Phosphorylation-dependent Translocation of Glycogen Synthase to a Novel Structure during Glycogen Resynthesis
Glycogen metabolism has been the subject of extensive research, but the mechanisms by which it is regulated are still not fully understood. It is well accepted that the rate-limiting enzymes in glycogenesis and glycogenolysis are glycogen synthase (GS) and glycogen phosphorylase (GPh), respectively....
Saved in:
Published in | The Journal of biological chemistry Vol. 280; no. 24; pp. 23165 - 23172 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Biochemistry and Molecular Biology
17.06.2005
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9258 1083-351X |
DOI | 10.1074/jbc.M502713200 |
Cover
Abstract | Glycogen metabolism has been the subject of extensive research, but the mechanisms by which it is regulated are still not
fully understood. It is well accepted that the rate-limiting enzymes in glycogenesis and glycogenolysis are glycogen synthase
(GS) and glycogen phosphorylase (GPh), respectively. Both enzymes are regulated by reversible phosphorylation and by allosteric
effectors. However, evidence in the literature indicates that changes in muscle GS and GPh intracellular distribution may
constitute a new regulatory mechanism of glycogen metabolism. Already in the 1960s, it was proposed that glycogen was present
in dynamic cellular organelles that were termed glycosomas but no such cellular entities have ever been demonstrated. The
aim of this study was to characterize muscle GS and GPh intracellular distribution and to identify possible translocation
processes of both enzymes. Using in situ stimulation of rabbit tibialis anterior muscle, we show GS and GPh intracellular redistribution at the beginning of glycogen resynthesis after contraction-induced
glycogen depletion. We identify a new âplayer,â a new intracellular compartment involved in skeletal muscle glycogen metabolism.
They are spherical structures that were not present in basal muscle, and we present evidence that indicate that they are products
of actin cytoskeleton remodeling. Furthermore, for the first time, we show a phosphorylation-dependent intracellular distribution
of GS. Here, we present evidence of a new regulatory mechanism of skeletal muscle glycogen metabolism based on glycogen enzyme
intracellular compartmentalization. |
---|---|
AbstractList | Glycogen metabolism has been the subject of extensive research, but the mechanisms by which it is regulated are still not fully understood. It is well accepted that the rate-limiting enzymes in glycogenesis and glycogenolysis are glycogen synthase (GS) and glycogen phosphorylase (GPh), respectively. Both enzymes are regulated by reversible phosphorylation and by allosteric effectors. However, evidence in the literature indicates that changes in muscle GS and GPh intracellular distribution may constitute a new regulatory mechanism of glycogen metabolism. Already in the 1960s, it was proposed that glycogen was present in dynamic cellular organelles that were termed glycosomas but no such cellular entities have ever been demonstrated. The aim of this study was to characterize muscle GS and GPh intracellular distribution and to identify possible translocation processes of both enzymes. Using in situ stimulation of rabbit tibialis anterior muscle, we show GS and GPh intracellular redistribution at the beginning of glycogen resynthesis after contraction-induced glycogen depletion. We identify a new "player," a new intracellular compartment involved in skeletal muscle glycogen metabolism. They are spherical structures that were not present in basal muscle, and we present evidence that indicate that they are products of actin cytoskeleton remodeling. Furthermore, for the first time, we show a phosphorylation-dependent intracellular distribution of GS. Here, we present evidence of a new regulatory mechanism of skeletal muscle glycogen metabolism based on glycogen enzyme intracellular compartmentalization. Glycogen metabolism has been the subject of extensive research, but the mechanisms by which it is regulated are still not fully understood. It is well accepted that the rate-limiting enzymes in glycogenesis and glycogenolysis are glycogen synthase (GS) and glycogen phosphorylase (GPh), respectively. Both enzymes are regulated by reversible phosphorylation and by allosteric effectors. However, evidence in the literature indicates that changes in muscle GS and GPh intracellular distribution may constitute a new regulatory mechanism of glycogen metabolism. Already in the 1960s, it was proposed that glycogen was present in dynamic cellular organelles that were termed glycosomas but no such cellular entities have ever been demonstrated. The aim of this study was to characterize muscle GS and GPh intracellular distribution and to identify possible translocation processes of both enzymes. Using in situ stimulation of rabbit tibialis anterior muscle, we show GS and GPh intracellular redistribution at the beginning of glycogen resynthesis after contraction-induced glycogen depletion. We identify a new âplayer,â a new intracellular compartment involved in skeletal muscle glycogen metabolism. They are spherical structures that were not present in basal muscle, and we present evidence that indicate that they are products of actin cytoskeleton remodeling. Furthermore, for the first time, we show a phosphorylation-dependent intracellular distribution of GS. Here, we present evidence of a new regulatory mechanism of skeletal muscle glycogen metabolism based on glycogen enzyme intracellular compartmentalization. Glycogen metabolism has been the subject of extensive research, but the mechanisms by which it is regulated are still not fully understood. It is well accepted that the rate-limiting enzymes in glycogenesis and glycogenolysis are glycogen synthase (GS) and glycogen phosphorylase (GPh), respectively. Both enzymes are regulated by reversible phosphorylation and by allosteric effectors. However, evidence in the literature indicates that changes in muscle GS and GPh intracellular distribution may constitute a new regulatory mechanism of glycogen metabolism. Already in the 1960s, it was proposed that glycogen was present in dynamic cellular organelles that were termed glycosomas but no such cellular entities have ever been demonstrated. The aim of this study was to characterize muscle GS and GPh intracellular distribution and to identify possible translocation processes of both enzymes. Using in situ stimulation of rabbit tibialis anterior muscle, we show GS and GPh intracellular redistribution at the beginning of glycogen resynthesis after contraction-induced glycogen depletion. We identify a new "player," a new intracellular compartment involved in skeletal muscle glycogen metabolism. They are spherical structures that were not present in basal muscle, and we present evidence that indicate that they are products of actin cytoskeleton remodeling. Furthermore, for the first time, we show a phosphorylation-dependent intracellular distribution of GS. Here, we present evidence of a new regulatory mechanism of skeletal muscle glycogen metabolism based on glycogen enzyme intracellular compartmentalization.Glycogen metabolism has been the subject of extensive research, but the mechanisms by which it is regulated are still not fully understood. It is well accepted that the rate-limiting enzymes in glycogenesis and glycogenolysis are glycogen synthase (GS) and glycogen phosphorylase (GPh), respectively. Both enzymes are regulated by reversible phosphorylation and by allosteric effectors. However, evidence in the literature indicates that changes in muscle GS and GPh intracellular distribution may constitute a new regulatory mechanism of glycogen metabolism. Already in the 1960s, it was proposed that glycogen was present in dynamic cellular organelles that were termed glycosomas but no such cellular entities have ever been demonstrated. The aim of this study was to characterize muscle GS and GPh intracellular distribution and to identify possible translocation processes of both enzymes. Using in situ stimulation of rabbit tibialis anterior muscle, we show GS and GPh intracellular redistribution at the beginning of glycogen resynthesis after contraction-induced glycogen depletion. We identify a new "player," a new intracellular compartment involved in skeletal muscle glycogen metabolism. They are spherical structures that were not present in basal muscle, and we present evidence that indicate that they are products of actin cytoskeleton remodeling. Furthermore, for the first time, we show a phosphorylation-dependent intracellular distribution of GS. Here, we present evidence of a new regulatory mechanism of skeletal muscle glycogen metabolism based on glycogen enzyme intracellular compartmentalization. |
Author | Joan A. Cadefau Roser Cussà D. Grahame Hardie Bo F. Hansen Klaus Qvortrup Clara Prats Jakob N. Nielsen Jørgen F. P. Wojtaszewki Greg Stewart Thorkil Ploug |
Author_xml | – sequence: 1 givenname: Clara surname: Prats fullname: Prats, Clara – sequence: 2 givenname: Joan A. surname: Cadefau fullname: Cadefau, Joan A. – sequence: 3 givenname: Roser surname: Cussó fullname: Cussó, Roser – sequence: 4 givenname: Klaus surname: Qvortrup fullname: Qvortrup, Klaus – sequence: 5 givenname: Jakob N. surname: Nielsen fullname: Nielsen, Jakob N. – sequence: 6 givenname: Jørgen F.P. surname: Wojtaszewki fullname: Wojtaszewki, Jørgen F.P. – sequence: 7 givenname: D. Grahame surname: Hardie fullname: Hardie, D. Grahame – sequence: 8 givenname: Greg surname: Stewart fullname: Stewart, Greg – sequence: 9 givenname: Bo F. surname: Hansen fullname: Hansen, Bo F. – sequence: 10 givenname: Thorkil surname: Ploug fullname: Ploug, Thorkil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15840572$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rFTEUhoO02Nvq1qVkIe7mNp-TmaWUWoVqxVZwFzKZkzspM8k1ySj33zvtrRYE6dkcODzPuzjvMToIMQBCryhZU6LE6W1n158kYYpyRsgztKKk4RWX9PsBWhHCaNUy2Ryh45xvyTKipc_REZWNIFKxFZq-DDFvh5h2oyk-hqqHLYQeQsE3yYQ8Rnt_x9Hhi3Fn4wYCvt6FMpgMuERs8Of4E0Z8XdJsy5wA93PyYfNIf4V8x0P2-QU6dGbM8PJhn6Bv789vzj5Ul1cXH8_eXVaWt7xUVPVtC1aCq5Xpre1oqxQQQbkwnXNKEQEKnGx621lLoaZdLTrXO6KYq4XkJ-jtPneb4o8ZctGTzxbG0QSIc9a1alnT0qdBUdeibWq2gK8fwLmboNfb5CeTdvrPJxdA7AGbYs4JnLa-3L-uJONHTYm-K0wvhenHwhZt_Y_2N_l_wpu9MPjN8Msn0J2PdoBJs4ZoJjTjtJb8N4BkpkY |
CitedBy_id | crossref_primary_10_1016_j_ijcard_2018_01_034 crossref_primary_10_1113_jphysiol_2011_224972 crossref_primary_10_1113_jphysiol_2010_204487 crossref_primary_10_1007_s10974_013_9359_4 crossref_primary_10_1111_j_1574_6976_2010_00220_x crossref_primary_10_1186_1477_5956_11_11 crossref_primary_10_1007_s13355_012_0150_6 crossref_primary_10_1016_j_gene_2019_144192 crossref_primary_10_1111_febs_12059 crossref_primary_10_1111_febs_15648 crossref_primary_10_1074_jbc_M900845200 crossref_primary_10_1016_j_metabol_2009_06_016 crossref_primary_10_1113_expphysiol_2010_052860 crossref_primary_10_1074_jbc_R117_802843 crossref_primary_10_1152_ajpendo_00392_2017 crossref_primary_10_1139_W10_027 crossref_primary_10_1073_pnas_0603539103 crossref_primary_10_1016_j_ijbiomac_2009_08_006 crossref_primary_10_1042_BJ20111416 crossref_primary_10_1113_jphysiol_2006_122457 crossref_primary_10_1111_apha_13561 crossref_primary_10_1016_j_canlet_2012_11_020 crossref_primary_10_1093_jisesa_iex015 crossref_primary_10_1002_jcp_20942 crossref_primary_10_1042_BJ20151035 crossref_primary_10_1111_j_1748_1716_2010_02131_x crossref_primary_10_1042_BSR20140053 crossref_primary_10_1152_ajpregu_00874_2007 crossref_primary_10_1016_j_cbd_2019_100652 crossref_primary_10_1152_ajpendo_00652_2005 crossref_primary_10_1002_pmic_200900628 crossref_primary_10_1016_j_bbagen_2016_08_021 crossref_primary_10_1139_H09_048 crossref_primary_10_1074_jbc_M507394200 crossref_primary_10_1152_ajpcell_00252_2012 crossref_primary_10_1210_jc_2009_0897 crossref_primary_10_2337_diabetes_54_12_3474 crossref_primary_10_1007_s00421_012_2341_9 crossref_primary_10_1093_hmg_ddq010 crossref_primary_10_1002_jcb_21634 crossref_primary_10_3389_fphys_2023_1213654 crossref_primary_10_1139_apnm_2012_0184 crossref_primary_10_1016_j_ab_2023_115071 crossref_primary_10_1016_j_jbc_2024_107271 crossref_primary_10_1134_S1990519X11050038 crossref_primary_10_1016_j_abb_2006_11_004 crossref_primary_10_1111_apha_13775 crossref_primary_10_1080_13813450902778171 crossref_primary_10_1152_ajpendo_00598_2006 crossref_primary_10_1186_1471_2091_12_57 |
Cites_doi | 10.1111/j.1469-7793.2001.0757h.x 10.1007/BF00405082 10.1146/annurev.bi.49.070180.000335 10.1016/S1874-6047(08)60436-9 10.1152/ajpcell.1997.273.1.C297 10.1016/0020-711X(91)90274-Q 10.1016/S0304-4165(02)00332-X 10.1016/B978-0-12-152814-0.50008-3 10.1042/bj1800389 10.1016/S0021-9258(19)84771-3 10.1023/A:1010303732441 10.1016/S0021-9258(19)39946-6 10.1042/bj20021844 10.1016/j.bbrc.2003.09.209 10.1242/jcs.115.2.241 10.1177/10.2.175 10.1083/jcb.38.1.130 10.1046/j.1365-313X.1999.00532.x 10.1001/archneur.1969.00480130039004 10.1016/0014-5793(77)80952-6 10.1016/0012-1606(91)90263-3 10.1083/jcb.142.6.1429 10.1111/j.1432-1033.1987.tb13637.x 10.1016/S0014-5793(97)01136-8 10.1016/S0014-5793(97)01299-4 10.1007/s002490050057 10.2174/1566524024605761 10.1515/JBCPP.1998.9.2-4.255 10.1002/bies.20061 10.1016/0024-3205(76)90066-7 10.1007/BF00374471 10.1016/S0021-9258(18)83261-6 10.1080/00039896.1968.10665356 10.1111/j.1365-2818.1993.tb03405.x 10.1083/jcb.99.1.222s 10.1016/0014-5793(90)80959-M 10.1016/S1874-6047(08)60437-0 10.1016/S0021-9258(18)98653-9 10.1242/jcs.00839 10.1083/jcb.129.3.697 10.1016/S0021-9258(18)89864-7 10.1016/S0021-9258(18)47282-1 10.1007/BF00215303 10.2337/diabetes.52.6.1393 10.1016/S0074-7696(01)02003-4 10.1210/en.2004-1022 10.1002/cm.10059 10.1016/S0968-0004(01)01836-9 10.1016/S0021-9258(18)43730-1 10.1038/296811a0 10.1007/BF00688334 10.1016/S0021-9258(18)77295-5 10.1042/bj3570017 10.1096/fasebj.4.12.2168324 10.1111/j.1748-1716.1989.tb08591.x 10.1021/bi00783a021 10.1042/bj3210227 10.1016/0167-4889(91)90109-B |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 |
DOI | 10.1074/jbc.M502713200 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1083-351X |
EndPage | 23172 |
ExternalDocumentID | 15840572 10_1074_jbc_M502713200 280_24_23165 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 02 186 2WC 34G 39C 3O- 53G 55 5BI 5GY 5RE 5VS 85S AARDX AAWZA ABFLS ABOCM ABPPZ ABPTK ABUFD ABZEH ACNCT ADACO ADBBV ADCOW AEILP AENEX AFFNX AFMIJ AIZTS ALMA_UNASSIGNED_HOLDINGS C1A CJ0 CS3 DIK DL DU5 DZ E3Z EBS EJD ET F20 F5P FA8 FH7 FRP GJ GX1 H13 HH5 HYE IH2 KM KQ8 L7B LI MVM MYA N9A O0- OHT OK1 P-O P0W P2P R.V RHF RHI RNS RPM SJN TBC TN5 UHB UKR UPT UQL VH1 VQA WH7 WOQ X X7M XFK XHC Y6R YZZ ZA5 ZE2 --- -DZ -ET -~X .55 .7T .GJ 0R~ 18M 29J 4.4 41~ 6TJ 79B AAEDW AAFWJ AALRI AAXUO AAYJJ AAYWO AAYXX ABDNZ ABFSI ABRJW ACGFO ACSFO ACVFH ACYGS ADCNI ADIYS ADNWM ADVLN ADXHL AEUPX AEXQZ AFPKN AFPUW AI. AIGII AITUG AKBMS AKRWK AKYEP AMRAJ AOIJS BAWUL BTFSW CITATION E.L FDB GROUPED_DOAJ J5H NHB QZG ROL TR2 W8F WHG XJT XSW YQT YSK YWH YYP ZGI ZY4 ~02 ~KM AFOSN CGR CUY CVF ECM EIF NPM PKN Z5M 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c393t-17d99ec5ef67adccb1977e04134abff7704e7ef58dcbcc1e61b64bfdf072f6453 |
ISSN | 0021-9258 |
IngestDate | Thu Sep 04 23:24:06 EDT 2025 Fri Sep 05 13:15:23 EDT 2025 Wed Feb 19 02:29:46 EST 2025 Thu Apr 24 23:10:55 EDT 2025 Wed Oct 01 05:03:15 EDT 2025 Tue Jan 05 14:52:06 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c393t-17d99ec5ef67adccb1977e04134abff7704e7ef58dcbcc1e61b64bfdf072f6453 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | http://www.jbc.org/article/S0021925820614910/pdf |
PMID | 15840572 |
PQID | 46649862 |
PQPubID | 24069 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_67928915 proquest_miscellaneous_46649862 pubmed_primary_15840572 crossref_citationtrail_10_1074_jbc_M502713200 crossref_primary_10_1074_jbc_M502713200 highwire_biochem_280_24_23165 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-06-17 |
PublicationDateYYYYMMDD | 2005-06-17 |
PublicationDate_xml | – month: 06 year: 2005 text: 2005-06-17 day: 17 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of biological chemistry |
PublicationTitleAlternate | J Biol Chem |
PublicationYear | 2005 |
Publisher | American Society for Biochemistry and Molecular Biology |
Publisher_xml | – name: American Society for Biochemistry and Molecular Biology |
References | Ho (10.1074/jbc.M502713200_bib37) 1987; 74 Ciudad (10.1074/jbc.M502713200_bib28) 1980; 30 MacArthur (10.1074/jbc.M502713200_bib56) 2004; 26 Rothman-Denes (10.1074/jbc.M502713200_bib7) 1971; 10 Calder (10.1074/jbc.M502713200_bib20) 1991; 23 Chowrashi (10.1074/jbc.M502713200_bib57) 2002; 53 Lane (10.1074/jbc.M502713200_bib21) 1989; 18 Chacko (10.1074/jbc.M502713200_bib54) 1990; 265 Flood (10.1074/jbc.M502713200_bib55) 1997; 25 Flotow (10.1074/jbc.M502713200_bib5) 1990; 265 Ishikawa (10.1074/jbc.M502713200_bib43) 1989; 264 Cohen (10.1074/jbc.M502713200_bib48) 1986 Roach (10.1074/jbc.M502713200_bib6) 1990; 4 Burch (10.1074/jbc.M502713200_bib35) 1968; 17 Damsbo (10.1074/jbc.M502713200_bib2) 1991; 34 Fletterick (10.1074/jbc.M502713200_bib9) 1980; 49 Himes (10.1074/jbc.M502713200_bib11) 1962; 10 Weeds (10.1074/jbc.M502713200_bib40) 1982; 296 Beck-Nielsen (10.1074/jbc.M502713200_bib1) 1998; 9 Khaitlina (10.1074/jbc.M502713200_bib39) 2001; 202 Ou (10.1074/jbc.M502713200_bib47) 2004; 146 Bergamini (10.1074/jbc.M502713200_bib19) 1977; 81 Hicks (10.1074/jbc.M502713200_bib45) 1997; 273 Fernandez-Novell (10.1074/jbc.M502713200_bib50) 1997; 321 Bollen (10.1074/jbc.M502713200_bib10) 2001; 26 McHugh (10.1074/jbc.M502713200_bib38) 1991; 148 Warren (10.1074/jbc.M502713200_bib41) 1995; 129 Burgstaller (10.1074/jbc.M502713200_bib51) 2003; 117 Skurat (10.1074/jbc.M502713200_bib3) 1994; 269 Entman (10.1074/jbc.M502713200_bib12) 1976; 19 Roach (10.1074/jbc.M502713200_bib17) 2002; 2 Roach (10.1074/jbc.M502713200_bib4) 1991; 266 Friden (10.1074/jbc.M502713200_bib13) 1989; 135 Ploug (10.1074/jbc.M502713200_bib31) 1998; 142 Masters (10.1074/jbc.M502713200_bib59) 1984; 99 Rakus (10.1074/jbc.M502713200_bib58) 2003; 311 Lomako (10.1074/jbc.M502713200_bib14) 1990; 268 Giometti (10.1074/jbc.M502713200_bib53) 1984; 259 García-Rocha (10.1074/jbc.M502713200_bib46) 2001; 357 Hirata (10.1074/jbc.M502713200_bib27) 2003; 371 Rostgaard (10.1074/jbc.M502713200_bib34) 1993; 172 Cohen (10.1074/jbc.M502713200_bib18) 1978; 14 Entman (10.1074/jbc.M502713200_bib26) 1980; 255 Baque (10.1074/jbc.M502713200_bib25) 1997; 417 Pitcher (10.1074/jbc.M502713200_bib24) 1987; 169 Roach (10.1074/jbc.M502713200_bib49) 1986 Norris (10.1074/jbc.M502713200_bib36) 1969; 21 Nielsen (10.1074/jbc.M502713200_bib23) 2001; 531 Wanson (10.1074/jbc.M502713200_bib15) 1968; 38 Ishikawa (10.1074/jbc.M502713200_bib42) 1989; 264 Cohen (10.1074/jbc.M502713200_bib16) 2002; 115 Hojlund (10.1074/jbc.M502713200_bib32) 2003; 52 Ferrer (10.1074/jbc.M502713200_bib22) 1997; 415 Green (10.1074/jbc.M502713200_bib44) 1992; 420 Katz (10.1074/jbc.M502713200_bib29) 1979; 180 Villar-Palasi (10.1074/jbc.M502713200_bib8) 1991; 1095 Prats (10.1074/jbc.M502713200_bib30) 2002; 1573 Sugden (10.1074/jbc.M502713200_bib33) 1999; 19 Perry (10.1074/jbc.M502713200_bib52) 2001; 22 J Biol Chem. 2005 Oct 21;280(42):35784 |
References_xml | – volume: 531 start-page: 757 year: 2001 ident: 10.1074/jbc.M502713200_bib23 publication-title: J. Physiol. (Lond.) doi: 10.1111/j.1469-7793.2001.0757h.x – volume: 34 start-page: 239 year: 1991 ident: 10.1074/jbc.M502713200_bib2 publication-title: Diabetologia doi: 10.1007/BF00405082 – volume: 49 start-page: 31 year: 1980 ident: 10.1074/jbc.M502713200_bib9 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.49.070180.000335 – start-page: 461 year: 1986 ident: 10.1074/jbc.M502713200_bib48 doi: 10.1016/S1874-6047(08)60436-9 – volume: 273 start-page: C297 year: 1997 ident: 10.1074/jbc.M502713200_bib45 publication-title: Am. J. Physiol. doi: 10.1152/ajpcell.1997.273.1.C297 – volume: 23 start-page: 1335 year: 1991 ident: 10.1074/jbc.M502713200_bib20 publication-title: Int. J. Biochem. doi: 10.1016/0020-711X(91)90274-Q – volume: 1573 start-page: 68 year: 2002 ident: 10.1074/jbc.M502713200_bib30 publication-title: Biochim. Biophys. Acta doi: 10.1016/S0304-4165(02)00332-X – volume: 14 start-page: 117 year: 1978 ident: 10.1074/jbc.M502713200_bib18 publication-title: Curr. Top. Cell Regul. doi: 10.1016/B978-0-12-152814-0.50008-3 – volume: 180 start-page: 389 year: 1979 ident: 10.1074/jbc.M502713200_bib29 publication-title: Biochem. J. doi: 10.1042/bj1800389 – volume: 18 start-page: 961 year: 1989 ident: 10.1074/jbc.M502713200_bib21 publication-title: Biochem. Int. – volume: 264 start-page: 16764 year: 1989 ident: 10.1074/jbc.M502713200_bib43 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)84771-3 – volume: 22 start-page: 5 year: 2001 ident: 10.1074/jbc.M502713200_bib52 publication-title: J. Muscle Res. Cell Motil. doi: 10.1023/A:1010303732441 – volume: 265 start-page: 2105 year: 1990 ident: 10.1074/jbc.M502713200_bib54 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)39946-6 – volume: 371 start-page: 81 year: 2003 ident: 10.1074/jbc.M502713200_bib27 publication-title: Biochem. J. doi: 10.1042/bj20021844 – volume: 311 start-page: 294 year: 2003 ident: 10.1074/jbc.M502713200_bib58 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2003.09.209 – volume: 115 start-page: 241 year: 2002 ident: 10.1074/jbc.M502713200_bib16 publication-title: J. Cell Sci. doi: 10.1242/jcs.115.2.241 – volume: 10 start-page: 175 year: 1962 ident: 10.1074/jbc.M502713200_bib11 publication-title: J. Histochem. Cytochem. doi: 10.1177/10.2.175 – volume: 38 start-page: 130 year: 1968 ident: 10.1074/jbc.M502713200_bib15 publication-title: J. Cell Biol. doi: 10.1083/jcb.38.1.130 – volume: 19 start-page: 439 year: 1999 ident: 10.1074/jbc.M502713200_bib33 publication-title: Plant J. doi: 10.1046/j.1365-313X.1999.00532.x – volume: 21 start-page: 25 year: 1969 ident: 10.1074/jbc.M502713200_bib36 publication-title: Arch. Neurol. doi: 10.1001/archneur.1969.00480130039004 – volume: 81 start-page: 166 year: 1977 ident: 10.1074/jbc.M502713200_bib19 publication-title: FEBS Lett. doi: 10.1016/0014-5793(77)80952-6 – volume: 148 start-page: 442 year: 1991 ident: 10.1074/jbc.M502713200_bib38 publication-title: Dev. Biol. doi: 10.1016/0012-1606(91)90263-3 – volume: 142 start-page: 1429 year: 1998 ident: 10.1074/jbc.M502713200_bib31 publication-title: J. Cell Biol. doi: 10.1083/jcb.142.6.1429 – volume: 169 start-page: 497 year: 1987 ident: 10.1074/jbc.M502713200_bib24 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1987.tb13637.x – volume: 415 start-page: 249 year: 1997 ident: 10.1074/jbc.M502713200_bib22 publication-title: FEBS Lett. doi: 10.1016/S0014-5793(97)01136-8 – volume: 417 start-page: 355 year: 1997 ident: 10.1074/jbc.M502713200_bib25 publication-title: FEBS Lett. doi: 10.1016/S0014-5793(97)01299-4 – volume: 25 start-page: 431 year: 1997 ident: 10.1074/jbc.M502713200_bib55 publication-title: Eur. Biophys. J. doi: 10.1007/s002490050057 – volume: 2 start-page: 101 year: 2002 ident: 10.1074/jbc.M502713200_bib17 publication-title: Curr. Mol. Med. doi: 10.2174/1566524024605761 – volume: 9 start-page: 255 year: 1998 ident: 10.1074/jbc.M502713200_bib1 publication-title: J. Basic Clin. Physiol. Pharmacol. doi: 10.1515/JBCPP.1998.9.2-4.255 – volume: 26 start-page: 786 year: 2004 ident: 10.1074/jbc.M502713200_bib56 publication-title: BioEssays doi: 10.1002/bies.20061 – volume: 19 start-page: 1623 year: 1976 ident: 10.1074/jbc.M502713200_bib12 publication-title: Life Sci. doi: 10.1016/0024-3205(76)90066-7 – volume: 420 start-page: 359 year: 1992 ident: 10.1074/jbc.M502713200_bib44 publication-title: Pflugers Arch. Eur. J. Physiol. doi: 10.1007/BF00374471 – volume: 264 start-page: 7490 year: 1989 ident: 10.1074/jbc.M502713200_bib42 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)83261-6 – volume: 17 start-page: 984 year: 1968 ident: 10.1074/jbc.M502713200_bib35 publication-title: Arch. Environ. Health doi: 10.1080/00039896.1968.10665356 – volume: 172 start-page: 137 year: 1993 ident: 10.1074/jbc.M502713200_bib34 publication-title: J. Microsc. doi: 10.1111/j.1365-2818.1993.tb03405.x – volume: 99 start-page: S222 year: 1984 ident: 10.1074/jbc.M502713200_bib59 publication-title: J. Cell Biol. doi: 10.1083/jcb.99.1.222s – volume: 268 start-page: 8 year: 1990 ident: 10.1074/jbc.M502713200_bib14 publication-title: FEBS Lett. doi: 10.1016/0014-5793(90)80959-M – start-page: 499 year: 1986 ident: 10.1074/jbc.M502713200_bib49 doi: 10.1016/S1874-6047(08)60437-0 – volume: 266 start-page: 14139 year: 1991 ident: 10.1074/jbc.M502713200_bib4 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)98653-9 – volume: 117 start-page: 223 year: 2003 ident: 10.1074/jbc.M502713200_bib51 publication-title: J. Cell Sci. doi: 10.1242/jcs.00839 – volume: 129 start-page: 697 year: 1995 ident: 10.1074/jbc.M502713200_bib41 publication-title: J. Cell Biol. doi: 10.1083/jcb.129.3.697 – volume: 259 start-page: 14113 year: 1984 ident: 10.1074/jbc.M502713200_bib53 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)89864-7 – volume: 269 start-page: 25534 year: 1994 ident: 10.1074/jbc.M502713200_bib3 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)47282-1 – volume: 30 start-page: 33 year: 1980 ident: 10.1074/jbc.M502713200_bib28 publication-title: Mol. Cell Biochem. doi: 10.1007/BF00215303 – volume: 52 start-page: 1393 year: 2003 ident: 10.1074/jbc.M502713200_bib32 publication-title: Diabetes doi: 10.2337/diabetes.52.6.1393 – volume: 202 start-page: 35 year: 2001 ident: 10.1074/jbc.M502713200_bib39 publication-title: Int. Rev. Cytol. doi: 10.1016/S0074-7696(01)02003-4 – volume: 146 start-page: 494 year: 2004 ident: 10.1074/jbc.M502713200_bib47 publication-title: Endocrinology doi: 10.1210/en.2004-1022 – volume: 53 start-page: 125 year: 2002 ident: 10.1074/jbc.M502713200_bib57 publication-title: Cell Motil. Cytoskeleton doi: 10.1002/cm.10059 – volume: 26 start-page: 426 year: 2001 ident: 10.1074/jbc.M502713200_bib10 publication-title: Trends Biochem. Sci. doi: 10.1016/S0968-0004(01)01836-9 – volume: 255 start-page: 6245 year: 1980 ident: 10.1074/jbc.M502713200_bib26 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)43730-1 – volume: 296 start-page: 811 year: 1982 ident: 10.1074/jbc.M502713200_bib40 publication-title: Nature doi: 10.1038/296811a0 – volume: 74 start-page: 22 year: 1987 ident: 10.1074/jbc.M502713200_bib37 publication-title: Acta Neuropathol. doi: 10.1007/BF00688334 – volume: 265 start-page: 14264 year: 1990 ident: 10.1074/jbc.M502713200_bib5 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)77295-5 – volume: 357 start-page: 17 year: 2001 ident: 10.1074/jbc.M502713200_bib46 publication-title: Biochem. J. doi: 10.1042/bj3570017 – volume: 4 start-page: 2961 year: 1990 ident: 10.1074/jbc.M502713200_bib6 publication-title: FASEB J. doi: 10.1096/fasebj.4.12.2168324 – volume: 135 start-page: 381 year: 1989 ident: 10.1074/jbc.M502713200_bib13 publication-title: Acta Physiol. Scand. doi: 10.1111/j.1748-1716.1989.tb08591.x – volume: 10 start-page: 1236 year: 1971 ident: 10.1074/jbc.M502713200_bib7 publication-title: Biochemistry doi: 10.1021/bi00783a021 – volume: 321 start-page: 227 year: 1997 ident: 10.1074/jbc.M502713200_bib50 publication-title: Biochem. J. doi: 10.1042/bj3210227 – volume: 1095 start-page: 261 year: 1991 ident: 10.1074/jbc.M502713200_bib8 publication-title: Biochim. Biophys. Acta doi: 10.1016/0167-4889(91)90109-B – reference: - J Biol Chem. 2005 Oct 21;280(42):35784 |
SSID | ssj0000491 |
Score | 2.0582292 |
Snippet | Glycogen metabolism has been the subject of extensive research, but the mechanisms by which it is regulated are still not
fully understood. It is well accepted... Glycogen metabolism has been the subject of extensive research, but the mechanisms by which it is regulated are still not fully understood. It is well accepted... |
SourceID | proquest pubmed crossref highwire |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 23165 |
SubjectTerms | actin Actins - metabolism Adenosine Monophosphate - chemistry Allosteric Site Amino Acid Sequence Animals Centrifugation Cytoplasm - metabolism Cytoskeleton - metabolism exhibitions Female glycogen Glycogen - chemistry Glycogen - metabolism Glycogen Phosphorylase - metabolism Glycogen Synthase - chemistry Glycogen Synthase - metabolism Image Processing, Computer-Assisted Immunohistochemistry literature metabolism Microscopy, Electron, Transmission Microscopy, Fluorescence Molecular Sequence Data Muscle, Skeletal - metabolism Muscle, Skeletal - ultrastructure muscles Muscles - enzymology Muscles - metabolism Peptides - chemistry phosphorylase Phosphorylation Protein Conformation Protein Structure, Tertiary Protein Transport Rabbits Sarcoplasmic Reticulum - ultrastructure skeletal muscle Subcellular Fractions - metabolism Tibia - metabolism Time Factors wells |
Title | Phosphorylation-dependent Translocation of Glycogen Synthase to a Novel Structure during Glycogen Resynthesis |
URI | http://www.jbc.org/content/280/24/23165.abstract https://www.ncbi.nlm.nih.gov/pubmed/15840572 https://www.proquest.com/docview/46649862 https://www.proquest.com/docview/67928915 |
Volume | 280 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1083-351X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000491 issn: 0021-9258 databaseCode: HH5 dateStart: 19050101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1083-351X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000491 issn: 0021-9258 databaseCode: KQ8 dateStart: 19051001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1083-351X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000491 issn: 0021-9258 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1083-351X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000491 issn: 0021-9258 databaseCode: AKRWK dateStart: 19051001 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1083-351X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000491 issn: 0021-9258 databaseCode: RPM dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKOMAFjQ1YgYEPCA5TSuM4dn0sEzAxbWKwSbtFjmOrSF0yLcmk7l_hn-U5jpN2rNLgErWp46T-Ptvv5f1C6F3KVKTjjAZZxNOATsYappRggQG2pJLyLGvqpxwds4Mz-u08Ph8Mfi95LdVVOlI3d8aV_A-qcA5wtVGy_4Bs1ymcgM-ALxwBYTjeC-Pvs6K8nBVXC-fQFviKtpXLWW73KS8Qfp0vVAEd7f1c5NUMti4rdMq94-JaN6bp2pkS2qjFrvUPXdr2uvxVLouxfUBZI8q6TE4u14gvINetuUAxl8YAdOjeLUhm2sjavb-HJWY66n6py9Ja7z9FzvG77N2HT65BV7iqm4p6h3N565VFbF2rXIRmF0IQBoK4nO1-GSauolPLN0KXV9UodAUl2i0avrt6P3-t_yAQ2fU_VaOjGBRuGx8-7nc6b92_tQF2bomNQZ7TBK5P-usfoIeEM2bLYxye9KnoQbVy5Rjb_-IzgnL6cfX-qxKPz0K9XqNpJJvTTfSkxRFPHb-eooHOt9D2NJdVcbHA73HjJNxYX7bQo32P7za6WEs_vEI_XBjsCYU9_XBVYIkb-uGOftjRr2-9RL9n6OzL59P9g6Ct3hGoSEQVAJ4JoVWsDeMyUyoNQdXQYxCaqEyN4XxMNdcmnmQqVSrULEwZTU1mxpwYRuPoOdrIi1zvICxErIwQlCgqqM1xKYliLFMw1hIkLz5EgR_hRLWp7W2FlXlyN6JD9KFrf-mSuqxtuesBS2Au2TmUAFETQpOGlEP01qOYwOhbY5vMdVGXiS3bICaMrG_BuCATEUIfLxz8_bOAVgB6FHl57-d8hR73E-012gDc9C5Iy1X6pmHtH25Iwho |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphorylation-dependent+Translocation+of+Glycogen+Synthase+to+a+Novel+Structure+during+Glycogen+Resynthesis&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Prats%2C+Clara&rft.au=Cadefau%2C+Joan+A.&rft.au=Cuss%C3%B3%2C+Roser&rft.au=Qvortrup%2C+Klaus&rft.date=2005-06-17&rft.issn=0021-9258&rft.volume=280&rft.issue=24&rft.spage=23165&rft.epage=23172&rft_id=info:doi/10.1074%2Fjbc.M502713200&rft.externalDBID=n%2Fa&rft.externalDocID=10_1074_jbc_M502713200 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |