A Six-Year, Spatiotemporally Comprehensive Dataset and Data Retrieval Tool for Analyzing Chlorophyll-a, Turbidity, and Temperature in Utah Lake Using Sentinel and MODIS Imagery
Data from earth observation satellites provide unique and valuable information about water quality conditions in freshwater lakes but require significant processing before they can be used, even with the use of tools like Google Earth Engine. We use imagery from Sentinel 2 and MODIS and in situ data...
Saved in:
| Published in | Data (Basel) Vol. 10; no. 8; p. 128 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.08.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2306-5729 2306-5729 |
| DOI | 10.3390/data10080128 |
Cover
| Abstract | Data from earth observation satellites provide unique and valuable information about water quality conditions in freshwater lakes but require significant processing before they can be used, even with the use of tools like Google Earth Engine. We use imagery from Sentinel 2 and MODIS and in situ data from the State of Utah Ambient Water Quality Management System (AQWMS) database to develop models and to generate a highly accessible, easy-to-use CSV file of chlorophyll-a (which is an indicator of algal biomass), turbidity, and water temperature measurements on Utah Lake. From a collection of 937 Sentinel 2 images spanning the period from January 2019 to May 2025, we generated 262,081 estimates each of chlorophyll-a and turbidity, with an additional 1,140,777 data points interpolated from those estimates to provide a dataset with a consistent time step. From a collection of 2333 MODIS images spanning the same time period, we extracted 1,390,800 measurements each of daytime water surface temperature and nighttime water surface temperature and interpolated or imputed an additional 12,058 data points from those estimates. We interpolated the data using piecewise cubic Hermite interpolation polynomials to preserve the original distribution of the data and provide the most accurate estimates of measurements between observations. We demonstrate the processing steps required to extract usable, accurate estimates of these three water quality parameters from satellite imagery and format them for analysis. We include summary statistics and charts for the resulting dataset, which show the usefulness of this data for informing Utah Lake management issues. We include the Jupyter Notebook with the implemented processing steps and the formatted CSV file of data as supplemental materials. The Jupyter Notebook can be used to update the Utah Lake data or can be easily modified to generate similar data for other waterbodies. We provide this method, tool set, and data to make remotely sensed water quality data more accessible to researchers, water managers, and others interested in Utah Lake and to facilitate the use of satellite data for those interested in applying remote sensing techniques to other waterbodies. |
|---|---|
| AbstractList | Data from earth observation satellites provide unique and valuable information about water quality conditions in freshwater lakes but require significant processing before they can be used, even with the use of tools like Google Earth Engine. We use imagery from Sentinel 2 and MODIS and in situ data from the State of Utah Ambient Water Quality Management System (AQWMS) database to develop models and to generate a highly accessible, easy-to-use CSV file of chlorophyll-a (which is an indicator of algal biomass), turbidity, and water temperature measurements on Utah Lake. From a collection of 937 Sentinel 2 images spanning the period from January 2019 to May 2025, we generated 262,081 estimates each of chlorophyll-a and turbidity, with an additional 1,140,777 data points interpolated from those estimates to provide a dataset with a consistent time step. From a collection of 2333 MODIS images spanning the same time period, we extracted 1,390,800 measurements each of daytime water surface temperature and nighttime water surface temperature and interpolated or imputed an additional 12,058 data points from those estimates. We interpolated the data using piecewise cubic Hermite interpolation polynomials to preserve the original distribution of the data and provide the most accurate estimates of measurements between observations. We demonstrate the processing steps required to extract usable, accurate estimates of these three water quality parameters from satellite imagery and format them for analysis. We include summary statistics and charts for the resulting dataset, which show the usefulness of this data for informing Utah Lake management issues. We include the Jupyter Notebook with the implemented processing steps and the formatted CSV file of data as supplemental materials. The Jupyter Notebook can be used to update the Utah Lake data or can be easily modified to generate similar data for other waterbodies. We provide this method, tool set, and data to make remotely sensed water quality data more accessible to researchers, water managers, and others interested in Utah Lake and to facilitate the use of satellite data for those interested in applying remote sensing techniques to other waterbodies. Data from earth observation satellites provide unique and valuable information about water quality conditions in freshwater lakes but require significant processing before they can be used, even with the use of tools like Google Earth Engine. We use imagery from Sentinel 2 and MODIS and in situ data from the State of Utah Ambient Water Quality Management System (AQWMS) database to develop models and to generate a highly accessible, easy-to-use CSV file of chlorophyll-a (which is an indicator of algal biomass), turbidity, and water temperature measurements on Utah Lake. From a collection of 937 Sentinel 2 images spanning the period from January 2019 to May 2025, we generated 262,081 estimates each of chlorophyll-a and turbidity, with an additional 1,140,777 data points interpolated from those estimates to provide a dataset with a consistent time step. From a collection of 2333 MODIS images spanning the same time period, we extracted 1,390,800 measurements each of daytime water surface temperature and nighttime water surface temperature and interpolated or imputed an additional 12,058 data points from those estimates. We interpolated the data using piecewise cubic Hermite interpolation polynomials to preserve the original distribution of the data and provide the most accurate estimates of measurements between observations. We demonstrate the processing steps required to extract usable, accurate estimates of these three water quality parameters from satellite imagery and format them for analysis. We include summary statistics and charts for the resulting dataset, which show the usefulness of this data for informing Utah Lake management issues. We include the Jupyter Notebook with the implemented processing steps and the formatted CSV file of data as supplemental materials. The Jupyter Notebook can be used to update the Utah Lake data or can be easily modified to generate similar data for other waterbodies. We provide this method, tool set, and data to make remotely sensed water quality data more accessible to researchers, water managers, and others interested in Utah Lake and to facilitate the use of satellite data for those interested in applying remote sensing techniques to other waterbodies. Dataset: doi.org/10.5281/zenodo.15677448 Dataset License: CC0 |
| Audience | Academic |
| Author | Cardall, Anna C. Williams, Gustavious P. Tanner, Kaylee B. |
| Author_xml | – sequence: 1 givenname: Kaylee B. surname: Tanner fullname: Tanner, Kaylee B. – sequence: 2 givenname: Anna C. surname: Cardall fullname: Cardall, Anna C. – sequence: 3 givenname: Gustavious P. orcidid: 0000-0002-2781-0738 surname: Williams fullname: Williams, Gustavious P. |
| BookMark | eNp9kk2P0zAQhiO0SCzL3vgBlrg2iz_y4RyrLguVilai7YFTNLEnrZckDra7EH4VPxFvi1CREPJhRqPnfWc045fJxWAHTJLXjN4IUdG3GgIwSiVlXD5LLrmgRZqXvLo4y18k194_UEo5z_KCy8vk55yszff0M4KbkfUIwdiA_WgddN1EFrYfHe5x8OYRyW3s4DEQGPQxJ58wOIOP0JGNtR1prSPzAbrphxl2ZLHvrLPjfuq6FGZkc3CN0SZMs6N-E5ugg3BwSMxAtgH2ZAVfkGz9k3iNQzADdkf24_3tck2WPezQTa-S5y10Hq9_x6tke_dus_iQru7fLxfzVapEJULK84prTlHlWBaUFhltZCOULCrQSiNIwSSWqErWFG1DoSnjOlSGusm0algurpLlyVdbeKhHZ3pwU23B1MeCdbsaXDCqw1rzVhaNbkFkLGNMy0xWWGEjq6xAwUX0Sk9eh2GE6Vtc7R9DRuun69Xn14v8mxM_Ovv1gD7UD_bg4mZ9LXiWUcrkObWDOIQZWhscqN54Vc9lLkohcsEidfMPKj6NvVHxC7Um1v8SzE4C5az3Dtv_z_oLrqLGzw |
| Cites_doi | 10.1016/j.rse.2017.08.033 10.1109/TGRS.2007.894564 10.1016/0034-4257(74)90052-2 10.3390/rs14153664 10.1080/10402381.2015.1065937 10.3390/s16081298 10.3390/w16070933 10.3390/rs14215454 10.3402/tellusa.v66.21534 10.1175/1520-0426(2001)018<2063:AOAMTE>2.0.CO;2 10.3390/rs8080640 10.1016/j.scib.2019.07.002 10.3390/rs12030567 10.1016/j.rse.2011.10.016 10.1016/j.pce.2009.08.001 10.3390/hydrology5040062 10.3390/w11010168 10.1007/s10661-008-0629-3 10.1016/j.rse.2007.12.013 10.1002/lol2.10344 10.1038/nature20584 10.1016/j.rse.2008.08.013 10.4081/jlimnol.2003.s1.27 10.1109/JSTARS.2014.2386333 10.1038/s41592-019-0686-2 10.1080/01431161.2010.512947 10.1364/AO.36.008699 10.4319/lo.2004.49.6.2179 10.3390/w15213828 10.1038/srep31251 10.3390/hydrology7040088 10.3390/rs15061670 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI ADTOC UNPAY DOA |
| DOI | 10.3390/data10080128 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Unpaywall for CDI: Periodical Content Unpaywall Openly Available Collection - DOAJ |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2306-5729 |
| ExternalDocumentID | oai_doaj_org_article_d2f86bdfa341411d8489e9eb8946e323 10.3390/data10080128 A853733531 10_3390_data10080128 |
| GeographicLocations | United States Utah Lake |
| GeographicLocations_xml | – name: United States – name: Utah Lake |
| GroupedDBID | 8FE 8FG AADQD AAYXX ADBBV ADMLS AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ICD ITC MODMG M~E P62 PHGZM PHGZT PIMPY PQGLB PROAC ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PUEGO ADTOC UNPAY |
| ID | FETCH-LOGICAL-c393t-2592d20ec5e7600640b8b3c869adcdea8318e7ec71b6fb0ab7628c4edb4dcb153 |
| IEDL.DBID | BENPR |
| ISSN | 2306-5729 |
| IngestDate | Tue Oct 14 19:01:39 EDT 2025 Sun Sep 07 11:10:55 EDT 2025 Wed Aug 27 14:56:19 EDT 2025 Mon Oct 20 22:41:15 EDT 2025 Mon Oct 20 16:52:24 EDT 2025 Thu Oct 16 04:28:52 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c393t-2592d20ec5e7600640b8b3c869adcdea8318e7ec71b6fb0ab7628c4edb4dcb153 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2781-0738 |
| OpenAccessLink | https://www.proquest.com/docview/3244001828?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 3244001828 |
| PQPubID | 2055419 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d2f86bdfa341411d8489e9eb8946e323 unpaywall_primary_10_3390_data10080128 proquest_journals_3244001828 gale_infotracmisc_A853733531 gale_infotracacademiconefile_A853733531 crossref_primary_10_3390_data10080128 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-01 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Data (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_36 ref_35 ref_12 Virtanen (ref_37) 2020; 17 ref_32 Pahlevan (ref_17) 2017; 201 Matthews (ref_14) 2011; 32 ref_18 Sogandares (ref_13) 1997; 36 ref_16 ref_15 Hansen (ref_26) 2015; 31 Pekel (ref_19) 2016; 540 Nahorniak (ref_25) 2001; 18 Kutser (ref_7) 2004; 49 Shi (ref_10) 2019; 64 Chavula (ref_30) 2009; 34 ref_24 Maciel (ref_2) 2023; 8 ref_22 ref_21 Pedregosa (ref_23) 2011; 12 Strong (ref_1) 1974; 3 ref_3 Hadjimitsis (ref_11) 2009; 159 ref_29 ref_28 Liu (ref_34) 2015; 8 ref_27 ref_8 Olmanson (ref_9) 2008; 112 ref_5 Mishra (ref_20) 2012; 117 ref_4 Crosman (ref_33) 2009; 113 ref_6 Hook (ref_31) 2007; 45 |
| References_xml | – volume: 201 start-page: 47 year: 2017 ident: ref_17 article-title: Sentinel-2 MultiSpectral Instrument (MSI) data processing for aquatic science applications: Demonstrations and validations publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.08.033 – volume: 45 start-page: 1798 year: 2007 ident: ref_31 article-title: Absolute radiometric in-flight validation of mid infrared and thermal infrared data from ASTER and MODIS on the Terra spacecraft using the Lake Tahoe, CA/NV, USA, automated validation site publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2007.894564 – volume: 12 start-page: 2825 year: 2011 ident: ref_23 article-title: Scikit-learn: Machine Learning in Python publication-title: J. Mach. Learn. Res. – volume: 3 start-page: 99 year: 1974 ident: ref_1 article-title: Remote sensing of algal blooms by aircraft and satellite in Lake Erie and Utah Lake publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(74)90052-2 – ident: ref_15 doi: 10.3390/rs14153664 – volume: 31 start-page: 225 year: 2015 ident: ref_26 article-title: Reservoir water quality monitoring using remote sensing with seasonal models: Case study of five central-Utah reservoirs publication-title: Lake Reserv. Manag. doi: 10.1080/10402381.2015.1065937 – ident: ref_5 doi: 10.3390/s16081298 – ident: ref_4 doi: 10.3390/w16070933 – ident: ref_27 doi: 10.3390/rs14215454 – ident: ref_28 doi: 10.3402/tellusa.v66.21534 – volume: 18 start-page: 2063 year: 2001 ident: ref_25 article-title: Analysis of a Method to Estimate Chlorophyll-a Concentration from Irradiance Measurements at Varying Depths publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/1520-0426(2001)018<2063:AOAMTE>2.0.CO;2 – ident: ref_3 doi: 10.3390/rs8080640 – volume: 64 start-page: 1540 year: 2019 ident: ref_10 article-title: Remote sensing of cyanobacterial blooms in inland waters: Present knowledge and future challenges publication-title: Sci. Bull. doi: 10.1016/j.scib.2019.07.002 – ident: ref_18 – ident: ref_8 doi: 10.3390/rs12030567 – volume: 117 start-page: 394 year: 2012 ident: ref_20 article-title: Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.10.016 – volume: 34 start-page: 749 year: 2009 ident: ref_30 article-title: Estimating the surface temperature of Lake Malawi using AVHRR and MODIS satellite imagery publication-title: Phys. Chem. Earth doi: 10.1016/j.pce.2009.08.001 – ident: ref_16 doi: 10.3390/hydrology5040062 – ident: ref_29 doi: 10.3390/w11010168 – volume: 159 start-page: 281 year: 2009 ident: ref_11 article-title: Assessment of temporal variations of water quality in inland water bodies using atmospheric corrected satellite remotely sensed image data publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-008-0629-3 – volume: 112 start-page: 4086 year: 2008 ident: ref_9 article-title: A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.12.013 – ident: ref_12 – volume: 8 start-page: 850 year: 2023 ident: ref_2 article-title: Validity of the Landsat surface reflectance archive for aquatic science: Implications for cloud-based analysis publication-title: Limnol. Oceanogr. Lett. doi: 10.1002/lol2.10344 – volume: 540 start-page: 418 year: 2016 ident: ref_19 article-title: High-resolution mapping of global surface water and its long-term changes publication-title: Nature doi: 10.1038/nature20584 – volume: 113 start-page: 73 year: 2009 ident: ref_33 article-title: MODIS-derived surface temperature of the Great Salt Lake publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.08.013 – ident: ref_6 doi: 10.4081/jlimnol.2003.s1.27 – volume: 8 start-page: 1230 year: 2015 ident: ref_34 article-title: Validating and mapping surface water temperatures in Lake Taihu: Results from MODIS land surface temperature products publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2014.2386333 – volume: 17 start-page: 261 year: 2020 ident: ref_37 article-title: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python publication-title: Nat. Methods doi: 10.1038/s41592-019-0686-2 – volume: 32 start-page: 6855 year: 2011 ident: ref_14 article-title: A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2010.512947 – ident: ref_36 – volume: 36 start-page: 8699 year: 1997 ident: ref_13 article-title: Absorption spectrum (340–640 nm) of pure water. I. Photothermal measurements publication-title: Appl. Opt. doi: 10.1364/AO.36.008699 – volume: 49 start-page: 2179 year: 2004 ident: ref_7 article-title: Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2004.49.6.2179 – ident: ref_22 – ident: ref_24 doi: 10.3390/w15213828 – ident: ref_32 doi: 10.1038/srep31251 – ident: ref_35 doi: 10.3390/hydrology7040088 – ident: ref_21 doi: 10.3390/rs15061670 |
| SSID | ssj0002245628 |
| Score | 2.3015513 |
| Snippet | Data from earth observation satellites provide unique and valuable information about water quality conditions in freshwater lakes but require significant... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 128 |
| SubjectTerms | Accessibility Algae Algorithms Aquatic ecosystems Artificial satellites in remote sensing Chlorophyll chlorophyll-a Data base management systems Data points Data retrieval Datasets Environmental monitoring Estimates Fresh water Hermite polynomials Information storage and retrieval Lake management Lakes Management Methods MODIS Python Quality control Quality management Remote sensing Satellite imagery Satellite observation Satellites Surface temperature Trends Turbidity Utah Lake Water Water quality Water temperature |
| SummonAdditionalLinks | – databaseName: Openly Available Collection - DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL4UDogXEloLmUF7SRk1iN2sflz7UIgoSuyuVU-SxHe1CyFa7WZXlV_ETGTtplaoSXLhFiZOMMw9_I0--YWwv5lZg7NKoEImNREZHqAyPkNBFJgqLMvAWnH_KTifiw8XBRafVl68Ja-iBmw-3b9NCZmgLTeFWJImVQiqnHEpFD-Zp4PmMpeokU98CqYtH9rKpdOeU1--HgkuPjxLfeL2zBgWq_rsB-QHbXFWXen2ly7Kz4pw8Yg9bqAjDRsQtds9V22yrdcYlvG0Zo989Zr-HMJr9jL6S1fZhFGqkW8qpslyDd_mFmzaV6nBEEi5dDbqy4Ri-hJ5aZHAwns9LIBALgankFy1qcDilfH5OqijLSPdhvFrgzBJw74f7x_SSlpQZZhVMaj2Fj_q7g1CIACNfiVS5Mow9_3x0NoKzH54zY_2ETU6Ox4enUduKITJc8TqiJCm1aezMgfM7eZmIUSI3MlPaGuu0pNDgBs4MEswKjDVSjJVGOIvCGqSo-pRtVPPKPWOQxpxbjJXJdCEEDrTzO-iJQxUrCp_YY6-ulZNfNowbOWUqXol5V4k99t5r7maM58kOJ8h68tZ68n9ZT4-98XrPvTfXC210-1MCiep5sfIhoZkB5xSoemz31kjyQnP78rXl5G0UWOYEVoXveuiFfX1jTX-d1c7_mNVzdj_1bYpDneIu26gXK_eCsFONL4Ob_AHrxRcB priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6V9AAcgAIVgYLmUF5SXBzvxrGPoQ-1iBZEEqk9WfuyEtXYleMI0l_FT2R27VQJlYCbZe9q15qZb7_Vzn4DsOszzaVvAi_lXe3xkJ5krJgniV2EPNUycroFp2fh8Zh_Ou-db8Du8i7Myvk9o-34B5cnaWkN4egd2Ax7xLhbsDk--zq4cHXjaEPcI4JY57Tf6rK22jhR_tvQex_uzvMrsfghsmxlbTl6CIfLWdUpJZd780ruqes_BBv_Ne1H8KAhlziovWELNkz-GLaa8J3hu0Zj-v0T-DXA4fSnd0F-3sGhy6puRKqybIEWJEozqXPb8YBGmZkKRa7dM35zVbjIRXFUFBkS7UWnbXJNyyDuT7KiLMh4WeaJDo7mpZxqovod139EgzQyzjjNcVyJCX4WlwZd6gIObe5SbjLX9vTLwckQT75blY3FUxgfHY72j72meIOnWMwqj7ZVgQ58o3rGnv2F3JeRZCoKY6GVNiIiMDF9o_pdGabSF5JQOVLcaMm1koTD29DKi9w8Awx8xrT0YxWKlHPZF8aeuXeNjP2YAFe24fXSyMlVrdGR0N7GGiJZNUQbPloPuGljlbXdC7Jc0gRqooM0CqVOBS3vvNvVEY9iExsZxeTILGBteGv9J7HxX5VCieYaA03VKmklA-I_fcYI2tqws9aS4latf156YNLgxiwhesttnUQ72Tc3XvnXv3r-vw1fwL3AFi922Ys70KrKuXlJjKqSr5qA-g0M-BzW priority: 102 providerName: Unpaywall |
| Title | A Six-Year, Spatiotemporally Comprehensive Dataset and Data Retrieval Tool for Analyzing Chlorophyll-a, Turbidity, and Temperature in Utah Lake Using Sentinel and MODIS Imagery |
| URI | https://www.proquest.com/docview/3244001828 https://doi.org/10.3390/data10080128 https://doaj.org/article/d2f86bdfa341411d8489e9eb8946e323 |
| UnpaywallVersion | publishedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2306-5729 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002245628 issn: 2306-5729 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2306-5729 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002245628 issn: 2306-5729 databaseCode: ADMLS dateStart: 20220601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2306-5729 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002245628 issn: 2306-5729 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2306-5729 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002245628 issn: 2306-5729 databaseCode: BENPR dateStart: 20160601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2306-5729 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002245628 issn: 2306-5729 databaseCode: 8FG dateStart: 20160601 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLa27gF4QIyLCIzKD1ylRktsL3UeEOouZUOsTGsrbU-Rb6EVISltKii_ip_IseuWTkh7y8VJHJ1zvnNsH38HoZcR1UxGhoQ5i3XIEjiSqaKhhOgiYbmW3PEWnPeS0yH7dHVwtYV6q70wNq1yhYkOqHWl7Bz5Pjh-ZivIEf5h8iO0VaPs6uqqhIbwpRX0e0cxto12iGXGaqCdw5PexeV61oXYdT7ClxnwFMb7-y4R08ZNsS3IvuGbHIX__0B9D92ZlxOx-CmKYsMTdR-g-z6ExJ2lzHfRlikfol1vpDP81jNJv3uE_nRwf_wrvAZtbuG-y532VFRFscAWCqZmtMxgx8fQw5mpsSi1O8aXrtYWKCIeVFWBIbjFjsHkNzg7fDSCcX4FIiqKULTwYD6VYw0Bfcs9P4CPeLJmPC7xsBYj_Fl8M9glKOC-zVAqTeHann85Puvjs--WS2PxGA27J4Oj09CXaAgVTWkdwuCJaBIZdWDsCl_CIsklVTxJhVbaCA6QYdpGtWOZ5DISErCXK2a0ZFpJQNsnqFFWpXmKMIko1TJKVSJyxmRbGLuyHhuZRinAqgzQq5VwssmSiSODEYwVYrYpxAAdWsmt21j-bHehmn7NvDlmmuQ8kToX4MRZHGvOeGpSI3kK6koJDdAbK_fMWnk9FUr4zQrQVcuXlXUgymlTCgAWoL0bLcE61c3bK83JPDrMsn-6HKDXa2269a-e3f6e5-gusYWJXWbiHmrU07l5AdFSLZtom3c_Nr0hNN2cA5wNexed67_cvhif |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V7aFwQJSHCBTYA-Uhxaq9u3XsQ4XSplVCk4CaVConsy-TCGMHx1EJv4pfwG9jdrMJqZB6681K1ontmflm1jv7fQi98qliwtfES1mgPBbCkYgl9QRUFyFLlYgsb0GvH7Yv2IfLg8sN9Ge5F8a0VS4x0QK1KqR5R74PiZ8ZBTkSvZ_88IxqlFldXUpocCetoA4txZjb2HGm51cwhZsedlpg7z1CTk-Gx23PqQx4ksa08qD-J4r4Wh5os0gVMl9EgsoojLmSSvMIvF43tGwEIkyFzwXARySZVoIpKQKjGgEpYItRFsPkb-vopP_pfPWWh5h1RRItOu4pjf192_hp6rTACMCv5UIrGfB_YriLtmf5hM-veJatZb7T--ieK1lxc-FjO2hD5w_QjgOFKX7rmKvfPUS_m3gw_ul9hsdSxwPbq-2or7Jsjg30lHq06JjHLbjCqa4wz5U9xudW2wscHw-LIsNQTGPLmPILkis-HmVFWYBLZJnH63g4K8VYwQSibs8fwp84cmg8zvFFxUe4y79pbBsi8MB0ROU6s2N7H1udAe58N9wd80fo4laM9Rht5kWunyBMfEqV8GMZ8pQx0eDarOQHWsR-DDAuamhvaZxksmD-SGDGZIyYrBuxho6M5VZjDF-3_aAovyYu_BNF0igUKuVQNLAgUBGLYh1rEcUQHpTQGnpj7J4YVKlKLrnbHAGXavi5kiZUVQ1KATBraPfaSEADef3rpeckDo2myb_YqaHXK2-68a6e3vw7L9F2e9jrJt1O_-wZukOMKLLtitxFm1U508-hUqvECxcOGH257Qj8C4EIU0Q |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VReJxQJSHCBTYA-Uh1Yq9u3XsA0KhITT0ASKJVE5mXyYRxg6OoxJ-FWd-HTMbJ6RC6q03K1kntmfmm1nv7PcR8tTnRijfMi8VgfFECEcq1txTUF2EIjUqcrwFxyfhwVC8P9073SB_lnthsK1yiYkOqE2h8R15ExK_QAU5FjXTui3iY6f7evLDQwUpXGldymksXOTQzs9g-jZ91euArXcY674d7B94tcKAp3nMKw9qf2aYb_WexQWqUPgqUlxHYSyNNlZG4PG2ZXUrUGGqfKkAOiItrFHCaBWgYgTA_5UWsrjjLvXuu9X7HYYriixa9NpzHvtN1_KJFVqA0u9rWdCJBfyfEm6Qa7N8IudnMsvWcl73FrlZF6u0vfCuLbJh89tkq4aDKX1Rc1a_vEN-t2l__NP7DA9ll_Zdl3ZNepVlc4qgU9rRoleeduAKp7aiMjfumH5yql7g8nRQFBmFMpo6rpRfkFbp_igrygKcIcs8uUsHs1KNDUwddt35A_iTmhaajnM6rOSIHslvlrpWCNrHXqjcZm7s8YdOr09735G1Y36XDC_FVPfIZl7k9j6hzOfcKD_WoUyFUC1pcQ0_sCr2YwBw1SA7S-MkkwXnRwJzJTRism7EBnmDlluNQaZu90FRfk3qwE8MS6NQmVRCuSCCwEQiim1sVRRDYHDGG-Q52j1BPKlKqWW9LQIuFZm5kjbUUy3OASobZPvcSMABff7rpeckNQ5Nk39R0yDPVt504V09uPh3npCrEHfJUe_k8CG5zlAN2bVDbpPNqpzZR1CiVeqxiwVKvlx28P0FRcZQ3g |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6V9AAcgAIVgYLmUF5SXBzvxrGPoQ-1iBZEEqk9WfuyEtXYleMI0l_FT2R27VQJlYCbZe9q15qZb7_Vzn4DsOszzaVvAi_lXe3xkJ5krJgniV2EPNUycroFp2fh8Zh_Ou-db8Du8i7Myvk9o-34B5cnaWkN4egd2Ax7xLhbsDk--zq4cHXjaEPcI4JY57Tf6rK22jhR_tvQex_uzvMrsfghsmxlbTl6CIfLWdUpJZd780ruqes_BBv_Ne1H8KAhlziovWELNkz-GLaa8J3hu0Zj-v0T-DXA4fSnd0F-3sGhy6puRKqybIEWJEozqXPb8YBGmZkKRa7dM35zVbjIRXFUFBkS7UWnbXJNyyDuT7KiLMh4WeaJDo7mpZxqovod139EgzQyzjjNcVyJCX4WlwZd6gIObe5SbjLX9vTLwckQT75blY3FUxgfHY72j72meIOnWMwqj7ZVgQ58o3rGnv2F3JeRZCoKY6GVNiIiMDF9o_pdGabSF5JQOVLcaMm1koTD29DKi9w8Awx8xrT0YxWKlHPZF8aeuXeNjP2YAFe24fXSyMlVrdGR0N7GGiJZNUQbPloPuGljlbXdC7Jc0gRqooM0CqVOBS3vvNvVEY9iExsZxeTILGBteGv9J7HxX5VCieYaA03VKmklA-I_fcYI2tqws9aS4latf156YNLgxiwhesttnUQ72Tc3XvnXv3r-vw1fwL3AFi922Ys70KrKuXlJjKqSr5qA-g0M-BzW |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Six-Year%2C+Spatiotemporally+Comprehensive+Dataset+and+Data+Retrieval+Tool+for+Analyzing+Chlorophyll-a%2C+Turbidity%2C+and+Temperature+in+Utah+Lake+Using+Sentinel+and+MODIS+Imagery&rft.jtitle=Data+%28Basel%29&rft.au=Tanner%2C+Kaylee+B&rft.au=Cardall%2C+Anna+C&rft.au=Williams%2C+Gustavious+P&rft.date=2025-08-01&rft.pub=MDPI+AG&rft.eissn=2306-5729&rft.volume=10&rft.issue=8&rft.spage=128&rft_id=info:doi/10.3390%2Fdata10080128&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5729&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5729&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5729&client=summon |