Improvement of CSF, WM and GM Tissue Segmentation by Hybrid Fuzzy — Possibilistic Clustering Model based on Genetic Optimization Case Study on Brain Tissues of Patients with Alzheimer’s Disease

Brain tissue segmentation is one of the most important parts of clinical diagnostic tools. Fuzzy C-mean (FCM) is one of the most popular clustering based segmentation methods. However FCM does not robust against noise and artifacts such as partial volume effect (PVE) and inhomogeneity. In this paper...

Full description

Saved in:
Bibliographic Details
Published inThe International journal of networked and distributed computing (Online) Vol. 6; no. 2; pp. 63 - 77
Main Authors Lazli, Lilia, Boukadoum, Mounir
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.04.2018
Springer
Subjects
Online AccessGet full text
ISSN2211-7938
2211-7946
2211-7946
DOI10.2991/ijndc.2018.6.2.2

Cover

Abstract Brain tissue segmentation is one of the most important parts of clinical diagnostic tools. Fuzzy C-mean (FCM) is one of the most popular clustering based segmentation methods. However FCM does not robust against noise and artifacts such as partial volume effect (PVE) and inhomogeneity. In this paper, a new approach for robust brain tissue segmentation is described. The proposed method quantifies the volumes of white matter (WM), gray matter (GM) and cerebrospinal fluid(CSF) tissues using hybrid clustering process which based on: (1) FCM algorithm to get the initial center partition. (2) Genetic algorithms (GA) to achieve optimization and to determine the appropriate cluster centers and the fuzzy corresponding partition matrix. (3) Possibilistic C-Means (PCM) algorithm for volumetric measurements of WM, GM, and CSF brain tissues. (4) Rule of the possibility maximum to compute the labeled image in decision step. The experiments were realized using different real and synthetic brain images from patients with Alzheimer’s disease. We used Tanimoto coefficient, sensitivity and specificity validity indexes to validate the proposed hybrid approach and we compared the performance with several competing methods namely FCM and PCM algorithms. Good result was achieved which demonstrates the efficiency of proposed clustering approach and that it can outperforms competing methods especially in the presence of PVE and when the noise and spatial intensity inhomogeneity are high.
AbstractList Brain tissue segmentation is one of the most important parts of clinical diagnostic tools. Fuzzy C-mean (FCM) is one of the most popular clustering based segmentation methods. However FCM does not robust against noise and artifacts such as partial volume effect (PVE) and inhomogeneity. In this paper, a new approach for robust brain tissue segmentation is described. The proposed method quantifies the volumes of white matter (WM), gray matter (GM) and cerebrospinal fluid(CSF) tissues using hybrid clustering process which based on: (1) FCM algorithm to get the initial center partition. (2) Genetic algorithms (GA) to achieve optimization and to determine the appropriate cluster centers and the fuzzy corresponding partition matrix. (3) Possibilistic C-Means (PCM) algorithm for volumetric measurements of WM, GM, and CSF brain tissues. (4) Rule of the possibility maximum to compute the labeled image in decision step. The experiments were realized using different real and synthetic brain images from patients with Alzheimer’s disease. We used Tanimoto coefficient, sensitivity and specificity validity indexes to validate the proposed hybrid approach and we compared the performance with several competing methods namely FCM and PCM algorithms. Good result was achieved which demonstrates the efficiency of proposed clustering approach and that it can outperforms competing methods especially in the presence of PVE and when the noise and spatial intensity inhomogeneity are high.
Author Boukadoum, Mounir
Lazli, Lilia
Author_xml – sequence: 1
  givenname: Lilia
  surname: Lazli
  fullname: Lazli, Lilia
  email: lilia.lazli.1@ens.etsmtl.ca
  organization: CoFaMic Research Centre, Department of Computer Science, UQÀM, University of Quebec, Department of Electrical Engineering, ÉTS, University of Quebec
– sequence: 2
  givenname: Mounir
  surname: Boukadoum
  fullname: Boukadoum, Mounir
  organization: CoFaMic Research Centre, Department of Computer Science, UQÀM, University of Quebec
BookMark eNqNkU1u2zAQhYUiBZqm2XfJA9SKRP2QWqZq7RiIkQA20CVBikOHhkQJpNRAXuUQ3fRAvUhOUioysijQohuSIN_3ZjjvfXBmWgNB8DGOQlwU8ZU-GFmFOIppmIc4xG-Cc4zjeEGKND97PSf0XXDpnBZRFkc0IzQ7D36tm86236EB06NWoXK7_IS-bRA3Eq02aKedGwBtYT8JeK9bg8SIbkZhtUTL4Xgc0fPTD3TfTr661q7XFSrrwfVgtdmjTSuhRoI7kMizKzAwKe66Xjf6OBuW_hVt-0GOk-Sz5dqcCruppXuv8sUdetT9A7qujw-gG7DPTz8d-qIdePpD8Fbx2sHlab8Idsuvu_JmcXu3WpfXt4sqKZJ-gRXkRRqlkMbKLyrKVEpoTDIsckykFHmaRwKSnJKIACGYcpwBzZJEUVWp5CJYz7ay5QfWWd1wO7KWa_Zy0do949Z_rwaWFkJUBU-wpDLlUggivJ-seJbIIlOZ94pnr8F0fHzkdf1qGEdsSpW9pMqmVFnOMMOeiWamsn7eFtT_IPkfSKXnHHs_5_pf4Kk_101BgmWHdrDGT_fvzG-t69DC
CitedBy_id crossref_primary_10_3390_s19112645
crossref_primary_10_2174_1573405617666211126154101
crossref_primary_10_1016_j_bbe_2020_07_001
ContentType Journal Article
Copyright the Authors 2018
Copyright_xml – notice: the Authors 2018
DBID C6C
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.2991/ijndc.2018.6.2.2
DatabaseName Springer Nature OA Free Journals
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2211-7946
EndPage 77
ExternalDocumentID oai_doaj_org_article_49bbc9a32d8d4adbb7b772dca53d95f5
10.2991/ijndc.2018.6.2.2
10_2991_ijndc_2018_6_2_2
GroupedDBID 0R~
AAFWJ
AAJSJ
AAKKN
AAYZJ
ABEEZ
ACACY
ACULB
ADBBV
AFGXO
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
C24
C6C
EBLON
EBS
GROUPED_DOAJ
OK1
RSV
SOJ
AASML
AAYXX
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c393t-2fe69404e41f4e4f05f4781752b627ddb6460be368707e7728a25e8533f8fcf3
IEDL.DBID DOA
ISSN 2211-7938
2211-7946
IngestDate Fri Oct 03 12:51:23 EDT 2025
Tue Aug 19 17:49:22 EDT 2025
Thu Apr 24 23:00:17 EDT 2025
Tue Jul 01 01:28:07 EDT 2025
Fri Feb 21 02:42:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Fuzzy c-means algorithm
Alzheimer’s disease
Hybrid reasoning
Possibilistic c-means algorithm
Brain tissue clustering
Genetic algorithms
Language English
License cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-2fe69404e41f4e4f05f4781752b627ddb6460be368707e7728a25e8533f8fcf3
OpenAccessLink https://doaj.org/article/49bbc9a32d8d4adbb7b772dca53d95f5
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_49bbc9a32d8d4adbb7b772dca53d95f5
unpaywall_primary_10_2991_ijndc_2018_6_2_2
crossref_primary_10_2991_ijndc_2018_6_2_2
crossref_citationtrail_10_2991_ijndc_2018_6_2_2
springer_journals_10_2991_ijndc_2018_6_2_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle The International journal of networked and distributed computing (Online)
PublicationTitleAbbrev Int J Netw Distrib Comput
PublicationYear 2018
Publisher Springer Netherlands
Springer
Publisher_xml – name: Springer Netherlands
– name: Springer
References BezdekJ-CHallL-OClarkMGoldofDClarkeL-PMedical image analysis with fuzzy modelsStat. Methods Med. Res19976191214
GroverNA study of various fuzzy clustering algorithmsInternational Journal of Engineering Research201433177181
Bala-GanesanTSukaneshRSegmentation of Brain MR Images using Fuzzy Clustering Method with Sillhouette MethodJournal on Engineering and Applied Sciences2008310792795
K. Xiao, S. Hock Ho and A. Bargiela, Automatic Brain MRI Segmentation Scheme Based on Feature Weighting Factors Selection on Fuzzy C-Means Clustering Algorithms with Gaussian Smoothing, International Journal of Computer Intelligence in Bioinformatics and Systems Biology, (2010), vol. 1(3).
M. Shasidhar, V. Sudheer Raja and B. Vijay Kumar, MRI Brain Image Segmentation Using Modified Fuzzy C-Means Clustering Algorithm, Communication Systems and Network Technologies (CSNT), Int. Conference on. (2011), pp. 473–478. doi: https://doi.org/10.1109/CSNT.2011.102
D. Kang, S. Y. Shin, C. O. Sung, J. Y. Kim, J.-K. Pack and H. D. Choi, “An improved method of breast MRI segmentation with Simplified K-means clustered images,” in Proceedings of the 2011 ACM Symposium on Research in Applied Computation, Miami, FL, Oct. 1922, pp. 226–31, 2011.
G-C. Karmakar, S-L. Dooley and S-M. Rahman, Review on fuzzy image segmentation techniques in Design and Management of Multimedia Information Systems: Opportunities and Challenges, Idea Group Publishing, USA, (2001), pp. 282–313.
J. Yu and Y. Wang, Molecular Image Segmentation Based on Improved Fuzzy Clustering, in proc. of International Journal on Biomedical Imaging, Jan. (2007), no. 1.
JackCJr.BernsteinMFoxNThompsonPThe alzheimer’s disease neuroimaging initiative (adni): Mri methodsJ Magn Reson Imaging200827685691
VasudaPImproved Fuzzy C-Means Algorithm for MR Brain Image SegmentationInt. Journal on Computer Science and Engineering2010020517131715
R. Harmouche, L. Collins, D. Arnold, S. Francis and T. Arbel, Bayesian MS lesion classification modeling regional and local spatial information, in The 18th International Conference on Pattern Recognition (ICPR), Hong Kong, IEEE, (2006), pp. 984–7.
HaralickR-MShapiroL-GSurvey: image segmentation techniquesComputer Vision, Graphics, and Image Processing198529100132
CaiWChenSZhangDFast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentationPattern Recognition200740825838
CaldairouBNicolasPPiotrHColinSFrancoisRA non-local fuzzy segmentation method: application to brain MRIPattern Recognition20114419161927
S. Shen, W. Sandham, M. Granat, and A. Sterr, MRI Fuzzy Segmentation of Brain Tissue using Neighborhood Attraction with Neural-Network Optimization, IEEE Transaction on Information Technology in Biomedicine, (2005), vol. 9(3).
Ferreira da SilvaA-RBayesian mixture models of variable dimension for image segmentationComput Methods Programs Biomed200994114
D-E. Goldberg, Algorithmes génétiques : Exploration, optimisation et apprentissage automatique, Addison Wesley, (1997).
BarraVBoireJ-YTissue Segmentation on MR Images of the Brain by Possibilistic Clustering on a 3D Wavelet RepresentationJournal of magnetic resonance imaging200011267278
V. Barra and J-Y Boire, Quantification of brain tissue volumes using MR/MR Fusion, Proceedings of the 22rd Annual EMBS International Conference, Chicago IL, July 23–28, (2000), pp.1451–1454,.
K. Held, E-R. Kops, B-J. Krause et al., Markov Random Field Segmentation of Brain Images, IEEE Transactions on Medical Imaging, (1997), pp. 16878–886.
ZhangDShenDMulti-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s diseaseNeuro Image201259895907
S. Saha, and S. Bandyopadhyay, MRI Brain Image Segmentation by Fuzzy Symmetry Based Genetic Clustering Technique, IEEE Congress on Evolutionary Computation (CEC) , (2007), pp.4417–4424.
YuSTrancheventL-CLiuXGlanzelWSuykensJ ADe MoorBOptimized data fusion for kernel K-means clusteringPattern Anal. Mach. Intell., IEEE Trans201234510319
LászlóSSzilágyiM-SBenyóBBenyóZIntensity inhomogeneity compensation and segmentation of MR brain images using hybrid c-means clustering modelsBiomedical Signal Processing and Control20116312
J-C. Bezdeck, R. Ehrlich and W. Full, FCM: Fuzzy c-means algorithm, Computers and Geoscience, (1984).
S. Murugavalli and V. Rajamani, A High Speed Parallel Fuzzy C-Mean Algorithm for Brain Tumor Segmentation, in proc. of BIME Journal, December (2006), vol. 6, no. 1.
NikhilNPalN-RPalS-KKellerJ-MBezdekJ-CA Possibilistic Fuzzy c-Means Clustering AlgorithmIEEE Transactions on Fuzzy Systems2005134517530
JiZXiaYSunQCaoGInterval-valued possibilistic fuzzy C means clustering algorithmFuzzy Sets and Systems2014253138156
Q. Mahmood, A. Chodorowski and A. Mehnert, A novel Bayesian approach to adaptive mean shift segmentation of brain images, Proc. IEEE Symposium on Computer-Based Medical Systems (CBMS), Rome, 20–22 June, (2012). https://doi.org/10.1109/CBMS.2012.6266304
García-LorenzoDFrancisSNarayananSArnoldD LCollinsD LouisReview of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imagingMed. Image Anal2013171118
S-Z. Beevi, M-M. Sathik and K. Senthamaraikannan, A Robust Fuzzy Clustering Technique with Spatial Neighborhood Information for Effective Medical Image Segmentation, Int. Journal of Computer Science and Information Security, vol. 7(3) (2010).
KrishnapuramRKellerJ-MThe possibilistic c-means algorithm: Insights and recommendationIEEE Transactions on Fuzzy Systems199643385396
D-L. Pham, Fuzzy clustering with spatial constraints In. Presented at IEEE proceedings of the international conference image processing, (2002), pp 65–68.
L. Spirkovska, A summary of image segmentation techniques, NASA Technical Memorandum, (1993), pp. 1–11.
ZexuanXYongQChenQ-NFeng. Fuzzy c-means clustering with weighted image patch for image segmentationApplied Soft Computing20121216591667
AnejaDRawatI-J Tarun KumarFuzzy Clustering Algorithms for Effective Medical Image SegmentationIntelligent Systems and Applications2013115561
BricqSColletC-HArmspachJ-PUnifying framework for multimodal brain MRI segmentation based on Hidden Markov ChainsMed. Image. Anal200812639652
R. Krishnapuram, Generation of membership functions via possibilistic clustering, IEEE World Congress on Computational Intelligence, (1994), USA, pp. 902–908.
ZadehL-AFuzzy sets as a basis for a theory of possibilityFuzzy Sets and Systems19781328
YangXFeiBA multiscale and multiblock fuzzy Cmeans classification method for brain MR imagesMed. Phys20113862879
MazouziSBatoucheMRange Image Segmentation Improvement by Fuzzy Edge Regularizationproc. of Information Technology Journal2008718490
V. Barra, P. Briandet and J-Y Boire, Fusion in Medical Imaging: Theory, Interests and Industrial Applications, MEDINFO, IOS Press, (2001), pp. 896–900.
BalafarMFuzzy C-mean based brain MRI segmentation algorithmsArtifi. Intell. Rev20144134419
W. Cui, Y. Wang Yangyu Fan, Y. Feng and T. Lei, Localized FCM Clustering with Spatial Information for Medical Image Segmentation and Bias Field Estimation, Int J. Biomed Imaging, (2013). doi: https://doi.org/10.1155/2013/930301
N. Mohamed, M. Ahmed and A. Farag, Modified fuzzy c-mean in medical image segmentation, Engineering in Medicine and Biology Society, Proceedings of the 20th Annual International Conference of the IEEE, (1998), pp. 3429–3432.
AwateS-PTasdizenTFosterNWhitakerR-TAdaptive Markov modeling for mutual-information-based, unsupervised MRI brain-tissue classificationMed. Image. Anal200610726739
DunnJ-CA fuzzy relative of the ISODATA process and its use in detecting compact well-separated clustersJournal of Cybernetics2008333257
SuriJSinghSRedenLComputer vision and pattern recognition techniques for 2-D and 3-D cerebral cortical segmentation (part-I): A state of the art reviewPattern analysis and application2002514647
ZadehL-AFuzzy setsInformation and Control196583338353
A. Colin and J-Y Boire, MRI-SPECT image fusion for the synthesis of high resolution functional images: a prospective study, Proceedings - 19th Int. Conference - IEEE/EMBS, Chicago, IL. USA, Oct. 30–Nov. 2, (1997), pp.499–501.
S-V. Aruna Kumar, B-S. Harish, V-N. Manjunath Aradhya, A picture fuzzy clustering approach for brain tumor Segmentation, Cognitive Computing and Information Processing (CCIP), Second Int. Conference on, (2016), pp. 12–13. doi: https://doi.org/10.1109/CCIP.2016.7802852
PalN-RPalS-KA review on image segmentation techniquesPattern Recognition199326912771294
J-C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Kluwer Acad. Publ., Norwell, MA, USA (1981).
DenœuxTMassonM-HEVCLUS: evidential clustering of proximity dataIEEE Trans. Syst. Man Cybern20043495109
RuspiniE-HA new approach to clusteringInformation and Control19691512232
N-E. El Harchaoui, M. Ait Kerroum, A. Hammouch, M. Ouadou and D. Aboutajdine, Unsupervised Approach Data Analysis Based on Fuzzy Possibilistic Clustering: Application to Medical Image MRI, Computational Intelligence and Neuroscience, (2013). https://doi.org/10.1155/2013/435497
KrishnapuramRKellerJ-MA possibilistic approach to clusteringInternational Journal of Fuzzy Systems19932298110
PhamD-LPrinceJ-LAn adaptive fuzzy c-means algorithm for image segmentation in the presence of intensity inhomogeneitiesPattern Recognition Letters19992015768
L-A. Zadeh, Fuzzy sets and their application to pattern classification and clustering analysis, in Classification and Clustering, J. V. Ryzin, Ed., (1977), pp. 251–282.
Singh PKN-S Karan SikkaMishraA-KA fully automated algorithm under modified FCM framework for improved brain MR image segmentationMagn Reson Imaging2009279941004
References_xml – reference: Q. Mahmood, A. Chodorowski and A. Mehnert, A novel Bayesian approach to adaptive mean shift segmentation of brain images, Proc. IEEE Symposium on Computer-Based Medical Systems (CBMS), Rome, 20–22 June, (2012). https://doi.org/10.1109/CBMS.2012.6266304
– reference: S-Z. Beevi, M-M. Sathik and K. Senthamaraikannan, A Robust Fuzzy Clustering Technique with Spatial Neighborhood Information for Effective Medical Image Segmentation, Int. Journal of Computer Science and Information Security, vol. 7(3) (2010).
– reference: AwateS-PTasdizenTFosterNWhitakerR-TAdaptive Markov modeling for mutual-information-based, unsupervised MRI brain-tissue classificationMed. Image. Anal200610726739
– reference: YangXFeiBA multiscale and multiblock fuzzy Cmeans classification method for brain MR imagesMed. Phys20113862879
– reference: DunnJ-CA fuzzy relative of the ISODATA process and its use in detecting compact well-separated clustersJournal of Cybernetics2008333257
– reference: García-LorenzoDFrancisSNarayananSArnoldD LCollinsD LouisReview of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imagingMed. Image Anal2013171118
– reference: A. Colin and J-Y Boire, MRI-SPECT image fusion for the synthesis of high resolution functional images: a prospective study, Proceedings - 19th Int. Conference - IEEE/EMBS, Chicago, IL. USA, Oct. 30–Nov. 2, (1997), pp.499–501.
– reference: N. Mohamed, M. Ahmed and A. Farag, Modified fuzzy c-mean in medical image segmentation, Engineering in Medicine and Biology Society, Proceedings of the 20th Annual International Conference of the IEEE, (1998), pp. 3429–3432.
– reference: DenœuxTMassonM-HEVCLUS: evidential clustering of proximity dataIEEE Trans. Syst. Man Cybern20043495109
– reference: AnejaDRawatI-J Tarun KumarFuzzy Clustering Algorithms for Effective Medical Image SegmentationIntelligent Systems and Applications2013115561
– reference: ZhangDShenDMulti-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s diseaseNeuro Image201259895907
– reference: S-V. Aruna Kumar, B-S. Harish, V-N. Manjunath Aradhya, A picture fuzzy clustering approach for brain tumor Segmentation, Cognitive Computing and Information Processing (CCIP), Second Int. Conference on, (2016), pp. 12–13. doi: https://doi.org/10.1109/CCIP.2016.7802852
– reference: BezdekJ-CHallL-OClarkMGoldofDClarkeL-PMedical image analysis with fuzzy modelsStat. Methods Med. Res19976191214
– reference: Ferreira da SilvaA-RBayesian mixture models of variable dimension for image segmentationComput Methods Programs Biomed200994114
– reference: S. Shen, W. Sandham, M. Granat, and A. Sterr, MRI Fuzzy Segmentation of Brain Tissue using Neighborhood Attraction with Neural-Network Optimization, IEEE Transaction on Information Technology in Biomedicine, (2005), vol. 9(3).
– reference: BalafarMFuzzy C-mean based brain MRI segmentation algorithmsArtifi. Intell. Rev20144134419
– reference: NikhilNPalN-RPalS-KKellerJ-MBezdekJ-CA Possibilistic Fuzzy c-Means Clustering AlgorithmIEEE Transactions on Fuzzy Systems2005134517530
– reference: D-L. Pham, Fuzzy clustering with spatial constraints In. Presented at IEEE proceedings of the international conference image processing, (2002), pp 65–68.
– reference: W. Cui, Y. Wang Yangyu Fan, Y. Feng and T. Lei, Localized FCM Clustering with Spatial Information for Medical Image Segmentation and Bias Field Estimation, Int J. Biomed Imaging, (2013). doi: https://doi.org/10.1155/2013/930301
– reference: BricqSColletC-HArmspachJ-PUnifying framework for multimodal brain MRI segmentation based on Hidden Markov ChainsMed. Image. Anal200812639652
– reference: R. Harmouche, L. Collins, D. Arnold, S. Francis and T. Arbel, Bayesian MS lesion classification modeling regional and local spatial information, in The 18th International Conference on Pattern Recognition (ICPR), Hong Kong, IEEE, (2006), pp. 984–7.
– reference: HaralickR-MShapiroL-GSurvey: image segmentation techniquesComputer Vision, Graphics, and Image Processing198529100132
– reference: PhamD-LPrinceJ-LAn adaptive fuzzy c-means algorithm for image segmentation in the presence of intensity inhomogeneitiesPattern Recognition Letters19992015768
– reference: L-A. Zadeh, Fuzzy sets and their application to pattern classification and clustering analysis, in Classification and Clustering, J. V. Ryzin, Ed., (1977), pp. 251–282.
– reference: L. Spirkovska, A summary of image segmentation techniques, NASA Technical Memorandum, (1993), pp. 1–11.
– reference: J-C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Kluwer Acad. Publ., Norwell, MA, USA (1981).
– reference: VasudaPImproved Fuzzy C-Means Algorithm for MR Brain Image SegmentationInt. Journal on Computer Science and Engineering2010020517131715
– reference: ZexuanXYongQChenQ-NFeng. Fuzzy c-means clustering with weighted image patch for image segmentationApplied Soft Computing20121216591667
– reference: Bala-GanesanTSukaneshRSegmentation of Brain MR Images using Fuzzy Clustering Method with Sillhouette MethodJournal on Engineering and Applied Sciences2008310792795
– reference: RuspiniE-HA new approach to clusteringInformation and Control19691512232
– reference: LászlóSSzilágyiM-SBenyóBBenyóZIntensity inhomogeneity compensation and segmentation of MR brain images using hybrid c-means clustering modelsBiomedical Signal Processing and Control20116312
– reference: KrishnapuramRKellerJ-MThe possibilistic c-means algorithm: Insights and recommendationIEEE Transactions on Fuzzy Systems199643385396
– reference: M. Shasidhar, V. Sudheer Raja and B. Vijay Kumar, MRI Brain Image Segmentation Using Modified Fuzzy C-Means Clustering Algorithm, Communication Systems and Network Technologies (CSNT), Int. Conference on. (2011), pp. 473–478. doi: https://doi.org/10.1109/CSNT.2011.102
– reference: S. Saha, and S. Bandyopadhyay, MRI Brain Image Segmentation by Fuzzy Symmetry Based Genetic Clustering Technique, IEEE Congress on Evolutionary Computation (CEC) , (2007), pp.4417–4424.
– reference: K. Xiao, S. Hock Ho and A. Bargiela, Automatic Brain MRI Segmentation Scheme Based on Feature Weighting Factors Selection on Fuzzy C-Means Clustering Algorithms with Gaussian Smoothing, International Journal of Computer Intelligence in Bioinformatics and Systems Biology, (2010), vol. 1(3).
– reference: JackCJr.BernsteinMFoxNThompsonPThe alzheimer’s disease neuroimaging initiative (adni): Mri methodsJ Magn Reson Imaging200827685691
– reference: CaldairouBNicolasPPiotrHColinSFrancoisRA non-local fuzzy segmentation method: application to brain MRIPattern Recognition20114419161927
– reference: G-C. Karmakar, S-L. Dooley and S-M. Rahman, Review on fuzzy image segmentation techniques in Design and Management of Multimedia Information Systems: Opportunities and Challenges, Idea Group Publishing, USA, (2001), pp. 282–313.
– reference: MazouziSBatoucheMRange Image Segmentation Improvement by Fuzzy Edge Regularizationproc. of Information Technology Journal2008718490
– reference: ZadehL-AFuzzy setsInformation and Control196583338353
– reference: V. Barra and J-Y Boire, Quantification of brain tissue volumes using MR/MR Fusion, Proceedings of the 22rd Annual EMBS International Conference, Chicago IL, July 23–28, (2000), pp.1451–1454,.
– reference: BarraVBoireJ-YTissue Segmentation on MR Images of the Brain by Possibilistic Clustering on a 3D Wavelet RepresentationJournal of magnetic resonance imaging200011267278
– reference: S. Murugavalli and V. Rajamani, A High Speed Parallel Fuzzy C-Mean Algorithm for Brain Tumor Segmentation, in proc. of BIME Journal, December (2006), vol. 6, no. 1.
– reference: R. Krishnapuram, Generation of membership functions via possibilistic clustering, IEEE World Congress on Computational Intelligence, (1994), USA, pp. 902–908.
– reference: ZadehL-AFuzzy sets as a basis for a theory of possibilityFuzzy Sets and Systems19781328
– reference: Singh PKN-S Karan SikkaMishraA-KA fully automated algorithm under modified FCM framework for improved brain MR image segmentationMagn Reson Imaging2009279941004
– reference: D. Kang, S. Y. Shin, C. O. Sung, J. Y. Kim, J.-K. Pack and H. D. Choi, “An improved method of breast MRI segmentation with Simplified K-means clustered images,” in Proceedings of the 2011 ACM Symposium on Research in Applied Computation, Miami, FL, Oct. 1922, pp. 226–31, 2011.
– reference: D-E. Goldberg, Algorithmes génétiques : Exploration, optimisation et apprentissage automatique, Addison Wesley, (1997).
– reference: K. Held, E-R. Kops, B-J. Krause et al., Markov Random Field Segmentation of Brain Images, IEEE Transactions on Medical Imaging, (1997), pp. 16878–886.
– reference: KrishnapuramRKellerJ-MA possibilistic approach to clusteringInternational Journal of Fuzzy Systems19932298110
– reference: V. Barra, P. Briandet and J-Y Boire, Fusion in Medical Imaging: Theory, Interests and Industrial Applications, MEDINFO, IOS Press, (2001), pp. 896–900.
– reference: SuriJSinghSRedenLComputer vision and pattern recognition techniques for 2-D and 3-D cerebral cortical segmentation (part-I): A state of the art reviewPattern analysis and application2002514647
– reference: CaiWChenSZhangDFast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentationPattern Recognition200740825838
– reference: PalN-RPalS-KA review on image segmentation techniquesPattern Recognition199326912771294
– reference: J-C. Bezdeck, R. Ehrlich and W. Full, FCM: Fuzzy c-means algorithm, Computers and Geoscience, (1984).
– reference: J. Yu and Y. Wang, Molecular Image Segmentation Based on Improved Fuzzy Clustering, in proc. of International Journal on Biomedical Imaging, Jan. (2007), no. 1.
– reference: JiZXiaYSunQCaoGInterval-valued possibilistic fuzzy C means clustering algorithmFuzzy Sets and Systems2014253138156
– reference: GroverNA study of various fuzzy clustering algorithmsInternational Journal of Engineering Research201433177181
– reference: YuSTrancheventL-CLiuXGlanzelWSuykensJ ADe MoorBOptimized data fusion for kernel K-means clusteringPattern Anal. Mach. Intell., IEEE Trans201234510319
– reference: N-E. El Harchaoui, M. Ait Kerroum, A. Hammouch, M. Ouadou and D. Aboutajdine, Unsupervised Approach Data Analysis Based on Fuzzy Possibilistic Clustering: Application to Medical Image MRI, Computational Intelligence and Neuroscience, (2013). https://doi.org/10.1155/2013/435497
SSID ssib051085785
ssib053800439
ssj0002140107
Score 2.0625212
Snippet Brain tissue segmentation is one of the most important parts of clinical diagnostic tools. Fuzzy C-mean (FCM) is one of the most popular clustering based...
SourceID doaj
unpaywall
crossref
springer
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 63
SubjectTerms Alzheimer’s disease
Brain tissue clustering
Fuzzy c-means algorithm
Genetic algorithms
Hybrid reasoning
Possibilistic c-means algorithm
Research Article
SummonAdditionalLinks – databaseName: SpringerLINK
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtNAEF5V5QAcEAgQgYLmwIUKp87a659jawgRUqBSg-httevdbYscp4oTVc6pD8GFB-JF-iTM2E4IEiriYsn22rv2zM7O7Mx8w9jrWOSR477yRGy0hzNReVq7EHnZ-b6OtQg4JTiPP0WjL-HHU3G6w_g6F6aJdl-7JBtJTcHKqMQcXHwrDWEODpJ-1Od9FLt3UPvgVK4h-404Liiafgu_BeczObvSzb4LJ4uiyaLmaPt4yJ5J6738ayd_rFYNqP-Wx_Q-u7ssL1V9pYpia1EaPmQPOm0SDlvyP2I7tnzMfrYbBc2-H8wcZCfDt_B1DKo08GEMk-ZXw4k9m3Z5RyXoGkY15W7BcLla1XBz_R2OZ1UbOktIzpAVS4JUwBEBlU8rgJY_A_gsAVdTi88ofKZdVidkeBcoRrGmJkdUh6LruKIhHbdorhXQNjAcFqtzezG185vrHxW8a11GT9hk-H6SjbyuWoOXB2mw8LizURr6oQ0HDg_OF47SWGPBdcRjY3QURr62QYQSIrao1CeKC4vaQuASl7vgKdstZ6V9xoDHSmiylXxfofWuEx0blDUDE1AWcKx77GBNFJl3SOZUUKOQaNEQGWVDRklklJHkkvfYm80Tly2Kxy1tj4jOm3aEv91cmM3PZDedZZhqnacq4CYxoTIauRq_yORKBCYVTvTY_ppLZCcUqlt63N_w0T-H9_x_3vyC3aOTNtJoj-0u5kv7EpWohX7VzJpfmZMYIg
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaW7gE48BAgyktz4MKKpKlj53HsFkqF1KXSdsXuKbLjeCmkSdW0Qu1p_wMnfhB_ZH8JnsQtC4dFcImSeBK_xmOPPfMNIS9DngaaesLhoZKOGYnCkVIzw8va82QouU_RwXl0FAxP2PtTfrpHoq0vjEKI-FIo01i5-fW0cmp70Fpm27bsUB7FEWPMnSt9g-wH3KzCW2T_5GjcO8NYckancQzbRb_umT2hNLK325l-LhSCF3YjN3CpS3-bkWrg_iunorfJzVUxF-uvIs-vTDyDu-RsW-TG3uSLu1pKN938geb4P3W6R-7Y1Sj0muT7ZC8rHpAfzUZDvW8IpYb-8eA1fByBKBS8G8Gk7io4zs5n1m-pALmG4Rp9v2Cw2mzWcHnxDcZl1ZjeIhI09PMVQjKY2gKGX8sBp08F5lsEvkaKD0Z4zaxXKPRNKqCN4xpJDjGOhc24wiKNGzTYCnAbGXr55lM2nWWLy4vvFbxpjpweksng7aQ_dGy0Byf1Y3_pUJ0FMfNYxrraXLTHNbrBhpzKgIZKyYAFnsz8wEiYMDNKQSQoz8xqw9eRTrX_iLSKssgeE6Ch4BJ1Lc8TRvuXkQyVkVVd5aMXcSjbpLPt8CS1SOgYkCNPjEaELJLULJIgiyRBQhPaJq92X8wbFJBraA-Rh3Z0iN9dvygX54nt7oTFUqax8KmKFBNKmlFhaqRSwX0Vc83b5GDLgYkVKtU1OR7sePSvxXvyL8RPyS18aCyVnpHWcrHKnptF2FK-sOPtJxqkNkQ
  priority: 102
  providerName: Unpaywall
Title Improvement of CSF, WM and GM Tissue Segmentation by Hybrid Fuzzy — Possibilistic Clustering Model based on Genetic Optimization Case Study on Brain Tissues of Patients with Alzheimer’s Disease
URI https://link.springer.com/article/10.2991/ijndc.2018.6.2.2
https://download.atlantis-press.com/article/25898444.pdf
https://doaj.org/article/49bbc9a32d8d4adbb7b772dca53d95f5
UnpaywallVersion publishedVersion
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  customDbUrl:
  eissn: 2211-7946
  dateEnd: 20211231
  omitProxy: true
  ssIdentifier: ssj0002140107
  issn: 2211-7946
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2211-7946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib051085785
  issn: 2211-7938
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 2211-7946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140107
  issn: 2211-7946
  databaseCode: AAJSJ
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2211-7946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140107
  issn: 2211-7946
  databaseCode: C6C
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 2211-7946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140107
  issn: 2211-7946
  databaseCode: C24
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Bb9MwFLZgHIADAgGiDKp34MJE2tRJ7OTYhZUKqaPSOjFOkR3bYyhNp6XVlB7Q_gMnfhB_ZL8EvzirymW7cPEheU6e_J7t9-z3vkfIOx7lzFBfeBFX0rMzUXhSmtDqsvF9yWUUUExwnhyy8XH4-SQ62Sr1hTFhDh7YDVw_TKTMExFQFatQKGn7W4NQ5SIKVBKZBr3Uj5MtZwrXYIp-g8_dvaRdcQf9sx-lQsjCQdxjPdqj_-xDDVz_1l3oY_JwVZ6L-lIUxdZ2M3pKnrR2Igwdf8_IPV0-J3_cEUBzogcLA-nR6AN8nYAoFXyawKwZRDjSp_M2o6gEWcO4xqwsGK3W6xqur37BdFG5oFjEaIa0WCFYguUIsDBaAbixKbB9EZIaKb7YZWXe5mtCat8CRh_WSLKPFSbaH1fI0tThtFaAB7wwLNbf9dlcX1xf_a7go7sMekFmo4NZOvbaOgxeHiTB0qNGsyT0Qx0OjG2MHxlMUOURlYxypSQLmS91wOzc59pKJxY00tYOCExschO8JDvlotSvCFAuIolekO8L65fLWHJlV5GBCjC_l8sO6d8IJctbjHIslVFk1ldBMWaNGDMUY8YymtEOeb_pce7wOW6h3Uc5b-gQWbt5YPUta_Utu0vfOmTvRkuydrpXt_xxb6NHd7L3-n-wt0se4RddbNEbsrO8WOm31mxayi65n9IQW5Z2m9li28nPgy55cHw4HX77C-DAIBk
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF5V7aFwQCBApLzmwIUKp87a68cxDYQQmlIpQfS22vXuliLHqfIQSk79EVz4QfyR_hJmbCcKEiri4oO96117HjuzM_MtY69ikUWO-8oTsdEeSqLytHYh8rLzfR1rEXAqcB6cRr3PYf9cnO8wvq6FKbPd1yHJUlNTsjIaMUeX3wpDmIOtpBk1eRPV7h6lWKEw7rXb_WF_zUWC8um3EFxQoinclW52Xjj5FGUdNUfvx0MGTar45V-H-WO9KmH9t2Kmd9n-orhSy-8qz7eWpe59dq-2J6FdMcADtmOLh-xXtVVQ7vzBxEFn2H0DXwagCgPvBzAqfzYM7cW4rjwqQC-ht6TqLeguVqsl3Fz_gLPJrEqeJSxn6OQLAlXAGQEdoJYDLYAGsC9BV1OLT6h-xnVdJ3TwKVCW4pKaHNNJFPXAM5rSWYXnOgPaCIZ2vvpqL8d2enP9cwZvq6DRIzbqvht1el59XoOXBWkw97izURr6oQ1bDi_OF44KWWPBdcRjY3QURr62QYQ6IrZo1ieKC4v2QuASl7ngMdstJoV9woDHSmjylnxfof-uEx0b1DYtE1AdcKwb7GhNFJnVWOZ0pEYu0achMsqSjJLIKCPJJW-w15seVxWOxy1tj4nOm3aEwF3emEwvZC3QMky1zlIVcJOYUBmNfI1fZDIlApMKJxrscM0lslYLs1tGPNzw0T-nd_A_b37J9nujwYk8-XD68Sm7Qw8oFtbyn7Hd-XRhn6NJNdcvahn6DeDiHJY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELbQIvE4IBAgynMOXFiRNnXiPI67WUJ5dKm0RewtsmN7WZSmVdMKtaf9EVz4QfyR_SXMJGlVJLSISw-pEzuZ8Xie3zD2MhR5YLkrHRFq5eBOlI5S1kdetq6rQiU8TgXOw-Ng8Nl_fypOW4dbtcl234Qkm5oGQmkqF72ZtnXiMio0vfNvpSb8wX7UDbq8iyL4uo9nG3UwSIJkw0-CMut3sFxwb1PgK976YDhZF3VFNUc7yEFWjZpI5l8n-ePkqgH-d6Knt9nNZTmTq--yKHYOqPQuu9NqlnDQsMI9ds2U99mvxmlQ-wBhaiE5SV_DlyHIUsPbIYzrzw4n5mzS1iCVoFYwWFEdF6TL9XoFlxc_YDStmjRaQnWGpFgSvAKuCKiVWgF0FGrAewnEmkZ8QkE0aSs8IcF_gfIVVzTkkHpStBNXtKRRg-xaAbmE4aBYfzXnEzO_vPhZwVETPnrAxumbcTJw2s4NTu7F3sLh1gSx7_rG71v8sa6wVNIaCq4CHmqtAj9wlfEClBahQQU_klwY1Bw8G9nceg_ZXjktzSMGPJRCkd3kuhIteRWpUKPc6WuPKoJD1WG9DVGyvEU1p-YaRYbWDZExq8mYERmzIOMZ77BX2ztmDaLHFWMPic7bcYTFXV-Yzs-ydmtnfqxUHkuP60j7UivkcHwjnUvh6VhY0WH7Gy7JWgFRXTHj_paP_rm8x__z5BfsxugozT6-O_7whN2i600C0lO2t5gvzTPUrRbqeb2BfgPech9z
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaW7gE48BAgyktz4MKKpKlj53HsFkqF1KXSdsXuKbLjeCmkSdW0Qu1p_wMnfhB_ZH8JnsQtC4dFcImSeBK_xmOPPfMNIS9DngaaesLhoZKOGYnCkVIzw8va82QouU_RwXl0FAxP2PtTfrpHoq0vjEKI-FIo01i5-fW0cmp70Fpm27bsUB7FEWPMnSt9g-wH3KzCW2T_5GjcO8NYckancQzbRb_umT2hNLK325l-LhSCF3YjN3CpS3-bkWrg_iunorfJzVUxF-uvIs-vTDyDu-RsW-TG3uSLu1pKN938geb4P3W6R-7Y1Sj0muT7ZC8rHpAfzUZDvW8IpYb-8eA1fByBKBS8G8Gk7io4zs5n1m-pALmG4Rp9v2Cw2mzWcHnxDcZl1ZjeIhI09PMVQjKY2gKGX8sBp08F5lsEvkaKD0Z4zaxXKPRNKqCN4xpJDjGOhc24wiKNGzTYCnAbGXr55lM2nWWLy4vvFbxpjpweksng7aQ_dGy0Byf1Y3_pUJ0FMfNYxrraXLTHNbrBhpzKgIZKyYAFnsz8wEiYMDNKQSQoz8xqw9eRTrX_iLSKssgeE6Ch4BJ1Lc8TRvuXkQyVkVVd5aMXcSjbpLPt8CS1SOgYkCNPjEaELJLULJIgiyRBQhPaJq92X8wbFJBraA-Rh3Z0iN9dvygX54nt7oTFUqax8KmKFBNKmlFhaqRSwX0Vc83b5GDLgYkVKtU1OR7sePSvxXvyL8RPyS18aCyVnpHWcrHKnptF2FK-sOPtJxqkNkQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+of+CSF%2C+WM+and+GM+Tissue+Segmentation+by+Hybrid+Fuzzy+%E2%80%93+Possibilistic+Clustering+Model+based+on+Genetic+Optimization+Case+Study+on+Brain+Tissues+of+Patients+with+Alzheimer%E2%80%99s+Disease&rft.jtitle=The+International+journal+of+networked+and+distributed+computing+%28Online%29&rft.au=Lilia+Lazli&rft.au=Mounir+Boukadoum&rft.date=2018-04-01&rft.pub=Springer&rft.eissn=2211-7946&rft.volume=6&rft.issue=2&rft_id=info:doi/10.2991%2Fijndc.2018.6.2.2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_49bbc9a32d8d4adbb7b772dca53d95f5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-7938&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-7938&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-7938&client=summon