Phosphorylation-dependent Translocation of Glycogen Synthase to a Novel Structure during Glycogen Resynthesis

Glycogen metabolism has been the subject of extensive research, but the mechanisms by which it is regulated are still not fully understood. It is well accepted that the rate-limiting enzymes in glycogenesis and glycogenolysis are glycogen synthase (GS) and glycogen phosphorylase (GPh), respectively....

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 280; no. 24; pp. 23165 - 23172
Main Authors Prats, Clara, Cadefau, Joan A., Cussó, Roser, Qvortrup, Klaus, Nielsen, Jakob N., Wojtaszewki, Jørgen F.P., Hardie, D. Grahame, Stewart, Greg, Hansen, Bo F., Ploug, Thorkil
Format Journal Article
LanguageEnglish
Published United States American Society for Biochemistry and Molecular Biology 17.06.2005
Subjects
Online AccessGet full text
ISSN0021-9258
1083-351X
DOI10.1074/jbc.M502713200

Cover

Abstract Glycogen metabolism has been the subject of extensive research, but the mechanisms by which it is regulated are still not fully understood. It is well accepted that the rate-limiting enzymes in glycogenesis and glycogenolysis are glycogen synthase (GS) and glycogen phosphorylase (GPh), respectively. Both enzymes are regulated by reversible phosphorylation and by allosteric effectors. However, evidence in the literature indicates that changes in muscle GS and GPh intracellular distribution may constitute a new regulatory mechanism of glycogen metabolism. Already in the 1960s, it was proposed that glycogen was present in dynamic cellular organelles that were termed glycosomas but no such cellular entities have ever been demonstrated. The aim of this study was to characterize muscle GS and GPh intracellular distribution and to identify possible translocation processes of both enzymes. Using in situ stimulation of rabbit tibialis anterior muscle, we show GS and GPh intracellular redistribution at the beginning of glycogen resynthesis after contraction-induced glycogen depletion. We identify a new “player,” a new intracellular compartment involved in skeletal muscle glycogen metabolism. They are spherical structures that were not present in basal muscle, and we present evidence that indicate that they are products of actin cytoskeleton remodeling. Furthermore, for the first time, we show a phosphorylation-dependent intracellular distribution of GS. Here, we present evidence of a new regulatory mechanism of skeletal muscle glycogen metabolism based on glycogen enzyme intracellular compartmentalization.
AbstractList Glycogen metabolism has been the subject of extensive research, but the mechanisms by which it is regulated are still not fully understood. It is well accepted that the rate-limiting enzymes in glycogenesis and glycogenolysis are glycogen synthase (GS) and glycogen phosphorylase (GPh), respectively. Both enzymes are regulated by reversible phosphorylation and by allosteric effectors. However, evidence in the literature indicates that changes in muscle GS and GPh intracellular distribution may constitute a new regulatory mechanism of glycogen metabolism. Already in the 1960s, it was proposed that glycogen was present in dynamic cellular organelles that were termed glycosomas but no such cellular entities have ever been demonstrated. The aim of this study was to characterize muscle GS and GPh intracellular distribution and to identify possible translocation processes of both enzymes. Using in situ stimulation of rabbit tibialis anterior muscle, we show GS and GPh intracellular redistribution at the beginning of glycogen resynthesis after contraction-induced glycogen depletion. We identify a new "player," a new intracellular compartment involved in skeletal muscle glycogen metabolism. They are spherical structures that were not present in basal muscle, and we present evidence that indicate that they are products of actin cytoskeleton remodeling. Furthermore, for the first time, we show a phosphorylation-dependent intracellular distribution of GS. Here, we present evidence of a new regulatory mechanism of skeletal muscle glycogen metabolism based on glycogen enzyme intracellular compartmentalization.
Glycogen metabolism has been the subject of extensive research, but the mechanisms by which it is regulated are still not fully understood. It is well accepted that the rate-limiting enzymes in glycogenesis and glycogenolysis are glycogen synthase (GS) and glycogen phosphorylase (GPh), respectively. Both enzymes are regulated by reversible phosphorylation and by allosteric effectors. However, evidence in the literature indicates that changes in muscle GS and GPh intracellular distribution may constitute a new regulatory mechanism of glycogen metabolism. Already in the 1960s, it was proposed that glycogen was present in dynamic cellular organelles that were termed glycosomas but no such cellular entities have ever been demonstrated. The aim of this study was to characterize muscle GS and GPh intracellular distribution and to identify possible translocation processes of both enzymes. Using in situ stimulation of rabbit tibialis anterior muscle, we show GS and GPh intracellular redistribution at the beginning of glycogen resynthesis after contraction-induced glycogen depletion. We identify a new “player,” a new intracellular compartment involved in skeletal muscle glycogen metabolism. They are spherical structures that were not present in basal muscle, and we present evidence that indicate that they are products of actin cytoskeleton remodeling. Furthermore, for the first time, we show a phosphorylation-dependent intracellular distribution of GS. Here, we present evidence of a new regulatory mechanism of skeletal muscle glycogen metabolism based on glycogen enzyme intracellular compartmentalization.
Glycogen metabolism has been the subject of extensive research, but the mechanisms by which it is regulated are still not fully understood. It is well accepted that the rate-limiting enzymes in glycogenesis and glycogenolysis are glycogen synthase (GS) and glycogen phosphorylase (GPh), respectively. Both enzymes are regulated by reversible phosphorylation and by allosteric effectors. However, evidence in the literature indicates that changes in muscle GS and GPh intracellular distribution may constitute a new regulatory mechanism of glycogen metabolism. Already in the 1960s, it was proposed that glycogen was present in dynamic cellular organelles that were termed glycosomas but no such cellular entities have ever been demonstrated. The aim of this study was to characterize muscle GS and GPh intracellular distribution and to identify possible translocation processes of both enzymes. Using in situ stimulation of rabbit tibialis anterior muscle, we show GS and GPh intracellular redistribution at the beginning of glycogen resynthesis after contraction-induced glycogen depletion. We identify a new "player," a new intracellular compartment involved in skeletal muscle glycogen metabolism. They are spherical structures that were not present in basal muscle, and we present evidence that indicate that they are products of actin cytoskeleton remodeling. Furthermore, for the first time, we show a phosphorylation-dependent intracellular distribution of GS. Here, we present evidence of a new regulatory mechanism of skeletal muscle glycogen metabolism based on glycogen enzyme intracellular compartmentalization.Glycogen metabolism has been the subject of extensive research, but the mechanisms by which it is regulated are still not fully understood. It is well accepted that the rate-limiting enzymes in glycogenesis and glycogenolysis are glycogen synthase (GS) and glycogen phosphorylase (GPh), respectively. Both enzymes are regulated by reversible phosphorylation and by allosteric effectors. However, evidence in the literature indicates that changes in muscle GS and GPh intracellular distribution may constitute a new regulatory mechanism of glycogen metabolism. Already in the 1960s, it was proposed that glycogen was present in dynamic cellular organelles that were termed glycosomas but no such cellular entities have ever been demonstrated. The aim of this study was to characterize muscle GS and GPh intracellular distribution and to identify possible translocation processes of both enzymes. Using in situ stimulation of rabbit tibialis anterior muscle, we show GS and GPh intracellular redistribution at the beginning of glycogen resynthesis after contraction-induced glycogen depletion. We identify a new "player," a new intracellular compartment involved in skeletal muscle glycogen metabolism. They are spherical structures that were not present in basal muscle, and we present evidence that indicate that they are products of actin cytoskeleton remodeling. Furthermore, for the first time, we show a phosphorylation-dependent intracellular distribution of GS. Here, we present evidence of a new regulatory mechanism of skeletal muscle glycogen metabolism based on glycogen enzyme intracellular compartmentalization.
Author Joan A. Cadefau
Roser CussÃ
D. Grahame Hardie
Bo F. Hansen
Klaus Qvortrup
Clara Prats
Jakob N. Nielsen
Jørgen F. P. Wojtaszewki
Greg Stewart
Thorkil Ploug
Author_xml – sequence: 1
  givenname: Clara
  surname: Prats
  fullname: Prats, Clara
– sequence: 2
  givenname: Joan A.
  surname: Cadefau
  fullname: Cadefau, Joan A.
– sequence: 3
  givenname: Roser
  surname: Cussó
  fullname: Cussó, Roser
– sequence: 4
  givenname: Klaus
  surname: Qvortrup
  fullname: Qvortrup, Klaus
– sequence: 5
  givenname: Jakob N.
  surname: Nielsen
  fullname: Nielsen, Jakob N.
– sequence: 6
  givenname: Jørgen F.P.
  surname: Wojtaszewki
  fullname: Wojtaszewki, Jørgen F.P.
– sequence: 7
  givenname: D. Grahame
  surname: Hardie
  fullname: Hardie, D. Grahame
– sequence: 8
  givenname: Greg
  surname: Stewart
  fullname: Stewart, Greg
– sequence: 9
  givenname: Bo F.
  surname: Hansen
  fullname: Hansen, Bo F.
