A Six-Year, Spatiotemporally Comprehensive Dataset and Data Retrieval Tool for Analyzing Chlorophyll-a, Turbidity, and Temperature in Utah Lake Using Sentinel and MODIS Imagery

Data from earth observation satellites provide unique and valuable information about water quality conditions in freshwater lakes but require significant processing before they can be used, even with the use of tools like Google Earth Engine. We use imagery from Sentinel 2 and MODIS and in situ data...

Full description

Saved in:
Bibliographic Details
Published inData (Basel) Vol. 10; no. 8; p. 128
Main Authors Tanner, Kaylee B., Cardall, Anna C., Williams, Gustavious P.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2025
Subjects
Online AccessGet full text
ISSN2306-5729
2306-5729
DOI10.3390/data10080128

Cover

Abstract Data from earth observation satellites provide unique and valuable information about water quality conditions in freshwater lakes but require significant processing before they can be used, even with the use of tools like Google Earth Engine. We use imagery from Sentinel 2 and MODIS and in situ data from the State of Utah Ambient Water Quality Management System (AQWMS) database to develop models and to generate a highly accessible, easy-to-use CSV file of chlorophyll-a (which is an indicator of algal biomass), turbidity, and water temperature measurements on Utah Lake. From a collection of 937 Sentinel 2 images spanning the period from January 2019 to May 2025, we generated 262,081 estimates each of chlorophyll-a and turbidity, with an additional 1,140,777 data points interpolated from those estimates to provide a dataset with a consistent time step. From a collection of 2333 MODIS images spanning the same time period, we extracted 1,390,800 measurements each of daytime water surface temperature and nighttime water surface temperature and interpolated or imputed an additional 12,058 data points from those estimates. We interpolated the data using piecewise cubic Hermite interpolation polynomials to preserve the original distribution of the data and provide the most accurate estimates of measurements between observations. We demonstrate the processing steps required to extract usable, accurate estimates of these three water quality parameters from satellite imagery and format them for analysis. We include summary statistics and charts for the resulting dataset, which show the usefulness of this data for informing Utah Lake management issues. We include the Jupyter Notebook with the implemented processing steps and the formatted CSV file of data as supplemental materials. The Jupyter Notebook can be used to update the Utah Lake data or can be easily modified to generate similar data for other waterbodies. We provide this method, tool set, and data to make remotely sensed water quality data more accessible to researchers, water managers, and others interested in Utah Lake and to facilitate the use of satellite data for those interested in applying remote sensing techniques to other waterbodies.
AbstractList Data from earth observation satellites provide unique and valuable information about water quality conditions in freshwater lakes but require significant processing before they can be used, even with the use of tools like Google Earth Engine. We use imagery from Sentinel 2 and MODIS and in situ data from the State of Utah Ambient Water Quality Management System (AQWMS) database to develop models and to generate a highly accessible, easy-to-use CSV file of chlorophyll-a (which is an indicator of algal biomass), turbidity, and water temperature measurements on Utah Lake. From a collection of 937 Sentinel 2 images spanning the period from January 2019 to May 2025, we generated 262,081 estimates each of chlorophyll-a and turbidity, with an additional 1,140,777 data points interpolated from those estimates to provide a dataset with a consistent time step. From a collection of 2333 MODIS images spanning the same time period, we extracted 1,390,800 measurements each of daytime water surface temperature and nighttime water surface temperature and interpolated or imputed an additional 12,058 data points from those estimates. We interpolated the data using piecewise cubic Hermite interpolation polynomials to preserve the original distribution of the data and provide the most accurate estimates of measurements between observations. We demonstrate the processing steps required to extract usable, accurate estimates of these three water quality parameters from satellite imagery and format them for analysis. We include summary statistics and charts for the resulting dataset, which show the usefulness of this data for informing Utah Lake management issues. We include the Jupyter Notebook with the implemented processing steps and the formatted CSV file of data as supplemental materials. The Jupyter Notebook can be used to update the Utah Lake data or can be easily modified to generate similar data for other waterbodies. We provide this method, tool set, and data to make remotely sensed water quality data more accessible to researchers, water managers, and others interested in Utah Lake and to facilitate the use of satellite data for those interested in applying remote sensing techniques to other waterbodies.
Data from earth observation satellites provide unique and valuable information about water quality conditions in freshwater lakes but require significant processing before they can be used, even with the use of tools like Google Earth Engine. We use imagery from Sentinel 2 and MODIS and in situ data from the State of Utah Ambient Water Quality Management System (AQWMS) database to develop models and to generate a highly accessible, easy-to-use CSV file of chlorophyll-a (which is an indicator of algal biomass), turbidity, and water temperature measurements on Utah Lake. From a collection of 937 Sentinel 2 images spanning the period from January 2019 to May 2025, we generated 262,081 estimates each of chlorophyll-a and turbidity, with an additional 1,140,777 data points interpolated from those estimates to provide a dataset with a consistent time step. From a collection of 2333 MODIS images spanning the same time period, we extracted 1,390,800 measurements each of daytime water surface temperature and nighttime water surface temperature and interpolated or imputed an additional 12,058 data points from those estimates. We interpolated the data using piecewise cubic Hermite interpolation polynomials to preserve the original distribution of the data and provide the most accurate estimates of measurements between observations. We demonstrate the processing steps required to extract usable, accurate estimates of these three water quality parameters from satellite imagery and format them for analysis. We include summary statistics and charts for the resulting dataset, which show the usefulness of this data for informing Utah Lake management issues. We include the Jupyter Notebook with the implemented processing steps and the formatted CSV file of data as supplemental materials. The Jupyter Notebook can be used to update the Utah Lake data or can be easily modified to generate similar data for other waterbodies. We provide this method, tool set, and data to make remotely sensed water quality data more accessible to researchers, water managers, and others interested in Utah Lake and to facilitate the use of satellite data for those interested in applying remote sensing techniques to other waterbodies. Dataset: doi.org/10.5281/zenodo.15677448 Dataset License: CC0
Audience Academic
Author Cardall, Anna C.
Williams, Gustavious P.
Tanner, Kaylee B.
Author_xml – sequence: 1
  givenname: Kaylee B.
  surname: Tanner
  fullname: Tanner, Kaylee B.
– sequence: 2
  givenname: Anna C.
  surname: Cardall
  fullname: Cardall, Anna C.
– sequence: 3
  givenname: Gustavious P.
  orcidid: 0000-0002-2781-0738
  surname: Williams
  fullname: Williams, Gustavious P.
BookMark eNp9kk2P0zAQhiO0SCzL3vgBlrg2iz_y4RyrLguVilai7YFTNLEnrZckDra7EH4VPxFvi1CREPJhRqPnfWc045fJxWAHTJLXjN4IUdG3GgIwSiVlXD5LLrmgRZqXvLo4y18k194_UEo5z_KCy8vk55yszff0M4KbkfUIwdiA_WgddN1EFrYfHe5x8OYRyW3s4DEQGPQxJ58wOIOP0JGNtR1prSPzAbrphxl2ZLHvrLPjfuq6FGZkc3CN0SZMs6N-E5ugg3BwSMxAtgH2ZAVfkGz9k3iNQzADdkf24_3tck2WPezQTa-S5y10Hq9_x6tke_dus_iQru7fLxfzVapEJULK84prTlHlWBaUFhltZCOULCrQSiNIwSSWqErWFG1DoSnjOlSGusm0algurpLlyVdbeKhHZ3pwU23B1MeCdbsaXDCqw1rzVhaNbkFkLGNMy0xWWGEjq6xAwUX0Sk9eh2GE6Vtc7R9DRuun69Xn14v8mxM_Ovv1gD7UD_bg4mZ9LXiWUcrkObWDOIQZWhscqN54Vc9lLkohcsEidfMPKj6NvVHxC7Um1v8SzE4C5az3Dtv_z_oLrqLGzw
Cites_doi 10.1016/j.rse.2017.08.033
10.1109/TGRS.2007.894564
10.1016/0034-4257(74)90052-2
10.3390/rs14153664
10.1080/10402381.2015.1065937
10.3390/s16081298
10.3390/w16070933
10.3390/rs14215454
10.3402/tellusa.v66.21534
10.1175/1520-0426(2001)018<2063:AOAMTE>2.0.CO;2
10.3390/rs8080640
10.1016/j.scib.2019.07.002
10.3390/rs12030567
10.1016/j.rse.2011.10.016
10.1016/j.pce.2009.08.001
10.3390/hydrology5040062
10.3390/w11010168
10.1007/s10661-008-0629-3
10.1016/j.rse.2007.12.013
10.1002/lol2.10344
10.1038/nature20584
10.1016/j.rse.2008.08.013
10.4081/jlimnol.2003.s1.27
10.1109/JSTARS.2014.2386333
10.1038/s41592-019-0686-2
10.1080/01431161.2010.512947
10.1364/AO.36.008699
10.4319/lo.2004.49.6.2179
10.3390/w15213828
10.1038/srep31251
10.3390/hydrology7040088
10.3390/rs15061670
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ADTOC
UNPAY
DOA
DOI 10.3390/data10080128
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Unpaywall for CDI: Periodical Content
Unpaywall
Openly Available Collection - DOAJ
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2306-5729
ExternalDocumentID oai_doaj_org_article_d2f86bdfa341411d8489e9eb8946e323
10.3390/data10080128
A853733531
10_3390_data10080128
GeographicLocations United States
Utah Lake
GeographicLocations_xml – name: United States
– name: Utah Lake
GroupedDBID 8FE
8FG
AADQD
AAYXX
ADBBV
ADMLS
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
MODMG
M~E
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ADTOC
UNPAY
ID FETCH-LOGICAL-c393t-2592d20ec5e7600640b8b3c869adcdea8318e7ec71b6fb0ab7628c4edb4dcb153
IEDL.DBID BENPR
ISSN 2306-5729
IngestDate Tue Oct 14 19:01:39 EDT 2025
Sun Sep 07 11:10:55 EDT 2025
Wed Aug 27 14:56:19 EDT 2025
Mon Oct 20 22:41:15 EDT 2025
Mon Oct 20 16:52:24 EDT 2025
Thu Oct 16 04:28:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-2592d20ec5e7600640b8b3c869adcdea8318e7ec71b6fb0ab7628c4edb4dcb153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2781-0738
OpenAccessLink https://www.proquest.com/docview/3244001828?pq-origsite=%requestingapplication%&accountid=15518
PQID 3244001828
PQPubID 2055419
ParticipantIDs doaj_primary_oai_doaj_org_article_d2f86bdfa341411d8489e9eb8946e323
unpaywall_primary_10_3390_data10080128
proquest_journals_3244001828
gale_infotracmisc_A853733531
gale_infotracacademiconefile_A853733531
crossref_primary_10_3390_data10080128
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Data (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_36
ref_35
ref_12
Virtanen (ref_37) 2020; 17
ref_32
Pahlevan (ref_17) 2017; 201
Matthews (ref_14) 2011; 32
ref_18
Sogandares (ref_13) 1997; 36
ref_16
ref_15
Hansen (ref_26) 2015; 31
Pekel (ref_19) 2016; 540
Nahorniak (ref_25) 2001; 18
Kutser (ref_7) 2004; 49
Shi (ref_10) 2019; 64
Chavula (ref_30) 2009; 34
ref_24
Maciel (ref_2) 2023; 8
ref_22
ref_21
Pedregosa (ref_23) 2011; 12
Strong (ref_1) 1974; 3
ref_3
Hadjimitsis (ref_11) 2009; 159
ref_29
ref_28
Liu (ref_34) 2015; 8
ref_27
ref_8
Olmanson (ref_9) 2008; 112
ref_5
Mishra (ref_20) 2012; 117
ref_4
Crosman (ref_33) 2009; 113
ref_6
Hook (ref_31) 2007; 45
References_xml – volume: 201
  start-page: 47
  year: 2017
  ident: ref_17
  article-title: Sentinel-2 MultiSpectral Instrument (MSI) data processing for aquatic science applications: Demonstrations and validations
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.08.033
– volume: 45
  start-page: 1798
  year: 2007
  ident: ref_31
  article-title: Absolute radiometric in-flight validation of mid infrared and thermal infrared data from ASTER and MODIS on the Terra spacecraft using the Lake Tahoe, CA/NV, USA, automated validation site
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2007.894564
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_23
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 3
  start-page: 99
  year: 1974
  ident: ref_1
  article-title: Remote sensing of algal blooms by aircraft and satellite in Lake Erie and Utah Lake
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(74)90052-2
– ident: ref_15
  doi: 10.3390/rs14153664
– volume: 31
  start-page: 225
  year: 2015
  ident: ref_26
  article-title: Reservoir water quality monitoring using remote sensing with seasonal models: Case study of five central-Utah reservoirs
  publication-title: Lake Reserv. Manag.
  doi: 10.1080/10402381.2015.1065937
– ident: ref_5
  doi: 10.3390/s16081298
– ident: ref_4
  doi: 10.3390/w16070933
– ident: ref_27
  doi: 10.3390/rs14215454
– ident: ref_28
  doi: 10.3402/tellusa.v66.21534
– volume: 18
  start-page: 2063
  year: 2001
  ident: ref_25
  article-title: Analysis of a Method to Estimate Chlorophyll-a Concentration from Irradiance Measurements at Varying Depths
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/1520-0426(2001)018<2063:AOAMTE>2.0.CO;2
– ident: ref_3
  doi: 10.3390/rs8080640
– volume: 64
  start-page: 1540
  year: 2019
  ident: ref_10
  article-title: Remote sensing of cyanobacterial blooms in inland waters: Present knowledge and future challenges
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2019.07.002
– ident: ref_18
– ident: ref_8
  doi: 10.3390/rs12030567
– volume: 117
  start-page: 394
  year: 2012
  ident: ref_20
  article-title: Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.10.016
– volume: 34
  start-page: 749
  year: 2009
  ident: ref_30
  article-title: Estimating the surface temperature of Lake Malawi using AVHRR and MODIS satellite imagery
  publication-title: Phys. Chem. Earth
  doi: 10.1016/j.pce.2009.08.001
– ident: ref_16
  doi: 10.3390/hydrology5040062
– ident: ref_29
  doi: 10.3390/w11010168
– volume: 159
  start-page: 281
  year: 2009
  ident: ref_11
  article-title: Assessment of temporal variations of water quality in inland water bodies using atmospheric corrected satellite remotely sensed image data
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-008-0629-3
– volume: 112
  start-page: 4086
  year: 2008
  ident: ref_9
  article-title: A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.12.013
– ident: ref_12
– volume: 8
  start-page: 850
  year: 2023
  ident: ref_2
  article-title: Validity of the Landsat surface reflectance archive for aquatic science: Implications for cloud-based analysis
  publication-title: Limnol. Oceanogr. Lett.
  doi: 10.1002/lol2.10344
– volume: 540
  start-page: 418
  year: 2016
  ident: ref_19
  article-title: High-resolution mapping of global surface water and its long-term changes
  publication-title: Nature
  doi: 10.1038/nature20584
– volume: 113
  start-page: 73
  year: 2009
  ident: ref_33
  article-title: MODIS-derived surface temperature of the Great Salt Lake
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.08.013
– ident: ref_6
  doi: 10.4081/jlimnol.2003.s1.27
– volume: 8
  start-page: 1230
  year: 2015
  ident: ref_34
  article-title: Validating and mapping surface water temperatures in Lake Taihu: Results from MODIS land surface temperature products
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2014.2386333
– volume: 17
  start-page: 261
  year: 2020
  ident: ref_37
  article-title: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0686-2
– volume: 32
  start-page: 6855
  year: 2011
  ident: ref_14
  article-title: A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2010.512947
– ident: ref_36
– volume: 36
  start-page: 8699
  year: 1997
  ident: ref_13
  article-title: Absorption spectrum (340–640 nm) of pure water. I. Photothermal measurements
  publication-title: Appl. Opt.
  doi: 10.1364/AO.36.008699
– volume: 49
  start-page: 2179
  year: 2004
  ident: ref_7
  article-title: Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2004.49.6.2179
– ident: ref_22
– ident: ref_24
  doi: 10.3390/w15213828
– ident: ref_32
  doi: 10.1038/srep31251
– ident: ref_35
  doi: 10.3390/hydrology7040088
– ident: ref_21
  doi: 10.3390/rs15061670
SSID ssj0002245628
Score 2.3015513
Snippet Data from earth observation satellites provide unique and valuable information about water quality conditions in freshwater lakes but require significant...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 128
SubjectTerms Accessibility
Algae
Algorithms
Aquatic ecosystems
Artificial satellites in remote sensing
Chlorophyll
chlorophyll-a
Data base management systems
Data points
Data retrieval
Datasets
Environmental monitoring
Estimates
Fresh water
Hermite polynomials
Information storage and retrieval
Lake management
Lakes
Management
Methods
MODIS
Python
Quality control
Quality management
Remote sensing
Satellite imagery
Satellite observation
Satellites
Surface temperature
Trends
Turbidity
Utah Lake
Water
Water quality
Water temperature
SummonAdditionalLinks – databaseName: Openly Available Collection - DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL4UDogXEloLmUF7SRk1iN2sflz7UIgoSuyuVU-SxHe1CyFa7WZXlV_ETGTtplaoSXLhFiZOMMw9_I0--YWwv5lZg7NKoEImNREZHqAyPkNBFJgqLMvAWnH_KTifiw8XBRafVl68Ja-iBmw-3b9NCZmgLTeFWJImVQiqnHEpFD-Zp4PmMpeokU98CqYtH9rKpdOeU1--HgkuPjxLfeL2zBgWq_rsB-QHbXFWXen2ly7Kz4pw8Yg9bqAjDRsQtds9V22yrdcYlvG0Zo989Zr-HMJr9jL6S1fZhFGqkW8qpslyDd_mFmzaV6nBEEi5dDbqy4Ri-hJ5aZHAwns9LIBALgankFy1qcDilfH5OqijLSPdhvFrgzBJw74f7x_SSlpQZZhVMaj2Fj_q7g1CIACNfiVS5Mow9_3x0NoKzH54zY_2ETU6Ox4enUduKITJc8TqiJCm1aezMgfM7eZmIUSI3MlPaGuu0pNDgBs4MEswKjDVSjJVGOIvCGqSo-pRtVPPKPWOQxpxbjJXJdCEEDrTzO-iJQxUrCp_YY6-ulZNfNowbOWUqXol5V4k99t5r7maM58kOJ8h68tZ68n9ZT4-98XrPvTfXC210-1MCiep5sfIhoZkB5xSoemz31kjyQnP78rXl5G0UWOYEVoXveuiFfX1jTX-d1c7_mNVzdj_1bYpDneIu26gXK_eCsFONL4Ob_AHrxRcB
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6V9AAcgAIVgYLmUF5SXBzvxrGPoQ-1iBZEEqk9WfuyEtXYleMI0l_FT2R27VQJlYCbZe9q15qZb7_Vzn4DsOszzaVvAi_lXe3xkJ5krJgniV2EPNUycroFp2fh8Zh_Ou-db8Du8i7Myvk9o-34B5cnaWkN4egd2Ax7xLhbsDk--zq4cHXjaEPcI4JY57Tf6rK22jhR_tvQex_uzvMrsfghsmxlbTl6CIfLWdUpJZd780ruqes_BBv_Ne1H8KAhlziovWELNkz-GLaa8J3hu0Zj-v0T-DXA4fSnd0F-3sGhy6puRKqybIEWJEozqXPb8YBGmZkKRa7dM35zVbjIRXFUFBkS7UWnbXJNyyDuT7KiLMh4WeaJDo7mpZxqovod139EgzQyzjjNcVyJCX4WlwZd6gIObe5SbjLX9vTLwckQT75blY3FUxgfHY72j72meIOnWMwqj7ZVgQ58o3rGnv2F3JeRZCoKY6GVNiIiMDF9o_pdGabSF5JQOVLcaMm1koTD29DKi9w8Awx8xrT0YxWKlHPZF8aeuXeNjP2YAFe24fXSyMlVrdGR0N7GGiJZNUQbPloPuGljlbXdC7Jc0gRqooM0CqVOBS3vvNvVEY9iExsZxeTILGBteGv9J7HxX5VCieYaA03VKmklA-I_fcYI2tqws9aS4latf156YNLgxiwhesttnUQ72Tc3XvnXv3r-vw1fwL3AFi922Ys70KrKuXlJjKqSr5qA-g0M-BzW
  priority: 102
  providerName: Unpaywall
Title A Six-Year, Spatiotemporally Comprehensive Dataset and Data Retrieval Tool for Analyzing Chlorophyll-a, Turbidity, and Temperature in Utah Lake Using Sentinel and MODIS Imagery
URI https://www.proquest.com/docview/3244001828
https://doi.org/10.3390/data10080128
https://doaj.org/article/d2f86bdfa341411d8489e9eb8946e323
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2306-5729
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002245628
  issn: 2306-5729
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2306-5729
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002245628
  issn: 2306-5729
  databaseCode: ADMLS
  dateStart: 20220601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2306-5729
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002245628
  issn: 2306-5729
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2306-5729
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002245628
  issn: 2306-5729
  databaseCode: BENPR
  dateStart: 20160601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2306-5729
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002245628
  issn: 2306-5729
  databaseCode: 8FG
  dateStart: 20160601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLa27gF4QIyLCIzKD1ylRktsL3UeEOouZUOsTGsrbU-Rb6EVISltKii_ip_IseuWTkh7y8VJHJ1zvnNsH38HoZcR1UxGhoQ5i3XIEjiSqaKhhOgiYbmW3PEWnPeS0yH7dHVwtYV6q70wNq1yhYkOqHWl7Bz5Pjh-ZivIEf5h8iO0VaPs6uqqhIbwpRX0e0cxto12iGXGaqCdw5PexeV61oXYdT7ClxnwFMb7-y4R08ZNsS3IvuGbHIX__0B9D92ZlxOx-CmKYsMTdR-g-z6ExJ2lzHfRlikfol1vpDP81jNJv3uE_nRwf_wrvAZtbuG-y532VFRFscAWCqZmtMxgx8fQw5mpsSi1O8aXrtYWKCIeVFWBIbjFjsHkNzg7fDSCcX4FIiqKULTwYD6VYw0Bfcs9P4CPeLJmPC7xsBYj_Fl8M9glKOC-zVAqTeHann85Puvjs--WS2PxGA27J4Oj09CXaAgVTWkdwuCJaBIZdWDsCl_CIsklVTxJhVbaCA6QYdpGtWOZ5DISErCXK2a0ZFpJQNsnqFFWpXmKMIko1TJKVSJyxmRbGLuyHhuZRinAqgzQq5VwssmSiSODEYwVYrYpxAAdWsmt21j-bHehmn7NvDlmmuQ8kToX4MRZHGvOeGpSI3kK6koJDdAbK_fMWnk9FUr4zQrQVcuXlXUgymlTCgAWoL0bLcE61c3bK83JPDrMsn-6HKDXa2269a-e3f6e5-gusYWJXWbiHmrU07l5AdFSLZtom3c_Nr0hNN2cA5wNexed67_cvhif
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V7aFwQJSHCBTYA-Uhxaq9u3XsQ4XSplVCk4CaVConsy-TCGMHx1EJv4pfwG9jdrMJqZB6681K1ontmflm1jv7fQi98qliwtfES1mgPBbCkYgl9QRUFyFLlYgsb0GvH7Yv2IfLg8sN9Ge5F8a0VS4x0QK1KqR5R74PiZ8ZBTkSvZ_88IxqlFldXUpocCetoA4txZjb2HGm51cwhZsedlpg7z1CTk-Gx23PqQx4ksa08qD-J4r4Wh5os0gVMl9EgsoojLmSSvMIvF43tGwEIkyFzwXARySZVoIpKQKjGgEpYItRFsPkb-vopP_pfPWWh5h1RRItOu4pjf192_hp6rTACMCv5UIrGfB_YriLtmf5hM-veJatZb7T--ieK1lxc-FjO2hD5w_QjgOFKX7rmKvfPUS_m3gw_ul9hsdSxwPbq-2or7Jsjg30lHq06JjHLbjCqa4wz5U9xudW2wscHw-LIsNQTGPLmPILkis-HmVFWYBLZJnH63g4K8VYwQSibs8fwp84cmg8zvFFxUe4y79pbBsi8MB0ROU6s2N7H1udAe58N9wd80fo4laM9Rht5kWunyBMfEqV8GMZ8pQx0eDarOQHWsR-DDAuamhvaZxksmD-SGDGZIyYrBuxho6M5VZjDF-3_aAovyYu_BNF0igUKuVQNLAgUBGLYh1rEcUQHpTQGnpj7J4YVKlKLrnbHAGXavi5kiZUVQ1KATBraPfaSEADef3rpeckDo2myb_YqaHXK2-68a6e3vw7L9F2e9jrJt1O_-wZukOMKLLtitxFm1U508-hUqvECxcOGH257Qj8C4EIU0Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VReJxQJSHCBTYA-Uh1Yq9u3XsA0KhITT0ASKJVE5mXyYRxg6OoxJ-FWd-HTMbJ6RC6q03K1kntmfmm1nv7PcR8tTnRijfMi8VgfFECEcq1txTUF2EIjUqcrwFxyfhwVC8P9073SB_lnthsK1yiYkOqE2h8R15ExK_QAU5FjXTui3iY6f7evLDQwUpXGldymksXOTQzs9g-jZ91euArXcY674d7B94tcKAp3nMKw9qf2aYb_WexQWqUPgqUlxHYSyNNlZG4PG2ZXUrUGGqfKkAOiItrFHCaBWgYgTA_5UWsrjjLvXuu9X7HYYriixa9NpzHvtN1_KJFVqA0u9rWdCJBfyfEm6Qa7N8IudnMsvWcl73FrlZF6u0vfCuLbJh89tkq4aDKX1Rc1a_vEN-t2l__NP7DA9ll_Zdl3ZNepVlc4qgU9rRoleeduAKp7aiMjfumH5yql7g8nRQFBmFMpo6rpRfkFbp_igrygKcIcs8uUsHs1KNDUwddt35A_iTmhaajnM6rOSIHslvlrpWCNrHXqjcZm7s8YdOr09735G1Y36XDC_FVPfIZl7k9j6hzOfcKD_WoUyFUC1pcQ0_sCr2YwBw1SA7S-MkkwXnRwJzJTRism7EBnmDlluNQaZu90FRfk3qwE8MS6NQmVRCuSCCwEQiim1sVRRDYHDGG-Q52j1BPKlKqWW9LQIuFZm5kjbUUy3OASobZPvcSMABff7rpeckNQ5Nk39R0yDPVt504V09uPh3npCrEHfJUe_k8CG5zlAN2bVDbpPNqpzZR1CiVeqxiwVKvlx28P0FRcZQ3g
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6V9AAcgAIVgYLmUF5SXBzvxrGPoQ-1iBZEEqk9WfuyEtXYleMI0l_FT2R27VQJlYCbZe9q15qZb7_Vzn4DsOszzaVvAi_lXe3xkJ5krJgniV2EPNUycroFp2fh8Zh_Ou-db8Du8i7Myvk9o-34B5cnaWkN4egd2Ax7xLhbsDk--zq4cHXjaEPcI4JY57Tf6rK22jhR_tvQex_uzvMrsfghsmxlbTl6CIfLWdUpJZd780ruqes_BBv_Ne1H8KAhlziovWELNkz-GLaa8J3hu0Zj-v0T-DXA4fSnd0F-3sGhy6puRKqybIEWJEozqXPb8YBGmZkKRa7dM35zVbjIRXFUFBkS7UWnbXJNyyDuT7KiLMh4WeaJDo7mpZxqovod139EgzQyzjjNcVyJCX4WlwZd6gIObe5SbjLX9vTLwckQT75blY3FUxgfHY72j72meIOnWMwqj7ZVgQ58o3rGnv2F3JeRZCoKY6GVNiIiMDF9o_pdGabSF5JQOVLcaMm1koTD29DKi9w8Awx8xrT0YxWKlHPZF8aeuXeNjP2YAFe24fXSyMlVrdGR0N7GGiJZNUQbPloPuGljlbXdC7Jc0gRqooM0CqVOBS3vvNvVEY9iExsZxeTILGBteGv9J7HxX5VCieYaA03VKmklA-I_fcYI2tqws9aS4latf156YNLgxiwhesttnUQ72Tc3XvnXv3r-vw1fwL3AFi922Ys70KrKuXlJjKqSr5qA-g0M-BzW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Six-Year%2C+Spatiotemporally+Comprehensive+Dataset+and+Data+Retrieval+Tool+for+Analyzing+Chlorophyll-a%2C+Turbidity%2C+and+Temperature+in+Utah+Lake+Using+Sentinel+and+MODIS+Imagery&rft.jtitle=Data+%28Basel%29&rft.au=Tanner%2C+Kaylee+B&rft.au=Cardall%2C+Anna+C&rft.au=Williams%2C+Gustavious+P&rft.date=2025-08-01&rft.pub=MDPI+AG&rft.eissn=2306-5729&rft.volume=10&rft.issue=8&rft.spage=128&rft_id=info:doi/10.3390%2Fdata10080128&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5729&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5729&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5729&client=summon