Gaussian process regression for monitoring and fault detection of wastewater treatment processes

Monitoring and fault detection methods are increasingly important to achieve a robust and resource efficient operation of wastewater treatment plants (WWTPs). The purpose of this paper was to evaluate a promising machine learning method, Gaussian process regression (GPR), for WWTP monitoring applica...

Full description

Saved in:
Bibliographic Details
Published inWater science and technology Vol. 75; no. 12; pp. 2952 - 2963
Main Authors Samuelsson, Oscar, Björk, Anders, Zambrano, Jesús, Carlsson, Bengt
Format Journal Article
LanguageEnglish
Published England IWA Publishing 01.06.2017
Subjects
Online AccessGet full text
ISSN0273-1223
1996-9732
1996-9732
DOI10.2166/wst.2017.162

Cover

Abstract Monitoring and fault detection methods are increasingly important to achieve a robust and resource efficient operation of wastewater treatment plants (WWTPs). The purpose of this paper was to evaluate a promising machine learning method, Gaussian process regression (GPR), for WWTP monitoring applications. We evaluated GPR at two WWTP monitoring problems: estimate missing data in a flow rate signal (simulated data), and detect a drift in an ammonium sensor (real data). We showed that GPR with the standard estimation method, maximum likelihood estimation (GPR-MLE), suffered from local optima during estimation of kernel parameters, and did not give satisfactory results in a simulated case study. However, GPR with a state-of-the-art estimation method based on sequential Monte Carlo estimation (GPR-SMC) gave good predictions and did not suffer from local optima. Comparisons with simple standard methods revealed that GPR-SMC performed better than linear interpolation in estimating missing data in a noisy flow rate signal. We conclude that GPR-SMC is both a general and powerful method for monitoring full-scale WWTPs. However, this paper also shows that it does not always pay off to use more sophisticated methods. New methods should be critically compared against simpler methods, which might be good enough for some scenarios.
AbstractList Monitoring and fault detection methods are increasingly important to achieve a robust and resource efficient operation of wastewater treatment plants (WWTPs). The purpose of this paper was to evaluate a promising machine learning method, Gaussian process regression (GPR), for WWTP monitoring applications. We evaluated GPR at two WWTP monitoring problems: estimate missing data in a flow rate signal (simulated data), and detect a drift in an ammonium sensor (real data). We showed that GPR with the standard estimation method, maximum likelihood estimation (GPR-MLE), suffered from local optima during estimation of kernel parameters, and did not give satisfactory results in a simulated case study. However, GPR with a state-of-the-art estimation method based on sequential Monte Carlo estimation (GPR-SMC) gave good predictions and did not suffer from local optima. Comparisons with simple standard methods revealed that GPR-SMC performed better than linear interpolation in estimating missing data in a noisy flow rate signal. We conclude that GPR-SMC is both a general and powerful method for monitoring full-scale WWTPs. However, this paper also shows that it does not always pay off to use more sophisticated methods. New methods should be critically compared against simpler methods, which might be good enough for some scenarios.
Monitoring and fault detection methods are increasingly important to achieve a robust and resource efficient operation of wastewater treatment plants (WWTPs). The purpose of this paper was to evaluate a promising machine learning method, Gaussian process regression (GPR), at WWTP monitoring applications. We evaluated GPR at two WWTP monitoring problems: estimate missing data in a flow rate signal (simulated data), and detect a drift in an ammonium sensor (real data). We showed that GPR with the standard estimation method, maximum likelihood estimation (GPR-MLE), suffered from local optima during estimation of kernel parameters, and did not give satisfactory results in a simulated case study. However, GPR with a state-of-the-art estimation method based on sequential Monte Carlo estimation (GPR-SMC) gave good predictions and did not suffer from local optima. Comparisons with simple standard methods revealed that GPR-SMC performed better than linear interpolation in estimating missing data in a noisy flow rate signal. We conclude that GPR-SMC is both a general and powerful method for monitoring full-scale WWTPs. However, this paper also shows that it does not always pay off to use more sophisticated methods. New methods should be critically compared against simpler methods, which might be good enough for some scenarios.
Monitoring and fault detection methods are increasingly important to achieve a robust and resource efficient operation of wastewater treatment plants (WWTPs). The purpose of this paper was to evaluate a promising machine learning method, Gaussian process regression (GPR), for WWTP monitoring applications. We evaluated GPR at two WWTP monitoring problems: estimate missing data in a flow rate signal (simulated data), and detect a drift in an ammonium sensor (real data). We showed that GPR with the standard estimation method, maximum likelihood estimation (GPR-MLE), suffered from local optima during estimation of kernel parameters, and did not give satisfactory results in a simulated case study. However, GPR with a state-of-the-art estimation method based on sequential Monte Carlo estimation (GPR-SMC) gave good predictions and did not suffer from local optima. Comparisons with simple standard methods revealed that GPR-SMC performed better than linear interpolation in estimating missing data in a noisy flow rate signal. We conclude that GPR-SMC is both a general and powerful method for monitoring full-scale WWTPs. However, this paper also shows that it does not always pay off to use more sophisticated methods. New methods should be critically compared against simpler methods, which might be good enough for some scenarios.Monitoring and fault detection methods are increasingly important to achieve a robust and resource efficient operation of wastewater treatment plants (WWTPs). The purpose of this paper was to evaluate a promising machine learning method, Gaussian process regression (GPR), for WWTP monitoring applications. We evaluated GPR at two WWTP monitoring problems: estimate missing data in a flow rate signal (simulated data), and detect a drift in an ammonium sensor (real data). We showed that GPR with the standard estimation method, maximum likelihood estimation (GPR-MLE), suffered from local optima during estimation of kernel parameters, and did not give satisfactory results in a simulated case study. However, GPR with a state-of-the-art estimation method based on sequential Monte Carlo estimation (GPR-SMC) gave good predictions and did not suffer from local optima. Comparisons with simple standard methods revealed that GPR-SMC performed better than linear interpolation in estimating missing data in a noisy flow rate signal. We conclude that GPR-SMC is both a general and powerful method for monitoring full-scale WWTPs. However, this paper also shows that it does not always pay off to use more sophisticated methods. New methods should be critically compared against simpler methods, which might be good enough for some scenarios.
Author Samuelsson, Oscar
Björk, Anders
Carlsson, Bengt
Zambrano, Jesús
Author_xml – sequence: 1
  givenname: Oscar
  surname: Samuelsson
  fullname: Samuelsson, Oscar
  organization: IVL Swedish Environmental Research Institute, Process Modelling & IT, PO Box 210 60, SE-100 31 Stockholm, Sweden and Uppsala University, Division of Systems and Control, Department of Information Technology, Uppsala, Sweden
– sequence: 2
  givenname: Anders
  surname: Björk
  fullname: Björk, Anders
  organization: IVL Swedish Environmental Research Institute, Process Modelling & IT, Stockholm, Sweden
– sequence: 3
  givenname: Jesús
  surname: Zambrano
  fullname: Zambrano, Jesús
  organization: Mälardalens Högskola, School of Business, Society & Engineering Västerås, Sweden
– sequence: 4
  givenname: Bengt
  surname: Carlsson
  fullname: Carlsson, Bengt
  organization: Uppsala University, Division of Systems and Control, Department of Information Technology, Uppsala, Sweden
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28659535$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-35271$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-329772$$DView record from Swedish Publication Index
BookMark eNqN0U1rFTEUBuAgFXtb3bmWATcunGtOMjOZLEvVKhTcqNuYzJxcU2aSaz64-O_NpR9CceHqEHhykpf3jJz44JGQl0C3DIbh3SHlLaMgtjCwJ2QDUg6tFJydkA1lgrfAGD8lZyndUEoF7-gzcsrGoZc97zfkx5UuKTntm30ME6bURNzFOl3wjQ2xWYN3OUTnd432c2N1WXIzY8YpH0mwzUGnjAedMTY5os4r-ny_DdNz8tTqJeGLu3lOvn388PXyU3v95erz5cV1O3HJc8sF55R2EzeDpXKepemsAWMmqCdhRtpRI6kFpEKODPggrcEaVfYMAWzHz8nb273pgPti1D66VcffKmin3rvvFyrEnSpFcSaFYP_H1_mn4j0TUPmbW15z_SqYslpdmnBZtMdQkgIJ3dgJRsdKXz-iN6FEX7NXxQAGyRmv6tWdKmbF-eH9-2b-fnCKIaWI9oEAVcfiVS1eHYtXtfjK2SM-uayPFeWo3fLvS38A3Iex-Q
CitedBy_id crossref_primary_10_1007_s00500_019_04225_7
crossref_primary_10_1016_j_ecolind_2019_02_026
crossref_primary_10_1016_j_biortech_2022_128486
crossref_primary_10_1016_j_tust_2024_105714
crossref_primary_10_1016_j_watres_2023_119874
crossref_primary_10_1007_s13201_019_1018_5
crossref_primary_10_1007_s13369_020_05052_x
crossref_primary_10_1016_j_ifacol_2024_07_238
crossref_primary_10_1061_JCCEE5_CPENG_5953
crossref_primary_10_1007_s10098_020_01993_x
crossref_primary_10_1016_j_psep_2023_02_043
crossref_primary_10_3390_su13073665
crossref_primary_10_1016_j_conengprac_2021_105038
crossref_primary_10_1016_j_heliyon_2023_e18819
crossref_primary_10_3390_s23218671
crossref_primary_10_1016_j_oceaneng_2022_110704
crossref_primary_10_1016_j_compchemeng_2020_106934
crossref_primary_10_1016_j_jprocont_2019_03_005
crossref_primary_10_1080_23863781_2023_2184286
crossref_primary_10_1016_j_watres_2019_115029
crossref_primary_10_1016_j_neucom_2022_03_014
crossref_primary_10_32604_cmes_2023_029997
crossref_primary_10_1016_j_enganabound_2022_06_008
crossref_primary_10_1007_s10661_024_12591_5
crossref_primary_10_3390_s23198022
crossref_primary_10_2166_wst_2021_343
crossref_primary_10_2166_wst_2021_031
crossref_primary_10_1016_j_compchemeng_2022_108126
crossref_primary_10_1016_j_jenvman_2023_118804
crossref_primary_10_1016_j_jprocont_2021_01_001
crossref_primary_10_1007_s11783_023_1667_3
Cites_doi 10.7551/mitpress/3206.001.0001
10.1093/comjnl/bxq003
10.1109/MSP.2013.2250352
10.1002/bit.21220
10.1101/gr.1262503
10.1016/j.isatra.2007.04.001
10.1016/j.watres.2012.08.035
10.2166/wst.2006.143
10.1016/j.ces.2003.09.012
10.1016/j.compchemeng.2015.08.018
10.1016/j.jprocont.2016.04.003
10.1109/CAMSAP.2015.7383840
10.1109/MAES.2010.5546308
10.1016/j.watres.2011.12.005
10.1016/j.chemolab.2016.07.002
10.1016/j.envsoft.2011.06.001
10.1016/j.jprocont.2014.01.012
10.1016/j.ymssp.2014.07.011
10.1021/ie504185j
10.1016/S0003-2670(00)86332-1
ContentType Journal Article
Copyright Copyright IWA Publishing Jun 2017
Copyright_xml – notice: Copyright IWA Publishing Jun 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QH
7UA
7X7
7XB
88E
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FYUFA
GHDGH
H96
H97
HCIFZ
K9.
L.G
L6V
M0S
M1P
M7S
PCBAR
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
ADTPV
AOWAS
DF7
DF2
DOI 10.2166/wst.2017.162
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aqualine
Water Resources Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Health Research Premium Collection
Health Research Premium Collection (Alumni)
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Engineering Database
ProQuest Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Mälardalens högskola
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
Aqualine
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1996-9732
EndPage 2963
ExternalDocumentID oai_DiVA_org_uu_329772
oai_DiVA_org_mdh_35271
28659535
10_2166_wst_2017_162
Genre Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID ---
-~X
0R~
123
4.4
53G
7X7
88E
8CJ
8FE
8FG
8FH
8FI
8FJ
AAJVE
AAYXX
ABFYC
ABJCF
ABLGR
ABUWG
ACGFO
ACIWK
AECGI
AENEX
AEUYN
AFKRA
AFRAH
AJXRC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BGLVJ
BHPHI
BKSAR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1J
DU5
EBS
EJD
F5P
FDB
FYUFA
GEUZO
GROUPED_DOAJ
H13
HCIFZ
HFPTO
HMCUK
HZ~
L6V
L7B
M1P
M7S
O9-
OK1
P2P
PCBAR
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
R0Z
RHI
SJN
TN5
UKHRP
Y6R
~02
--K
1B1
29R
AAEDT
AAFWJ
AALRI
AAQXK
AAXUO
ABWVN
ACRPL
ADMUD
ADNMO
AGQPQ
AGVJA
AITUG
ALIPV
CGR
CUY
CVF
ECM
EIF
FEDTE
FGOYB
HVGLF
IHE
M41
NPM
NQ-
R2-
RIG
ROL
RPZ
UHS
~KM
3V.
7QH
7UA
7XB
8FK
C1K
DWQXO
F1W
H96
H97
K9.
L.G
PKEHL
PQEST
PQUKI
PRINS
7X8
ADTPV
AFPKN
AOWAS
DF7
DF2
ID FETCH-LOGICAL-c393t-3733004c3b6f09dd9b4fb1bbc109d7b8040b90f1e079821369fbe996952e11f43
IEDL.DBID BENPR
ISSN 0273-1223
1996-9732
IngestDate Tue Sep 09 23:05:14 EDT 2025
Sat Oct 11 06:59:31 EDT 2025
Wed Oct 01 14:43:35 EDT 2025
Tue Oct 07 06:43:07 EDT 2025
Mon Jul 21 06:07:21 EDT 2025
Thu Apr 24 23:06:32 EDT 2025
Wed Oct 01 02:35:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-3733004c3b6f09dd9b4fb1bbc109d7b8040b90f1e079821369fbe996952e11f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 28659535
PQID 1921169323
PQPubID 2044520
PageCount 12
ParticipantIDs swepub_primary_oai_DiVA_org_uu_329772
swepub_primary_oai_DiVA_org_mdh_35271
proquest_miscellaneous_1914847208
proquest_journals_1921169323
pubmed_primary_28659535
crossref_primary_10_2166_wst_2017_162
crossref_citationtrail_10_2166_wst_2017_162
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-01
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Water science and technology
PublicationTitleAlternate Water Sci Technol
PublicationYear 2017
Publisher IWA Publishing
Publisher_xml – name: IWA Publishing
References Garnett (2020032802560586200_WST-EM161665R1C7) 2010; 53
Rasmussen (2020032802560586200_WST-EM161665R1C23) 2010; 11
Askarian (2020032802560586200_WST-EM161665R1C3) 2016; 84
Perez-Cruz (2020032802560586200_WST-EM161665R1C19) 2013; 30
Ranjan (2020032802560586200_WST-EM161665R1C22) 2016; 42
Yoo (2020032802560586200_WST-EM161665R1C29) 2007; 96
Aarnio (2020032802560586200_WST-EM161665R1C1) 1986; 191
Shang (2020032802560586200_WST-EM161665R1C27) 2014; 24
Svensson (2020032802560586200_WST-EM161665R1C28) 2015
Boškoski (2020032802560586200_WST-EM161665R1C5) 2015; 52–53
Kulin (2020032802560586200_WST-EM161665R1C14) 1984
Qin (2020032802560586200_WST-EM161665R1C20) 2012; 46
Liu (2020032802560586200_WST-EM161665R1C16) 2015; 54
Moles (2020032802560586200_WST-EM161665R1C18) 2003; 13
Schraa (2020032802560586200_WST-EM161665R1C26) 2006; 53
Lee (2020032802560586200_WST-EM161665R1C15) 2004; 59
2020032802560586200_WST-EM161665R1C2
Gernaey (2020032802560586200_WST-EM161665R1C8) 2011; 26
Dolenc (2020032802560586200_WST-EM161665R1C30) 2016
Ažman (2020032802560586200_WST-EM161665R1C4) 2007; 46
Liu (2020032802560586200_WST-EM161665R1C17) 2016; 157
Kay (2020032802560586200_WST-EM161665R1C12) 1998
Quiñonero-Candela (2020032802560586200_WST-EM161665R1C21) 2005; 6
Južnič-Zonta (2020032802560586200_WST-EM161665R1C11) 2012; 46
Schön (2020032802560586200_WST-EM161665R1C25) 2015
Kohavi (2020032802560586200_WST-EM161665R1C13) 1998; 30
2020032802560586200_WST-EM161665R1C10
Rasmussen (2020032802560586200_WST-EM161665R1C24) 2005
2020032802560586200_WST-EM161665R1C6
Gustafsson (2020032802560586200_WST-EM161665R1C9) 2010; 25
References_xml – volume-title: Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)
  year: 2005
  ident: 2020032802560586200_WST-EM161665R1C24
  doi: 10.7551/mitpress/3206.001.0001
– start-page: 525
  year: 2016
  ident: 2020032802560586200_WST-EM161665R1C30
  article-title: Accounting for modelling errors in model-based diagnosis by using Gaussian process models
  publication-title: Conference on Control and Fault-Tolerant Systems, SysTol
– volume: 53
  start-page: 1430
  issue: 9
  year: 2010
  ident: 2020032802560586200_WST-EM161665R1C7
  article-title: Sequential Bayesian prediction in the presence of changepoints and faults
  publication-title: Computer Journal
  doi: 10.1093/comjnl/bxq003
– volume: 30
  start-page: 40
  issue: 4
  year: 2013
  ident: 2020032802560586200_WST-EM161665R1C19
  article-title: Gaussian processes for nonlinear signal processing: an overview of recent advances
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2013.2250352
– ident: 2020032802560586200_WST-EM161665R1C10
– volume: 96
  start-page: 687
  issue: 4
  year: 2007
  ident: 2020032802560586200_WST-EM161665R1C29
  article-title: Multi-model statistical process monitoring and diagnosis of a sequencing batch reactor
  publication-title: Biotechnology and Bioengineering
  doi: 10.1002/bit.21220
– volume: 13
  start-page: 2467
  issue: 11
  year: 2003
  ident: 2020032802560586200_WST-EM161665R1C18
  article-title: Parameter estimation in biochemical pathways: a comparison of global optimization methods
  publication-title: Genome Research
  doi: 10.1101/gr.1262503
– volume: 46
  start-page: 443
  issue: 4
  year: 2007
  ident: 2020032802560586200_WST-EM161665R1C4
  article-title: Application of Gaussian processes for black-box modelling of biosystems
  publication-title: ISA Transactions
  doi: 10.1016/j.isatra.2007.04.001
– volume: 46
  start-page: 6121
  issue: 18
  year: 2012
  ident: 2020032802560586200_WST-EM161665R1C11
  article-title: Multi-criteria analyses of wastewater treatment bio-processes under an uncertainty and a multiplicity of steady states
  publication-title: Water Research
  doi: 10.1016/j.watres.2012.08.035
– volume: 30
  start-page: 271
  issue: 2
  year: 1998
  ident: 2020032802560586200_WST-EM161665R1C13
  article-title: Glossary of terms
  publication-title: Machine Learning
– volume: 53
  start-page: 375
  issue: 4-5
  year: 2006
  ident: 2020032802560586200_WST-EM161665R1C26
  article-title: Fault detection for control of wastewater treatment plants
  publication-title: Water Science & Technology
  doi: 10.2166/wst.2006.143
– volume-title: Recommended Practice for the Use of Parshall Flumes and Palmer-Bowlus Flumes in Wastewater Treatment Plants
  year: 1984
  ident: 2020032802560586200_WST-EM161665R1C14
– ident: 2020032802560586200_WST-EM161665R1C6
– volume: 59
  start-page: 223
  issue: 1
  year: 2004
  ident: 2020032802560586200_WST-EM161665R1C15
  article-title: Nonlinear process monitoring using kernel principal component analysis
  publication-title: Chemical Engineering Science
  doi: 10.1016/j.ces.2003.09.012
– volume: 84
  start-page: 104
  year: 2016
  ident: 2020032802560586200_WST-EM161665R1C3
  article-title: Fault diagnosis of chemical processes with incomplete observations: a comparative study
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2015.08.018
– volume: 6
  start-page: 1939
  year: 2005
  ident: 2020032802560586200_WST-EM161665R1C21
  article-title: A unifying view of sparse approximate Gaussian process regression
  publication-title: Journal of Machine Learning Research
– volume: 42
  start-page: 125
  year: 2016
  ident: 2020032802560586200_WST-EM161665R1C22
  article-title: Robust Gaussian process modeling using em algorithm
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2016.04.003
– year: 2015
  ident: 2020032802560586200_WST-EM161665R1C28
  article-title: Marginalizing Gaussian process hyperparameters using sequential Monte Carlo
  doi: 10.1109/CAMSAP.2015.7383840
– volume: 25
  start-page: 53
  issue: 7 PART 2
  year: 2010
  ident: 2020032802560586200_WST-EM161665R1C9
  article-title: Particle filter theory and practice with positioning applications
  publication-title: IEEE Aerospace and Electronic Systems Magazine
  doi: 10.1109/MAES.2010.5546308
– volume: 46
  start-page: 1133
  issue: 4
  year: 2012
  ident: 2020032802560586200_WST-EM161665R1C20
  article-title: Wastewater quality monitoring system using sensor fusion and machine learning techniques
  publication-title: Water Research
  doi: 10.1016/j.watres.2011.12.005
– volume-title: Fundamentals of Statistical Signal Processing: Detection Theory
  year: 1998
  ident: 2020032802560586200_WST-EM161665R1C12
– volume: 157
  start-page: 85
  year: 2016
  ident: 2020032802560586200_WST-EM161665R1C17
  article-title: Development of multiple-step soft-sensors using a Gaussian process model with application for fault prognosis
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2016.07.002
– volume: 26
  start-page: 1255
  issue: 11
  year: 2011
  ident: 2020032802560586200_WST-EM161665R1C8
  article-title: Dynamic influent pollutant disturbance scenario generation using a phenomenological modelling approach
  publication-title: Environmental Modelling and Software
  doi: 10.1016/j.envsoft.2011.06.001
– volume: 24
  start-page: 223
  issue: 3
  year: 2014
  ident: 2020032802560586200_WST-EM161665R1C27
  article-title: Data-driven soft sensor development based on deep learning technique
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2014.01.012
– volume: 52–53
  start-page: 327
  year: 2015
  ident: 2020032802560586200_WST-EM161665R1C5
  article-title: Bearing fault prognostics using Rényi entropy based features and Gaussian process models
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2014.07.011
– year: 2015
  ident: 2020032802560586200_WST-EM161665R1C25
  article-title: Sequential Monte Carlo methods for system identification
– ident: 2020032802560586200_WST-EM161665R1C2
– volume: 54
  start-page: 5037
  issue: 18
  year: 2015
  ident: 2020032802560586200_WST-EM161665R1C16
  article-title: Auto-switch Gaussian process regression-based probabilistic soft sensors for industrial multigrade processes with transitions
  publication-title: Industrial & Engineering Chemistry Research
  doi: 10.1021/ie504185j
– volume: 191
  start-page: 457
  issue: C
  year: 1986
  ident: 2020032802560586200_WST-EM161665R1C1
  article-title: Application of partial least-squares modelling in the optimization of a waste-water treatment plant
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(00)86332-1
– volume: 11
  start-page: 3011
  year: 2010
  ident: 2020032802560586200_WST-EM161665R1C23
  article-title: Gaussian processes for machine learning (GPML) toolbox
  publication-title: Journal of Machine Learning Research
SSID ssj0007340
Score 2.397662
Snippet Monitoring and fault detection methods are increasingly important to achieve a robust and resource efficient operation of wastewater treatment plants (WWTPs)....
SourceID swepub
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2952
SubjectTerms Ammonium
Ammonium compounds
Artificial intelligence
Bayesian regression
Case studies
Computer simulation
Data
Detection
Electrical Engineering with specialization in Automatic Control
Elektroteknik med inriktning mot reglerteknik
energi- och miljöteknik
Energy- and Environmental Engineering
Environmental Monitoring - methods
Fault detection
Flow rates
Flow velocity
Gaussian process
Gaussian processes
Interpolation
kernel
Learning algorithms
Machine learning
Maximum likelihood estimation
Missing data
Monitoring
Monitoring methods
Monte Carlo Method
Monte Carlo simulation
Normal Distribution
Parameter estimation
Principal components analysis
process monitoring
Sensors
Signal processing
Statistical methods
Waste Disposal, Fluid - methods
Waste Disposal, Fluid - statistics & numerical data
Waste Water - statistics & numerical data
Wastewater
Wastewater treatment
Wastewater treatment plants
Title Gaussian process regression for monitoring and fault detection of wastewater treatment processes
URI https://www.ncbi.nlm.nih.gov/pubmed/28659535
https://www.proquest.com/docview/1921169323
https://www.proquest.com/docview/1914847208
https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-35271
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-329772
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1996-9732
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0007340
  issn: 0273-1223
  databaseCode: 7X7
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1996-9732
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0007340
  issn: 0273-1223
  databaseCode: BENPR
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1996-9732
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0007340
  issn: 0273-1223
  databaseCode: 8FG
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB612wscEC2ULpTKSHBCUWM7j_UBoVJ2WyGxQoiivZk4tgtSmyybRP37zORVHgIukSKPnMfnsWfsmW8Anhur4tzEPHA-MkEkExtkJoqDGEeTsJGVpq0S8X6ZnF9E71bxaguWQy4MhVUOc2I7Udsypz3yY-LtIuIQIV-vvwdUNYpOV4cSGllfWsG-ainGtmFHEDPWBHbezJcfPo5zcyqjbtcllQHHlbELhRc8SY5vKgqt5LTfIn5dpP6wPH-jFW2XosV9uNfbkOykA30XtlyxB3d_Yhbcg_35bQIbivYaXD2AL2dZU1HiJFt3KQJs4y67WNiCoQHLrlslp15YVljms-aqZtbVbchWwUrPbrKKdtwQEDaGqQ-9ueohXCzmn07Pg77KQpBLJWucYSSxbuXSJD5U1ioTecONyTnepWaGWm5U6LkLUzUTXCbKG4dekoqF49xHch8mRVm4A2BGqTyRiec-dFGGhptH_1LmBm0EaaTlU3g5_Fad9xTkVAnjSqMrQiBoBEETCBpBmMKLUXrdUW_8Re5wQEj3Cljp2-EyhWdjM6oOnYdkhSsbkkFfMEpFOJvCow7Z8UGUsKtiGeNLdFCPLcTH_fbb5xNdbi71tf2q0YRN-X_kmkZLgaa2ePzvl30Cd-izuli0Q5jUm8Y9RaunNkewna5SvM4WZ0f9sP4Bk7QFZw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKewAOCAqFLQWMRE8oavxIsj5UqNAtW9quEGpRb24c26VSm102iVb8OX4bM3mVh4BTj5FHTuIZz8Oe-YaQV8aqKDMRC5yXJpAitkFqZBREIE3cSitM3SXiaBKPT-SH0-h0iXzvamEwrbLTibWittMMz8i3ELcLgUO4eDP7GmDXKLxd7VpopG1rBbtdQ4y1hR0H7tsCQrhie38X-L3J-d7o-N04aLsMBJlQooQdJhB1KhMm9qGyVhnpDTMmY_CUmCFIuVGhZy5M1JAzEStvHEQJKuKOMS8FzHuLrEghFQR_K29Hk4-feluQCNmc8iQiYGCJm9R7zuJ4a1FgKifD8x3-q1H8w9P9Dca0Nn1798m91melO42QPSBLLl8ld39CMlwla6PrgjkgbTVG8ZCcvU-rAgs16awpSaBzd97k3uYUHGZ6VSsVnIWmuaU-rS5Lal1Zp4jldOrpIi3whA8EgPZp8d1srnhETm5kvdfIcj7N3RNCjVJZLGLPfOhkCo6ih3hWZAZ8EmGEZQPyultWnbWQ59h541JD6INM0MAEjUzQwIQB2eypZw3Ux1_oNjoO6XbDF_paPAfkZT8MWxXvX9LcTSukgdhTJjwcDsjjhrP9i7BAWEUigo9oWN2PIP737sXnHT2dn-sr-0WDy5yw_9BVlRYcXHu-_u-PfUFuj4-PDvXh_uTgKbmDv9jkwW2Q5XJeuWfgcZXmeSvWlJzd9E76AcglPz4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcEBRathQwEj2haGM7j_UBoYrt0lKoOFC0NzeO7YLUJttNohV_jV_HTJykPASceowych7fjD1jfzNDyAttZJzrmAXWRTqIRGKCTEdxEIM2cRMZodsuER-Ok4OT6N08nq-R730uDNIq-zmxnahNmeMe-RjrdmHhEC7GrqNFfJzOXi8uA-wghSetfTsNryJH9tsKwrfq1eEUsN7lfLb_6c1B0HUYCHIhRQ3WJbDiVC504kJpjNSR00zrnMFVqieg4VqGjtkwlRPORCKdthAhyJhbxlwkYNwb5CaMIpFOmM6HYA8sJ_L7O6kIGKzBnnTPWZKMVxWSOBnu7PBfl8M_fNzfCpi2i97sHrnbeat0z6vXfbJmiw1y56cahhtkc_8qVQ5Eu7miekBO32ZNhSmadOGTEejSnnnWbUHBVaYX7XSCo9CsMNRlzXlNja1bclhBS0dXWYV7ewA9HQjx_Wi2ekhOruVvb5L1oizsI0K1lHkiEsdcaKMMXEQHkazINXgjQgvDRuRl_1tV3hU7x54b5wqCHgRBAQgKQVAAwojsDtILX-TjL3I7PUKqM_VKXSnmiDwfboOR4slLVtiyQRmIOqOUh5MR2fLIDg_C1GAZixhewkM93MHK39Ovn_dUuTxTF-aLAmc5Zf-RaxolODj1fPvfL_uM3AL7Ue8Pj48ek9v4hZ4At0PW62Vjn4CrVeunrU5TcnrdRvQDDpA82A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gaussian+process+regression+for+monitoring+and+fault+detection+of+wastewater+treatment+processes&rft.jtitle=Water+science+and+technology&rft.au=Samuelsson%2C+Oscar&rft.au=Anders%2C+Bj%C3%B6rk&rft.au=Zambrano%2C+Jes%C3%BAs&rft.au=Carlsson%2C+Bengt&rft.date=2017-06-01&rft.issn=0273-1223&rft.volume=75&rft.issue=12&rft.spage=2952&rft_id=info:doi/10.2166%2Fwst.2017.162&rft.externalDocID=oai_DiVA_org_mdh_35271
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0273-1223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0273-1223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0273-1223&client=summon