– sequence: 10
  givenname: Thorkil
  surname: Ploug
  fullname: Ploug, Thorkil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15840572$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rFTEUhoO02Nvq1qVkIe7mNp-TmaWUWoVqxVZwFzKZkzspM8k1ySj33zvtrRYE6dkcODzPuzjvMToIMQBCryhZU6LE6W1n158kYYpyRsgztKKk4RWX9PsBWhHCaNUy2Ryh45xvyTKipc_REZWNIFKxFZq-DDFvh5h2oyk-hqqHLYQeQsE3yYQ8Rnt_x9Hhi3Fn4wYCvt6FMpgMuERs8Of4E0Z8XdJsy5wA93PyYfNIf4V8x0P2-QU6dGbM8PJhn6Bv789vzj5Ul1cXH8_eXVaWt7xUVPVtC1aCq5Xpre1oqxQQQbkwnXNKEQEKnGx621lLoaZdLTrXO6KYq4XkJ-jtPneb4o8ZctGTzxbG0QSIc9a1alnT0qdBUdeibWq2gK8fwLmboNfb5CeTdvrPJxdA7AGbYs4JnLa-3L-uJONHTYm-K0wvhenHwhZt_Y_2N_l_wpu9MPjN8Msn0J2PdoBJs4ZoJjTjtJb8N4BkpkY
CitedBy_id crossref_primary_10_1016_j_ijcard_2018_01_034
crossref_primary_10_1113_jphysiol_2011_224972
crossref_primary_10_1113_jphysiol_2010_204487
crossref_primary_10_1007_s10974_013_9359_4
crossref_primary_10_1111_j_1574_6976_2010_00220_x
crossref_primary_10_1186_1477_5956_11_11
crossref_primary_10_1007_s13355_012_0150_6
crossref_primary_10_1016_j_gene_2019_144192
crossref_primary_10_1111_febs_12059
crossref_primary_10_1111_febs_15648
crossref_primary_10_1074_jbc_M900845200
crossref_primary_10_1016_j_metabol_2009_06_016
crossref_primary_10_1113_expphysiol_2010_052860
crossref_primary_10_1074_jbc_R117_802843
crossref_primary_10_1152_ajpendo_00392_2017
crossref_primary_10_1139_W10_027
crossref_primary_10_1073_pnas_0603539103
crossref_primary_10_1016_j_ijbiomac_2009_08_006
crossref_primary_10_1042_BJ20111416
crossref_primary_10_1113_jphysiol_2006_122457
crossref_primary_10_1111_apha_13561
crossref_primary_10_1016_j_canlet_2012_11_020
crossref_primary_10_1093_jisesa_iex015
crossref_primary_10_1002_jcp_20942
crossref_primary_10_1042_BJ20151035
crossref_primary_10_1111_j_1748_1716_2010_02131_x
crossref_primary_10_1042_BSR20140053
crossref_primary_10_1152_ajpregu_00874_2007
crossref_primary_10_1016_j_cbd_2019_100652
crossref_primary_10_1152_ajpendo_00652_2005
crossref_primary_10_1002_pmic_200900628
crossref_primary_10_1016_j_bbagen_2016_08_021
crossref_primary_10_1139_H09_048
crossref_primary_10_1074_jbc_M507394200
crossref_primary_10_1152_ajpcell_00252_2012
crossref_primary_10_1210_jc_2009_0897
crossref_primary_10_2337_diabetes_54_12_3474
crossref_primary_10_1007_s00421_012_2341_9
crossref_primary_10_1093_hmg_ddq010
crossref_primary_10_1002_jcb_21634
crossref_primary_10_3389_fphys_2023_1213654
crossref_primary_10_1139_apnm_2012_0184
crossref_primary_10_1016_j_ab_2023_115071
crossref_primary_10_1016_j_jbc_2024_107271
crossref_primary_10_1134_S1990519X11050038
crossref_primary_10_1016_j_abb_2006_11_004
crossref_primary_10_1111_apha_13775
crossref_primary_10_1080_13813450902778171
crossref_primary_10_1152_ajpendo_00598_2006
crossref_primary_10_1186_1471_2091_12_57
Cites_doi 10.1111/j.1469-7793.2001.0757h.x
10.1007/BF00405082
10.1146/annurev.bi.49.070180.000335
10.1016/S1874-6047(08)60436-9
10.1152/ajpcell.1997.273.1.C297
10.1016/0020-711X(91)90274-Q
10.1016/S0304-4165(02)00332-X
10.1016/B978-0-12-152814-0.50008-3
10.1042/bj1800389
10.1016/S0021-9258(19)84771-3
10.1023/A:1010303732441
10.1016/S0021-9258(19)39946-6
10.1042/bj20021844
10.1016/j.bbrc.2003.09.209
10.1242/jcs.115.2.241
10.1177/10.2.175
10.1083/jcb.38.1.130
10.1046/j.1365-313X.1999.00532.x
10.1001/archneur.1969.00480130039004
10.1016/0014-5793(77)80952-6
10.1016/0012-1606(91)90263-3
10.1083/jcb.142.6.1429
10.1111/j.1432-1033.1987.tb13637.x
10.1016/S0014-5793(97)01136-8
10.1016/S0014-5793(97)01299-4
10.1007/s002490050057
10.2174/1566524024605761
10.1515/JBCPP.1998.9.2-4.255
10.1002/bies.20061
10.1016/0024-3205(76)90066-7
10.1007/BF00374471
10.1016/S0021-9258(18)83261-6
10.1080/00039896.1968.10665356
10.1111/j.1365-2818.1993.tb03405.x
10.1083/jcb.99.1.222s
10.1016/0014-5793(90)80959-M
10.1016/S1874-6047(08)60437-0
10.1016/S0021-9258(18)98653-9
10.1242/jcs.00839
10.1083/jcb.129.3.697
10.1016/S0021-9258(18)89864-7
10.1016/S0021-9258(18)47282-1
10.1007/BF00215303
10.2337/diabetes.52.6.1393
10.1016/S0074-7696(01)02003-4
10.1210/en.2004-1022
10.1002/cm.10059
10.1016/S0968-0004(01)01836-9
10.1016/S0021-9258(18)43730-1
10.1038/296811a0
10.1007/BF00688334
10.1016/S0021-9258(18)77295-5
10.1042/bj3570017
10.1096/fasebj.4.12.2168324
10.1111/j.1748-1716.1989.tb08591.x
10.1021/bi00783a021
10.1042/bj3210227
10.1016/0167-4889(91)90109-B
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
DOI 10.1074/jbc.M502713200
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1083-351X
EndPage 23172
ExternalDocumentID 15840572
10_1074_jbc_M502713200
280_24_23165
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
02
186
2WC
34G
39C
3O-
53G
55
5BI
5GY
5RE
5VS
85S
AARDX
AAWZA
ABFLS
ABOCM
ABPPZ
ABPTK
ABUFD
ABZEH
ACNCT
ADACO
ADBBV
ADCOW
AEILP
AENEX
AFFNX
AFMIJ
AIZTS
ALMA_UNASSIGNED_HOLDINGS
C1A
CJ0
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
ET
F20
F5P
FA8
FH7
FRP
GJ
GX1
H13
HH5
HYE
IH2
KM
KQ8
L7B
LI
MVM
MYA
N9A
O0-
OHT
OK1
P-O
P0W
P2P
R.V
RHF
RHI
RNS
RPM
SJN
TBC
TN5
UHB
UKR
UPT
UQL
VH1
VQA
WH7
WOQ
X
X7M
XFK
XHC
Y6R
YZZ
ZA5
ZE2
---
-DZ
-ET
-~X
.55
.7T
.GJ
0R~
18M
29J
4.4
41~
6TJ
79B
AAEDW
AAFWJ
AALRI
AAXUO
AAYJJ
AAYWO
AAYXX
ABDNZ
ABFSI
ABRJW
ACGFO
ACSFO
ACVFH
ACYGS
ADCNI
ADIYS
ADNWM
ADVLN
ADXHL
AEUPX
AEXQZ
AFPKN
AFPUW
AI.
AIGII
AITUG
AKBMS
AKRWK
AKYEP
AMRAJ
AOIJS
BAWUL
BTFSW
CITATION
E.L
FDB
GROUPED_DOAJ
J5H
NHB
QZG
ROL
TR2
W8F
WHG
XJT
XSW
YQT
YSK
YWH
YYP
ZGI
ZY4
~02
~KM
AFOSN
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7S9
L.6
7X8
ID FETCH-LOGICAL-c393t-17d99ec5ef67adccb1977e04134abff7704e7ef58dcbcc1e61b64bfdf072f6453
ISSN 0021-9258
IngestDate Thu Sep 04 23:24:06 EDT 2025
Fri Sep 05 13:15:23 EDT 2025
Wed Feb 19 02:29:46 EST 2025
Thu Apr 24 23:10:55 EDT 2025
Wed Oct 01 05:03:15 EDT 2025
Tue Jan 05 14:52:06 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License http://creativecommons.org/licenses/by/4.0
https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c393t-17d99ec5ef67adccb1977e04134abff7704e7ef58dcbcc1e61b64bfdf072f6453
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink http://www.jbc.org/article/S0021925820614910/pdf
PMID 15840572
PQID 46649862
PQPubID 24069
PageCount 8
ParticipantIDs proquest_miscellaneous_67928915
proquest_miscellaneous_46649862
pubmed_primary_15840572
crossref_citationtrail_10_1074_jbc_M502713200
crossref_primary_10_1074_jbc_M502713200
highwire_biochem_280_24_23165
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-06-17
PublicationDateYYYYMMDD 2005-06-17
PublicationDate_xml – month: 06
  year: 2005
  text: 2005-06-17
  day: 17
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of biological chemistry
PublicationTitleAlternate J Biol Chem
PublicationYear 2005
Publisher American Society for Biochemistry and Molecular Biology
Publisher_xml – name: American Society for Biochemistry and Molecular Biology
References Ho (10.1074/jbc.M502713200_bib37) 1987; 74
Ciudad (10.1074/jbc.M502713200_bib28) 1980; 30
