarkka, Nummenmaa (CR32) 2009; 54
Zuur, Fryer, Jolliffe, Dekker, Beukema (CR37) 2003; 14
Kalman (CR22) 1960; 82
CR3
CR6
Shumway, Stofer (CR33) 1982; 3
CR5
Hyndman, Ullah (CR18) 2007; 51
CR27
Dempster, Laird, Rubin (CR8) 1977; 39
CR26
Pearson (CR29) 1901; 6
Fearnhead, Liu (CR10) 2007; 69
Bai, Wang (CR2) 2015; 33
Jiang, Tanner (CR19) 1999; 12
Jordan, Ghahramani, Jaakkola, Saul (CR21) 1999; 37
Diebold, Li (CR9) 2006; 130
Jolliffe (CR20) 2002
Chamroukhi, Samé, Govaert, Aknin (CR7) 2009; 22
McLachlan, Krishnan (CR24) 2008
McLachlan, Peel, Bean (CR25) 2003; 41
Baek, McLachlan, Flack (CR1) 2010; 32
R Neal (9707_CR28) 1998
AF Zuur (9707_CR37) 2003; 14
RH Shumway (9707_CR34) 2011
P Fearnhead (9707_CR10) 2007; 69
GJ McLachlan (9707_CR25) 2003; 41
AP Dempster (9707_CR8) 1977; 39
GJ McLachlan (9707_CR24) 2008
S Sarkka (9707_CR32) 2009; 54
RJ Hyndman (9707_CR18) 2007; 51
JF Geweke (9707_CR14) 1977
RH Shumway (9707_CR33) 1982; 3
F Ferraty (9707_CR11) 2006
DN Lawley (9707_CR23) 1940; 60
9707_CR35
JM Varah (9707_CR36) 1972; 26
PC Besse (9707_CR4) 2000; 27
K Pearson (9707_CR29) 1901; 6
9707_CR31
MI Jordan (9707_CR21) 1999; 37
R Garnett (9707_CR13) 2010; 53
FX Diebold (9707_CR9) 2006; 130
J Baek (9707_CR1) 2010; 32
F Chamroukhi (9707_CR7) 2009; 22
J Gareth (9707_CR12) 2000; 87
9707_CR26
AC Harvey (9707_CR16) 1989
J Bai (9707_CR2) 2015; 33
W Jiang (9707_CR19) 1999; 12
9707_CR27
P Green (9707_CR15) 1984; 46
RE Kalman (9707_CR22) 1960; 82
9707_CR6
9707_CR5
JO Ramsay (9707_CR30) 1997
S Hays (9707_CR17) 2012; 6
9707_CR3
IT Jolliffe (9707_CR20) 2002
References_xml – volume: 6
  start-page: 870
  issue: 3
  year: 2012
  end-page: 894
  ident: CR17
  article-title: Functional dynamic factor models with application to yield curve forecasting
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/12-AOAS551
– volume: 22
  start-page: 593
  year: 2009
  end-page: 602
  ident: CR7
  article-title: Time series modeling by a regression approach based on a latent process
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2009.06.040
– volume: 53
  start-page: 1430
  issue: 9
  year: 2010
  end-page: 1446
  ident: CR13
  article-title: Sequential bayesian prediction in the presence of changepoints and faults
  publication-title: Comput. J.
  doi: 10.1093/comjnl/bxq003
– volume: 3
  start-page: 253
  year: 1982
  end-page: 264
  ident: CR33
  article-title: An approach to time series smoothing and forecasting using the EM algorithm
  publication-title: J. Time Ser. Anal.
  doi: 10.1111/j.1467-9892.1982.tb00349.x
– volume: 12
  start-page: 1253
  issue: 9
  year: 1999
  end-page: 1258
  ident: CR19
  article-title: On the identifiability of mixtures-of-experts
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(99)00066-0
– volume: 130
  start-page: 337
  issue: 2
  year: 2006
  end-page: 364
  ident: CR9
  article-title: Forecasting the term structure of government bond yields
  publication-title: J. Econom.
  doi: 10.1016/j.jeconom.2005.03.005
– volume: 14
  start-page: 665
  year: 2003
  end-page: 685
  ident: CR37
  article-title: Estimating common trends in multivariate time series using dynamic factor analysis
  publication-title: Environmetrics
  doi: 10.1002/env.611
– volume: 32
  start-page: 1298
  year: 2010
  end-page: 1309
  ident: CR1
  article-title: Mixtures of factor analyzers with common factor loadings: applications to the clustering and visualization of high-dimensional data
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2009.149
– ident: CR35
– ident: CR6
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: CR8
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B
– year: 2002
  ident: CR20
  publication-title: Principal Component Analysis
– volume: 27
  start-page: 673
  year: 2000
  end-page: 687
  ident: CR4
  article-title: Autoregressive forecasting of some functional climatic variations
  publication-title: Scand. J. Stat.
  doi: 10.1111/1467-9469.00215
– year: 2008
  ident: CR24
  publication-title: The EM Algorithm and Extensions
  doi: 10.1002/9780470191613
– volume: 87
  start-page: 587
  year: 2000
  end-page: 602
  ident: CR12
  article-title: Principal component models for sparse functional data
  publication-title: Biometrika
  doi: 10.1093/biomet/87.3.587
– ident: CR27
– year: 1997
  ident: CR30
  publication-title: Functional data analysis
  doi: 10.1007/978-1-4757-7107-7
– year: 2011
  ident: CR34
  publication-title: Time Series Analysis and Its Applications
  doi: 10.1007/978-1-4419-7865-3
– volume: 41
  start-page: 379
  issue: 3–4
  year: 2003
  end-page: 388
  ident: CR25
  article-title: Modelling high-dimensional data by mixtures of factor analyzers
  publication-title: Computat. Stat. Data Anal.
  doi: 10.1016/S0167-9473(02)00183-4
– volume: 60
  start-page: 64
  issue: 01
  year: 1940
  end-page: 82
  ident: CR23
  article-title: The estimation of factor loadings by the method of maximum likelihood
  publication-title: Proc. R. Soc. Edinb.
  doi: 10.1017/S037016460002006X
– ident: CR3
– volume: 26
  start-page: 859
  issue: 120
  year: 1972
  end-page: 868
  ident: CR36
  article-title: On the solution of block-tridiagonal systems arising from certain finite-difference equations
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1972-0323087-4
– start-page: 365
  year: 1977
  end-page: 383
  ident: CR14
  article-title: The dynamic factor analysis of economic time series models
  publication-title: Latent Variables in Socio-economic Models
– volume: 46
  start-page: 149
  issue: 2
  year: 1984
  end-page: 192
  ident: CR15
  article-title: Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternatives
  publication-title: J. R. Stat. Soc. Ser. B
– year: 1998
  ident: CR28
  article-title: A view of the EM algorithm that justifies incremental, sparse, and other variants
  publication-title: Learning in Graphical Models
– ident: CR31
– volume: 51
  start-page: 4942
  issue: 10
  year: 2007
  end-page: 4956
  ident: CR18
  article-title: Robust forecasting of mortality and fertility rates: a functional data approach
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2006.07.028
– volume: 82
  start-page: 35
  issue: 1
  year: 1960
  end-page: 45
  ident: CR22
  article-title: A new approach to linear filtering and prediction problems
  publication-title: J. Basic Eng.
  doi: 10.1115/1.3662552
– volume: 33
  start-page: 221
  issue: 2
  year: 2015
  end-page: 240
  ident: CR2
  article-title: Identification and bayesian estimation of dynamic factor models
  publication-title: J. Bus. Econ. Stat.
  doi: 10.1080/07350015.2014.941467
– ident: CR5
– volume: 37
  start-page: 183
  issue: 2
  year: 1999
  end-page: 233
  ident: CR21
  article-title: An introduction to variational methods for graphical models
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007665907178
– volume: 6
  start-page: 559
  issue: 2
  year: 1901
  end-page: 572
  ident: CR29
  article-title: On lines and planes of closest fit to systems of points in space
  publication-title: Philos. Mag.
  doi: 10.1080/14786440109462720
– volume: 54
  start-page: 596
  issue: 3
  year: 2009
  end-page: 600
  ident: CR32
  article-title: Recursive noise adaptive kalman filtering by variational bayesian approximations
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2008.2008348
– ident: CR26
– year: 1989
  ident: CR16
  publication-title: Forecasting Structural Time Series Models and the Kalman Filter
– volume: 69
  start-page: 589
  year: 2007
  end-page: 605
  ident: CR10
  article-title: On-line inference for multiple changepoint problems
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.1467-9868.2007.00601.x
– year: 2006
  ident: CR11
  publication-title: Nonparametric Functional Data Analysis
– volume-title: Time Series Analysis and Its Applications
  year: 2011
  ident: 9707_CR34
  doi: 10.1007/978-1-4419-7865-3
– volume-title: Principal Component Analysis
  year: 2002
  ident: 9707_CR20
– volume-title: Learning in Graphical Models
  year: 1998
  ident: 9707_CR28
– volume-title: The EM Algorithm and Extensions
  year: 2008
  ident: 9707_CR24
  doi: 10.1002/9780470191613
– volume: 51
  start-page: 4942
  issue: 10
  year: 2007
  ident: 9707_CR18
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2006.07.028
– volume: 60
  start-page: 64
  issue: 01
  year: 1940
  ident: 9707_CR23
  publication-title: Proc. R. Soc. Edinb.
  doi: 10.1017/S037016460002006X
– volume: 27
  start-page: 673
  year: 2000
  ident: 9707_CR4
  publication-title: Scand. J. Stat.
  doi: 10.1111/1467-9469.00215
– volume: 39
  start-page: 1
  year: 1977
  ident: 9707_CR8
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 41
  start-page: 379
  issue: 3–4
  year: 2003
  ident: 9707_CR25
  publication-title: Computat. Stat. Data Anal.
  doi: 10.1016/S0167-9473(02)00183-4
– volume: 130
  start-page: 337
  issue: 2
  year: 2006
  ident: 9707_CR9
  publication-title: J. Econom.
  doi: 10.1016/j.jeconom.2005.03.005
– volume: 22
  start-page: 593
  year: 2009
  ident: 9707_CR7
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2009.06.040
– volume: 69
  start-page: 589
  year: 2007
  ident: 9707_CR10
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.1467-9868.2007.00601.x
– volume: 32
  start-page: 1298
  year: 2010
  ident: 9707_CR1
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2009.149
– volume: 33
  start-page: 221
  issue: 2
  year: 2015
  ident: 9707_CR2
  publication-title: J. Bus. Econ. Stat.
  doi: 10.1080/07350015.2014.941467
– volume: 82
  start-page: 35
  issue: 1
  year: 1960
  ident: 9707_CR22
  publication-title: J. Basic Eng.
  doi: 10.1115/1.3662552
– volume: 3
  start-page: 253
  year: 1982
  ident: 9707_CR33
  publication-title: J. Time Ser. Anal.
  doi: 10.1111/j.1467-9892.1982.tb00349.x
– ident: 9707_CR27
– volume: 37
  start-page: 183
  issue: 2
  year: 1999
  ident: 9707_CR21
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007665907178
– volume-title: Forecasting Structural Time Series Models and the Kalman Filter
  year: 1989
  ident: 9707_CR16
– volume: 14
  start-page: 665
  year: 2003
  ident: 9707_CR37
  publication-title: Environmetrics
  doi: 10.1002/env.611
– volume: 6
  start-page: 870
  issue: 3
  year: 2012
  ident: 9707_CR17
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/12-AOAS551
– volume-title: Functional data analysis
  year: 1997
  ident: 9707_CR30
  doi: 10.1007/978-1-4757-7107-7
– ident: 9707_CR3
– volume: 87
  start-page: 587
  year: 2000
  ident: 9707_CR12
  publication-title: Biometrika
  doi: 10.1093/biomet/87.3.587
– volume: 53
  start-page: 1430
  issue: 9
  year: 2010
  ident: 9707_CR13
  publication-title: Comput. J.
  doi: 10.1093/comjnl/bxq003
– start-page: 365
  volume-title: Latent Variables in Socio-economic Models
  year: 1977
  ident: 9707_CR14
– volume: 54
  start-page: 596
  issue: 3
  year: 2009
  ident: 9707_CR32
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2008.2008348
– volume: 46
  start-page: 149
  issue: 2
  year: 1984
  ident: 9707_CR15
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1984.tb01288.x
– ident: 9707_CR6
  doi: 10.1109/IJCNN.2009.5178921
– ident: 9707_CR26
  doi: 10.1007/BF02294246
– volume-title: Nonparametric Functional Data Analysis
  year: 2006
  ident: 9707_CR11
– volume: 12
  start-page: 1253
  issue: 9
  year: 1999
  ident: 9707_CR19
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(99)00066-0
– volume: 26
  start-page: 859
  issue: 120
  year: 1972
  ident: 9707_CR36
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1972-0323087-4
– volume: 6
  start-page: 559
  issue: 2
  year: 1901
  ident: 9707_CR29
  publication-title: Philos. Mag.
  doi: 10.1080/14786440109462720
– ident: 9707_CR31
– ident: 9707_CR5
  doi: 10.1145/1143844.1143859
– ident: 9707_CR35
SSID ssj0011634
Score 2.1767828
Snippet A new approach is introduced in this article for describing and visualizing time series of curves, where each curve has the particularity of being subject to...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1617
SubjectTerms Artificial Intelligence
Computer simulation
Continuity (mathematics)
Economic models
Engineering Sciences
Evolution
Factor analysis
Mathematics and Statistics
Other
Parameter estimation
Probability and Statistics in Computer Science
Random walk
Regression analysis
Regression coefficients
State space models
Statistical Theory and Methods
Statistics
Statistics and Computing/Statistics Programs
Time series
Title Segmental dynamic factor analysis for time series of curves
URI https://link.springer.com/article/10.1007/s11222-016-9707-5
https://www.proquest.com/docview/1930131162
https://hal.science/hal-01383174
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-1375
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011634
  issn: 0960-3174
  databaseCode: AFBBN
  dateStart: 19910901
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-1375
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011634
  issn: 0960-3174
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-1375
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011634
  issn: 0960-3174
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5se9GD1apYrbKIJyWS1yZZPBVRi1ovWtBT2Gw2CkorTdqDv96ZPFotKpRcQnbz2p3d-YbZ_T6AY-EKh2tPGE6kE8O1fWlIOzAxVLGCyBdWkORiE_17rzdwb574U7mPO61Wu1cpyXymnm92s9CXYejrGcI3fYPXoMEpPqlDo3v9fHs5Sx4gxMhZoxCc4xTju1Uy87eH_HBHtVdaDPkNaS4kR3Ofc9WEx-pri6Umb2eTLDpTnwtEjkv-zgaslxiUdQuj2YQVPWxBs9J3YOVwb8Faf8bpmrZglXBpQeu8BecP-qWQBWBxoWnPCuUeJkuWE4ZomJFyPSMj1ykbJUxNxlOdbsPg6vLxomeUOgyGcoSTGZ6nheJCuo4baW6bnMtAe7GrBB4qsDwcxzJRkkc6Rp8opDJjzp04FiQ3hmc7UB-OhnoXWGQpIsiXAoEbxlqJ8DUGfNzSlGAVKm6DWXVHqEqSctLKeA_n9MrUbiEtTKN2C3kbTma3fBQMHf9VPsI-ntUjbu1e9y6ka5SyJWuZ2m3oVCYQliM6DRHo5tREHhafVj36rfivN-4tVXsfVm3CDflmxw7Us_FEHyDqyaLD0soPoTawu1_NK_SX
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB3R9kA5sBQQZbUQJ1CqLHYSi1OFWgpdLrQSnCLHcUACFURaDnw942xABUgolyh2NnvseaOx3wM44ZQ7TLnccEIVG9T2hCFs38RQxfJDj1t-nIpNDEdub0Kvb9ltvo87KVa7FynJdKb-3OxmoS_D0Nc1uGd6BqtAjVq-T6tQa1_e9Ttl8gAhRsoaheAcpxiPFsnMnx7yzR1VHvRiyC9IcyE5mvqc7hqMi6_Nlpo8tuazsCXfF4gc__k767CaY1DSzoxmA5bUtAFrhb4DyYd7A1aGJadr0oC6xqUZrfMmnN-o-0wWgESZpj3JlHuIyFlOCKJhopXriTZylZDnmMj565tKtmDS7Ywvekauw2BIhzszw3UVl4wL6tBQMdtkTPjKjajkeEjfcnEci1gKFqoIfSIX0owYc6KIa7kxPNuG6vR5qnaAhJbUBPmCI3DDWCvmnsKAj1lKJ1i5jJpgFt0RyJykXGtlPAWf9Mq63QK9ME23W8CacFre8pIxdPxV-Rj7uKynubV77UGgr-mUrbaWN7sJ-4UJBPmITgIEuik1kYvFZ0WPfin-7Y27_6p9BMu98XAQDK5G_T2o2xpDpBsf96E6e52rA0RAs_Awt_gPtcj2nw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60gujBR1WsVl3EkxLMa5Msnopa6hNBC97CZrPRg6Slafv7ncmrVVSQXEJ2k4Wd3cw3zM73AZwIVzhce8JwIp0Yru1LQ9qBiaGKFUS-sIIkF5t4ePR6fff2lb-WOqdZddq9SkkWNQ3E0pSOz4dxcj4rfLPQr2EY7BnCN32DL8KSi66aoq--3anTCAg2cv4ohOn4s_HdKq350ye-OKbFdzoWOYc5v6VJc-_T3YC1EjayTmHnTVjQaRPWK0kGVu7QJqw-1DSsWRNWCEoWTMxbcPGs3womfxYXMvSsENthsiQmYQhgGYnNM1qXOmODhKnJaKqzbeh3r18ue0YpnWAoRzhjw_O0UFxI13EjzW2TcxloL3aVwEsFlodbTyZK8kjH6MaEVGbMuRPHghTC8G4HGukg1bvAIksRp70UiLUwPEqErzFG45amnKhQcQvMat5CVfKKk7zFRzhjRKapDuksGU11yFtwWr8yLEg1_up8jMao-xEddq9zH9IzyrKSWad2C9qVrcJyE2YhYtOcTcjD5rPKfnPNv42496_eR7D8dNUN728e7_ZhxSavn5cqtqExHk30AWKWcXSYr8tP6DXeGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segmental+dynamic+factor+analysis+for+time+series+of+curves&rft.jtitle=Statistics+and+computing&rft.au=Same%2C+Allou&rft.au=Govaert%2C+G%C3%A9rard&rft.date=2017-11-01&rft.pub=Springer+Verlag+%28Germany%29&rft.issn=0960-3174&rft.eissn=1573-1375&rft.volume=27&rft.issue=6&rft.spage=1617&rft.epage=1637&rft_id=info:doi/10.1007%2Fs11222-016-9707-5&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_01383174v2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon