Challenges and opportunities beyond structured data in analysis of electronic health records
Electronic health records (EHR) contain a lot of valuable information about individual patients and the whole population. Besides structured data, unstructured data in EHRs can provide extra, valuable information but the analytics processes are complex, time‐consuming, and often require excessive ma...
Saved in:
| Published in | Wiley interdisciplinary reviews. Computational statistics Vol. 13; no. 6 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken, USA
John Wiley & Sons, Inc
01.11.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1939-5108 1939-0068 1939-0068 |
| DOI | 10.1002/wics.1549 |
Cover
| Abstract | Electronic health records (EHR) contain a lot of valuable information about individual patients and the whole population. Besides structured data, unstructured data in EHRs can provide extra, valuable information but the analytics processes are complex, time‐consuming, and often require excessive manual effort. Among unstructured data, clinical text and images are the two most popular and important sources of information. Advanced statistical algorithms in natural language processing, machine learning, deep learning, and radiomics have increasingly been used for analyzing clinical text and images. Although there exist many challenges that have not been fully addressed, which can hinder the use of unstructured data, there are clear opportunities for well‐designed diagnosis and decision support tools that efficiently incorporate both structured and unstructured data for extracting useful information and provide better outcomes. However, access to clinical data is still very restricted due to data sensitivity and ethical issues. Data quality is also an important challenge in which methods for improving data completeness, conformity and plausibility are needed. Further, generalizing and explaining the result of machine learning models are important problems for healthcare, and these are open challenges. A possible solution to improve data quality and accessibility of unstructured data is developing machine learning methods that can generate clinically relevant synthetic data, and accelerating further research on privacy preserving techniques such as deidentification and pseudonymization of clinical text.
This article is categorized under:
Applications of Computational Statistics > Health and Medical Data/Informatics |
|---|---|
| AbstractList | Electronic health records (EHR) contain a lot of valuable information about individual patients and the whole population. Besides structured data, unstructured data in EHRs can provide extra, valuable information but the analytics processes are complex, time‐consuming, and often require excessive manual effort. Among unstructured data, clinical text and images are the two most popular and important sources of information. Advanced statistical algorithms in natural language processing, machine learning, deep learning, and radiomics have increasingly been used for analyzing clinical text and images. Although there exist many challenges that have not been fully addressed, which can hinder the use of unstructured data, there are clear opportunities for well‐designed diagnosis and decision support tools that efficiently incorporate both structured and unstructured data for extracting useful information and provide better outcomes. However, access to clinical data is still very restricted due to data sensitivity and ethical issues. Data quality is also an important challenge in which methods for improving data completeness, conformity and plausibility are needed. Further, generalizing and explaining the result of machine learning models are important problems for healthcare, and these are open challenges. A possible solution to improve data quality and accessibility of unstructured data is developing machine learning methods that can generate clinically relevant synthetic data, and accelerating further research on privacy preserving techniques such as deidentification and pseudonymization of clinical text.
This article is categorized under:
Applications of Computational Statistics > Health and Medical Data/Informatics |
| Author | Ngo, Phuong Chomutare, Taridzo Salvi, Elisa Dalianis, Hercules Budrionis, Andrius Tayefi, Maryam Godtliebsen, Fred |
| Author_xml | – sequence: 1 givenname: Maryam surname: Tayefi fullname: Tayefi, Maryam email: maryam.tayefi@ehealthresearch.no organization: Norwegian Centre for E‐health Research – sequence: 2 givenname: Phuong surname: Ngo fullname: Ngo, Phuong organization: Norwegian Centre for E‐health Research – sequence: 3 givenname: Taridzo surname: Chomutare fullname: Chomutare, Taridzo organization: Norwegian Centre for E‐health Research – sequence: 4 givenname: Hercules surname: Dalianis fullname: Dalianis, Hercules organization: Stockholm University – sequence: 5 givenname: Elisa surname: Salvi fullname: Salvi, Elisa organization: Norwegian Centre for E‐health Research – sequence: 6 givenname: Andrius surname: Budrionis fullname: Budrionis, Andrius organization: Norwegian Centre for E‐health Research – sequence: 7 givenname: Fred orcidid: 0000-0001-7896-8634 surname: Godtliebsen fullname: Godtliebsen, Fred organization: UiT The Arctic University of Norway |
| BookMark | eNp1kE9LAzEQxYNUsK0e_AY5C22zyW67Ocrin0LBg4oXYZkkUxtZkyXJUvbbu2t7lTnM8PjN8ObNyMR5h4TcZmyZMcZXR6vjMityeUGmmRRywdi6nJznImPlFZnF-D2om6Gm5LM6QNOg-8JIwRnq29aH1Dmb7KAo7P0gxhQ6nbqAhhpIQK0bWGj6aCP1e4oN6hS8s5oeEJp0oAG1DyZek8s9NBFvzn1O3h8f3qrnxe7laVvd7xZajLZACIPKKG5gg6oUOZQ8V6XZFAVCDlqVrOQahESpCo6S60IirOUeOM-LHMSc3J3udq6F_jg8VLfB_kDo64zVYy71mEs95jLAqxN8tA32_4P1x7Z6_dv4BTEaaiY |
| CitedBy_id | crossref_primary_10_1016_j_jpainsymman_2025_01_019 crossref_primary_10_1186_s42492_023_00143_6 crossref_primary_10_1016_j_compbiomed_2024_109233 crossref_primary_10_3389_frabi_2024_1380380 crossref_primary_10_1002_widm_1490 crossref_primary_10_2196_63902 crossref_primary_10_1371_journal_pdig_0000218 crossref_primary_10_2196_54580 crossref_primary_10_1016_j_jbi_2023_104400 crossref_primary_10_1038_s41390_022_02320_4 crossref_primary_10_14302_issn_2641_5526_jmid_24_4893 crossref_primary_10_2196_39003 crossref_primary_10_1016_j_artmed_2023_102525 crossref_primary_10_1016_j_ceh_2023_08_003 crossref_primary_10_1177_02666669241264754 crossref_primary_10_1016_j_artmed_2024_102988 crossref_primary_10_1053_j_akdh_2022_11_002 crossref_primary_10_3390_info13020087 crossref_primary_10_1016_j_amjcard_2023_06_104 crossref_primary_10_3389_fradi_2023_1224682 crossref_primary_10_1016_j_imu_2023_101373 crossref_primary_10_1016_j_imu_2024_101550 crossref_primary_10_1371_journal_pdig_0000347 crossref_primary_10_1109_ACCESS_2024_3472654 crossref_primary_10_2196_40755 crossref_primary_10_1145_3555605 crossref_primary_10_1093_jamia_ocad202 crossref_primary_10_1016_j_engappai_2023_106189 crossref_primary_10_1016_j_jbi_2023_104497 crossref_primary_10_1093_jamiaopen_ooac080 crossref_primary_10_12677_acm_2025_153769 crossref_primary_10_1038_s41598_024_75331_2 crossref_primary_10_1080_14737167_2024_2322664 crossref_primary_10_1007_s40264_024_01505_6 crossref_primary_10_1016_j_drudis_2023_103715 crossref_primary_10_1186_s13017_024_00563_6 crossref_primary_10_3390_diagnostics13061038 crossref_primary_10_2196_60164 crossref_primary_10_1016_j_ebiom_2024_105337 crossref_primary_10_3390_cancers15061853 crossref_primary_10_32604_cmc_2022_027345 crossref_primary_10_1016_j_artmed_2023_102701 crossref_primary_10_2106_JBJS_22_00567 crossref_primary_10_1007_s00521_025_11055_2 crossref_primary_10_3390_app13106209 crossref_primary_10_3390_jpm12091359 crossref_primary_10_1007_s00228_022_03432_w crossref_primary_10_3390_s22030756 crossref_primary_10_1097_CIN_0000000000001146 crossref_primary_10_1200_CCI_23_00197 crossref_primary_10_1016_j_xcrm_2023_101260 crossref_primary_10_4236_ce_2023_1413169 crossref_primary_10_1007_s12325_022_02397_7 crossref_primary_10_1093_eurjcn_zvad125 crossref_primary_10_1111_cts_13640 crossref_primary_10_1016_j_patter_2022_100636 crossref_primary_10_1007_s10029_025_03292_0 crossref_primary_10_1007_s42979_023_01687_3 crossref_primary_10_2147_CEOR_S395255 crossref_primary_10_3389_fmed_2024_1322821 crossref_primary_10_1038_s44259_025_00085_4 crossref_primary_10_1136_bmjopen_2024_085806 crossref_primary_10_1177_14604582221099828 crossref_primary_10_1136_bmj_2022_071950 crossref_primary_10_1093_jamia_ocab236 crossref_primary_10_1016_j_canep_2024_102715 crossref_primary_10_1177_14604582241267792 crossref_primary_10_1016_j_cie_2024_110405 crossref_primary_10_1136_bmjsrh_2023_202038 crossref_primary_10_3389_fneur_2023_1165267 crossref_primary_10_1038_s41398_024_02911_1 crossref_primary_10_1109_OJCOMS_2024_3456549 crossref_primary_10_1007_s13755_024_00276_9 crossref_primary_10_1097_FTD_0000000000001078 crossref_primary_10_53730_ijhs_v8nS1_15327 crossref_primary_10_1109_JBHI_2023_3324191 crossref_primary_10_1016_j_ijmedinf_2023_105021 crossref_primary_10_2196_59680 crossref_primary_10_1055_a_2282_4340 crossref_primary_10_1109_ACCESS_2023_3245523 crossref_primary_10_1016_j_jid_2024_08_025 crossref_primary_10_1007_s10278_022_00692_x crossref_primary_10_1108_DTA_11_2023_0804 crossref_primary_10_3390_fi16090308 crossref_primary_10_2196_57926 crossref_primary_10_1016_j_imu_2024_101447 crossref_primary_10_1200_CCI_22_00006 crossref_primary_10_2196_48763 crossref_primary_10_1055_a_2121_8380 crossref_primary_10_1145_3490234 crossref_primary_10_3389_fmed_2024_1301660 crossref_primary_10_3168_jdsc_2023_0398 crossref_primary_10_1007_s41870_022_00970_5 crossref_primary_10_1109_ACCESS_2024_3457850 crossref_primary_10_2196_45948 crossref_primary_10_1016_j_ejro_2024_100582 crossref_primary_10_3390_systems13010003 crossref_primary_10_1016_j_jbi_2024_104761 crossref_primary_10_1016_j_jbi_2023_104461 crossref_primary_10_2196_50733 crossref_primary_10_4236_blr_2023_144116 crossref_primary_10_1071_PY24132 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors. published by Wiley Periodicals LLC. |
| Copyright_xml | – notice: 2021 The Authors. published by Wiley Periodicals LLC. |
| DBID | 24P ADTOC UNPAY |
| DOI | 10.1002/wics.1549 |
| DatabaseName | Wiley Online Library Open Access Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1939-0068 |
| EndPage | n/a |
| ExternalDocumentID | 10.1002/wics.1549 WICS1549 |
| Genre | reviewArticle |
| GrantInformation_xml | – fundername: Helse Nord RHF funderid: HNF1395‐18 – fundername: Tromsø Forskningsstiftelse (Tromsø Research Foundation) funderid: A33027 |
| GroupedDBID | 05W 0R~ 1OC 1VH 24P 33P 4.4 53G 5DZ 8-1 A00 AAESR AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG AUFTA AVWKF AZBYB AZFZN AZVAB BDRZF BHBCM BMNLL BRXPI DCZOG DRFUL DRSTM EBS EJD F5P FEDTE G-S GODZA HGLYW HVGLF HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY. MY~ O66 O9- P2W RNS ROL SUPJJ WBKPD WIH WIK WOHZO WXSBR WYISQ WYJ XBAML XV2 ZZTAW ADTOC AEYWJ AGQPQ AGYGG LH4 UNPAY |
| ID | FETCH-LOGICAL-c3939-a33debdb2da7eb834a824b8d755ea4acb8082ca39e9b52e92c59ea69fa22454a3 |
| IEDL.DBID | UNPAY |
| ISSN | 1939-5108 1939-0068 |
| IngestDate | Sun Oct 26 04:11:02 EDT 2025 Wed Jan 22 16:27:46 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3939-a33debdb2da7eb834a824b8d755ea4acb8082ca39e9b52e92c59ea69fa22454a3 |
| Notes | Funding information David W. Scott, Co‐Editor‐in‐Chief Edited by Helse Nord RHF, Grant/Award Number: HNF1395‐18; Tromsø Forskningsstiftelse (Tromsø Research Foundation), Grant/Award Number: A33027 |
| ORCID | 0000-0001-7896-8634 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/wics.1549 |
| PageCount | 19 |
| ParticipantIDs | unpaywall_primary_10_1002_wics_1549 wiley_primary_10_1002_wics_1549_WICS1549 |
| PublicationCentury | 2000 |
| PublicationDate | November/December 2021 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: November/December 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA |
| PublicationTitle | Wiley interdisciplinary reviews. Computational statistics |
| PublicationYear | 2021 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2017; 5 2017; 42 2019; 90 2017; 2 2019; 94 2015; 72 2019; 12 2015; 33 2019; 14 2019; 19 2016; 74 2018; 83 2016; 225 1979 2019; 285 2020; 18 2018; 131 2020; 8 2018; 6 2018; 9 2018; 8 2015; 47 2020; 3 2018; 2 2015; 84 2019; 22 2015; 210 2019; 26 2020; 172 2019; 25 2019; 28 2019; 29 2016; 40 2020; 135 2019; 1176 2018; 31 2018; 38 2015; 12 2019; 7 2019; 70 2019; 3 2019; 6 2015; 126 2017; 25 2019; 2 2017; 22 2013; 84 2009 2020; 36 2005 2020; 145 2003 2020; 102 2014; 41 2016; 18 2019; 262 2014; 83 2016; 57 2014; 43 2018; 25 2019; 264 2016; 4 2018; 18 2016; 7 2018; 2018 2017; 59 2018; 116 2017; 14 2020 2019 2018; 91 2016; 20 2018 2017 2016 2017; 19 2015 2014 2016; 25 2016; 24 2016; 23 2018; 13 |
| References_xml | – start-page: 1291 year: 2019 end-page: 1300 – volume: 25 start-page: 1419 year: 2018 end-page: 1428 article-title: Opportunities and challenges in developing deep learning models using electronic health records data: A systematic review publication-title: Journal of the American Medical Informatics Association – volume: 116 start-page: 24 year: 2018 end-page: 32 article-title: A machine learning based approach to identify protected health information in Chinese clinical text publication-title: International Journal of Medical Informatics – year: 2005 – volume: 26 start-page: 61 year: 2019 end-page: 65 article-title: Automated and flexible identification of complex disease: Building a model for systemic lupus erythematosus using noisy labeling publication-title: Journal of the American Medical Informatics Association – volume: 18 start-page: 1 issue: 1 year: 2018 end-page: 44 article-title: A machine learning model to predict the risk of 30‐day readmissions in patients with heart failure: a retrospective analysis of electronic medical records data publication-title: BMC Medical Informatics and Decision Making – volume: 57 start-page: 345 year: 2016 end-page: 420 article-title: A primer on neural network models for natural language processing publication-title: Journal of Artificial Intelligence Research – volume: 6 start-page: 21 year: 2018 article-title: What can we learn about fall risk Factors from EHR nursing notes? A text mining study publication-title: eGEMs (Washington, DC) – start-page: 1937 year: 2015 end-page: 1946 – volume: 8 start-page: 7193 year: 2018 article-title: A cluster‐then‐label semi‐supervised learning approach for pathology image classification publication-title: Scientific Reports – volume: 22 start-page: 8 year: 2019 end-page: 9 article-title: Artificial intelligence in healthcare: Past, present and future publication-title: Anatolian Journal of Cardiology – volume: 14 start-page: 3426 year: 2019 end-page: 3444 article-title: High‐throughput phenotyping with electronic medical record data using a common semi‐supervised approach (PheCAP) publication-title: Nature Protocols – volume: 26 start-page: 1297 year: 2019 end-page: 1304 article-title: Enhancing clinical concept extraction with contextual embeddings publication-title: Journal of the American Medical Informatics Association – volume: 23 start-page: e11 year: 2016 end-page: e19 article-title: Data integration of structured and unstructured sources for assigning clinical codes to patient stays publication-title: Journal of the American Medical Informatics Association – start-page: 236 year: 2017 end-page: 243 – volume: 131 start-page: 129 year: 2018 end-page: 133 article-title: Artificial intelligence in medical practice: The question to the answer? publication-title: The American Journal of Medicine – volume: 83 start-page: 605 issue: 9 year: 2014 end-page: 623 article-title: Text mining of cancer‐related information: Review of current status and future directions publication-title: International Journal of Medical Informatics – volume: 19 start-page: 128 year: 2019 article-title: Detection of probable dementia cases in undiagnosed patients using structured and unstructured electronic health records publication-title: BMC Medical Informatics and Decision Making – volume: 9 start-page: 12 year: 2018 article-title: Clinical natural language processing in languages other than English: Opportunities and challenges publication-title: Journal of Biomedical Semantics – volume: 29 start-page: 102 year: 2019 end-page: 127 article-title: An overview of deep learning in medical imaging focusing on MRI publication-title: Zeitschrift für Medizinische Physik – volume: 36 start-page: 1234 year: 2020 end-page: 1240 article-title: BioBERT: A pre‐trained biomedical language representation model for biomedical text mining publication-title: Bioinformatics – volume: 7 start-page: 1069 year: 2016 end-page: 1087 article-title: Mind the gap. A systematic review to identify usability and safety challenges and practices during electronic health record implementation publication-title: Appl Clin Inform – volume: 20 start-page: 1404 year: 2016 end-page: 1415 article-title: Support vector feature selection for early detection of anastomosis leakage from bag‐of‐words in electronic health records publication-title: IEEE Journal of Biomedical and Health Informatics – year: 2019 – volume: 135 year: 2020 article-title: Mining clinical phrases from nursing notes to discover risk factors of patient deterioration publication-title: International Journal of Medical Informatics – volume: 2018 start-page: 1 year: 2018 end-page: 9 article-title: Data processing and text mining technologies on electronic medical records: A review publication-title: Journal of Healthcare Engineering – volume: 18 start-page: 250 year: 2020 end-page: 258 article-title: Artificial intelligence and primary care research: A scoping review publication-title: Annals of Family Medicine – start-page: 1080 year: 2017 end-page: 1089 – volume: 172 start-page: S137 issue: 11_Supplement year: 2020 end-page: S144 article-title: Reporting and implementing interventions involving machine learning and artificial intelligence publication-title: Annals of Internal Medicine – start-page: 147 year: 2019 end-page: 171 – volume: 19 year: 2017 article-title: The effectiveness of information technology‐supported shared care for patients with chronic disease: A systematic review publication-title: Journal of Medical Internet Research – volume: 74 start-page: 1 issue: 11 year: 2016 end-page: 26 article-title: synthpop: Bespoke Creation of Synthetic Data in R publication-title: Journal of Statistical Software – volume: 6 start-page: e24 issue: 2 year: 2018 article-title: Reasons for physicians not adopting clinical decision support systems: Critical analysis publication-title: JMIR Medical Informatics – volume: 38 start-page: 84 year: 2018 end-page: 92 article-title: Visual analytics for explainable deep learning publication-title: IEEE Computer Graphics and Applications – volume: 19 start-page: 1 issue: S5 year: 2019 end-page: 9 article-title: A study of deep learning methods for de‐identification of clinical notes in cross‐institute settings publication-title: BMC Medical Informatics and Decision Making – year: 2016 – volume: 83 start-page: 87 year: 2018 end-page: 96 article-title: Patient similarity for precision medicine: A systematic review publication-title: Journal of Biomedical Informatics – volume: 84 start-page: 702 year: 2015 end-page: 714 article-title: Archetype‐based data warehouse environment to enable the reuse of electronic health record data publication-title: International Journal of Medical Informatics – volume: 94 year: 2019 article-title: Using HL7 FHIR to achieve interoperability in patient health record publication-title: Journal of Biomedical Informatics – volume: 2 start-page: 94 issue: 1 year: 2019 article-title: Medical device surveillance with electronic health records publication-title: npj Digital Medicine – volume: 5 year: 2017 article-title: Patient similarity in prediction models based on health data: A scoping review publication-title: JMIR Medical Informatics – volume: 40 start-page: 252 issue: 12 year: 2016 article-title: Barriers to electronic health record adoption: A systematic literature review publication-title: Journal of Medical Systems – volume: 264 start-page: 413 year: 2019 end-page: 417 article-title: Identifying suicidal adolescents from mental health records using natural language processing publication-title: Studies in Health Technology and Informatics – volume: 25 start-page: 230 year: 2018 end-page: 238 article-title: Synthea: An approach, method, and software mechanism for generating synthetic patients and the synthetic electronic health care record publication-title: Journal of the American Medical Informatics Association – volume: 262 start-page: 55 year: 2019 end-page: 58 article-title: Challenges of health analytics utilization: A review of literature publication-title: Studies in Health Technology and Informatics – volume: 19 start-page: 44 year: 2019 article-title: The validity of synthetic clinical data: A validation study of a leading synthetic data generator (Synthea) using clinical quality measures publication-title: BMC Medical Informatics and Decision Making – volume: 12 year: 2019 article-title: Predicting future cardiovascular events in patients with peripheral artery disease using electronic health record data publication-title: Circulation. Cardiovascular Quality and Outcomes – volume: 28 start-page: 16 year: 2019 end-page: 26 article-title: AI in health: State of the art, challenges, and future directions publication-title: Yearbook of Medical Informatics – volume: 4 start-page: 1244 year: 2016 article-title: A harmonized data quality assessment terminology and framework for the secondary use of electronic health record data publication-title: eGEMs (Washington, DC) – start-page: 248 year: 2019 end-page: 257 – volume: 90 year: 2019 article-title: Mining fall‐related information in clinical notes: Comparison of rule‐based and novel word embedding‐based machine learning approaches publication-title: Journal of Biomedical Informatics – year: 2009 – volume: 285 start-page: 272 issue: 3 year: 2019 end-page: 288 article-title: Evidence supporting the best clinical management of patients with multimorbidity and polypharmacy: a systematic guideline review and expert consensus publication-title: Journal of Internal Medicine – volume: 19 start-page: 142 issue: 1 year: 2019 article-title: A clustering approach for detecting implausible observation values in electronic health records data publication-title: BMC Medical Informatics and Decision Making – volume: 25 start-page: S62 issue: S 01 year: 2016 end-page: S75 article-title: Clinical Information Systems – From Yesterday to Tomorrow publication-title: Yearbook of Medical Informatics – volume: 102 start-page: 534 year: 2020 end-page: 548 article-title: A novel data‐driven robust framework based on machine learning and knowledge graph for disease classification publication-title: Future Generation Computer Systems – volume: 1176 year: 2019 article-title: Overview of image denoising based on deep learning publication-title: Journal of Physics: Conference Series – volume: 12 start-page: 235 year: 2019 end-page: 248 article-title: Overview of image‐to‐image translation by use of deep neural networks: Denoising, super‐resolution, modality conversion, and reconstruction in medical imaging publication-title: Radiological Physics and Technology – volume: 2 start-page: 719 issue: 10 year: 2018 end-page: 731 article-title: Artificial intelligence in healthcare publication-title: Nature Biomedical Engineering – start-page: 153 year: 2018 end-page: 169 – volume: 70 start-page: 346 year: 2019 end-page: 349 article-title: Machine learning, natural language processing, and the electronic health record: Innovations in mental health services research publication-title: Psychiatric Services – year: 1979 – year: 2018 – volume: 7 start-page: 6 year: 2019 article-title: Assessing and minimizing re‐identification risk in research data derived from health care records publication-title: eGEMs (Washington, DC) – volume: 126 start-page: 167 year: 2015 end-page: 183 article-title: Chronic pain: Where the body meets the brain publication-title: Transactions of the American Clinical and Climatological Association – volume: 210 start-page: 766 year: 2015 end-page: 770 article-title: Privacy‐preserving statistical query and processing on distributed OpenEHR data publication-title: Studies in Health Technology and Informatics – volume: 41 start-page: 5158 issue: 11 year: 2014 end-page: 5166 article-title: An overview of ontologies and data resources in medical domains publication-title: Expert Systems with Applications – volume: 72 start-page: 306 year: 2015 end-page: 313 article-title: Data Mining in Healthcare—A review publication-title: Procedia Computer Science – volume: 18 start-page: 22 issue: 2 year: 2016 article-title: Identification and management of chronic pain in primary care: A review publication-title: Current Psychiatry Reports – volume: 7 year: 2019 article-title: Natural language processing of clinical notes on chronic diseases: Systematic review publication-title: JMIR Medical Informatics – volume: 14 start-page: 749 issue: 12 year: 2017 end-page: 762 article-title: Radiomics: The bridge between medical imaging and personalized medicine publication-title: Nature Reviews Clinical Oncology – volume: 59 start-page: 487 issue: 5 year: 2017 end-page: 491 article-title: The role of technology in healthy living medicine publication-title: Progress in Cardiovascular Diseases – volume: 31 start-page: 841 issue: 2 year: 2018 end-page: 887 article-title: Counterfactual explanations without opening the black box: Automated decisions and the GDPR publication-title: Harvard Journal of Law and Technology – start-page: 641 year: 2017 end-page: 649 – year: 2015 – volume: 22 start-page: 207 year: 2017 end-page: 218 article-title: Missing data imputation in the electronic health record using deeply learned autoencoders publication-title: Pacific Symposium on Biocomputing – volume: 8 start-page: 7426 issue: 1 year: 2018 article-title: Identifying suicide ideation and suicidal attempts in a psychiatric clinical research database using natural language processing publication-title: Scientific Reports – volume: 33 start-page: 555 year: 2015 end-page: 570 article-title: A critical review of the theoretical frameworks and the conceptual factors in the adoption of clinical decision support systems publication-title: Computers, Informatics, Nursing – volume: 225 start-page: 856 year: 2016 end-page: 857 article-title: Mining clinicians' electronic documentation to identify heart failure patients with ineffective self‐management: A pilot text‐mining study publication-title: Studies in Health Technology and Informatics – volume: 4 start-page: 2751 year: 2016 end-page: 2763 article-title: Big privacy: Challenges and opportunities of privacy study in the age of big data publication-title: IEEE Access – volume: 42 start-page: 60 year: 2017 end-page: 88 article-title: A survey on deep learning in medical image analysis publication-title: Medical Image Analysis – volume: 2 start-page: 8 issue: 1 year: 2017 article-title: An Overview and Evaluation of Recent Machine Learning Imputation Methods Using Cardiac Imaging Data publication-title: Data – volume: 5 start-page: 8 issue: 1 year: 2017 end-page: 8 article-title: A Comparison of Data Quality Assessment Checks in Six Data Sharing Networks publication-title: eGEMs (Generating Evidence & Methods to improve patient outcomes) – year: 2003 – volume: 29 start-page: 354 year: 2019 end-page: 361 article-title: The evolving use of electronic health records (EHR) for research publication-title: Seminars in Radiation Oncology – volume: 25 start-page: 585 issue: 5 year: 2017 end-page: 592 article-title: Interface information, interaction: A narrative review of design and functional requirements for clinical decision support publication-title: Journal of the American Medical Informatics Association – volume: 264 start-page: 388 year: 2019 end-page: 392 article-title: An exploratory study on pseudo‐data generation in prescription and adverse drug reaction extraction publication-title: Studies in Health Technology and Informatics – volume: 12 issue: 112 year: 2015 article-title: Methods for biological data integration: Perspectives and challenges publication-title: Journal of The Royal Society Interface – volume: 25 start-page: 1 year: 2019 end-page: 2 article-title: Managing unstructured big data in healthcare system publication-title: Healthcare Informatics Research – volume: 43 start-page: 1336 year: 2014 end-page: 1339 article-title: What is the difference between missing completely at random and missing at random? publication-title: International Journal of Epidemiology – start-page: 40 year: 2014 end-page: 49 – volume: 47 start-page: 56 issue: 4 year: 2015 article-title: Text and data mining techniques in adverse drug reaction detection publication-title: ACM Computing Surveys (CSUR) – volume: 33 start-page: 445 issue: 5 year: 2015 end-page: 455 article-title: A review and classification of approaches for dealing with uncertainty in multi‐criteria decision analysis for healthcare decisions publication-title: PharmacoEconomics – volume: 24 start-page: 24 year: 2016 end-page: 42 article-title: Detecting hospital‐acquired infections: A document classification approach using support vector machines and gradient tree boosting publication-title: Health Informatics Journal – volume: 24 start-page: 364 issue: 5 year: 2016 end-page: 369 article-title: Applying naive Bayesian networks to disease prediction: A systematic review publication-title: Acta Informatica Medica – volume: 3 start-page: 69 issue: 1 year: 2020 article-title: Generation and evaluation of artificial mental health records for natural language processing publication-title: npj Digital Medicine – volume: 8 issue: 2 year: 2020 article-title: Analyzing medical research results based on synthetic data and their relation to real data results: Systematic comparison from five observational studies publication-title: JMIR Medical Informatics – volume: 18 start-page: 76 year: 2018 article-title: SNOMED CT standard ontology based on the ontology for general medical science publication-title: BMC Medical Informatics and Decision Making – volume: 145 start-page: 463 year: 2020 end-page: 469 article-title: Artificial intelligence approaches using natural language processing to advance EHR‐based clinical research publication-title: The Journal of Allergy and Clinical Immunology – volume: 91 issue: 1091 year: 2018 article-title: A review on radiomics and the future of theranostics for patient selection in precision medicine publication-title: The British Journal of Radiology – year: 2020 – volume: 3 start-page: 173 year: 2019 end-page: 182 article-title: An explainable deep‐learning algorithm for the detection of acute intracranial haemorrhage from small datasets publication-title: Nature Biomedical Engineering – volume: 8 issue: 1 year: 2018 article-title: Longitudinal patterns in clinical and imaging measurements predict residual survival in glioblastoma patients publication-title: Scientific Reports – year: 2017 – volume: 6 start-page: 66 year: 2019 article-title: The revival of the notes field: Leveraging the unstructured content in electronic health records publication-title: Frontiers of Medicine (Lausanne) – volume: 84 start-page: 106 year: 2013 end-page: 119 article-title: Advances in electronic surveillance for healthcare‐associated infections in the 21st century: A systematic review publication-title: The Journal of Hospital Infection – volume: 13 issue: 10 year: 2018 article-title: Deep learning in chest radiography: Detection of findings and presence of change publication-title: PLoS One – volume: 25 start-page: S103 issue: S 01 year: 2016 end-page: S116 article-title: Clinical decision support: A 25 year retrospective and a 25 year vision publication-title: Yearbook of Medical Informatics |
| SSID | ssj0067676 |
| Score | 2.60733 |
| SecondaryResourceType | review_article |
| Snippet | Electronic health records (EHR) contain a lot of valuable information about individual patients and the whole population. Besides structured data, unstructured... |
| SourceID | unpaywall wiley |
| SourceType | Open Access Repository Publisher |
| SubjectTerms | electronic health records machine learning statistical methods unstructured data |
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LSwMxEICHWg_ag_jE-iKgBy9Lt0l2N8GTFEsVKoIWexCWSTYLhbItrqX470023RYPgrc9zB4yyWQmk8w3ADeh0EZI1Q0QMQl4RjEQDENHwswjlsc6D13t8PA5Hoz40zgaN-CuroXxfIh1ws1ZRrVfOwNHVXY20NDlRJcuLyK3YLtr4xi3vCl_qbdhByKL_ZWyDOzCEzVWKKSd9a8t2FkUc_xe4nT6Ozqt3Et_H_ZWcSG59xN5AA1THEJruIaqlkfw0asbn5TEnv_JbO5i50VRMVGJqkpRiOfBLj5NRtzjTzIprKznjpBZTjZdb4ivgCQ-S1Mew6j_8NYbBKvmCIFmbkjIWGZUpmiGiVGCcRSUK5ElUWSQo1bCOneNTBqpImok1ZE0GMscrdOOOLITaBazwpwCyZm2dpmLGF3TokSLjIaMm4QarhnDpA3Xay2lcw_BSD3umKZOl6nTZRtuK_39LZG-P_Ze3cfZ_0XPYZe6VyRV9d8FNK0SzaUNA77UVTXdP2Wpsac priority: 102 providerName: Wiley-Blackwell |
| Title | Challenges and opportunities beyond structured data in analysis of electronic health records |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwics.1549 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/wics.1549 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5se9AefIvPEtCDl601ye5mj1IsVWgpaLGCsE4eC8WyLdYi-uvdbLb1AYLgLYdkCZOZ7Mdkvm8AThpCGRHJcw8RQ49rip5g2LBKmInPkkAlDcsd7nSDdp9fD_xB0efUcmGcPsQi4WYjI7-vbYBPdOLu-eJ1n569DtXU5kaiElQCPwPjZaj0u72Le_eWHHmWATEfZ94n5tpCX9dWYXmWTvDtFUej7xA1_8e01uBxvjtXWvJUn73Iunr_Idz4j-2vw2qBP8mFc5gNWDLpJlQ7C_HW6RY8NOcNVqYEU03GE4vRZ2muvUpkTnkhTnd29mw0sUWmZJhmc52-CRkn5LO7DnFMS-KyQdNt6Lcub5ttr2jC4ClmrYaMaSO1pBpDIwXjKCiXQoe-b5CjkiIDEQpZZCLpUxNR5UcGgyjBDBz4HNkOlNNxanaBJExl8Z-IAG1zpFAJTRuMm5AarhjDcA-OFwcRT5zYRuxklWlsbRVbW-3BaW7X32fEd1fNGzvY_9MHD2CF2kKVnGB4COXMfuYoQxovsgYlynu1wqc-AEgz1xM |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1Na8JAEIYHaw_WQ-kntZ8L7aGXYNzdJBvopUhFW5VClXoohNnNBgSJUivSf99s1kR6KPSWw-SQ2czOZLLvMwB3rlBahLLlIGLg8JiiIxi6hoSZeCzxVeIa7fBg6HfH_HniTSrwUGhhLB-ibLiZyMj3axPgpiHd3FJD11O1NI2RcAd2ud_yzacX5a_FPmxIZL79pxw62ZsnCq6QS5vlrXWordIFfq9xNvtdnub5pXMA-5vCkDzalTyEik6PoD4oqarLY_hoF5NPlgTTmMwXpnhepTkUlchci0IsEHb1qWNiTn-SaZrZWvAImSdkO_aGWAkksW2a5QmMO0-jdtfZTEdwFDOPhIzFWsaSxhhoKRhHQbkUceB5GjkqKbLsrpCFOpQe1SFVXqjRDxPMsrbHkZ1CNZ2n-gxIwlQWmInw0UwtCpSIqcu4DqjmijEMGnBbeilaWApGZHnHNDK-jIwvG3Cf--9vi-i9134zF-f_N72BWnc06Ef93vDlAvaoOVKSSwEvoZo5VF9lNcGXvM6X_gcMKbUT |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LS8NAEMeHWkHtQXxifS7owUsw7m6SDXiRamnVloIWexDC7CNQKGmwluK3N5vtAw-Ctxwmh53N7AyT_f8G4MoXyohY3nqIGHlcU_QEQ9-SMNOApaFKfasd7nTDVp8_DYJBBe4WWhjHh1g23GxklOe1DXCT6_RmRQ2dDdXENkbiNVjnQZEJLdeZ9xbnsCWRhe6fcuwVX55YcIV8erN8tQab0yzH7xmORr_L0zK_NHdge14Yknu3k7tQMdke1DpLqupkHz4ai8knE4KZJuPcFs_TrISiEllqUYgDwk4_jSb29icZZoWtA4-QcUpWY2-Ik0AS16aZHEC_-fjWaHnz6QieYnZJyJg2UkuqMTJSMI6Ccil0FAQGOSopiuyukMUmlgE1MVVBbDCMUyyydsCRHUI1G2fmCEjKVBGYqQjRTi2KlNDUZ9xE1HDFGEZ1uFx6KckdBSNxvGOaWF8m1pd1uC7997dF8t5uvNqH4_-bXsBG76GZvLS7zyewRe2NklIJeArVwp_mrCgJvuR5ufM_JQu0og |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60PWgPvsX6IqAHL1trso_ssRSlCi2CFisI6-SxUCzbxbYU_fVuNrv1AYLgLYdkCZOZ7Mdkvm8ATptcah6KCwcRA8dVFB3OsGmUMGOPxb6Mm4Y73O35nb57M_AGRZ9Tw4Wx-hCLhJuJjPy-NgGeqtje88XrPj2fD-XE5EbCZaj6XgbGK1Dt925bj_YtOXQMA6IcZ97HS22hr2trsDJLUnyb42j0HaLm_5irdXgud2dLS14as6loyPcfwo3_2P4GrBX4k7Ssw2zCkk62oNZdiLdOtuGpXTZYmRBMFBmnBqPPklx7lYic8kKs7uzsVStiikzJMMnmWn0TMo7JZ3cdYpmWxGaDJjvQv7q8b3ecogmDI5mxGjKmtFCCKgy04MxFTl3BVeB5Gl2UgmcgQiILdSg8qkMqvVCjH8aYgQPPRbYLlWSc6D0gMZNZ_MfcR9McKZBc0SZzdUC1KxnDoA4ni4OIUiu2EVlZZRoZW0XGVnU4y-36-4zo4bp9Zwb7f_rgAaxSU6iSEwwPoZLZTx9lSGMqjgtv-gBD2tY8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Challenges+and+opportunities+beyond+structured+data+in+analysis+of+electronic+health+records&rft.jtitle=Wiley+interdisciplinary+reviews.+Computational+statistics&rft.au=Tayefi%2C+Maryam&rft.au=Ngo%2C+Phuong&rft.au=Chomutare%2C+Taridzo&rft.au=Dalianis%2C+Hercules&rft.date=2021-11-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1939-5108&rft.eissn=1939-0068&rft.volume=13&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fwics.1549&rft.externalDBID=10.1002%252Fwics.1549&rft.externalDocID=WICS1549 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-5108&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-5108&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-5108&client=summon |