Environmental and material criticality assessment of hydrogen production via anion exchange membrane electrolysis

The need to drastically reduce greenhouse gas emissions is driving the development of existing and new technologies to produce and use hydrogen. Anion exchange membrane electrolysis is one of these rapidly developing technologies and presents promising characteristics for efficient hydrogen producti...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 356; p. 122247
Main Authors Schropp, Elke, Campos-Carriedo, Felipe, Iribarren, Diego, Naumann, Gabriel, Bernäcker, Christian, Gaderer, Matthias, Dufour, Javier
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.02.2024
Subjects
Online AccessGet full text
ISSN0306-2619
1872-9118
DOI10.1016/j.apenergy.2023.122247

Cover

Abstract The need to drastically reduce greenhouse gas emissions is driving the development of existing and new technologies to produce and use hydrogen. Anion exchange membrane electrolysis is one of these rapidly developing technologies and presents promising characteristics for efficient hydrogen production. However, the environmental performance and the material criticality of anion exchange membrane electrolysis must be assessed. In this work, prospective life cycle assessment and criticality assessment are applied, first, to identify environmental and material criticality hotspots within the production of anion exchange membrane electrolysis units and, second, to benchmark hydrogen production against proton exchange membrane electrolysis. From an environmental point of view, the catalyst spraying process heavily dominates the ozone depletion impact category, while the production of the membrane represents a hotspot in terms of the photochemical ozone formation potential. For the other categories, the environmental impacts are distributed across different components. The comparison of hydrogen production via anion exchange membrane electrolysis and proton exchange membrane electrolysis shows that both technologies involve a similar life-cycle environmental profile due to similar efficiencies and the leading role of electricity generation for the operation of electrolysis. Despite the fact that for proton exchange membrane electrolysis much less material is required due to a higher lifetime, anion exchange membrane electrolysis shows significantly lower raw material criticality since it does not rely on platinum-group metals. Overall, a promising environmental and material criticality performance of anion exchange membrane electrolysis for hydrogen production is concluded, subject to the expected technical progress for this technology. •Life Cycle Assessment of an Anion Exchange Membrane Electrolysis (AEMEL) unit.•Criticality assessment of the AEMEL technology as a complement to its environmental evaluation.•Benchmarking of AEMEL hydrogen against that from Proton Exchange Membrane Electrolysis (PEMEL).•Similar environmental performance of hydrogen produced through AEMEL and PEMEL.•Overall criticality score of AEMEL is negligible compared to the PEMEL alternative.
AbstractList The need to drastically reduce greenhouse gas emissions is driving the development of existing and new technologies to produce and use hydrogen. Anion exchange membrane electrolysis is one of these rapidly developing technologies and presents promising characteristics for efficient hydrogen production. However, the environmental performance and the material criticality of anion exchange membrane electrolysis must be assessed. In this work, prospective life cycle assessment and criticality assessment are applied, first, to identify environmental and material criticality hotspots within the production of anion exchange membrane electrolysis units and, second, to benchmark hydrogen production against proton exchange membrane electrolysis. From an environmental point of view, the catalyst spraying process heavily dominates the ozone depletion impact category, while the production of the membrane represents a hotspot in terms of the photochemical ozone formation potential. For the other categories, the environmental impacts are distributed across different components. The comparison of hydrogen production via anion exchange membrane electrolysis and proton exchange membrane electrolysis shows that both technologies involve a similar life-cycle environmental profile due to similar efficiencies and the leading role of electricity generation for the operation of electrolysis. Despite the fact that for proton exchange membrane electrolysis much less material is required due to a higher lifetime, anion exchange membrane electrolysis shows significantly lower raw material criticality since it does not rely on platinum-group metals. Overall, a promising environmental and material criticality performance of anion exchange membrane electrolysis for hydrogen production is concluded, subject to the expected technical progress for this technology.
The need to drastically reduce greenhouse gas emissions is driving the development of existing and new technologies to produce and use hydrogen. Anion exchange membrane electrolysis is one of these rapidly developing technologies and presents promising characteristics for efficient hydrogen production. However, the environmental performance and the material criticality of anion exchange membrane electrolysis must be assessed. In this work, prospective life cycle assessment and criticality assessment are applied, first, to identify environmental and material criticality hotspots within the production of anion exchange membrane electrolysis units and, second, to benchmark hydrogen production against proton exchange membrane electrolysis. From an environmental point of view, the catalyst spraying process heavily dominates the ozone depletion impact category, while the production of the membrane represents a hotspot in terms of the photochemical ozone formation potential. For the other categories, the environmental impacts are distributed across different components. The comparison of hydrogen production via anion exchange membrane electrolysis and proton exchange membrane electrolysis shows that both technologies involve a similar life-cycle environmental profile due to similar efficiencies and the leading role of electricity generation for the operation of electrolysis. Despite the fact that for proton exchange membrane electrolysis much less material is required due to a higher lifetime, anion exchange membrane electrolysis shows significantly lower raw material criticality since it does not rely on platinum-group metals. Overall, a promising environmental and material criticality performance of anion exchange membrane electrolysis for hydrogen production is concluded, subject to the expected technical progress for this technology. •Life Cycle Assessment of an Anion Exchange Membrane Electrolysis (AEMEL) unit.•Criticality assessment of the AEMEL technology as a complement to its environmental evaluation.•Benchmarking of AEMEL hydrogen against that from Proton Exchange Membrane Electrolysis (PEMEL).•Similar environmental performance of hydrogen produced through AEMEL and PEMEL.•Overall criticality score of AEMEL is negligible compared to the PEMEL alternative.
ArticleNumber 122247
Author Bernäcker, Christian
Dufour, Javier
Schropp, Elke
Gaderer, Matthias
Campos-Carriedo, Felipe
Iribarren, Diego
Naumann, Gabriel
Author_xml – sequence: 1
  givenname: Elke
  surname: Schropp
  fullname: Schropp, Elke
  email: elke.schropp@tum.de
  organization: Technical University of Munich, Professorship of Regenerative Energy Systems, 94315 Straubing, Germany
– sequence: 2
  givenname: Felipe
  surname: Campos-Carriedo
  fullname: Campos-Carriedo, Felipe
  organization: IMDEA Energy, Systems Analysis Unit, 28935 Móstoles, Spain
– sequence: 3
  givenname: Diego
  surname: Iribarren
  fullname: Iribarren, Diego
  organization: IMDEA Energy, Systems Analysis Unit, 28935 Móstoles, Spain
– sequence: 4
  givenname: Gabriel
  surname: Naumann
  fullname: Naumann, Gabriel
  organization: Technical University of Munich, Professorship of Regenerative Energy Systems, 94315 Straubing, Germany
– sequence: 5
  givenname: Christian
  surname: Bernäcker
  fullname: Bernäcker, Christian
  organization: Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Branch Lab Dresden, 01277 Dresden, Germany
– sequence: 6
  givenname: Matthias
  surname: Gaderer
  fullname: Gaderer, Matthias
  organization: Technical University of Munich, Professorship of Regenerative Energy Systems, 94315 Straubing, Germany
– sequence: 7
  givenname: Javier
  surname: Dufour
  fullname: Dufour, Javier
  organization: IMDEA Energy, Systems Analysis Unit, 28935 Móstoles, Spain
BookMark eNqFkMtKAzEUhoNUsFZfQbJ0MzWXYS7gQin1AgU3ug6Z5EybMpO0SVqctzdDdeOmZJGck_87HL5rNLHOAkJ3lMwpocXDdi53YMGvhzkjjM8pYywvL9CUViXLakqrCZoSToqMFbS-QtchbAkhjDIyRfulPRrvbA82yg5Lq3EvI3iTCuVNNEp2Jg5YhgAhjCnsWrwZtHdrsHjnnT6oaJzFRyMTPr7gW22kXQPuoW-8tIChAxW964Zgwg26bGUX4Pb3nqGvl-Xn4i1bfby-L55XmeI1jxmrSVsxTUie58BayutGV7xsKM1Vo0tNC60UqyF9N6ktJal1W-mi1gXlLVR8hu5Pc9OO-wOEKHoTFHRdWsgdguAkT6fM6RgtTlHlXQgeWrHzppd-EJSI0bHYij_HYnQsTo4T-PgPVCbKUUf00nTn8acTDsnD0YAXQRmwCrTxSZjQzpwb8QN6gKIz
CitedBy_id crossref_primary_10_1016_j_jclepro_2024_143129
crossref_primary_10_1016_j_resconrec_2024_107851
crossref_primary_10_1016_j_energy_2024_134266
crossref_primary_10_1016_j_enconman_2024_118520
crossref_primary_10_1016_j_scitotenv_2024_177454
crossref_primary_10_1016_j_spc_2024_03_017
crossref_primary_10_1016_j_jpowsour_2024_235031
crossref_primary_10_1016_j_ijhydene_2024_11_110
crossref_primary_10_1016_j_paerosci_2024_101053
crossref_primary_10_1016_j_renene_2024_121572
crossref_primary_10_1016_j_memsci_2024_123026
crossref_primary_10_3390_en17092206
crossref_primary_10_1016_j_joule_2024_09_007
crossref_primary_10_1016_j_memsci_2024_123040
crossref_primary_10_1016_j_adapen_2024_100194
crossref_primary_10_1016_j_ijhydene_2024_07_428
crossref_primary_10_3390_environments11060108
Cites_doi 10.1039/C4EE01303D
10.1016/j.simpa.2019.100012
10.1016/j.electacta.2020.137684
10.1039/D0EE04086J
10.1039/C9SE01240K
10.1016/j.ijhydene.2013.01.151
10.1016/j.ijhydene.2020.03.109
10.1002/app.42581
10.1016/j.ijhydene.2014.10.025
10.1039/c2ee22146b
10.1007/s11367-022-02027-y
10.3390/separations10080424
10.1039/D0CS01079K
10.1039/c1jm10656b
10.1016/j.ijhydene.2010.06.105
10.1016/j.rser.2022.112311
10.1039/c2jm14898f
10.1039/D2CS00038E
10.1039/D2RA03846C
10.1038/s41560-020-0577-x
10.1080/10601329708010036
10.1021/acscatal.9b04505
10.1111/jiec.12279
10.1016/j.jpowsour.2020.227814
10.1111/jiec.12690
10.1115/1.4047963
10.1016/j.apcatb.2020.119276
10.1111/jiec.12965
10.1016/j.rser.2017.05.258
10.1002/cssc.202200027
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2023.122247
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2023_122247
S0306261923016112
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SSH
WUQ
ZY4
7S9
L.6
ID FETCH-LOGICAL-c393t-290f82d00444e2f139bd837b114cbd7d16dcc29e444b37baa09df8d69d613fe83
IEDL.DBID AIKHN
ISSN 0306-2619
IngestDate Wed Jul 02 04:39:34 EDT 2025
Thu Apr 24 22:51:51 EDT 2025
Tue Jul 01 04:01:20 EDT 2025
Sat Mar 02 16:00:57 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Life cycle assessment
Critical raw material
Electrolysis
Anion exchange membrane
Hydrogen
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-290f82d00444e2f139bd837b114cbd7d16dcc29e444b37baa09df8d69d613fe83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0306261923016112
PQID 3040407418
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3040407418
crossref_primary_10_1016_j_apenergy_2023_122247
crossref_citationtrail_10_1016_j_apenergy_2023_122247
elsevier_sciencedirect_doi_10_1016_j_apenergy_2023_122247
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-15
PublicationDateYYYYMMDD 2024-02-15
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References EvolOH (bb0230) 2023
Miller (bb0210) 2022; 36
International Organization for Standardization (bb0285) 2018; 14044
R. Sacchi (2021). R. Sacchi, T. Terlouw, K. Siala, A. Dirnaichner, C. Bauer, B. Cox, C. Mutel, V. Daioglou, G. Luderer, Renewable and Sustainable Energy Reviews 160 (2022) 112311.
Miller, Bouzek, Hnat, Loos, Bernäcker, Weißgärber (bb0095) 2020; 4
Varcoe, Atanassov, Dekel, Herring, Hickner, Kohl (bb0045) 2014; 7
Enapter (bb0215)
International Organization for Standardization (bb0280) 2006; 14040
Hydrolite (bb0240) 2023
Li, Park, Zhu, Shi, Zhou, Tian (bb0125) 2020; 5
Ansari, Grinschgl, Pepe (bb0025) 2022
Arvidsson, Tillman, Sandén, Janssen, Nordelöf, Kushnir (bb0295) 2018; 22
Joint Research Centre (JRC) (bb0320) 2022
Santoro, Lavacchi, Mustarelli, Di Noto, Elbaz, Dekel (bb0035) 2022; 15
European Chemicals Agency (bb0090)
Arges, Parrondo, Johnson, Nadhan, Ramani (bb0150) 2012; 22
Koshikawa, Murase, Hayashi, Nakajima, Mashiko, Shiraishi (bb0195) 2020; 10
Gen-Hy • Hydrogen Solutions (bb0235) 2023
Li, Baek (bb0115) 2021; 87
International Energy Agency (bb0275) 2021
Smolinka, Ojong, Lickert (bb0255) 2016
Holst, Aschbrenner, Smolinka, Voglstätter, Grimm (bb0040) 2021
Henkensmeier, Najibah, Harms, Žitka, Hnát, Bouzek (bb0130) 2021; 18
Chatenet, Pollet, Dekel, Dionigi, Deseure, Millet (bb0110) 2022; 51
Grigoriev, Fateev, Bessarabov, Millet (bb0105) 2020; 45
Riemer, Duval-Dachary, Bachmann (bb0270) 2023; 56
Vincent, Bessarabov (bb0030) 2018; 81
Verdagy (bb0245) 2023
Yang, Li, Zheng, Sun, Dou, Ma (bb0120) 2022; 51
National Research Council (bb0330) 2008
Moni, Mahmud, High, Carbajales-Dale (bb0290) 2020; 24
Luderer, Leimbach, Bauer, Kriegler, Baumstark, Bertram (bb0315) 2015
.
Smolinka, Ojong, Garche (bb0080) 2015
Du, Roy, Peach, Turnbull, Thiele, Bock (bb0175) 2022
Gemechu, Helbig, Sonnemann, Thorenz, Tuma (bb0345) 2016; 20
Koch, Disch, Kilian, Han, Metzler, Tengattini (bb0260) 2022; 12
Li, Liu, Ge, Xing, Zhu (bb0180) 2023; 29
Millet (bb0060) 2014
Santillán-Saldivar, Gemechu, Muller, Villeneuve, Young, Sonnemann (bb0355) 2022; 27
Fortin, Khoza, Cao, Martinsen, Oyarce Barnett, Holdcroft (bb0190) 2020; 451
Weidema, Bauer, Hischier, Mutel, Nemecek, Reinhard (bb0310) 2013
Millet, Mbemba, Grigoriev, Fateev, Aukauloo, Etiévant (bb0085) 2011; 36
Bessarabov, Millet (bb0250) 2018
Bargiacchi, Puig-Samper, Campos-Carriedo, Iribarren, Dufour, Ciroth (bb0350) 2022
Blanco, Prasad, Dunningan, Modestino (bb0200) 2020; 5
Ng, Wong, Rosli, Loh (bb0140) 2023; 10
Liu, Wang (bb0165) 2020; 596
Park, Yang, Lee, Jang, Jeong, Choi (bb0055) 2020; 278
Schauer, Žitka, Pientka, Křivčík, Hnát, Bouzek (bb0155) 2015; 132
European Commission (bb0020) 2020
Alchemr (bb0225) 2022
International Renewable Energy Agency (IRENA) (bb0100) 2020
de Groot, Vreman (bb0075) 2021; 369
Khalid, Najibah, Park, Bae, Henkensmeier (bb0135) 2022; 12
Xiao, Zhang, Pan, Yang, He, Zhuang (bb0185) 2012; 5
An, Zhao, Chai, Tan, Zeng (bb0205) 2014; 39
UNFCCC (bb0005) 2015
Simari, Ur Rehman, Caprì, Gatto, Baglio, Nicotera (bb0170) 2023; 21
Zhang, Zhang, Qu (bb0160) 2011; 21
Carmo, Fritz, Mergel, Stolten (bb0065) 2013; 38
Enapter (bb0220)
Avram, Butuc, Luca, Druta (bb0145) 1997; 34
International Energy Agency (IEA) (bb0015) 2022
Guillet, Millet (bb0050) 2014
(bb0325) 2022
(bb0010) 2022
Li, Motz, Bae, Fujimoto, Yang, Zhang (bb0070) 2021; 14
Bachmann, Corrêa, Horn, Charter, Gehring, Graf (bb0335) 2022
European Commission (bb0340) 2023
Millet (bb0265) 2014
Steubing, de Koning, Haas, Mutel (bb0300) 2020; 3
Miller (10.1016/j.apenergy.2023.122247_bb0210) 2022; 36
Ansari (10.1016/j.apenergy.2023.122247_bb0025) 2022
Weidema (10.1016/j.apenergy.2023.122247_bb0310) 2013
Li (10.1016/j.apenergy.2023.122247_bb0070) 2021; 14
European Chemicals Agency (10.1016/j.apenergy.2023.122247_bb0090)
Vincent (10.1016/j.apenergy.2023.122247_bb0030) 2018; 81
de Groot (10.1016/j.apenergy.2023.122247_bb0075) 2021; 369
(10.1016/j.apenergy.2023.122247_bb0010) 2022
Gen-Hy • Hydrogen Solutions (10.1016/j.apenergy.2023.122247_bb0235)
Arvidsson (10.1016/j.apenergy.2023.122247_bb0295) 2018; 22
Zhang (10.1016/j.apenergy.2023.122247_bb0160) 2011; 21
Enapter (10.1016/j.apenergy.2023.122247_bb0215)
Riemer (10.1016/j.apenergy.2023.122247_bb0270) 2023; 56
Bachmann (10.1016/j.apenergy.2023.122247_bb0335) 2022
Simari (10.1016/j.apenergy.2023.122247_bb0170) 2023; 21
Luderer (10.1016/j.apenergy.2023.122247_bb0315) 2015
Chatenet (10.1016/j.apenergy.2023.122247_bb0110) 2022; 51
Carmo (10.1016/j.apenergy.2023.122247_bb0065) 2013; 38
(10.1016/j.apenergy.2023.122247_bb0325) 2022
European Commission (10.1016/j.apenergy.2023.122247_bb0340) 2023
Koch (10.1016/j.apenergy.2023.122247_bb0260) 2022; 12
EvolOH (10.1016/j.apenergy.2023.122247_bb0230)
Gemechu (10.1016/j.apenergy.2023.122247_bb0345) 2016; 20
Grigoriev (10.1016/j.apenergy.2023.122247_bb0105) 2020; 45
Steubing (10.1016/j.apenergy.2023.122247_bb0300) 2020; 3
Smolinka (10.1016/j.apenergy.2023.122247_bb0080) 2015
International Renewable Energy Agency (IRENA) (10.1016/j.apenergy.2023.122247_bb0100) 2020
Li (10.1016/j.apenergy.2023.122247_bb0115) 2021; 87
Fortin (10.1016/j.apenergy.2023.122247_bb0190) 2020; 451
Hydrolite (10.1016/j.apenergy.2023.122247_bb0240)
International Energy Agency (IEA) (10.1016/j.apenergy.2023.122247_bb0015) 2022
Koshikawa (10.1016/j.apenergy.2023.122247_bb0195) 2020; 10
Bessarabov (10.1016/j.apenergy.2023.122247_bb0250) 2018
Varcoe (10.1016/j.apenergy.2023.122247_bb0045) 2014; 7
Yang (10.1016/j.apenergy.2023.122247_bb0120) 2022; 51
Liu (10.1016/j.apenergy.2023.122247_bb0165) 2020; 596
International Energy Agency (10.1016/j.apenergy.2023.122247_bb0275) 2021
Enapter (10.1016/j.apenergy.2023.122247_bb0220)
International Organization for Standardization (10.1016/j.apenergy.2023.122247_bb0285) 2018; 14044
Schauer (10.1016/j.apenergy.2023.122247_bb0155) 2015; 132
Smolinka (10.1016/j.apenergy.2023.122247_bb0255) 2016
Avram (10.1016/j.apenergy.2023.122247_bb0145) 1997; 34
Alchemr (10.1016/j.apenergy.2023.122247_bb0225)
Joint Research Centre (JRC) (10.1016/j.apenergy.2023.122247_bb0320)
Millet (10.1016/j.apenergy.2023.122247_bb0060) 2014
10.1016/j.apenergy.2023.122247_bb0305
An (10.1016/j.apenergy.2023.122247_bb0205) 2014; 39
Millet (10.1016/j.apenergy.2023.122247_bb0265) 2014
Guillet (10.1016/j.apenergy.2023.122247_bb0050) 2014
UNFCCC (10.1016/j.apenergy.2023.122247_bb0005) 2015
National Research Council (10.1016/j.apenergy.2023.122247_bb0330) 2008
Henkensmeier (10.1016/j.apenergy.2023.122247_bb0130) 2021; 18
Santillán-Saldivar (10.1016/j.apenergy.2023.122247_bb0355) 2022; 27
Li (10.1016/j.apenergy.2023.122247_bb0125) 2020; 5
European Commission (10.1016/j.apenergy.2023.122247_bb0020) 2020
Du (10.1016/j.apenergy.2023.122247_bb0175) 2022
Millet (10.1016/j.apenergy.2023.122247_bb0085) 2011; 36
Blanco (10.1016/j.apenergy.2023.122247_bb0200) 2020; 5
International Organization for Standardization (10.1016/j.apenergy.2023.122247_bb0280) 2006; 14040
Ng (10.1016/j.apenergy.2023.122247_bb0140) 2023; 10
Moni (10.1016/j.apenergy.2023.122247_bb0290) 2020; 24
Arges (10.1016/j.apenergy.2023.122247_bb0150) 2012; 22
Holst (10.1016/j.apenergy.2023.122247_bb0040) 2021
Park (10.1016/j.apenergy.2023.122247_bb0055) 2020; 278
Miller (10.1016/j.apenergy.2023.122247_bb0095) 2020; 4
Khalid (10.1016/j.apenergy.2023.122247_bb0135) 2022; 12
Santoro (10.1016/j.apenergy.2023.122247_bb0035) 2022; 15
Verdagy (10.1016/j.apenergy.2023.122247_bb0245)
Bargiacchi (10.1016/j.apenergy.2023.122247_bb0350) 2022
Xiao (10.1016/j.apenergy.2023.122247_bb0185) 2012; 5
Li (10.1016/j.apenergy.2023.122247_bb0180) 2023; 29
References_xml – year: 2022
  ident: bb0350
  article-title: D2.2 Definition of FCH-LCA guidelines: SH2E project
– volume: 10
  start-page: 1886
  year: 2020
  end-page: 1893
  ident: bb0195
  publication-title: ACS Catal
– volume: 12
  start-page: 20778
  year: 2022
  end-page: 20784
  ident: bb0260
  publication-title: RSC Adv
– volume: 29
  year: 2023
  ident: bb0180
  publication-title: Chemistry (Weinheim an der Bergstrasse, Germany)
– start-page: 63
  year: 2014
  end-page: 116
  ident: bb0060
  publication-title: Hydrogen production: By electrolysis
– volume: 51
  start-page: 9620
  year: 2022
  end-page: 9693
  ident: bb0120
  publication-title: Chem Soc Rev
– volume: 39
  start-page: 19869
  year: 2014
  end-page: 19876
  ident: bb0205
  publication-title: Int J Hydrogen Energy
– volume: 22
  start-page: 3733
  year: 2012
  ident: bb0150
  publication-title: J Mater Chem
– year: 2022
  ident: bb0015
  article-title: Global hydrogen review 2022
– year: 2016
  ident: bb0255
  publication-title: PEM electrolysis for hydrogen production: Principles and applications
– year: 2015
  ident: bb0005
  article-title: Paris Agreement
– year: 2023
  ident: bb0245
  article-title: Industrial hydrogen with innovative electrolyzers - Verdagy
– year: 2023
  ident: bb0240
  article-title: Setting a new global standard in innovation, expertise & reliability - Hydrolite
– volume: 81
  start-page: 1690
  year: 2018
  end-page: 1704
  ident: bb0030
  publication-title: Renew Sustain Energy Rev
– start-page: 103
  year: 2015
  end-page: 128
  ident: bb0080
  publication-title: Electrochemical energy storage for renewable sources and grid balancing
– volume: 5
  start-page: 136
  year: 2020
  end-page: 144
  ident: bb0200
  article-title: React
  publication-title: Chem Eng
– year: 2021
  ident: bb0040
  article-title: Cost forecast for low temperature electrolysis - technology driven bottom-up prognosis for PEM and alkaline water electrolysis systems: A cost analysis on behalf of clean air task force
– volume: 36
  start-page: 4134
  year: 2011
  end-page: 4142
  ident: bb0085
  publication-title: Int J Hydrogen Energy
– year: 2020
  ident: bb0100
  article-title: Green hydrogen cost reduction: Scaling up electrolysers to meet the 1.5°C climate goal
– volume: 24
  start-page: 52
  year: 2020
  end-page: 63
  ident: bb0290
  publication-title: J Ind Ecol
– year: 2013
  ident: bb0310
  article-title: Overview and methodology. Data quality guideline for the ecoinvent database version 3. Ecoinvent Report 1 (v3), St. Gallen
– volume: 14
  start-page: 3393
  year: 2021
  end-page: 3419
  ident: bb0070
  publication-title: Energ Environ Sci
– year: 2022
  ident: bb0025
  article-title: Electrolysers for the hydrogen revolution
– volume: 18
  year: 2021
  ident: bb0130
  publication-title: J Electrochem Energy Convers Storage
– volume: 10
  start-page: 424
  year: 2023
  ident: bb0140
  publication-title: Separations
– volume: 451
  year: 2020
  ident: bb0190
  publication-title: J Power Sources
– volume: 15
  year: 2022
  ident: bb0035
  publication-title: ChemSusChem
– year: 2022
  ident: bb0320
  article-title: EF reference package 3.1
– volume: 22
  start-page: 1286
  year: 2018
  end-page: 1294
  ident: bb0295
  publication-title: J Ind Ecol
– volume: 3
  year: 2020
  ident: bb0300
  publication-title: Software Impacts
– start-page: 117
  year: 2014
  end-page: 166
  ident: bb0050
  publication-title: Hydrogen production: By electrolysis
– volume: 14040
  start-page: 2006
  year: 2006
  ident: bb0280
  article-title: Environmental management - Life cycle assessment - Principles and framework
– ident: bb0090
  article-title: Registry of restriction intentions until outcome - Per- and polyfluoroalkyl substances (PFAS)
– year: 2022
  ident: bb0225
  article-title: Technology – Alchemr
– volume: 20
  start-page: 154
  year: 2016
  end-page: 165
  ident: bb0345
  publication-title: J Ind Ecol
– year: 2008
  ident: bb0330
  article-title: Minerals, Critical Minerals, and the U.S. Economy
– ident: bb0220
  article-title: Enapter Datasheet AEM Multicore™
– volume: 4
  start-page: 2114
  year: 2020
  end-page: 2133
  ident: bb0095
  publication-title: Sustain Energy Fuels
– reference: R. Sacchi (2021). R. Sacchi, T. Terlouw, K. Siala, A. Dirnaichner, C. Bauer, B. Cox, C. Mutel, V. Daioglou, G. Luderer, Renewable and Sustainable Energy Reviews 160 (2022) 112311.
– volume: 51
  start-page: 4583
  year: 2022
  end-page: 4762
  ident: bb0110
  publication-title: Chem Soc Rev
– year: 2020
  ident: bb0020
  article-title: Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions: A hydrogen strategy for a climate-neutral Europe
– volume: 45
  start-page: 26036
  year: 2020
  end-page: 26058
  ident: bb0105
  publication-title: Int J Hydrogen Energy
– volume: 27
  start-page: 457
  year: 2022
  end-page: 468
  ident: bb0355
  publication-title: Int J Life Cycle Assess
– year: 2022
  ident: bb0010
  publication-title: Climate Change 2022: Mitigation of climate change: Contribution of working group III to the sixth assessment report of the intergovernmental panel on climate change
– year: 2021
  ident: bb0275
  article-title: The role of critical minerals in clean energy transitions
– volume: 369
  year: 2021
  ident: bb0075
  publication-title: Electrochim Acta
– volume: 36
  year: 2022
  ident: bb0210
  publication-title: Curr Opin Electrochem
– volume: 14044
  start-page: 2006
  year: 2018
  ident: bb0285
  article-title: Environmental management - Life cycle assessment - Requirements guidelines
– volume: 132
  start-page: n/a
  year: 2015
  end-page: n/a
  ident: bb0155
  publication-title: J Appl Polym Sci
– volume: 87
  year: 2021
  ident: bb0115
  publication-title: Nano Energy
– volume: 38
  start-page: 4901
  year: 2013
  end-page: 4934
  ident: bb0065
  publication-title: Int J Hydrogen Energy
– volume: 12
  year: 2022
  ident: bb0135
  publication-title: Membranes
– volume: 21
  year: 2023
  ident: bb0170
  publication-title: Mater Today Sustain
– year: 2022
  ident: bb0175
  publication-title: Chem Rev
– ident: bb0215
  article-title: Enapter Datasheet AEM Electrolyser: EL 4.0
– volume: 21
  start-page: 12744
  year: 2011
  ident: bb0160
  publication-title: J Mater Chem
– volume: 596
  year: 2020
  ident: bb0165
  publication-title: J Membr Sci
– year: 2022
  ident: bb0325
  publication-title: Clean Hydrogen Joint Undertaking, Strategic Research and Innovation Agenda 2021–2027
– volume: 5
  start-page: 378
  year: 2020
  end-page: 385
  ident: bb0125
  publication-title: Nat Energy
– year: 2023
  ident: bb0340
  article-title: Study on the critical raw materials for the EU 2023 - final report
– volume: 278
  year: 2020
  ident: bb0055
  publication-title: Appl Catal Environ
– reference: .
– year: 2023
  ident: bb0235
  article-title: Efficient hydrogen solutions – Gen-Hy
– volume: 5
  start-page: 7869
  year: 2012
  ident: bb0185
  publication-title: Energ Environ Sci
– year: 2014
  ident: bb0265
  publication-title: Hydrogen production: By electrolysis
– year: 2018
  ident: bb0250
  article-title: PEM water electrolysis
– year: 2022
  ident: bb0335
  article-title: ORIENTING - D1.4 Critical evaluation of material criticality and product-related circularity approaches
– volume: 34
  start-page: 1701
  year: 1997
  end-page: 1714
  ident: bb0145
  publication-title: J Macromol Sci Part A
– year: 2023
  ident: bb0230
  article-title: EvolOH - The Next Generation of Green Hydrogen
– volume: 56
  year: 2023
  ident: bb0270
  publication-title: Sustain Energy Technol Assess
– volume: 7
  start-page: 3135
  year: 2014
  end-page: 3191
  ident: bb0045
  publication-title: Energ Environ Sci
– year: 2015
  ident: bb0315
  publication-title: SSRN J
– volume: 7
  start-page: 3135
  year: 2014
  ident: 10.1016/j.apenergy.2023.122247_bb0045
  publication-title: Energ Environ Sci
  doi: 10.1039/C4EE01303D
– volume: 3
  year: 2020
  ident: 10.1016/j.apenergy.2023.122247_bb0300
  publication-title: Software Impacts
  doi: 10.1016/j.simpa.2019.100012
– volume: 369
  year: 2021
  ident: 10.1016/j.apenergy.2023.122247_bb0075
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2020.137684
– year: 2014
  ident: 10.1016/j.apenergy.2023.122247_bb0265
– year: 2022
  ident: 10.1016/j.apenergy.2023.122247_bb0010
– volume: 14
  start-page: 3393
  year: 2021
  ident: 10.1016/j.apenergy.2023.122247_bb0070
  publication-title: Energ Environ Sci
  doi: 10.1039/D0EE04086J
– volume: 4
  start-page: 2114
  year: 2020
  ident: 10.1016/j.apenergy.2023.122247_bb0095
  publication-title: Sustain Energy Fuels
  doi: 10.1039/C9SE01240K
– volume: 38
  start-page: 4901
  year: 2013
  ident: 10.1016/j.apenergy.2023.122247_bb0065
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.01.151
– volume: 45
  start-page: 26036
  year: 2020
  ident: 10.1016/j.apenergy.2023.122247_bb0105
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.03.109
– volume: 132
  start-page: n/a
  year: 2015
  ident: 10.1016/j.apenergy.2023.122247_bb0155
  publication-title: J Appl Polym Sci
  doi: 10.1002/app.42581
– volume: 39
  start-page: 19869
  year: 2014
  ident: 10.1016/j.apenergy.2023.122247_bb0205
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.10.025
– year: 2021
  ident: 10.1016/j.apenergy.2023.122247_bb0040
– volume: 5
  start-page: 7869
  year: 2012
  ident: 10.1016/j.apenergy.2023.122247_bb0185
  publication-title: Energ Environ Sci
  doi: 10.1039/c2ee22146b
– year: 2016
  ident: 10.1016/j.apenergy.2023.122247_bb0255
– volume: 27
  start-page: 457
  year: 2022
  ident: 10.1016/j.apenergy.2023.122247_bb0355
  publication-title: Int J Life Cycle Assess
  doi: 10.1007/s11367-022-02027-y
– year: 2022
  ident: 10.1016/j.apenergy.2023.122247_bb0325
– volume: 10
  start-page: 424
  year: 2023
  ident: 10.1016/j.apenergy.2023.122247_bb0140
  publication-title: Separations
  doi: 10.3390/separations10080424
– volume: 29
  year: 2023
  ident: 10.1016/j.apenergy.2023.122247_bb0180
  publication-title: Chemistry (Weinheim an der Bergstrasse, Germany)
– ident: 10.1016/j.apenergy.2023.122247_bb0320
– volume: 51
  start-page: 4583
  year: 2022
  ident: 10.1016/j.apenergy.2023.122247_bb0110
  publication-title: Chem Soc Rev
  doi: 10.1039/D0CS01079K
– volume: 21
  start-page: 12744
  year: 2011
  ident: 10.1016/j.apenergy.2023.122247_bb0160
  publication-title: J Mater Chem
  doi: 10.1039/c1jm10656b
– start-page: 63
  year: 2014
  ident: 10.1016/j.apenergy.2023.122247_bb0060
– year: 2020
  ident: 10.1016/j.apenergy.2023.122247_bb0020
– volume: 36
  start-page: 4134
  year: 2011
  ident: 10.1016/j.apenergy.2023.122247_bb0085
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.06.105
– volume: 5
  start-page: 136
  year: 2020
  ident: 10.1016/j.apenergy.2023.122247_bb0200
  article-title: React
  publication-title: Chem Eng
– year: 2013
  ident: 10.1016/j.apenergy.2023.122247_bb0310
– volume: 14044
  start-page: 2006
  year: 2018
  ident: 10.1016/j.apenergy.2023.122247_bb0285
– volume: 14040
  start-page: 2006
  year: 2006
  ident: 10.1016/j.apenergy.2023.122247_bb0280
– ident: 10.1016/j.apenergy.2023.122247_bb0220
– ident: 10.1016/j.apenergy.2023.122247_bb0305
  doi: 10.1016/j.rser.2022.112311
– ident: 10.1016/j.apenergy.2023.122247_bb0240
– year: 2022
  ident: 10.1016/j.apenergy.2023.122247_bb0350
– ident: 10.1016/j.apenergy.2023.122247_bb0235
– volume: 21
  year: 2023
  ident: 10.1016/j.apenergy.2023.122247_bb0170
  publication-title: Mater Today Sustain
– ident: 10.1016/j.apenergy.2023.122247_bb0225
– volume: 22
  start-page: 3733
  year: 2012
  ident: 10.1016/j.apenergy.2023.122247_bb0150
  publication-title: J Mater Chem
  doi: 10.1039/c2jm14898f
– year: 2022
  ident: 10.1016/j.apenergy.2023.122247_bb0015
– ident: 10.1016/j.apenergy.2023.122247_bb0230
– volume: 51
  start-page: 9620
  year: 2022
  ident: 10.1016/j.apenergy.2023.122247_bb0120
  publication-title: Chem Soc Rev
  doi: 10.1039/D2CS00038E
– ident: 10.1016/j.apenergy.2023.122247_bb0215
– volume: 56
  year: 2023
  ident: 10.1016/j.apenergy.2023.122247_bb0270
  publication-title: Sustain Energy Technol Assess
– year: 2022
  ident: 10.1016/j.apenergy.2023.122247_bb0025
– year: 2022
  ident: 10.1016/j.apenergy.2023.122247_bb0175
  publication-title: Chem Rev
– volume: 596
  year: 2020
  ident: 10.1016/j.apenergy.2023.122247_bb0165
  publication-title: J Membr Sci
– year: 2015
  ident: 10.1016/j.apenergy.2023.122247_bb0005
– volume: 12
  start-page: 20778
  year: 2022
  ident: 10.1016/j.apenergy.2023.122247_bb0260
  publication-title: RSC Adv
  doi: 10.1039/D2RA03846C
– volume: 5
  start-page: 378
  year: 2020
  ident: 10.1016/j.apenergy.2023.122247_bb0125
  publication-title: Nat Energy
  doi: 10.1038/s41560-020-0577-x
– start-page: 103
  year: 2015
  ident: 10.1016/j.apenergy.2023.122247_bb0080
– volume: 34
  start-page: 1701
  year: 1997
  ident: 10.1016/j.apenergy.2023.122247_bb0145
  publication-title: J Macromol Sci Part A
  doi: 10.1080/10601329708010036
– year: 2023
  ident: 10.1016/j.apenergy.2023.122247_bb0340
– year: 2021
  ident: 10.1016/j.apenergy.2023.122247_bb0275
– volume: 36
  year: 2022
  ident: 10.1016/j.apenergy.2023.122247_bb0210
  publication-title: Curr Opin Electrochem
– year: 2008
  ident: 10.1016/j.apenergy.2023.122247_bb0330
– volume: 87
  year: 2021
  ident: 10.1016/j.apenergy.2023.122247_bb0115
  publication-title: Nano Energy
– year: 2015
  ident: 10.1016/j.apenergy.2023.122247_bb0315
  publication-title: SSRN J
– volume: 10
  start-page: 1886
  year: 2020
  ident: 10.1016/j.apenergy.2023.122247_bb0195
  publication-title: ACS Catal
  doi: 10.1021/acscatal.9b04505
– volume: 20
  start-page: 154
  year: 2016
  ident: 10.1016/j.apenergy.2023.122247_bb0345
  publication-title: J Ind Ecol
  doi: 10.1111/jiec.12279
– start-page: 117
  year: 2014
  ident: 10.1016/j.apenergy.2023.122247_bb0050
– year: 2018
  ident: 10.1016/j.apenergy.2023.122247_bb0250
– volume: 451
  year: 2020
  ident: 10.1016/j.apenergy.2023.122247_bb0190
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2020.227814
– volume: 22
  start-page: 1286
  year: 2018
  ident: 10.1016/j.apenergy.2023.122247_bb0295
  publication-title: J Ind Ecol
  doi: 10.1111/jiec.12690
– volume: 18
  year: 2021
  ident: 10.1016/j.apenergy.2023.122247_bb0130
  publication-title: J Electrochem Energy Convers Storage
  doi: 10.1115/1.4047963
– year: 2022
  ident: 10.1016/j.apenergy.2023.122247_bb0335
– year: 2020
  ident: 10.1016/j.apenergy.2023.122247_bb0100
– ident: 10.1016/j.apenergy.2023.122247_bb0245
– volume: 278
  year: 2020
  ident: 10.1016/j.apenergy.2023.122247_bb0055
  publication-title: Appl Catal Environ
  doi: 10.1016/j.apcatb.2020.119276
– ident: 10.1016/j.apenergy.2023.122247_bb0090
– volume: 24
  start-page: 52
  year: 2020
  ident: 10.1016/j.apenergy.2023.122247_bb0290
  publication-title: J Ind Ecol
  doi: 10.1111/jiec.12965
– volume: 12
  year: 2022
  ident: 10.1016/j.apenergy.2023.122247_bb0135
  publication-title: Membranes
– volume: 81
  start-page: 1690
  year: 2018
  ident: 10.1016/j.apenergy.2023.122247_bb0030
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.05.258
– volume: 15
  year: 2022
  ident: 10.1016/j.apenergy.2023.122247_bb0035
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202200027
SSID ssj0002120
Score 2.5661204
Snippet The need to drastically reduce greenhouse gas emissions is driving the development of existing and new technologies to produce and use hydrogen. Anion exchange...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 122247
SubjectTerms Anion exchange membrane
anion-exchange membranes
catalysts
Critical raw material
electricity generation
Electrolysis
environmental performance
greenhouse gases
Hydrogen
hydrogen production
Life cycle assessment
ozone
ozone depletion
photochemistry
raw materials
Title Environmental and material criticality assessment of hydrogen production via anion exchange membrane electrolysis
URI https://dx.doi.org/10.1016/j.apenergy.2023.122247
https://www.proquest.com/docview/3040407418
Volume 356
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgXOCAYIAYjylIXLutSVuSI0KgAYILTOIWpXmIIejGGAgu_HacNh0PIXHg1kdcVbFjf27jzwD7XGQHjlkaOap5lCRJHintdJSmVnCW6ZRb_x3y4jLrD5Kzm_RmDo7qWhi_rTL4_sqnl946XOmG2eyOh8PulUe7Ff73sMV3Gl6gGO15AxYOT8_7lzOHTAM7I46PvMCXQuG7jhrbssiu4_uId2IMl77Tyu8x6oe3LkPQyQosB-xIDqvXW4U5WzRh6QujYBM2jj8L13BoWLlPa_D4_YYqDEGsWpof0aHdAQJyomZMnWTkyO2bmYzQxMi4IoZFJZKXoUJxf2Rfq7Jh8mAfMOkuLAlNdUqak3UYnBxfH_Wj0G4h0kywaURFz3FqSgY5Sx1Cw9xg-ppjxqRzc2DizGhNhfUKxctK9YRx3GTCICRwlrMNaBSjwm4CyZxhKjWCsVgnDDMszi3vURtTxXLLdQvSeoKlDlzkviXGvaw3nd3JWjHSK0ZWimlBdyY3rtg4_pQQtf7kN7uSGDL-lN2rFS5x0fk_KTiVo-cnydD1JR6M8a1_PH8bFvEs8XvA43QHGtPJs91FiDPN2zDfeY_bwZA_AHXh_z4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqGIABQQFRnkZiTdvYSbBHhFoVaLsAEpvl-CGKaFpKQbDw2zknTlsQEgNb5PiiyHe--5zcfYfQKePJmaWGBJYoFkRRlAZSWRXEseGMJipmxn2H7PWTzl10dR_fV9BFWQvj0iq97y98eu6t_UjDr2ZjPBg0bhzaLfC_gy2u0_By5NocgFHXP-d5HsRzM8LswE1fKBN-rMuxyUvs6q6LeD2EYOn6rPweoX746jwAtTfQukeO-Lx4uU1UMVkVrS3wCVbRTmtetgZT_b592ULP32_ITGNAqrnxYeWbHQAcx3LG04lHFj986MkIDAyPC1pYUCF-G0gQd1fmvSgaxkMzhCN3ZrBvqZOTnGyju3br9qIT-GYLgaKcTgPCm5YRnfPHGWIBGKYaDq8pnJdUqs90mGilCDdOnTAsZZNry3TCNQACaxjdQUvZKDO7CCdWUxlrTmmoIgrnK8YMaxITEklTw1QNxeUCC-WZyF1DjCdRppw9ilIxwilGFIqpocZMblxwcfwpwUv9iW9WJSBg_Cl7UipcwJZz_1FgKUevL4KC44scFGN7_3j-MVrp3Pa6onvZv95Hq3AnctngYXyAlqaTV3MIYGeaHuXG_AWNqgAP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environmental+and+material+criticality+assessment+of+hydrogen+production+via+anion+exchange+membrane+electrolysis&rft.jtitle=Applied+energy&rft.au=Schropp%2C+Elke&rft.au=Campos-Carriedo%2C+Felipe&rft.au=Iribarren%2C+Diego&rft.au=Naumann%2C+Gabriel&rft.date=2024-02-15&rft.issn=0306-2619&rft_id=info:doi/10.1016%2Fj.apenergy.2023.122247&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon