Gaussian process regression for monitoring and fault detection of wastewater treatment processes
Monitoring and fault detection methods are increasingly important to achieve a robust and resource efficient operation of wastewater treatment plants (WWTPs). The purpose of this paper was to evaluate a promising machine learning method, Gaussian process regression (GPR), for WWTP monitoring applica...
        Saved in:
      
    
          | Published in | Water science and technology Vol. 75; no. 12; pp. 2952 - 2963 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
          IWA Publishing
    
        01.06.2017
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0273-1223 1996-9732 1996-9732  | 
| DOI | 10.2166/wst.2017.162 | 
Cover
| Abstract | Monitoring and fault detection methods are increasingly important to achieve a robust and resource efficient operation of wastewater treatment plants (WWTPs). The purpose of this paper was to evaluate a promising machine learning method, Gaussian process regression (GPR), for WWTP monitoring applications. We evaluated GPR at two WWTP monitoring problems: estimate missing data in a flow rate signal (simulated data), and detect a drift in an ammonium sensor (real data). We showed that GPR with the standard estimation method, maximum likelihood estimation (GPR-MLE), suffered from local optima during estimation of kernel parameters, and did not give satisfactory results in a simulated case study. However, GPR with a state-of-the-art estimation method based on sequential Monte Carlo estimation (GPR-SMC) gave good predictions and did not suffer from local optima. Comparisons with simple standard methods revealed that GPR-SMC performed better than linear interpolation in estimating missing data in a noisy flow rate signal. We conclude that GPR-SMC is both a general and powerful method for monitoring full-scale WWTPs. However, this paper also shows that it does not always pay off to use more sophisticated methods. New methods should be critically compared against simpler methods, which might be good enough for some scenarios. | 
    
|---|---|
| AbstractList | Monitoring and fault detection methods are increasingly important to achieve a robust and resource efficient operation of wastewater treatment plants (WWTPs). The purpose of this paper was to evaluate a promising machine learning method, Gaussian process regression (GPR), for WWTP monitoring applications. We evaluated GPR at two WWTP monitoring problems: estimate missing data in a flow rate signal (simulated data), and detect a drift in an ammonium sensor (real data). We showed that GPR with the standard estimation method, maximum likelihood estimation (GPR-MLE), suffered from local optima during estimation of kernel parameters, and did not give satisfactory results in a simulated case study. However, GPR with a state-of-the-art estimation method based on sequential Monte Carlo estimation (GPR-SMC) gave good predictions and did not suffer from local optima. Comparisons with simple standard methods revealed that GPR-SMC performed better than linear interpolation in estimating missing data in a noisy flow rate signal. We conclude that GPR-SMC is both a general and powerful method for monitoring full-scale WWTPs. However, this paper also shows that it does not always pay off to use more sophisticated methods. New methods should be critically compared against simpler methods, which might be good enough for some scenarios. Monitoring and fault detection methods are increasingly important to achieve a robust and resource efficient operation of wastewater treatment plants (WWTPs). The purpose of this paper was to evaluate a promising machine learning method, Gaussian process regression (GPR), at WWTP monitoring applications. We evaluated GPR at two WWTP monitoring problems: estimate missing data in a flow rate signal (simulated data), and detect a drift in an ammonium sensor (real data). We showed that GPR with the standard estimation method, maximum likelihood estimation (GPR-MLE), suffered from local optima during estimation of kernel parameters, and did not give satisfactory results in a simulated case study. However, GPR with a state-of-the-art estimation method based on sequential Monte Carlo estimation (GPR-SMC) gave good predictions and did not suffer from local optima. Comparisons with simple standard methods revealed that GPR-SMC performed better than linear interpolation in estimating missing data in a noisy flow rate signal. We conclude that GPR-SMC is both a general and powerful method for monitoring full-scale WWTPs. However, this paper also shows that it does not always pay off to use more sophisticated methods. New methods should be critically compared against simpler methods, which might be good enough for some scenarios. Monitoring and fault detection methods are increasingly important to achieve a robust and resource efficient operation of wastewater treatment plants (WWTPs). The purpose of this paper was to evaluate a promising machine learning method, Gaussian process regression (GPR), for WWTP monitoring applications. We evaluated GPR at two WWTP monitoring problems: estimate missing data in a flow rate signal (simulated data), and detect a drift in an ammonium sensor (real data). We showed that GPR with the standard estimation method, maximum likelihood estimation (GPR-MLE), suffered from local optima during estimation of kernel parameters, and did not give satisfactory results in a simulated case study. However, GPR with a state-of-the-art estimation method based on sequential Monte Carlo estimation (GPR-SMC) gave good predictions and did not suffer from local optima. Comparisons with simple standard methods revealed that GPR-SMC performed better than linear interpolation in estimating missing data in a noisy flow rate signal. We conclude that GPR-SMC is both a general and powerful method for monitoring full-scale WWTPs. However, this paper also shows that it does not always pay off to use more sophisticated methods. New methods should be critically compared against simpler methods, which might be good enough for some scenarios.Monitoring and fault detection methods are increasingly important to achieve a robust and resource efficient operation of wastewater treatment plants (WWTPs). The purpose of this paper was to evaluate a promising machine learning method, Gaussian process regression (GPR), for WWTP monitoring applications. We evaluated GPR at two WWTP monitoring problems: estimate missing data in a flow rate signal (simulated data), and detect a drift in an ammonium sensor (real data). We showed that GPR with the standard estimation method, maximum likelihood estimation (GPR-MLE), suffered from local optima during estimation of kernel parameters, and did not give satisfactory results in a simulated case study. However, GPR with a state-of-the-art estimation method based on sequential Monte Carlo estimation (GPR-SMC) gave good predictions and did not suffer from local optima. Comparisons with simple standard methods revealed that GPR-SMC performed better than linear interpolation in estimating missing data in a noisy flow rate signal. We conclude that GPR-SMC is both a general and powerful method for monitoring full-scale WWTPs. However, this paper also shows that it does not always pay off to use more sophisticated methods. New methods should be critically compared against simpler methods, which might be good enough for some scenarios.  | 
    
| Author | Samuelsson, Oscar Björk, Anders Carlsson, Bengt Zambrano, Jesús  | 
    
| Author_xml | – sequence: 1 givenname: Oscar surname: Samuelsson fullname: Samuelsson, Oscar organization: IVL Swedish Environmental Research Institute, Process Modelling & IT, PO Box 210 60, SE-100 31 Stockholm, Sweden and Uppsala University, Division of Systems and Control, Department of Information Technology, Uppsala, Sweden – sequence: 2 givenname: Anders surname: Björk fullname: Björk, Anders organization: IVL Swedish Environmental Research Institute, Process Modelling & IT, Stockholm, Sweden – sequence: 3 givenname: Jesús surname: Zambrano fullname: Zambrano, Jesús organization: Mälardalens Högskola, School of Business, Society & Engineering Västerås, Sweden – sequence: 4 givenname: Bengt surname: Carlsson fullname: Carlsson, Bengt organization: Uppsala University, Division of Systems and Control, Department of Information Technology, Uppsala, Sweden  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28659535$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-35271$$DView record from Swedish Publication Index https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-329772$$DView record from Swedish Publication Index  | 
    
| BookMark | eNqN0U1rFTEUBuAgFXtb3bmWATcunGtOMjOZLEvVKhTcqNuYzJxcU2aSaz64-O_NpR9CceHqEHhykpf3jJz44JGQl0C3DIbh3SHlLaMgtjCwJ2QDUg6tFJydkA1lgrfAGD8lZyndUEoF7-gzcsrGoZc97zfkx5UuKTntm30ME6bURNzFOl3wjQ2xWYN3OUTnd432c2N1WXIzY8YpH0mwzUGnjAedMTY5os4r-ny_DdNz8tTqJeGLu3lOvn388PXyU3v95erz5cV1O3HJc8sF55R2EzeDpXKepemsAWMmqCdhRtpRI6kFpEKODPggrcEaVfYMAWzHz8nb273pgPti1D66VcffKmin3rvvFyrEnSpFcSaFYP_H1_mn4j0TUPmbW15z_SqYslpdmnBZtMdQkgIJ3dgJRsdKXz-iN6FEX7NXxQAGyRmv6tWdKmbF-eH9-2b-fnCKIaWI9oEAVcfiVS1eHYtXtfjK2SM-uayPFeWo3fLvS38A3Iex-Q | 
    
| CitedBy_id | crossref_primary_10_1007_s00500_019_04225_7 crossref_primary_10_1016_j_ecolind_2019_02_026 crossref_primary_10_1016_j_biortech_2022_128486 crossref_primary_10_1016_j_tust_2024_105714 crossref_primary_10_1016_j_watres_2023_119874 crossref_primary_10_1007_s13201_019_1018_5 crossref_primary_10_1007_s13369_020_05052_x crossref_primary_10_1016_j_ifacol_2024_07_238 crossref_primary_10_1061_JCCEE5_CPENG_5953 crossref_primary_10_1007_s10098_020_01993_x crossref_primary_10_1016_j_psep_2023_02_043 crossref_primary_10_3390_su13073665 crossref_primary_10_1016_j_conengprac_2021_105038 crossref_primary_10_1016_j_heliyon_2023_e18819 crossref_primary_10_3390_s23218671 crossref_primary_10_1016_j_oceaneng_2022_110704 crossref_primary_10_1016_j_compchemeng_2020_106934 crossref_primary_10_1016_j_jprocont_2019_03_005 crossref_primary_10_1080_23863781_2023_2184286 crossref_primary_10_1016_j_watres_2019_115029 crossref_primary_10_1016_j_neucom_2022_03_014 crossref_primary_10_32604_cmes_2023_029997 crossref_primary_10_1016_j_enganabound_2022_06_008 crossref_primary_10_1007_s10661_024_12591_5 crossref_primary_10_3390_s23198022 crossref_primary_10_2166_wst_2021_343 crossref_primary_10_2166_wst_2021_031 crossref_primary_10_1016_j_compchemeng_2022_108126 crossref_primary_10_1016_j_jenvman_2023_118804 crossref_primary_10_1016_j_jprocont_2021_01_001 crossref_primary_10_1007_s11783_023_1667_3  | 
    
| Cites_doi | 10.7551/mitpress/3206.001.0001 10.1093/comjnl/bxq003 10.1109/MSP.2013.2250352 10.1002/bit.21220 10.1101/gr.1262503 10.1016/j.isatra.2007.04.001 10.1016/j.watres.2012.08.035 10.2166/wst.2006.143 10.1016/j.ces.2003.09.012 10.1016/j.compchemeng.2015.08.018 10.1016/j.jprocont.2016.04.003 10.1109/CAMSAP.2015.7383840 10.1109/MAES.2010.5546308 10.1016/j.watres.2011.12.005 10.1016/j.chemolab.2016.07.002 10.1016/j.envsoft.2011.06.001 10.1016/j.jprocont.2014.01.012 10.1016/j.ymssp.2014.07.011 10.1021/ie504185j 10.1016/S0003-2670(00)86332-1  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright IWA Publishing Jun 2017 | 
    
| Copyright_xml | – notice: Copyright IWA Publishing Jun 2017 | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QH 7UA 7X7 7XB 88E 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FYUFA GHDGH H96 H97 HCIFZ K9. L.G L6V M0S M1P M7S PCBAR PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 ADTPV AOWAS DF7 DF2  | 
    
| DOI | 10.2166/wst.2017.162 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Aqualine Water Resources Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Health Research Premium Collection Health Research Premium Collection (Alumni) Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Health & Medical Collection (Alumni Edition) Medical Database Engineering Database ProQuest Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic SwePub SwePub Articles SWEPUB Mälardalens högskola SWEPUB Uppsala universitet  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection Aqualine ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Environmental Sciences  | 
    
| EISSN | 1996-9732 | 
    
| EndPage | 2963 | 
    
| ExternalDocumentID | oai_DiVA_org_uu_329772 oai_DiVA_org_mdh_35271 28659535 10_2166_wst_2017_162  | 
    
| Genre | Journal Article | 
    
| GeographicLocations | United States--US | 
    
| GeographicLocations_xml | – name: United States--US | 
    
| GroupedDBID | --- -~X 0R~ 123 4.4 53G 7X7 88E 8CJ 8FE 8FG 8FH 8FI 8FJ AAJVE AAYXX ABFYC ABJCF ABLGR ABUWG ACGFO ACIWK AECGI AENEX AEUYN AFKRA AFRAH AJXRC ALMA_UNASSIGNED_HOLDINGS BENPR BGLVJ BHPHI BKSAR BPHCQ BVXVI CCPQU CITATION CS3 D1J DU5 EBS EJD F5P FDB FYUFA GEUZO GROUPED_DOAJ H13 HCIFZ HFPTO HMCUK HZ~ L6V L7B M1P M7S O9- OK1 P2P PCBAR PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO R0Z RHI SJN TN5 UKHRP Y6R ~02 --K 1B1 29R AAEDT AAFWJ AALRI AAQXK AAXUO ABWVN ACRPL ADMUD ADNMO AGQPQ AGVJA AITUG ALIPV CGR CUY CVF ECM EIF FEDTE FGOYB HVGLF IHE M41 NPM NQ- R2- RIG ROL RPZ UHS ~KM 3V. 7QH 7UA 7XB 8FK C1K DWQXO F1W H96 H97 K9. L.G PKEHL PQEST PQUKI PRINS 7X8 ADTPV AFPKN AOWAS DF7 DF2  | 
    
| ID | FETCH-LOGICAL-c393t-3733004c3b6f09dd9b4fb1bbc109d7b8040b90f1e079821369fbe996952e11f43 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 0273-1223 1996-9732  | 
    
| IngestDate | Tue Sep 09 23:05:14 EDT 2025 Sat Oct 11 06:59:31 EDT 2025 Wed Oct 01 14:43:35 EDT 2025 Tue Oct 07 06:43:07 EDT 2025 Mon Jul 21 06:07:21 EDT 2025 Thu Apr 24 23:06:32 EDT 2025 Wed Oct 01 02:35:59 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 12 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c393t-3733004c3b6f09dd9b4fb1bbc109d7b8040b90f1e079821369fbe996952e11f43 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| PMID | 28659535 | 
    
| PQID | 1921169323 | 
    
| PQPubID | 2044520 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | swepub_primary_oai_DiVA_org_uu_329772 swepub_primary_oai_DiVA_org_mdh_35271 proquest_miscellaneous_1914847208 proquest_journals_1921169323 pubmed_primary_28659535 crossref_primary_10_2166_wst_2017_162 crossref_citationtrail_10_2166_wst_2017_162  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2017-06-01 | 
    
| PublicationDateYYYYMMDD | 2017-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England – name: London  | 
    
| PublicationTitle | Water science and technology | 
    
| PublicationTitleAlternate | Water Sci Technol | 
    
| PublicationYear | 2017 | 
    
| Publisher | IWA Publishing | 
    
| Publisher_xml | – name: IWA Publishing | 
    
| References | Garnett (2020032802560586200_WST-EM161665R1C7) 2010; 53 Rasmussen (2020032802560586200_WST-EM161665R1C23) 2010; 11 Askarian (2020032802560586200_WST-EM161665R1C3) 2016; 84 Perez-Cruz (2020032802560586200_WST-EM161665R1C19) 2013; 30 Ranjan (2020032802560586200_WST-EM161665R1C22) 2016; 42 Yoo (2020032802560586200_WST-EM161665R1C29) 2007; 96 Aarnio (2020032802560586200_WST-EM161665R1C1) 1986; 191 Shang (2020032802560586200_WST-EM161665R1C27) 2014; 24 Svensson (2020032802560586200_WST-EM161665R1C28) 2015 Boškoski (2020032802560586200_WST-EM161665R1C5) 2015; 52–53 Kulin (2020032802560586200_WST-EM161665R1C14) 1984 Qin (2020032802560586200_WST-EM161665R1C20) 2012; 46 Liu (2020032802560586200_WST-EM161665R1C16) 2015; 54 Moles (2020032802560586200_WST-EM161665R1C18) 2003; 13 Schraa (2020032802560586200_WST-EM161665R1C26) 2006; 53 Lee (2020032802560586200_WST-EM161665R1C15) 2004; 59 2020032802560586200_WST-EM161665R1C2 Gernaey (2020032802560586200_WST-EM161665R1C8) 2011; 26 Dolenc (2020032802560586200_WST-EM161665R1C30) 2016 Ažman (2020032802560586200_WST-EM161665R1C4) 2007; 46 Liu (2020032802560586200_WST-EM161665R1C17) 2016; 157 Kay (2020032802560586200_WST-EM161665R1C12) 1998 Quiñonero-Candela (2020032802560586200_WST-EM161665R1C21) 2005; 6 Južnič-Zonta (2020032802560586200_WST-EM161665R1C11) 2012; 46 Schön (2020032802560586200_WST-EM161665R1C25) 2015 Kohavi (2020032802560586200_WST-EM161665R1C13) 1998; 30 2020032802560586200_WST-EM161665R1C10 Rasmussen (2020032802560586200_WST-EM161665R1C24) 2005 2020032802560586200_WST-EM161665R1C6 Gustafsson (2020032802560586200_WST-EM161665R1C9) 2010; 25  | 
    
| References_xml | – volume-title: Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) year: 2005 ident: 2020032802560586200_WST-EM161665R1C24 doi: 10.7551/mitpress/3206.001.0001 – start-page: 525 year: 2016 ident: 2020032802560586200_WST-EM161665R1C30 article-title: Accounting for modelling errors in model-based diagnosis by using Gaussian process models publication-title: Conference on Control and Fault-Tolerant Systems, SysTol – volume: 53 start-page: 1430 issue: 9 year: 2010 ident: 2020032802560586200_WST-EM161665R1C7 article-title: Sequential Bayesian prediction in the presence of changepoints and faults publication-title: Computer Journal doi: 10.1093/comjnl/bxq003 – volume: 30 start-page: 40 issue: 4 year: 2013 ident: 2020032802560586200_WST-EM161665R1C19 article-title: Gaussian processes for nonlinear signal processing: an overview of recent advances publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2013.2250352 – ident: 2020032802560586200_WST-EM161665R1C10 – volume: 96 start-page: 687 issue: 4 year: 2007 ident: 2020032802560586200_WST-EM161665R1C29 article-title: Multi-model statistical process monitoring and diagnosis of a sequencing batch reactor publication-title: Biotechnology and Bioengineering doi: 10.1002/bit.21220 – volume: 13 start-page: 2467 issue: 11 year: 2003 ident: 2020032802560586200_WST-EM161665R1C18 article-title: Parameter estimation in biochemical pathways: a comparison of global optimization methods publication-title: Genome Research doi: 10.1101/gr.1262503 – volume: 46 start-page: 443 issue: 4 year: 2007 ident: 2020032802560586200_WST-EM161665R1C4 article-title: Application of Gaussian processes for black-box modelling of biosystems publication-title: ISA Transactions doi: 10.1016/j.isatra.2007.04.001 – volume: 46 start-page: 6121 issue: 18 year: 2012 ident: 2020032802560586200_WST-EM161665R1C11 article-title: Multi-criteria analyses of wastewater treatment bio-processes under an uncertainty and a multiplicity of steady states publication-title: Water Research doi: 10.1016/j.watres.2012.08.035 – volume: 30 start-page: 271 issue: 2 year: 1998 ident: 2020032802560586200_WST-EM161665R1C13 article-title: Glossary of terms publication-title: Machine Learning – volume: 53 start-page: 375 issue: 4-5 year: 2006 ident: 2020032802560586200_WST-EM161665R1C26 article-title: Fault detection for control of wastewater treatment plants publication-title: Water Science & Technology doi: 10.2166/wst.2006.143 – volume-title: Recommended Practice for the Use of Parshall Flumes and Palmer-Bowlus Flumes in Wastewater Treatment Plants year: 1984 ident: 2020032802560586200_WST-EM161665R1C14 – ident: 2020032802560586200_WST-EM161665R1C6 – volume: 59 start-page: 223 issue: 1 year: 2004 ident: 2020032802560586200_WST-EM161665R1C15 article-title: Nonlinear process monitoring using kernel principal component analysis publication-title: Chemical Engineering Science doi: 10.1016/j.ces.2003.09.012 – volume: 84 start-page: 104 year: 2016 ident: 2020032802560586200_WST-EM161665R1C3 article-title: Fault diagnosis of chemical processes with incomplete observations: a comparative study publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2015.08.018 – volume: 6 start-page: 1939 year: 2005 ident: 2020032802560586200_WST-EM161665R1C21 article-title: A unifying view of sparse approximate Gaussian process regression publication-title: Journal of Machine Learning Research – volume: 42 start-page: 125 year: 2016 ident: 2020032802560586200_WST-EM161665R1C22 article-title: Robust Gaussian process modeling using em algorithm publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2016.04.003 – year: 2015 ident: 2020032802560586200_WST-EM161665R1C28 article-title: Marginalizing Gaussian process hyperparameters using sequential Monte Carlo doi: 10.1109/CAMSAP.2015.7383840 – volume: 25 start-page: 53 issue: 7 PART 2 year: 2010 ident: 2020032802560586200_WST-EM161665R1C9 article-title: Particle filter theory and practice with positioning applications publication-title: IEEE Aerospace and Electronic Systems Magazine doi: 10.1109/MAES.2010.5546308 – volume: 46 start-page: 1133 issue: 4 year: 2012 ident: 2020032802560586200_WST-EM161665R1C20 article-title: Wastewater quality monitoring system using sensor fusion and machine learning techniques publication-title: Water Research doi: 10.1016/j.watres.2011.12.005 – volume-title: Fundamentals of Statistical Signal Processing: Detection Theory year: 1998 ident: 2020032802560586200_WST-EM161665R1C12 – volume: 157 start-page: 85 year: 2016 ident: 2020032802560586200_WST-EM161665R1C17 article-title: Development of multiple-step soft-sensors using a Gaussian process model with application for fault prognosis publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2016.07.002 – volume: 26 start-page: 1255 issue: 11 year: 2011 ident: 2020032802560586200_WST-EM161665R1C8 article-title: Dynamic influent pollutant disturbance scenario generation using a phenomenological modelling approach publication-title: Environmental Modelling and Software doi: 10.1016/j.envsoft.2011.06.001 – volume: 24 start-page: 223 issue: 3 year: 2014 ident: 2020032802560586200_WST-EM161665R1C27 article-title: Data-driven soft sensor development based on deep learning technique publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2014.01.012 – volume: 52–53 start-page: 327 year: 2015 ident: 2020032802560586200_WST-EM161665R1C5 article-title: Bearing fault prognostics using Rényi entropy based features and Gaussian process models publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2014.07.011 – year: 2015 ident: 2020032802560586200_WST-EM161665R1C25 article-title: Sequential Monte Carlo methods for system identification – ident: 2020032802560586200_WST-EM161665R1C2 – volume: 54 start-page: 5037 issue: 18 year: 2015 ident: 2020032802560586200_WST-EM161665R1C16 article-title: Auto-switch Gaussian process regression-based probabilistic soft sensors for industrial multigrade processes with transitions publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/ie504185j – volume: 191 start-page: 457 issue: C year: 1986 ident: 2020032802560586200_WST-EM161665R1C1 article-title: Application of partial least-squares modelling in the optimization of a waste-water treatment plant publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(00)86332-1 – volume: 11 start-page: 3011 year: 2010 ident: 2020032802560586200_WST-EM161665R1C23 article-title: Gaussian processes for machine learning (GPML) toolbox publication-title: Journal of Machine Learning Research  | 
    
| SSID | ssj0007340 | 
    
| Score | 2.397662 | 
    
| Snippet | Monitoring and fault detection methods are increasingly important to achieve a robust and resource efficient operation of wastewater treatment plants (WWTPs).... | 
    
| SourceID | swepub proquest pubmed crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 2952 | 
    
| SubjectTerms | Ammonium Ammonium compounds Artificial intelligence Bayesian regression Case studies Computer simulation Data Detection Electrical Engineering with specialization in Automatic Control Elektroteknik med inriktning mot reglerteknik energi- och miljöteknik Energy- and Environmental Engineering Environmental Monitoring - methods Fault detection Flow rates Flow velocity Gaussian process Gaussian processes Interpolation kernel Learning algorithms Machine learning Maximum likelihood estimation Missing data Monitoring Monitoring methods Monte Carlo Method Monte Carlo simulation Normal Distribution Parameter estimation Principal components analysis process monitoring Sensors Signal processing Statistical methods Waste Disposal, Fluid - methods Waste Disposal, Fluid - statistics & numerical data Waste Water - statistics & numerical data Wastewater Wastewater treatment Wastewater treatment plants  | 
    
| Title | Gaussian process regression for monitoring and fault detection of wastewater treatment processes | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28659535 https://www.proquest.com/docview/1921169323 https://www.proquest.com/docview/1914847208 https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-35271 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-329772  | 
    
| Volume | 75 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1996-9732 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0007340 issn: 0273-1223 databaseCode: 7X7 dateStart: 19820101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1996-9732 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0007340 issn: 0273-1223 databaseCode: BENPR dateStart: 19820101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1996-9732 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0007340 issn: 0273-1223 databaseCode: 8FG dateStart: 19820101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB612wscEC2ULpTKSHBCUWM7j_UBoVJ2WyGxQoiivZk4tgtSmyybRP37zORVHgIukSKPnMfnsWfsmW8Anhur4tzEPHA-MkEkExtkJoqDGEeTsJGVpq0S8X6ZnF9E71bxaguWQy4MhVUOc2I7Udsypz3yY-LtIuIQIV-vvwdUNYpOV4cSGllfWsG-ainGtmFHEDPWBHbezJcfPo5zcyqjbtcllQHHlbELhRc8SY5vKgqt5LTfIn5dpP6wPH-jFW2XosV9uNfbkOykA30XtlyxB3d_Yhbcg_35bQIbivYaXD2AL2dZU1HiJFt3KQJs4y67WNiCoQHLrlslp15YVljms-aqZtbVbchWwUrPbrKKdtwQEDaGqQ-9ueohXCzmn07Pg77KQpBLJWucYSSxbuXSJD5U1ioTecONyTnepWaGWm5U6LkLUzUTXCbKG4dekoqF49xHch8mRVm4A2BGqTyRiec-dFGGhptH_1LmBm0EaaTlU3g5_Fad9xTkVAnjSqMrQiBoBEETCBpBmMKLUXrdUW_8Re5wQEj3Cljp2-EyhWdjM6oOnYdkhSsbkkFfMEpFOJvCow7Z8UGUsKtiGeNLdFCPLcTH_fbb5xNdbi71tf2q0YRN-X_kmkZLgaa2ePzvl30Cd-izuli0Q5jUm8Y9RaunNkewna5SvM4WZ0f9sP4Bk7QFZw | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKewAOCAqFLQWMRE8oavxIsj5UqNAtW9quEGpRb24c26VSm102iVb8OX4bM3mVh4BTj5FHTuIZz8Oe-YaQV8aqKDMRC5yXJpAitkFqZBREIE3cSitM3SXiaBKPT-SH0-h0iXzvamEwrbLTibWittMMz8i3ELcLgUO4eDP7GmDXKLxd7VpopG1rBbtdQ4y1hR0H7tsCQrhie38X-L3J-d7o-N04aLsMBJlQooQdJhB1KhMm9qGyVhnpDTMmY_CUmCFIuVGhZy5M1JAzEStvHEQJKuKOMS8FzHuLrEghFQR_K29Hk4-feluQCNmc8iQiYGCJm9R7zuJ4a1FgKifD8x3-q1H8w9P9Dca0Nn1798m91melO42QPSBLLl8ld39CMlwla6PrgjkgbTVG8ZCcvU-rAgs16awpSaBzd97k3uYUHGZ6VSsVnIWmuaU-rS5Lal1Zp4jldOrpIi3whA8EgPZp8d1srnhETm5kvdfIcj7N3RNCjVJZLGLPfOhkCo6ih3hWZAZ8EmGEZQPyultWnbWQ59h541JD6INM0MAEjUzQwIQB2eypZw3Ux1_oNjoO6XbDF_paPAfkZT8MWxXvX9LcTSukgdhTJjwcDsjjhrP9i7BAWEUigo9oWN2PIP737sXnHT2dn-sr-0WDy5yw_9BVlRYcXHu-_u-PfUFuj4-PDvXh_uTgKbmDv9jkwW2Q5XJeuWfgcZXmeSvWlJzd9E76AcglPz4 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcEBRathQwEj2haGM7j_UBoYrt0lKoOFC0NzeO7YLUJttNohV_jV_HTJykPASceowych7fjD1jfzNDyAttZJzrmAXWRTqIRGKCTEdxEIM2cRMZodsuER-Ok4OT6N08nq-R730uDNIq-zmxnahNmeMe-RjrdmHhEC7GrqNFfJzOXi8uA-wghSetfTsNryJH9tsKwrfq1eEUsN7lfLb_6c1B0HUYCHIhRQ3WJbDiVC504kJpjNSR00zrnMFVqieg4VqGjtkwlRPORCKdthAhyJhbxlwkYNwb5CaMIpFOmM6HYA8sJ_L7O6kIGKzBnnTPWZKMVxWSOBnu7PBfl8M_fNzfCpi2i97sHrnbeat0z6vXfbJmiw1y56cahhtkc_8qVQ5Eu7miekBO32ZNhSmadOGTEejSnnnWbUHBVaYX7XSCo9CsMNRlzXlNja1bclhBS0dXWYV7ewA9HQjx_Wi2ekhOruVvb5L1oizsI0K1lHkiEsdcaKMMXEQHkazINXgjQgvDRuRl_1tV3hU7x54b5wqCHgRBAQgKQVAAwojsDtILX-TjL3I7PUKqM_VKXSnmiDwfboOR4slLVtiyQRmIOqOUh5MR2fLIDg_C1GAZixhewkM93MHK39Ovn_dUuTxTF-aLAmc5Zf-RaxolODj1fPvfL_uM3AL7Ue8Pj48ek9v4hZ4At0PW62Vjn4CrVeunrU5TcnrdRvQDDpA82A | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gaussian+process+regression+for+monitoring+and+fault+detection+of+wastewater+treatment+processes&rft.jtitle=Water+science+and+technology&rft.au=Samuelsson%2C+Oscar&rft.au=Anders%2C+Bj%C3%B6rk&rft.au=Zambrano%2C+Jes%C3%BAs&rft.au=Carlsson%2C+Bengt&rft.date=2017-06-01&rft.issn=0273-1223&rft.volume=75&rft.issue=12&rft.spage=2952&rft_id=info:doi/10.2166%2Fwst.2017.162&rft.externalDocID=oai_DiVA_org_mdh_35271 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0273-1223&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0273-1223&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0273-1223&client=summon |