MacArthur (10.1074/jbc.M502713200_bib56) 2004; 26
Rothman-Denes (10.1074/jbc.M502713200_bib7) 1971; 10
Calder (10.1074/jbc.M502713200_bib20) 1991; 23
Chowrashi (10.1074/jbc.M502713200_bib57) 2002; 53
Lane (10.1074/jbc.M502713200_bib21) 1989; 18
Chacko (10.1074/jbc.M502713200_bib54) 1990; 265
Flood (10.1074/jbc.M502713200_bib55) 1997; 25
Flotow (10.1074/jbc.M502713200_bib5) 1990; 265
Ishikawa (10.1074/jbc.M502713200_bib43) 1989; 264
Cohen (10.1074/jbc.M502713200_bib48) 1986
Roach (10.1074/jbc.M502713200_bib6) 1990; 4
Burch (10.1074/jbc.M502713200_bib35) 1968; 17
Damsbo (10.1074/jbc.M502713200_bib2) 1991; 34
Fletterick (10.1074/jbc.M502713200_bib9) 1980; 49
Himes (10.1074/jbc.M502713200_bib11) 1962; 10
Weeds (10.1074/jbc.M502713200_bib40) 1982; 296
Beck-Nielsen (10.1074/jbc.M502713200_bib1) 1998; 9
Khaitlina (10.1074/jbc.M502713200_bib39) 2001; 202
Ou (10.1074/jbc.M502713200_bib47) 2004; 146
Bergamini (10.1074/jbc.M502713200_bib19) 1977; 81
Hicks (10.1074/jbc.M502713200_bib45) 1997; 273
Fernandez-Novell (10.1074/jbc.M502713200_bib50) 1997; 321
Bollen (10.1074/jbc.M502713200_bib10) 2001; 26
McHugh (10.1074/jbc.M502713200_bib38) 1991; 148
Warren (10.1074/jbc.M502713200_bib41) 1995; 129
Burgstaller (10.1074/jbc.M502713200_bib51) 2003; 117
Skurat (10.1074/jbc.M502713200_bib3) 1994; 269
Entman (10.1074/jbc.M502713200_bib12) 1976; 19
Roach (10.1074/jbc.M502713200_bib17) 2002; 2
Roach (10.1074/jbc.M502713200_bib4) 1991; 266
Friden (10.1074/jbc.M502713200_bib13) 1989; 135
Ploug (10.1074/jbc.M502713200_bib31) 1998; 142
Masters (10.1074/jbc.M502713200_bib59) 1984; 99
Rakus (10.1074/jbc.M502713200_bib58) 2003; 311
Lomako (10.1074/jbc.M502713200_bib14) 1990; 268
Giometti (10.1074/jbc.M502713200_bib53) 1984; 259
García-Rocha (10.1074/jbc.M502713200_bib46) 2001; 357
Hirata (10.1074/jbc.M502713200_bib27) 2003; 371
Rostgaard (10.1074/jbc.M502713200_bib34) 1993; 172
Cohen (10.1074/jbc.M502713200_bib18) 1978; 14
Entman (10.1074/jbc.M502713200_bib26) 1980; 255
Baque (10.1074/jbc.M502713200_bib25) 1997; 417
Pitcher (10.1074/jbc.M502713200_bib24) 1987; 169
Roach (10.1074/jbc.M502713200_bib49) 1986
Norris (10.1074/jbc.M502713200_bib36) 1969; 21
Nielsen (10.1074/jbc.M502713200_bib23) 2001; 531
Wanson (10.1074/jbc.M502713200_bib15) 1968; 38
Ishikawa (10.1074/jbc.M502713200_bib42) 1989; 264
Cohen (10.1074/jbc.M502713200_bib16) 2002; 115
Hojlund (10.1074/jbc.M502713200_bib32) 2003; 52
Ferrer (10.1074/jbc.M502713200_bib22) 1997; 415
Green (10.1074/jbc.M502713200_bib44) 1992; 420
Katz (10.1074/jbc.M502713200_bib29) 1979; 180
Villar-Palasi (10.1074/jbc.M502713200_bib8) 1991; 1095
Prats (10.1074/jbc.M502713200_bib30) 2002; 1573
Sugden (10.1074/jbc.M502713200_bib33) 1999; 19
Perry (10.1074/jbc.M502713200_bib52) 2001; 22
J Biol Chem. 2005 Oct 21;280(42):35784
References_xml – volume: 531
  start-page: 757
  year: 2001
  ident: 10.1074/jbc.M502713200_bib23
  publication-title: J. Physiol. (Lond.)
  doi: 10.1111/j.1469-7793.2001.0757h.x
– volume: 34
  start-page: 239
  year: 1991
  ident: 10.1074/jbc.M502713200_bib2
  publication-title: Diabetologia
  doi: 10.1007/BF00405082
– volume: 49
  start-page: 31
  year: 1980
  ident: 10.1074/jbc.M502713200_bib9
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.bi.49.070180.000335
– start-page: 461
  year: 1986
  ident: 10.1074/jbc.M502713200_bib48
  doi: 10.1016/S1874-6047(08)60436-9
– volume: 273
  start-page: C297
  year: 1997
  ident: 10.1074/jbc.M502713200_bib45
  publication-title: Am. J. Physiol.
  doi: 10.1152/ajpcell.1997.273.1.C297
– volume: 23
  start-page: 1335
  year: 1991
  ident: 10.1074/jbc.M502713200_bib20
  publication-title: Int. J. Biochem.
  doi: 10.1016/0020-711X(91)90274-Q
– volume: 1573
  start-page: 68
  year: 2002
  ident: 10.1074/jbc.M502713200_bib30
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0304-4165(02)00332-X
– volume: 14
  start-page: 117
  year: 1978
  ident: 10.1074/jbc.M502713200_bib18
  publication-title: Curr. Top. Cell Regul.
  doi: 10.1016/B978-0-12-152814-0.50008-3
– volume: 180
  start-page: 389
  year: 1979
  ident: 10.1074/jbc.M502713200_bib29
  publication-title: Biochem. J.
  doi: 10.1042/bj1800389
– volume: 18
  start-page: 961
  year: 1989
  ident: 10.1074/jbc.M502713200_bib21
  publication-title: Biochem. Int.
– volume: 264
  start-page: 16764
  year: 1989
  ident: 10.1074/jbc.M502713200_bib43
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)84771-3
– volume: 22
  start-page: 5
  year: 2001
  ident: 10.1074/jbc.M502713200_bib52
  publication-title: J. Muscle Res. Cell Motil.
  doi: 10.1023/A:1010303732441
– volume: 265
  start-page: 2105
  year: 1990
  ident: 10.1074/jbc.M502713200_bib54
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)39946-6
– volume: 371
  start-page: 81
  year: 2003
  ident: 10.1074/jbc.M502713200_bib27
  publication-title: Biochem. J.
  doi: 10.1042/bj20021844
– volume: 311
  start-page: 294
  year: 2003
  ident: 10.1074/jbc.M502713200_bib58
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2003.09.209
– volume: 115
  start-page: 241
  year: 2002
  ident: 10.1074/jbc.M502713200_bib16
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.115.2.241
– volume: 10
  start-page: 175
  year: 1962
  ident: 10.1074/jbc.M502713200_bib11
  publication-title: J. Histochem. Cytochem.
  doi: 10.1177/10.2.175
– volume: 38
  start-page: 130
  year: 1968
  ident: 10.1074/jbc.M502713200_bib15
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.38.1.130
– volume: 19
  start-page: 439
  year: 1999
  ident: 10.1074/jbc.M502713200_bib33
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.1999.00532.x
– volume: 21
  start-page: 25
  year: 1969
  ident: 10.1074/jbc.M502713200_bib36
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.1969.00480130039004
– volume: 81
  start-page: 166
  year: 1977
  ident: 10.1074/jbc.M502713200_bib19
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(77)80952-6
– volume: 148
  start-page: 442
  year: 1991
  ident: 10.1074/jbc.M502713200_bib38
  publication-title: Dev. Biol.
  doi: 10.1016/0012-1606(91)90263-3
– volume: 142
  start-page: 1429
  year: 1998
  ident: 10.1074/jbc.M502713200_bib31
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.142.6.1429
– volume: 169
  start-page: 497
  year: 1987
  ident: 10.1074/jbc.M502713200_bib24
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1987.tb13637.x
– volume: 415
  start-page: 249
  year: 1997
  ident: 10.1074/jbc.M502713200_bib22
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(97)01136-8
– volume: 417
  start-page: 355
  year: 1997
  ident: 10.1074/jbc.M502713200_bib25
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(97)01299-4
– volume: 25
  start-page: 431
  year: 1997
  ident: 10.1074/jbc.M502713200_bib55
  publication-title: Eur. Biophys. J.
  doi: 10.1007/s002490050057
– volume: 2
  start-page: 101
  year: 2002
  ident: 10.1074/jbc.M502713200_bib17
  publication-title: Curr. Mol. Med.
  doi: 10.2174/1566524024605761
– volume: 9
  start-page: 255
  year: 1998
  ident: 10.1074/jbc.M502713200_bib1
  publication-title: J. Basic Clin. Physiol. Pharmacol.
  doi: 10.1515/JBCPP.1998.9.2-4.255
– volume: 26
  start-page: 786
  year: 2004
  ident: 10.1074/jbc.M502713200_bib56
  publication-title: BioEssays
  doi: 10.1002/bies.20061
– volume: 19
  start-page: 1623
  year: 1976
  ident: 10.1074/jbc.M502713200_bib12
  publication-title: Life Sci.
  doi: 10.1016/0024-3205(76)90066-7
– volume: 420
  start-page: 359
  year: 1992
  ident: 10.1074/jbc.M502713200_bib44
  publication-title: Pflugers Arch. Eur. J. Physiol.
  doi: 10.1007/BF00374471
– volume: 264
  start-page: 7490
  year: 1989
  ident: 10.1074/jbc.M502713200_bib42
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)83261-6
– volume: 17
  start-page: 984
  year: 1968
  ident: 10.1074/jbc.M502713200_bib35
  publication-title: Arch. Environ. Health
  doi: 10.1080/00039896.1968.10665356
– volume: 172
  start-page: 137
  year: 1993
  ident: 10.1074/jbc.M502713200_bib34
  publication-title: J. Microsc.
  doi: 10.1111/j.1365-2818.1993.tb03405.x
– volume: 99
  start-page: S222
  year: 1984
  ident: 10.1074/jbc.M502713200_bib59
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.99.1.222s
– volume: 268
  start-page: 8
  year: 1990
  ident: 10.1074/jbc.M502713200_bib14
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(90)80959-M
– start-page: 499
  year: 1986
  ident: 10.1074/jbc.M502713200_bib49
  doi: 10.1016/S1874-6047(08)60437-0
– volume: 266
  start-page: 14139
  year: 1991
  ident: 10.1074/jbc.M502713200_bib4
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)98653-9
– volume: 117
  start-page: 223
  year: 2003
  ident: 10.1074/jbc.M502713200_bib51
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.00839
– volume: 129
  start-page: 697
  year: 1995
  ident: 10.1074/jbc.M502713200_bib41
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.129.3.697
– volume: 259
  start-page: 14113
  year: 1984
  ident: 10.1074/jbc.M502713200_bib53
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)89864-7
– volume: 269
  start-page: 25534
  year: 1994
  ident: 10.1074/jbc.M502713200_bib3
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)47282-1
– volume: 30
  start-page: 33
  year: 1980
  ident: 10.1074/jbc.M502713200_bib28
  publication-title: Mol. Cell Biochem.
  doi: 10.1007/BF00215303
– volume: 52
  start-page: 1393
  year: 2003
  ident: 10.1074/jbc.M502713200_bib32
  publication-title: Diabetes
  doi: 10.2337/diabetes.52.6.1393
– volume: 202
  start-page: 35
  year: 2001
  ident: 10.1074/jbc.M502713200_bib39
  publication-title: Int. Rev. Cytol.
  doi: 10.1016/S0074-7696(01)02003-4
– volume: 146
  start-page: 494
  year: 2004
  ident: 10.1074/jbc.M502713200_bib47
  publication-title: Endocrinology
  doi: 10.1210/en.2004-1022
– volume: 53
  start-page: 125
  year: 2002
  ident: 10.1074/jbc.M502713200_bib57
  publication-title: Cell Motil. Cytoskeleton
  doi: 10.1002/cm.10059
– volume: 26
  start-page: 426
  year: 2001
  ident: 10.1074/jbc.M502713200_bib10
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/S0968-0004(01)01836-9
– volume: 255
  start-page: 6245
  year: 1980
  ident: 10.1074/jbc.M502713200_bib26
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)43730-1
– volume: 296
  start-page: 811
  year: 1982
  ident: 10.1074/jbc.M502713200_bib40
  publication-title: Nature
  doi: 10.1038/296811a0
– volume: 74
  start-page: 22
  year: 1987
  ident: 10.1074/jbc.M502713200_bib37
  publication-title: Acta Neuropathol.
  doi: 10.1007/BF00688334
– volume: 265
  start-page: 14264
  year: 1990
  ident: 10.1074/jbc.M502713200_bib5
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)77295-5
– volume: 357
  start-page: 17
  year: 2001
  ident: 10.1074/jbc.M502713200_bib46
  publication-title: Biochem. J.
  doi: 10.1042/bj3570017
– volume: 4
  start-page: 2961
  year: 1990
  ident: 10.1074/jbc.M502713200_bib6
  publication-title: FASEB J.
  doi: 10.1096/fasebj.4.12.2168324
– volume: 135
  start-page: 381
  year: 1989
  ident: 10.1074/jbc.M502713200_bib13
  publication-title: Acta Physiol. Scand.
  doi: 10.1111/j.1748-1716.1989.tb08591.x
– volume: 10
  start-page: 1236
  year: 1971
  ident: 10.1074/jbc.M502713200_bib7
  publication-title: Biochemistry
  doi: 10.1021/bi00783a021
– volume: 321
  start-page: 227
  year: 1997
  ident: 10.1074/jbc.M502713200_bib50
  publication-title: Biochem. J.
  doi: 10.1042/bj3210227
– volume: 1095
  start-page: 261
  year: 1991
  ident: 10.1074/jbc.M502713200_bib8
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0167-4889(91)90109-B
– reference: - J Biol Chem. 2005 Oct 21;280(42):35784
SSID ssj0000491
Score 2.0582292
Snippet Glycogen metabolism has been the subject of extensive research, but the mechanisms by which it is regulated are still not fully understood. It is well accepted...
Glycogen metabolism has been the subject of extensive research, but the mechanisms by which it is regulated are still not fully understood. It is well accepted...
SourceID proquest
pubmed
crossref
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 23165
SubjectTerms actin
Actins - metabolism
Adenosine Monophosphate - chemistry
Allosteric Site
Amino Acid Sequence
Animals
Centrifugation
Cytoplasm - metabolism
Cytoskeleton - metabolism
exhibitions
Female
glycogen
Glycogen - chemistry
Glycogen - metabolism
Glycogen Phosphorylase - metabolism
Glycogen Synthase - chemistry
Glycogen Synthase - metabolism
Image Processing, Computer-Assisted
Immunohistochemistry
literature
metabolism
Microscopy, Electron, Transmission
Microscopy, Fluorescence
Molecular Sequence Data
Muscle, Skeletal - metabolism
Muscle, Skeletal - ultrastructure
muscles
Muscles - enzymology
Muscles - metabolism
Peptides - chemistry
phosphorylase
Phosphorylation
Protein Conformation
Protein Structure, Tertiary
Protein Transport
Rabbits
Sarcoplasmic Reticulum - ultrastructure
skeletal muscle
Subcellular Fractions - metabolism
Tibia - metabolism
Time Factors
wells
Title Phosphorylation-dependent Translocation of Glycogen Synthase to a Novel Structure during Glycogen Resynthesis
URI http://www.jbc.org/content/280/24/23165.abstract
https://www.ncbi.nlm.nih.gov/pubmed/15840572
https://www.proquest.com/docview/46649862
https://www.proquest.com/docview/67928915
Volume 280
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1083-351X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000491
  issn: 0021-9258
  databaseCode: HH5
  dateStart: 19050101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1083-351X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000491
  issn: 0021-9258
  databaseCode: KQ8
  dateStart: 19051001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1083-351X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000491
  issn: 0021-9258
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1083-351X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000491
  issn: 0021-9258
  databaseCode: AKRWK
  dateStart: 19051001
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1083-351X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000491
  issn: 0021-9258
  databaseCode: RPM
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKOMAFjQ1YgYEPCA5TSuM4dn0sEzAxbWKwSbtFjmOrSF0yLcmk7l_hn-U5jpN2rNLgErWp46T-Ptvv5f1C6F3KVKTjjAZZxNOATsYappRggQG2pJLyLGvqpxwds4Mz-u08Ph8Mfi95LdVVOlI3d8aV_A-qcA5wtVGy_4Bs1ymcgM-ALxwBYTjeC-Pvs6K8nBVXC-fQFviKtpXLWW73KS8Qfp0vVAEd7f1c5NUMti4rdMq94-JaN6bp2pkS2qjFrvUPXdr2uvxVLouxfUBZI8q6TE4u14gvINetuUAxl8YAdOjeLUhm2sjavb-HJWY66n6py9Ja7z9FzvG77N2HT65BV7iqm4p6h3N565VFbF2rXIRmF0IQBoK4nO1-GSauolPLN0KXV9UodAUl2i0avrt6P3-t_yAQ2fU_VaOjGBRuGx8-7nc6b92_tQF2bomNQZ7TBK5P-usfoIeEM2bLYxye9KnoQbVy5Rjb_-IzgnL6cfX-qxKPz0K9XqNpJJvTTfSkxRFPHb-eooHOt9D2NJdVcbHA73HjJNxYX7bQo32P7za6WEs_vEI_XBjsCYU9_XBVYIkb-uGOftjRr2-9RL9n6OzL59P9g6Ct3hGoSEQVAJ4JoVWsDeMyUyoNQdXQYxCaqEyN4XxMNdcmnmQqVSrULEwZTU1mxpwYRuPoOdrIi1zvICxErIwQlCgqqM1xKYliLFMw1hIkLz5EgR_hRLWp7W2FlXlyN6JD9KFrf-mSuqxtuesBS2Au2TmUAFETQpOGlEP01qOYwOhbY5vMdVGXiS3bICaMrG_BuCATEUIfLxz8_bOAVgB6FHl57-d8hR73E-012gDc9C5Iy1X6pmHtH25Iwho
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphorylation-dependent+Translocation+of+Glycogen+Synthase+to+a+Novel+Structure+during+Glycogen+Resynthesis&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Prats%2C+Clara&rft.au=Cadefau%2C+Joan+A.&rft.au=Cuss%C3%B3%2C+Roser&rft.au=Qvortrup%2C+Klaus&rft.date=2005-06-17&rft.issn=0021-9258&rft.volume=280&rft.issue=24&rft.spage=23165&rft.epage=23172&rft_id=info:doi/10.1074%2Fjbc.M502713200&rft.externalDBID=n%2Fa&rft.externalDocID=10_1074_jbc_M502713200
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon