Environmental and material criticality assessment of hydrogen production via anion exchange membrane electrolysis
The need to drastically reduce greenhouse gas emissions is driving the development of existing and new technologies to produce and use hydrogen. Anion exchange membrane electrolysis is one of these rapidly developing technologies and presents promising characteristics for efficient hydrogen producti...
Saved in:
Published in | Applied energy Vol. 356; p. 122247 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.02.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0306-2619 1872-9118 |
DOI | 10.1016/j.apenergy.2023.122247 |
Cover
Abstract | The need to drastically reduce greenhouse gas emissions is driving the development of existing and new technologies to produce and use hydrogen. Anion exchange membrane electrolysis is one of these rapidly developing technologies and presents promising characteristics for efficient hydrogen production. However, the environmental performance and the material criticality of anion exchange membrane electrolysis must be assessed. In this work, prospective life cycle assessment and criticality assessment are applied, first, to identify environmental and material criticality hotspots within the production of anion exchange membrane electrolysis units and, second, to benchmark hydrogen production against proton exchange membrane electrolysis. From an environmental point of view, the catalyst spraying process heavily dominates the ozone depletion impact category, while the production of the membrane represents a hotspot in terms of the photochemical ozone formation potential. For the other categories, the environmental impacts are distributed across different components. The comparison of hydrogen production via anion exchange membrane electrolysis and proton exchange membrane electrolysis shows that both technologies involve a similar life-cycle environmental profile due to similar efficiencies and the leading role of electricity generation for the operation of electrolysis. Despite the fact that for proton exchange membrane electrolysis much less material is required due to a higher lifetime, anion exchange membrane electrolysis shows significantly lower raw material criticality since it does not rely on platinum-group metals. Overall, a promising environmental and material criticality performance of anion exchange membrane electrolysis for hydrogen production is concluded, subject to the expected technical progress for this technology.
•Life Cycle Assessment of an Anion Exchange Membrane Electrolysis (AEMEL) unit.•Criticality assessment of the AEMEL technology as a complement to its environmental evaluation.•Benchmarking of AEMEL hydrogen against that from Proton Exchange Membrane Electrolysis (PEMEL).•Similar environmental performance of hydrogen produced through AEMEL and PEMEL.•Overall criticality score of AEMEL is negligible compared to the PEMEL alternative. |
---|---|
AbstractList | The need to drastically reduce greenhouse gas emissions is driving the development of existing and new technologies to produce and use hydrogen. Anion exchange membrane electrolysis is one of these rapidly developing technologies and presents promising characteristics for efficient hydrogen production. However, the environmental performance and the material criticality of anion exchange membrane electrolysis must be assessed. In this work, prospective life cycle assessment and criticality assessment are applied, first, to identify environmental and material criticality hotspots within the production of anion exchange membrane electrolysis units and, second, to benchmark hydrogen production against proton exchange membrane electrolysis. From an environmental point of view, the catalyst spraying process heavily dominates the ozone depletion impact category, while the production of the membrane represents a hotspot in terms of the photochemical ozone formation potential. For the other categories, the environmental impacts are distributed across different components. The comparison of hydrogen production via anion exchange membrane electrolysis and proton exchange membrane electrolysis shows that both technologies involve a similar life-cycle environmental profile due to similar efficiencies and the leading role of electricity generation for the operation of electrolysis. Despite the fact that for proton exchange membrane electrolysis much less material is required due to a higher lifetime, anion exchange membrane electrolysis shows significantly lower raw material criticality since it does not rely on platinum-group metals. Overall, a promising environmental and material criticality performance of anion exchange membrane electrolysis for hydrogen production is concluded, subject to the expected technical progress for this technology. The need to drastically reduce greenhouse gas emissions is driving the development of existing and new technologies to produce and use hydrogen. Anion exchange membrane electrolysis is one of these rapidly developing technologies and presents promising characteristics for efficient hydrogen production. However, the environmental performance and the material criticality of anion exchange membrane electrolysis must be assessed. In this work, prospective life cycle assessment and criticality assessment are applied, first, to identify environmental and material criticality hotspots within the production of anion exchange membrane electrolysis units and, second, to benchmark hydrogen production against proton exchange membrane electrolysis. From an environmental point of view, the catalyst spraying process heavily dominates the ozone depletion impact category, while the production of the membrane represents a hotspot in terms of the photochemical ozone formation potential. For the other categories, the environmental impacts are distributed across different components. The comparison of hydrogen production via anion exchange membrane electrolysis and proton exchange membrane electrolysis shows that both technologies involve a similar life-cycle environmental profile due to similar efficiencies and the leading role of electricity generation for the operation of electrolysis. Despite the fact that for proton exchange membrane electrolysis much less material is required due to a higher lifetime, anion exchange membrane electrolysis shows significantly lower raw material criticality since it does not rely on platinum-group metals. Overall, a promising environmental and material criticality performance of anion exchange membrane electrolysis for hydrogen production is concluded, subject to the expected technical progress for this technology. •Life Cycle Assessment of an Anion Exchange Membrane Electrolysis (AEMEL) unit.•Criticality assessment of the AEMEL technology as a complement to its environmental evaluation.•Benchmarking of AEMEL hydrogen against that from Proton Exchange Membrane Electrolysis (PEMEL).•Similar environmental performance of hydrogen produced through AEMEL and PEMEL.•Overall criticality score of AEMEL is negligible compared to the PEMEL alternative. |
ArticleNumber | 122247 |
Author | Bernäcker, Christian Dufour, Javier Schropp, Elke Gaderer, Matthias Campos-Carriedo, Felipe Iribarren, Diego Naumann, Gabriel |
Author_xml | – sequence: 1 givenname: Elke surname: Schropp fullname: Schropp, Elke email: elke.schropp@tum.de organization: Technical University of Munich, Professorship of Regenerative Energy Systems, 94315 Straubing, Germany – sequence: 2 givenname: Felipe surname: Campos-Carriedo fullname: Campos-Carriedo, Felipe organization: IMDEA Energy, Systems Analysis Unit, 28935 Móstoles, Spain – sequence: 3 givenname: Diego surname: Iribarren fullname: Iribarren, Diego organization: IMDEA Energy, Systems Analysis Unit, 28935 Móstoles, Spain – sequence: 4 givenname: Gabriel surname: Naumann fullname: Naumann, Gabriel organization: Technical University of Munich, Professorship of Regenerative Energy Systems, 94315 Straubing, Germany – sequence: 5 givenname: Christian surname: Bernäcker fullname: Bernäcker, Christian organization: Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Branch Lab Dresden, 01277 Dresden, Germany – sequence: 6 givenname: Matthias surname: Gaderer fullname: Gaderer, Matthias organization: Technical University of Munich, Professorship of Regenerative Energy Systems, 94315 Straubing, Germany – sequence: 7 givenname: Javier surname: Dufour fullname: Dufour, Javier organization: IMDEA Energy, Systems Analysis Unit, 28935 Móstoles, Spain |
BookMark | eNqFkMtKAzEUhoNUsFZfQbJ0MzWXYS7gQin1AgU3ug6Z5EybMpO0SVqctzdDdeOmZJGck_87HL5rNLHOAkJ3lMwpocXDdi53YMGvhzkjjM8pYywvL9CUViXLakqrCZoSToqMFbS-QtchbAkhjDIyRfulPRrvbA82yg5Lq3EvI3iTCuVNNEp2Jg5YhgAhjCnsWrwZtHdrsHjnnT6oaJzFRyMTPr7gW22kXQPuoW-8tIChAxW964Zgwg26bGUX4Pb3nqGvl-Xn4i1bfby-L55XmeI1jxmrSVsxTUie58BayutGV7xsKM1Vo0tNC60UqyF9N6ktJal1W-mi1gXlLVR8hu5Pc9OO-wOEKHoTFHRdWsgdguAkT6fM6RgtTlHlXQgeWrHzppd-EJSI0bHYij_HYnQsTo4T-PgPVCbKUUf00nTn8acTDsnD0YAXQRmwCrTxSZjQzpwb8QN6gKIz |
CitedBy_id | crossref_primary_10_1016_j_jclepro_2024_143129 crossref_primary_10_1016_j_resconrec_2024_107851 crossref_primary_10_1016_j_energy_2024_134266 crossref_primary_10_1016_j_enconman_2024_118520 crossref_primary_10_1016_j_scitotenv_2024_177454 crossref_primary_10_1016_j_spc_2024_03_017 crossref_primary_10_1016_j_jpowsour_2024_235031 crossref_primary_10_1016_j_ijhydene_2024_11_110 crossref_primary_10_1016_j_paerosci_2024_101053 crossref_primary_10_1016_j_renene_2024_121572 crossref_primary_10_1016_j_memsci_2024_123026 crossref_primary_10_3390_en17092206 crossref_primary_10_1016_j_joule_2024_09_007 crossref_primary_10_1016_j_memsci_2024_123040 crossref_primary_10_1016_j_adapen_2024_100194 crossref_primary_10_1016_j_ijhydene_2024_07_428 crossref_primary_10_3390_environments11060108 |
Cites_doi | 10.1039/C4EE01303D 10.1016/j.simpa.2019.100012 10.1016/j.electacta.2020.137684 10.1039/D0EE04086J 10.1039/C9SE01240K 10.1016/j.ijhydene.2013.01.151 10.1016/j.ijhydene.2020.03.109 10.1002/app.42581 10.1016/j.ijhydene.2014.10.025 10.1039/c2ee22146b 10.1007/s11367-022-02027-y 10.3390/separations10080424 10.1039/D0CS01079K 10.1039/c1jm10656b 10.1016/j.ijhydene.2010.06.105 10.1016/j.rser.2022.112311 10.1039/c2jm14898f 10.1039/D2CS00038E 10.1039/D2RA03846C 10.1038/s41560-020-0577-x 10.1080/10601329708010036 10.1021/acscatal.9b04505 10.1111/jiec.12279 10.1016/j.jpowsour.2020.227814 10.1111/jiec.12690 10.1115/1.4047963 10.1016/j.apcatb.2020.119276 10.1111/jiec.12965 10.1016/j.rser.2017.05.258 10.1002/cssc.202200027 |
ContentType | Journal Article |
Copyright | 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.apenergy.2023.122247 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1872-9118 |
ExternalDocumentID | 10_1016_j_apenergy_2023_122247 S0306261923016112 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SSH WUQ ZY4 7S9 L.6 |
ID | FETCH-LOGICAL-c393t-290f82d00444e2f139bd837b114cbd7d16dcc29e444b37baa09df8d69d613fe83 |
IEDL.DBID | AIKHN |
ISSN | 0306-2619 |
IngestDate | Wed Jul 02 04:39:34 EDT 2025 Thu Apr 24 22:51:51 EDT 2025 Tue Jul 01 04:01:20 EDT 2025 Sat Mar 02 16:00:57 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Life cycle assessment Critical raw material Electrolysis Anion exchange membrane Hydrogen |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c393t-290f82d00444e2f139bd837b114cbd7d16dcc29e444b37baa09df8d69d613fe83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0306261923016112 |
PQID | 3040407418 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3040407418 crossref_primary_10_1016_j_apenergy_2023_122247 crossref_citationtrail_10_1016_j_apenergy_2023_122247 elsevier_sciencedirect_doi_10_1016_j_apenergy_2023_122247 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-15 |
PublicationDateYYYYMMDD | 2024-02-15 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Applied energy |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | EvolOH (bb0230) 2023 Miller (bb0210) 2022; 36 International Organization for Standardization (bb0285) 2018; 14044 R. Sacchi (2021). R. Sacchi, T. Terlouw, K. Siala, A. Dirnaichner, C. Bauer, B. Cox, C. Mutel, V. Daioglou, G. Luderer, Renewable and Sustainable Energy Reviews 160 (2022) 112311. Miller, Bouzek, Hnat, Loos, Bernäcker, Weißgärber (bb0095) 2020; 4 Varcoe, Atanassov, Dekel, Herring, Hickner, Kohl (bb0045) 2014; 7 Enapter (bb0215) International Organization for Standardization (bb0280) 2006; 14040 Hydrolite (bb0240) 2023 Li, Park, Zhu, Shi, Zhou, Tian (bb0125) 2020; 5 Ansari, Grinschgl, Pepe (bb0025) 2022 Arvidsson, Tillman, Sandén, Janssen, Nordelöf, Kushnir (bb0295) 2018; 22 Joint Research Centre (JRC) (bb0320) 2022 Santoro, Lavacchi, Mustarelli, Di Noto, Elbaz, Dekel (bb0035) 2022; 15 European Chemicals Agency (bb0090) Arges, Parrondo, Johnson, Nadhan, Ramani (bb0150) 2012; 22 Koshikawa, Murase, Hayashi, Nakajima, Mashiko, Shiraishi (bb0195) 2020; 10 Gen-Hy • Hydrogen Solutions (bb0235) 2023 Li, Baek (bb0115) 2021; 87 International Energy Agency (bb0275) 2021 Smolinka, Ojong, Lickert (bb0255) 2016 Holst, Aschbrenner, Smolinka, Voglstätter, Grimm (bb0040) 2021 Henkensmeier, Najibah, Harms, Žitka, Hnát, Bouzek (bb0130) 2021; 18 Chatenet, Pollet, Dekel, Dionigi, Deseure, Millet (bb0110) 2022; 51 Grigoriev, Fateev, Bessarabov, Millet (bb0105) 2020; 45 Riemer, Duval-Dachary, Bachmann (bb0270) 2023; 56 Vincent, Bessarabov (bb0030) 2018; 81 Verdagy (bb0245) 2023 Yang, Li, Zheng, Sun, Dou, Ma (bb0120) 2022; 51 National Research Council (bb0330) 2008 Moni, Mahmud, High, Carbajales-Dale (bb0290) 2020; 24 Luderer, Leimbach, Bauer, Kriegler, Baumstark, Bertram (bb0315) 2015 . Smolinka, Ojong, Garche (bb0080) 2015 Du, Roy, Peach, Turnbull, Thiele, Bock (bb0175) 2022 Gemechu, Helbig, Sonnemann, Thorenz, Tuma (bb0345) 2016; 20 Koch, Disch, Kilian, Han, Metzler, Tengattini (bb0260) 2022; 12 Li, Liu, Ge, Xing, Zhu (bb0180) 2023; 29 Millet (bb0060) 2014 Santillán-Saldivar, Gemechu, Muller, Villeneuve, Young, Sonnemann (bb0355) 2022; 27 Fortin, Khoza, Cao, Martinsen, Oyarce Barnett, Holdcroft (bb0190) 2020; 451 Weidema, Bauer, Hischier, Mutel, Nemecek, Reinhard (bb0310) 2013 Millet, Mbemba, Grigoriev, Fateev, Aukauloo, Etiévant (bb0085) 2011; 36 Bessarabov, Millet (bb0250) 2018 Bargiacchi, Puig-Samper, Campos-Carriedo, Iribarren, Dufour, Ciroth (bb0350) 2022 Blanco, Prasad, Dunningan, Modestino (bb0200) 2020; 5 Ng, Wong, Rosli, Loh (bb0140) 2023; 10 Liu, Wang (bb0165) 2020; 596 Park, Yang, Lee, Jang, Jeong, Choi (bb0055) 2020; 278 Schauer, Žitka, Pientka, Křivčík, Hnát, Bouzek (bb0155) 2015; 132 European Commission (bb0020) 2020 Alchemr (bb0225) 2022 International Renewable Energy Agency (IRENA) (bb0100) 2020 de Groot, Vreman (bb0075) 2021; 369 Khalid, Najibah, Park, Bae, Henkensmeier (bb0135) 2022; 12 Xiao, Zhang, Pan, Yang, He, Zhuang (bb0185) 2012; 5 An, Zhao, Chai, Tan, Zeng (bb0205) 2014; 39 UNFCCC (bb0005) 2015 Simari, Ur Rehman, Caprì, Gatto, Baglio, Nicotera (bb0170) 2023; 21 Zhang, Zhang, Qu (bb0160) 2011; 21 Carmo, Fritz, Mergel, Stolten (bb0065) 2013; 38 Enapter (bb0220) Avram, Butuc, Luca, Druta (bb0145) 1997; 34 International Energy Agency (IEA) (bb0015) 2022 Guillet, Millet (bb0050) 2014 (bb0325) 2022 (bb0010) 2022 Li, Motz, Bae, Fujimoto, Yang, Zhang (bb0070) 2021; 14 Bachmann, Corrêa, Horn, Charter, Gehring, Graf (bb0335) 2022 European Commission (bb0340) 2023 Millet (bb0265) 2014 Steubing, de Koning, Haas, Mutel (bb0300) 2020; 3 Miller (10.1016/j.apenergy.2023.122247_bb0210) 2022; 36 Ansari (10.1016/j.apenergy.2023.122247_bb0025) 2022 Weidema (10.1016/j.apenergy.2023.122247_bb0310) 2013 Li (10.1016/j.apenergy.2023.122247_bb0070) 2021; 14 European Chemicals Agency (10.1016/j.apenergy.2023.122247_bb0090) Vincent (10.1016/j.apenergy.2023.122247_bb0030) 2018; 81 de Groot (10.1016/j.apenergy.2023.122247_bb0075) 2021; 369 (10.1016/j.apenergy.2023.122247_bb0010) 2022 Gen-Hy • Hydrogen Solutions (10.1016/j.apenergy.2023.122247_bb0235) Arvidsson (10.1016/j.apenergy.2023.122247_bb0295) 2018; 22 Zhang (10.1016/j.apenergy.2023.122247_bb0160) 2011; 21 Enapter (10.1016/j.apenergy.2023.122247_bb0215) Riemer (10.1016/j.apenergy.2023.122247_bb0270) 2023; 56 Bachmann (10.1016/j.apenergy.2023.122247_bb0335) 2022 Simari (10.1016/j.apenergy.2023.122247_bb0170) 2023; 21 Luderer (10.1016/j.apenergy.2023.122247_bb0315) 2015 Chatenet (10.1016/j.apenergy.2023.122247_bb0110) 2022; 51 Carmo (10.1016/j.apenergy.2023.122247_bb0065) 2013; 38 (10.1016/j.apenergy.2023.122247_bb0325) 2022 European Commission (10.1016/j.apenergy.2023.122247_bb0340) 2023 Koch (10.1016/j.apenergy.2023.122247_bb0260) 2022; 12 EvolOH (10.1016/j.apenergy.2023.122247_bb0230) Gemechu (10.1016/j.apenergy.2023.122247_bb0345) 2016; 20 Grigoriev (10.1016/j.apenergy.2023.122247_bb0105) 2020; 45 Steubing (10.1016/j.apenergy.2023.122247_bb0300) 2020; 3 Smolinka (10.1016/j.apenergy.2023.122247_bb0080) 2015 International Renewable Energy Agency (IRENA) (10.1016/j.apenergy.2023.122247_bb0100) 2020 Li (10.1016/j.apenergy.2023.122247_bb0115) 2021; 87 Fortin (10.1016/j.apenergy.2023.122247_bb0190) 2020; 451 Hydrolite (10.1016/j.apenergy.2023.122247_bb0240) International Energy Agency (IEA) (10.1016/j.apenergy.2023.122247_bb0015) 2022 Koshikawa (10.1016/j.apenergy.2023.122247_bb0195) 2020; 10 Bessarabov (10.1016/j.apenergy.2023.122247_bb0250) 2018 Varcoe (10.1016/j.apenergy.2023.122247_bb0045) 2014; 7 Yang (10.1016/j.apenergy.2023.122247_bb0120) 2022; 51 Liu (10.1016/j.apenergy.2023.122247_bb0165) 2020; 596 International Energy Agency (10.1016/j.apenergy.2023.122247_bb0275) 2021 Enapter (10.1016/j.apenergy.2023.122247_bb0220) International Organization for Standardization (10.1016/j.apenergy.2023.122247_bb0285) 2018; 14044 Schauer (10.1016/j.apenergy.2023.122247_bb0155) 2015; 132 Smolinka (10.1016/j.apenergy.2023.122247_bb0255) 2016 Avram (10.1016/j.apenergy.2023.122247_bb0145) 1997; 34 Alchemr (10.1016/j.apenergy.2023.122247_bb0225) Joint Research Centre (JRC) (10.1016/j.apenergy.2023.122247_bb0320) Millet (10.1016/j.apenergy.2023.122247_bb0060) 2014 10.1016/j.apenergy.2023.122247_bb0305 An (10.1016/j.apenergy.2023.122247_bb0205) 2014; 39 Millet (10.1016/j.apenergy.2023.122247_bb0265) 2014 Guillet (10.1016/j.apenergy.2023.122247_bb0050) 2014 UNFCCC (10.1016/j.apenergy.2023.122247_bb0005) 2015 National Research Council (10.1016/j.apenergy.2023.122247_bb0330) 2008 Henkensmeier (10.1016/j.apenergy.2023.122247_bb0130) 2021; 18 Santillán-Saldivar (10.1016/j.apenergy.2023.122247_bb0355) 2022; 27 Li (10.1016/j.apenergy.2023.122247_bb0125) 2020; 5 European Commission (10.1016/j.apenergy.2023.122247_bb0020) 2020 Du (10.1016/j.apenergy.2023.122247_bb0175) 2022 Millet (10.1016/j.apenergy.2023.122247_bb0085) 2011; 36 Blanco (10.1016/j.apenergy.2023.122247_bb0200) 2020; 5 International Organization for Standardization (10.1016/j.apenergy.2023.122247_bb0280) 2006; 14040 Ng (10.1016/j.apenergy.2023.122247_bb0140) 2023; 10 Moni (10.1016/j.apenergy.2023.122247_bb0290) 2020; 24 Arges (10.1016/j.apenergy.2023.122247_bb0150) 2012; 22 Holst (10.1016/j.apenergy.2023.122247_bb0040) 2021 Park (10.1016/j.apenergy.2023.122247_bb0055) 2020; 278 Miller (10.1016/j.apenergy.2023.122247_bb0095) 2020; 4 Khalid (10.1016/j.apenergy.2023.122247_bb0135) 2022; 12 Santoro (10.1016/j.apenergy.2023.122247_bb0035) 2022; 15 Verdagy (10.1016/j.apenergy.2023.122247_bb0245) Bargiacchi (10.1016/j.apenergy.2023.122247_bb0350) 2022 Xiao (10.1016/j.apenergy.2023.122247_bb0185) 2012; 5 Li (10.1016/j.apenergy.2023.122247_bb0180) 2023; 29 |
References_xml | – year: 2022 ident: bb0350 article-title: D2.2 Definition of FCH-LCA guidelines: SH2E project – volume: 10 start-page: 1886 year: 2020 end-page: 1893 ident: bb0195 publication-title: ACS Catal – volume: 12 start-page: 20778 year: 2022 end-page: 20784 ident: bb0260 publication-title: RSC Adv – volume: 29 year: 2023 ident: bb0180 publication-title: Chemistry (Weinheim an der Bergstrasse, Germany) – start-page: 63 year: 2014 end-page: 116 ident: bb0060 publication-title: Hydrogen production: By electrolysis – volume: 51 start-page: 9620 year: 2022 end-page: 9693 ident: bb0120 publication-title: Chem Soc Rev – volume: 39 start-page: 19869 year: 2014 end-page: 19876 ident: bb0205 publication-title: Int J Hydrogen Energy – volume: 22 start-page: 3733 year: 2012 ident: bb0150 publication-title: J Mater Chem – year: 2022 ident: bb0015 article-title: Global hydrogen review 2022 – year: 2016 ident: bb0255 publication-title: PEM electrolysis for hydrogen production: Principles and applications – year: 2015 ident: bb0005 article-title: Paris Agreement – year: 2023 ident: bb0245 article-title: Industrial hydrogen with innovative electrolyzers - Verdagy – year: 2023 ident: bb0240 article-title: Setting a new global standard in innovation, expertise & reliability - Hydrolite – volume: 81 start-page: 1690 year: 2018 end-page: 1704 ident: bb0030 publication-title: Renew Sustain Energy Rev – start-page: 103 year: 2015 end-page: 128 ident: bb0080 publication-title: Electrochemical energy storage for renewable sources and grid balancing – volume: 5 start-page: 136 year: 2020 end-page: 144 ident: bb0200 article-title: React publication-title: Chem Eng – year: 2021 ident: bb0040 article-title: Cost forecast for low temperature electrolysis - technology driven bottom-up prognosis for PEM and alkaline water electrolysis systems: A cost analysis on behalf of clean air task force – volume: 36 start-page: 4134 year: 2011 end-page: 4142 ident: bb0085 publication-title: Int J Hydrogen Energy – year: 2020 ident: bb0100 article-title: Green hydrogen cost reduction: Scaling up electrolysers to meet the 1.5°C climate goal – volume: 24 start-page: 52 year: 2020 end-page: 63 ident: bb0290 publication-title: J Ind Ecol – year: 2013 ident: bb0310 article-title: Overview and methodology. Data quality guideline for the ecoinvent database version 3. Ecoinvent Report 1 (v3), St. Gallen – volume: 14 start-page: 3393 year: 2021 end-page: 3419 ident: bb0070 publication-title: Energ Environ Sci – year: 2022 ident: bb0025 article-title: Electrolysers for the hydrogen revolution – volume: 18 year: 2021 ident: bb0130 publication-title: J Electrochem Energy Convers Storage – volume: 10 start-page: 424 year: 2023 ident: bb0140 publication-title: Separations – volume: 451 year: 2020 ident: bb0190 publication-title: J Power Sources – volume: 15 year: 2022 ident: bb0035 publication-title: ChemSusChem – year: 2022 ident: bb0320 article-title: EF reference package 3.1 – volume: 22 start-page: 1286 year: 2018 end-page: 1294 ident: bb0295 publication-title: J Ind Ecol – volume: 3 year: 2020 ident: bb0300 publication-title: Software Impacts – start-page: 117 year: 2014 end-page: 166 ident: bb0050 publication-title: Hydrogen production: By electrolysis – volume: 14040 start-page: 2006 year: 2006 ident: bb0280 article-title: Environmental management - Life cycle assessment - Principles and framework – ident: bb0090 article-title: Registry of restriction intentions until outcome - Per- and polyfluoroalkyl substances (PFAS) – year: 2022 ident: bb0225 article-title: Technology – Alchemr – volume: 20 start-page: 154 year: 2016 end-page: 165 ident: bb0345 publication-title: J Ind Ecol – year: 2008 ident: bb0330 article-title: Minerals, Critical Minerals, and the U.S. Economy – ident: bb0220 article-title: Enapter Datasheet AEM Multicore™ – volume: 4 start-page: 2114 year: 2020 end-page: 2133 ident: bb0095 publication-title: Sustain Energy Fuels – reference: R. Sacchi (2021). R. Sacchi, T. Terlouw, K. Siala, A. Dirnaichner, C. Bauer, B. Cox, C. Mutel, V. Daioglou, G. Luderer, Renewable and Sustainable Energy Reviews 160 (2022) 112311. – volume: 51 start-page: 4583 year: 2022 end-page: 4762 ident: bb0110 publication-title: Chem Soc Rev – year: 2020 ident: bb0020 article-title: Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions: A hydrogen strategy for a climate-neutral Europe – volume: 45 start-page: 26036 year: 2020 end-page: 26058 ident: bb0105 publication-title: Int J Hydrogen Energy – volume: 27 start-page: 457 year: 2022 end-page: 468 ident: bb0355 publication-title: Int J Life Cycle Assess – year: 2022 ident: bb0010 publication-title: Climate Change 2022: Mitigation of climate change: Contribution of working group III to the sixth assessment report of the intergovernmental panel on climate change – year: 2021 ident: bb0275 article-title: The role of critical minerals in clean energy transitions – volume: 369 year: 2021 ident: bb0075 publication-title: Electrochim Acta – volume: 36 year: 2022 ident: bb0210 publication-title: Curr Opin Electrochem – volume: 14044 start-page: 2006 year: 2018 ident: bb0285 article-title: Environmental management - Life cycle assessment - Requirements guidelines – volume: 132 start-page: n/a year: 2015 end-page: n/a ident: bb0155 publication-title: J Appl Polym Sci – volume: 87 year: 2021 ident: bb0115 publication-title: Nano Energy – volume: 38 start-page: 4901 year: 2013 end-page: 4934 ident: bb0065 publication-title: Int J Hydrogen Energy – volume: 12 year: 2022 ident: bb0135 publication-title: Membranes – volume: 21 year: 2023 ident: bb0170 publication-title: Mater Today Sustain – year: 2022 ident: bb0175 publication-title: Chem Rev – ident: bb0215 article-title: Enapter Datasheet AEM Electrolyser: EL 4.0 – volume: 21 start-page: 12744 year: 2011 ident: bb0160 publication-title: J Mater Chem – volume: 596 year: 2020 ident: bb0165 publication-title: J Membr Sci – year: 2022 ident: bb0325 publication-title: Clean Hydrogen Joint Undertaking, Strategic Research and Innovation Agenda 2021–2027 – volume: 5 start-page: 378 year: 2020 end-page: 385 ident: bb0125 publication-title: Nat Energy – year: 2023 ident: bb0340 article-title: Study on the critical raw materials for the EU 2023 - final report – volume: 278 year: 2020 ident: bb0055 publication-title: Appl Catal Environ – reference: . – year: 2023 ident: bb0235 article-title: Efficient hydrogen solutions – Gen-Hy – volume: 5 start-page: 7869 year: 2012 ident: bb0185 publication-title: Energ Environ Sci – year: 2014 ident: bb0265 publication-title: Hydrogen production: By electrolysis – year: 2018 ident: bb0250 article-title: PEM water electrolysis – year: 2022 ident: bb0335 article-title: ORIENTING - D1.4 Critical evaluation of material criticality and product-related circularity approaches – volume: 34 start-page: 1701 year: 1997 end-page: 1714 ident: bb0145 publication-title: J Macromol Sci Part A – year: 2023 ident: bb0230 article-title: EvolOH - The Next Generation of Green Hydrogen – volume: 56 year: 2023 ident: bb0270 publication-title: Sustain Energy Technol Assess – volume: 7 start-page: 3135 year: 2014 end-page: 3191 ident: bb0045 publication-title: Energ Environ Sci – year: 2015 ident: bb0315 publication-title: SSRN J – volume: 7 start-page: 3135 year: 2014 ident: 10.1016/j.apenergy.2023.122247_bb0045 publication-title: Energ Environ Sci doi: 10.1039/C4EE01303D – volume: 3 year: 2020 ident: 10.1016/j.apenergy.2023.122247_bb0300 publication-title: Software Impacts doi: 10.1016/j.simpa.2019.100012 – volume: 369 year: 2021 ident: 10.1016/j.apenergy.2023.122247_bb0075 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2020.137684 – year: 2014 ident: 10.1016/j.apenergy.2023.122247_bb0265 – year: 2022 ident: 10.1016/j.apenergy.2023.122247_bb0010 – volume: 14 start-page: 3393 year: 2021 ident: 10.1016/j.apenergy.2023.122247_bb0070 publication-title: Energ Environ Sci doi: 10.1039/D0EE04086J – volume: 4 start-page: 2114 year: 2020 ident: 10.1016/j.apenergy.2023.122247_bb0095 publication-title: Sustain Energy Fuels doi: 10.1039/C9SE01240K – volume: 38 start-page: 4901 year: 2013 ident: 10.1016/j.apenergy.2023.122247_bb0065 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.01.151 – volume: 45 start-page: 26036 year: 2020 ident: 10.1016/j.apenergy.2023.122247_bb0105 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.03.109 – volume: 132 start-page: n/a year: 2015 ident: 10.1016/j.apenergy.2023.122247_bb0155 publication-title: J Appl Polym Sci doi: 10.1002/app.42581 – volume: 39 start-page: 19869 year: 2014 ident: 10.1016/j.apenergy.2023.122247_bb0205 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2014.10.025 – year: 2021 ident: 10.1016/j.apenergy.2023.122247_bb0040 – volume: 5 start-page: 7869 year: 2012 ident: 10.1016/j.apenergy.2023.122247_bb0185 publication-title: Energ Environ Sci doi: 10.1039/c2ee22146b – year: 2016 ident: 10.1016/j.apenergy.2023.122247_bb0255 – volume: 27 start-page: 457 year: 2022 ident: 10.1016/j.apenergy.2023.122247_bb0355 publication-title: Int J Life Cycle Assess doi: 10.1007/s11367-022-02027-y – year: 2022 ident: 10.1016/j.apenergy.2023.122247_bb0325 – volume: 10 start-page: 424 year: 2023 ident: 10.1016/j.apenergy.2023.122247_bb0140 publication-title: Separations doi: 10.3390/separations10080424 – volume: 29 year: 2023 ident: 10.1016/j.apenergy.2023.122247_bb0180 publication-title: Chemistry (Weinheim an der Bergstrasse, Germany) – ident: 10.1016/j.apenergy.2023.122247_bb0320 – volume: 51 start-page: 4583 year: 2022 ident: 10.1016/j.apenergy.2023.122247_bb0110 publication-title: Chem Soc Rev doi: 10.1039/D0CS01079K – volume: 21 start-page: 12744 year: 2011 ident: 10.1016/j.apenergy.2023.122247_bb0160 publication-title: J Mater Chem doi: 10.1039/c1jm10656b – start-page: 63 year: 2014 ident: 10.1016/j.apenergy.2023.122247_bb0060 – year: 2020 ident: 10.1016/j.apenergy.2023.122247_bb0020 – volume: 36 start-page: 4134 year: 2011 ident: 10.1016/j.apenergy.2023.122247_bb0085 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2010.06.105 – volume: 5 start-page: 136 year: 2020 ident: 10.1016/j.apenergy.2023.122247_bb0200 article-title: React publication-title: Chem Eng – year: 2013 ident: 10.1016/j.apenergy.2023.122247_bb0310 – volume: 14044 start-page: 2006 year: 2018 ident: 10.1016/j.apenergy.2023.122247_bb0285 – volume: 14040 start-page: 2006 year: 2006 ident: 10.1016/j.apenergy.2023.122247_bb0280 – ident: 10.1016/j.apenergy.2023.122247_bb0220 – ident: 10.1016/j.apenergy.2023.122247_bb0305 doi: 10.1016/j.rser.2022.112311 – ident: 10.1016/j.apenergy.2023.122247_bb0240 – year: 2022 ident: 10.1016/j.apenergy.2023.122247_bb0350 – ident: 10.1016/j.apenergy.2023.122247_bb0235 – volume: 21 year: 2023 ident: 10.1016/j.apenergy.2023.122247_bb0170 publication-title: Mater Today Sustain – ident: 10.1016/j.apenergy.2023.122247_bb0225 – volume: 22 start-page: 3733 year: 2012 ident: 10.1016/j.apenergy.2023.122247_bb0150 publication-title: J Mater Chem doi: 10.1039/c2jm14898f – year: 2022 ident: 10.1016/j.apenergy.2023.122247_bb0015 – ident: 10.1016/j.apenergy.2023.122247_bb0230 – volume: 51 start-page: 9620 year: 2022 ident: 10.1016/j.apenergy.2023.122247_bb0120 publication-title: Chem Soc Rev doi: 10.1039/D2CS00038E – ident: 10.1016/j.apenergy.2023.122247_bb0215 – volume: 56 year: 2023 ident: 10.1016/j.apenergy.2023.122247_bb0270 publication-title: Sustain Energy Technol Assess – year: 2022 ident: 10.1016/j.apenergy.2023.122247_bb0025 – year: 2022 ident: 10.1016/j.apenergy.2023.122247_bb0175 publication-title: Chem Rev – volume: 596 year: 2020 ident: 10.1016/j.apenergy.2023.122247_bb0165 publication-title: J Membr Sci – year: 2015 ident: 10.1016/j.apenergy.2023.122247_bb0005 – volume: 12 start-page: 20778 year: 2022 ident: 10.1016/j.apenergy.2023.122247_bb0260 publication-title: RSC Adv doi: 10.1039/D2RA03846C – volume: 5 start-page: 378 year: 2020 ident: 10.1016/j.apenergy.2023.122247_bb0125 publication-title: Nat Energy doi: 10.1038/s41560-020-0577-x – start-page: 103 year: 2015 ident: 10.1016/j.apenergy.2023.122247_bb0080 – volume: 34 start-page: 1701 year: 1997 ident: 10.1016/j.apenergy.2023.122247_bb0145 publication-title: J Macromol Sci Part A doi: 10.1080/10601329708010036 – year: 2023 ident: 10.1016/j.apenergy.2023.122247_bb0340 – year: 2021 ident: 10.1016/j.apenergy.2023.122247_bb0275 – volume: 36 year: 2022 ident: 10.1016/j.apenergy.2023.122247_bb0210 publication-title: Curr Opin Electrochem – year: 2008 ident: 10.1016/j.apenergy.2023.122247_bb0330 – volume: 87 year: 2021 ident: 10.1016/j.apenergy.2023.122247_bb0115 publication-title: Nano Energy – year: 2015 ident: 10.1016/j.apenergy.2023.122247_bb0315 publication-title: SSRN J – volume: 10 start-page: 1886 year: 2020 ident: 10.1016/j.apenergy.2023.122247_bb0195 publication-title: ACS Catal doi: 10.1021/acscatal.9b04505 – volume: 20 start-page: 154 year: 2016 ident: 10.1016/j.apenergy.2023.122247_bb0345 publication-title: J Ind Ecol doi: 10.1111/jiec.12279 – start-page: 117 year: 2014 ident: 10.1016/j.apenergy.2023.122247_bb0050 – year: 2018 ident: 10.1016/j.apenergy.2023.122247_bb0250 – volume: 451 year: 2020 ident: 10.1016/j.apenergy.2023.122247_bb0190 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2020.227814 – volume: 22 start-page: 1286 year: 2018 ident: 10.1016/j.apenergy.2023.122247_bb0295 publication-title: J Ind Ecol doi: 10.1111/jiec.12690 – volume: 18 year: 2021 ident: 10.1016/j.apenergy.2023.122247_bb0130 publication-title: J Electrochem Energy Convers Storage doi: 10.1115/1.4047963 – year: 2022 ident: 10.1016/j.apenergy.2023.122247_bb0335 – year: 2020 ident: 10.1016/j.apenergy.2023.122247_bb0100 – ident: 10.1016/j.apenergy.2023.122247_bb0245 – volume: 278 year: 2020 ident: 10.1016/j.apenergy.2023.122247_bb0055 publication-title: Appl Catal Environ doi: 10.1016/j.apcatb.2020.119276 – ident: 10.1016/j.apenergy.2023.122247_bb0090 – volume: 24 start-page: 52 year: 2020 ident: 10.1016/j.apenergy.2023.122247_bb0290 publication-title: J Ind Ecol doi: 10.1111/jiec.12965 – volume: 12 year: 2022 ident: 10.1016/j.apenergy.2023.122247_bb0135 publication-title: Membranes – volume: 81 start-page: 1690 year: 2018 ident: 10.1016/j.apenergy.2023.122247_bb0030 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.05.258 – volume: 15 year: 2022 ident: 10.1016/j.apenergy.2023.122247_bb0035 publication-title: ChemSusChem doi: 10.1002/cssc.202200027 |
SSID | ssj0002120 |
Score | 2.5661204 |
Snippet | The need to drastically reduce greenhouse gas emissions is driving the development of existing and new technologies to produce and use hydrogen. Anion exchange... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 122247 |
SubjectTerms | Anion exchange membrane anion-exchange membranes catalysts Critical raw material electricity generation Electrolysis environmental performance greenhouse gases Hydrogen hydrogen production Life cycle assessment ozone ozone depletion photochemistry raw materials |
Title | Environmental and material criticality assessment of hydrogen production via anion exchange membrane electrolysis |
URI | https://dx.doi.org/10.1016/j.apenergy.2023.122247 https://www.proquest.com/docview/3040407418 |
Volume | 356 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgXOCAYIAYjylIXLutSVuSI0KgAYILTOIWpXmIIejGGAgu_HacNh0PIXHg1kdcVbFjf27jzwD7XGQHjlkaOap5lCRJHintdJSmVnCW6ZRb_x3y4jLrD5Kzm_RmDo7qWhi_rTL4_sqnl946XOmG2eyOh8PulUe7Ff73sMV3Gl6gGO15AxYOT8_7lzOHTAM7I46PvMCXQuG7jhrbssiu4_uId2IMl77Tyu8x6oe3LkPQyQosB-xIDqvXW4U5WzRh6QujYBM2jj8L13BoWLlPa_D4_YYqDEGsWpof0aHdAQJyomZMnWTkyO2bmYzQxMi4IoZFJZKXoUJxf2Rfq7Jh8mAfMOkuLAlNdUqak3UYnBxfH_Wj0G4h0kywaURFz3FqSgY5Sx1Cw9xg-ppjxqRzc2DizGhNhfUKxctK9YRx3GTCICRwlrMNaBSjwm4CyZxhKjWCsVgnDDMszi3vURtTxXLLdQvSeoKlDlzkviXGvaw3nd3JWjHSK0ZWimlBdyY3rtg4_pQQtf7kN7uSGDL-lN2rFS5x0fk_KTiVo-cnydD1JR6M8a1_PH8bFvEs8XvA43QHGtPJs91FiDPN2zDfeY_bwZA_AHXh_z4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqGIABQQFRnkZiTdvYSbBHhFoVaLsAEpvl-CGKaFpKQbDw2zknTlsQEgNb5PiiyHe--5zcfYfQKePJmaWGBJYoFkRRlAZSWRXEseGMJipmxn2H7PWTzl10dR_fV9BFWQvj0iq97y98eu6t_UjDr2ZjPBg0bhzaLfC_gy2u0_By5NocgFHXP-d5HsRzM8LswE1fKBN-rMuxyUvs6q6LeD2EYOn6rPweoX746jwAtTfQukeO-Lx4uU1UMVkVrS3wCVbRTmtetgZT_b592ULP32_ITGNAqrnxYeWbHQAcx3LG04lHFj986MkIDAyPC1pYUCF-G0gQd1fmvSgaxkMzhCN3ZrBvqZOTnGyju3br9qIT-GYLgaKcTgPCm5YRnfPHGWIBGKYaDq8pnJdUqs90mGilCDdOnTAsZZNry3TCNQACaxjdQUvZKDO7CCdWUxlrTmmoIgrnK8YMaxITEklTw1QNxeUCC-WZyF1DjCdRppw9ilIxwilGFIqpocZMblxwcfwpwUv9iW9WJSBg_Cl7UipcwJZz_1FgKUevL4KC44scFGN7_3j-MVrp3Pa6onvZv95Hq3AnctngYXyAlqaTV3MIYGeaHuXG_AWNqgAP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environmental+and+material+criticality+assessment+of+hydrogen+production+via+anion+exchange+membrane+electrolysis&rft.jtitle=Applied+energy&rft.au=Schropp%2C+Elke&rft.au=Campos-Carriedo%2C+Felipe&rft.au=Iribarren%2C+Diego&rft.au=Naumann%2C+Gabriel&rft.date=2024-02-15&rft.issn=0306-2619&rft_id=info:doi/10.1016%2Fj.apenergy.2023.122247&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |