The point source method for inverse scattering in the time domain

Many recent inverse scattering techniques have been designed for single frequency scattered fields in the frequency domain. In practice, however, the data is collected in the time domain. Frequency domain inverse scattering algorithms obviously apply to time‐harmonic scattering, or nearly time‐harmo...

Full description

Saved in:
Bibliographic Details
Published inMathematical methods in the applied sciences Vol. 29; no. 13; pp. 1501 - 1521
Main Authors Russell Luke, D., Potthast, Roland
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 10.09.2006
Wiley
Teubner
Subjects
Online AccessGet full text
ISSN0170-4214
1099-1476
1099-1476
DOI10.1002/mma.738

Cover

Abstract Many recent inverse scattering techniques have been designed for single frequency scattered fields in the frequency domain. In practice, however, the data is collected in the time domain. Frequency domain inverse scattering algorithms obviously apply to time‐harmonic scattering, or nearly time‐harmonic scattering, through application of the Fourier transform. Fourier transform techniques can also be applied to non‐time‐harmonic scattering from pulses. Our goal here is twofold: first, to establish conditions on the time‐dependent waves that provide a correspondence between time domain and frequency domain inverse scattering via Fourier transforms without recourse to the conventional limiting amplitude principle; secondly, we apply the analysis in the first part of this work toward the extension of a particular scattering technique, namely the point source method, to scattering from the requisite pulses. Numerical examples illustrate the method and suggest that reconstructions from admissible pulses deliver superior reconstructions compared to straight averaging of multi‐frequency data. Copyright © 2006 John Wiley & Sons, Ltd.
AbstractList Many recent inverse scattering techniques have been designed for single frequency scattered fields in the frequency domain. In practice, however, the data is collected in the time domain. Frequency domain inverse scattering algorithms obviously apply to time‐harmonic scattering, or nearly time‐harmonic scattering, through application of the Fourier transform. Fourier transform techniques can also be applied to non‐time‐harmonic scattering from pulses. Our goal here is twofold: first, to establish conditions on the time‐dependent waves that provide a correspondence between time domain and frequency domain inverse scattering via Fourier transforms without recourse to the conventional limiting amplitude principle; secondly, we apply the analysis in the first part of this work toward the extension of a particular scattering technique, namely the point source method, to scattering from the requisite pulses. Numerical examples illustrate the method and suggest that reconstructions from admissible pulses deliver superior reconstructions compared to straight averaging of multi‐frequency data. Copyright © 2006 John Wiley & Sons, Ltd.
Many recent inverse scattering techniques have been designed for single frequency scattered fields in the frequency domain. In practice, however, the data is collected in the time domain. Frequency domain inverse scattering algorithms obviously apply to time-harmonic scattering, or nearly time-harmonic scattering, through application of the Fourier transform. Fourier transform techniques can also be applied to non-time-harmonic scattering from pulses. Our goal here is twofold: first, to establish conditions on the time-dependent waves that provide a correspondence between time domain and frequency domain inverse scattering via Fourier transforms without recourse to the conventional limiting amplitude principle; secondly, we apply the analysis in the first part of this work toward the extension of a particular scattering technique, namely the point source method, to scattering from the requisite pulses. Numerical examples illustrate the method and suggest that reconstructions from admissible pulses deliver superior reconstructions compared to straight averaging of multi-frequency data.
Author Potthast, Roland
Russell Luke, D.
Author_xml – sequence: 1
  givenname: D.
  surname: Russell Luke
  fullname: Russell Luke, D.
  email: rluke@math.udel.edu
  organization: Department of Mathematical Sciences, University of Delaware, U.S.A
– sequence: 2
  givenname: Roland
  surname: Potthast
  fullname: Potthast, Roland
  organization: Institut for Numerical and Applied Mathematics, University of Göttingen, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17983081$$DView record in Pascal Francis
BookMark eNp10F1LHDEUBuBQFLpa6V-YGz-gjD2ZZGYyl8tibWW1IIqXIZs9qWlnkjXJavffmzKLBdGrA-HJ4X3PHtlx3iEhnymcUoDq6zCo05aJD2RCoetKyttmh0yAtlDyivKPZC_G3wAgKK0mZHpzj8XKW5eK6NdBYzFguvfLwvhQWPeIIWIRtUoJg3W_8lOR8o9kByyWflDWfSK7RvURD7Zzn9x-O7uZfS_nP89_zKbzUrOOibJGwbBtFqyqF62gC1HjcqlBw8JUrFEMAJUwpqZCCMWhYhwNiEYwrnlnDGP75GTcu3YrtXlSfS9XwQ4qbCQF-a-6zNVlrp7p0UhXwT-sMSY52Kix75VDv46y6uoGKKcZHm6hyh17E5TTNv7f23aC5UNlV45OBx9jQCO1TSpZ71JQtn8jwPEr_37UL6N8sj1u3mPy8nI66m0OGxP-fdEq_JFNy9pa3l2dy4t5J_j8upOCPQMgoqE_
CODEN MMSCDB
CitedBy_id crossref_primary_10_1088_0266_5611_29_3_035004
crossref_primary_10_3934_ipi_2021037
crossref_primary_10_1088_1361_6420_ac531c
crossref_primary_10_1016_j_jcp_2016_03_046
crossref_primary_10_1080_03605302_2013_804550
crossref_primary_10_1016_j_camwa_2024_12_018
crossref_primary_10_1155_2019_6956809
crossref_primary_10_1002_mma_2670
crossref_primary_10_1088_0266_5611_26_8_085001
crossref_primary_10_1088_0266_5611_26_4_045002
crossref_primary_10_1080_00036811_2013_772583
crossref_primary_10_1137_18M1214809
crossref_primary_10_1088_0266_5611_26_12_125005
crossref_primary_10_1137_080737836
crossref_primary_10_1088_0266_5611_28_2_025012
crossref_primary_10_1088_1361_6420_abaf3b
crossref_primary_10_1090_proc_15028
Cites_doi 10.1137/0145064
10.1017/CBO9781107049949
10.1088/0266-5611/14/4/012
10.1201/9781420035483
10.1002/cpa.3160150303
10.1007/978-3-662-03537-5
10.1007/978-94-009-4544-9
10.1093/imamat/61.2.119
10.1007/978-3-663-10649-4
10.1137/0146034
10.1088/0266-5611/19/3/304
10.1016/j.matcom.2004.02.009
10.1088/0266-5611/12/4/003
10.1109/ICASSP.2002.5745419
10.1088/0266-5611/14/6/009
10.1088/0266-5611/12/5/014
10.1137/S0036139902406887
ContentType Journal Article
Copyright Copyright © 2006 John Wiley & Sons, Ltd.
2006 INIST-CNRS
Copyright_xml – notice: Copyright © 2006 John Wiley & Sons, Ltd.
– notice: 2006 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7TB
8FD
FR3
KR7
ADTOC
UNPAY
DOI 10.1002/mma.738
DatabaseName Istex
CrossRef
Pascal-Francis
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList
CrossRef
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
Applied Sciences
Physics
EISSN 1099-1476
EndPage 1521
ExternalDocumentID oai:publications.goettingen-research-online.de:2/5080
17983081
10_1002_mma_738
MMA738
ark_67375_WNG_JL984LR9_8
Genre article
GrantInformation_xml – fundername: Simon Fraser University
– fundername: University of Göttingen
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
ACSCC
AGHNM
AMVHM
GBZZK
HF~
IQODW
M6O
PALCI
RIWAO
RJQFR
SAMSI
7TB
8FD
FR3
KR7
ADTOC
UNPAY
ID FETCH-LOGICAL-c3938-5e83e76b325b781b85eddc0c0bf236a300ea8ff51888a40234ef086834c49ff33
IEDL.DBID UNPAY
ISSN 0170-4214
1099-1476
IngestDate Tue Aug 19 21:47:02 EDT 2025
Thu Jul 10 19:34:30 EDT 2025
Mon Jul 21 09:13:40 EDT 2025
Thu Apr 24 23:08:26 EDT 2025
Wed Oct 01 00:36:59 EDT 2025
Sun Sep 21 06:23:57 EDT 2025
Sun Sep 21 06:18:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Fourier transformation
Applied mathematics
Inverse scattering method
inverse problems
Numerical method
Time-domain scattering
Algorithm
Image reconstruction
Inverse problem
Point source
Scattering theory
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3938-5e83e76b325b781b85eddc0c0bf236a300ea8ff51888a40234ef086834c49ff33
Notes istex:6467913C3267F0274D971F710EA994855E868FD4
University of Göttingen
ark:/67375/WNG-JL984LR9-8
ArticleID:MMA738
Simon Fraser University
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://resolver.sub.uni-goettingen.de/purl?gro-2/5080
PQID 29560141
PQPubID 23500
PageCount 21
ParticipantIDs unpaywall_primary_10_1002_mma_738
proquest_miscellaneous_29560141
pascalfrancis_primary_17983081
crossref_citationtrail_10_1002_mma_738
crossref_primary_10_1002_mma_738
wiley_primary_10_1002_mma_738_MMA738
istex_primary_ark_67375_WNG_JL984LR9_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 10 September 2006
PublicationDateYYYYMMDD 2006-09-10
PublicationDate_xml – month: 09
  year: 2006
  text: 10 September 2006
  day: 10
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Stuttgart
– name: Chichester
PublicationTitle Mathematical methods in the applied sciences
PublicationTitleAlternate Math. Meth. Appl. Sci
PublicationYear 2006
Publisher John Wiley & Sons, Ltd
Wiley
Teubner
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Teubner
– name: Wiley
References Potthast R. Point Sources and Multipoles in Inverse Scattering Theory. Chapman & Hall: London, 2001.
Ikehata M. Reconstruction of an obstacle from the scattering amplitude at a fixed frequency. Inverse Problems 1998; 14:949-954.
Luke DR. Multifrequency inverse obstacle scattering: the point source method and generalized filtered backprojection. Mathematics and Computers in Simulation 2004; 66(4-5):297-314.
Gilbarg G, Trudinger NS. Elliptic Partial Differential Equations of Second Order. Springer: Berlin, 1998.
Colton D, Monk P. A novel method for solving the inverse scattering problem for time-harmonic waves in the resonance region II. SIAM Journal on Applied Mathematics 1986; 46:506-523.
Ramm AG. Scattering by Obstacles. D. Reidel Publishing: Dordrecht, Holland, 1986.
Colton D, Kirsch A. A simple method for solving inverse scattering problems in the resonance region. Inverse Problems 1996; 12(4):383-393.
Kirsch A. Characterization of the shape of a scattering obstacle using the spectral data of the far field operator. Inverse Problems 1998; 14:1489-1512.
Morawetz CS. The limiting amplitude principle. Communications on Pure and Applied Mathematics 1962; 15:349-361.
Colton D, Kress R. Inverse Acoustic and Electromagnetic Scattering Theory (2nd edn). Springer: New York, 1998.
Koerner TWK. Fourier Analysis. Cambridge University Press: Cambridge, 1988.
Potthast R. A point-source method for inverse acoustic and electromagnetic obstacle scattering problems. IMA Journal of Applied Mathematics 1998; 61:119-140.
Lax PD, Phillips RS. Scattering Theory (revised edn). Academic Press: Toronto, 1989.
Luke DR, Potthast R. The no response test-a sampling method for inverse scattering problems. SIAM Journal on Applied Mathematics 2003; 63(4):1292-1312.
Pawletta S, Westphal A, Drewelow W, Duenow P, Pawletta T, Fink R. Distributed and Parallel Application Toolbox (DP Toolbox). University of Rostock, http://www-at.e-technik.uni-rostock.de/rg_ac/dp/, 2003.
Rudin W. Real and Complex Analysis (2nd edn). McGraw-Hill: New York, 1974.
Leis R. Initial Boundary Value Problems in Mathematical Physics. B.G. Teubner: Stuttgart, 1986.
Potthast R, Sylvester J, Kusiak S. A 'range test' for determining scatterers with unknown physical properties. Inverse Problems 2003; 19(3):533-547.
Colton D, Monk P. A novel method for solving the inverse scattering problem for time-harmonic waves in the resonance region. SIAM Journal on Applied Mathematics 1985; 45:1039-1053.
Potthast R. A fast new method to solve inverse scattering problems. Inverse Problems 1996; 12:731-742.
2004; 66
2001
1986; 46
1998
1986
1997
1974
1962; 15
2004
2003; 19
1998; 61
2003
2002
1985; 45
2003; 63
1989
1996; 12
1998; 14
1988
Gilbarg G (e_1_2_1_14_2) 1998
Kress R (e_1_2_1_18_2) 1997
e_1_2_1_6_2
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_2_2
Lax PD (e_1_2_1_3_2) 1989
e_1_2_1_11_2
e_1_2_1_22_2
e_1_2_1_12_2
e_1_2_1_23_2
Pawletta S (e_1_2_1_24_2) 2003
e_1_2_1_20_2
e_1_2_1_10_2
e_1_2_1_21_2
e_1_2_1_15_2
e_1_2_1_13_2
e_1_2_1_19_2
e_1_2_1_8_2
Koerner TWK (e_1_2_1_16_2) 1988
e_1_2_1_9_2
Rudin W (e_1_2_1_17_2) 1974
References_xml – reference: Gilbarg G, Trudinger NS. Elliptic Partial Differential Equations of Second Order. Springer: Berlin, 1998.
– reference: Morawetz CS. The limiting amplitude principle. Communications on Pure and Applied Mathematics 1962; 15:349-361.
– reference: Colton D, Kirsch A. A simple method for solving inverse scattering problems in the resonance region. Inverse Problems 1996; 12(4):383-393.
– reference: Luke DR, Potthast R. The no response test-a sampling method for inverse scattering problems. SIAM Journal on Applied Mathematics 2003; 63(4):1292-1312.
– reference: Luke DR. Multifrequency inverse obstacle scattering: the point source method and generalized filtered backprojection. Mathematics and Computers in Simulation 2004; 66(4-5):297-314.
– reference: Rudin W. Real and Complex Analysis (2nd edn). McGraw-Hill: New York, 1974.
– reference: Colton D, Kress R. Inverse Acoustic and Electromagnetic Scattering Theory (2nd edn). Springer: New York, 1998.
– reference: Colton D, Monk P. A novel method for solving the inverse scattering problem for time-harmonic waves in the resonance region II. SIAM Journal on Applied Mathematics 1986; 46:506-523.
– reference: Lax PD, Phillips RS. Scattering Theory (revised edn). Academic Press: Toronto, 1989.
– reference: Potthast R, Sylvester J, Kusiak S. A 'range test' for determining scatterers with unknown physical properties. Inverse Problems 2003; 19(3):533-547.
– reference: Leis R. Initial Boundary Value Problems in Mathematical Physics. B.G. Teubner: Stuttgart, 1986.
– reference: Kirsch A. Characterization of the shape of a scattering obstacle using the spectral data of the far field operator. Inverse Problems 1998; 14:1489-1512.
– reference: Pawletta S, Westphal A, Drewelow W, Duenow P, Pawletta T, Fink R. Distributed and Parallel Application Toolbox (DP Toolbox). University of Rostock, http://www-at.e-technik.uni-rostock.de/rg_ac/dp/, 2003.
– reference: Ramm AG. Scattering by Obstacles. D. Reidel Publishing: Dordrecht, Holland, 1986.
– reference: Koerner TWK. Fourier Analysis. Cambridge University Press: Cambridge, 1988.
– reference: Colton D, Monk P. A novel method for solving the inverse scattering problem for time-harmonic waves in the resonance region. SIAM Journal on Applied Mathematics 1985; 45:1039-1053.
– reference: Potthast R. Point Sources and Multipoles in Inverse Scattering Theory. Chapman & Hall: London, 2001.
– reference: Ikehata M. Reconstruction of an obstacle from the scattering amplitude at a fixed frequency. Inverse Problems 1998; 14:949-954.
– reference: Potthast R. A point-source method for inverse acoustic and electromagnetic obstacle scattering problems. IMA Journal of Applied Mathematics 1998; 61:119-140.
– reference: Potthast R. A fast new method to solve inverse scattering problems. Inverse Problems 1996; 12:731-742.
– volume: 14
  start-page: 949
  year: 1998
  end-page: 954
  article-title: Reconstruction of an obstacle from the scattering amplitude at a fixed frequency
  publication-title: Inverse Problems
– volume: 63
  start-page: 1292
  issue: 4
  year: 2003
  end-page: 1312
  article-title: The no response test—a sampling method for inverse scattering problems
  publication-title: SIAM Journal on Applied Mathematics
– year: 1986
– volume: 15
  start-page: 349
  year: 1962
  end-page: 361
  article-title: The limiting amplitude principle
  publication-title: Communications on Pure and Applied Mathematics
– volume: 46
  start-page: 506
  year: 1986
  end-page: 523
  article-title: A novel method for solving the inverse scattering problem for time‐harmonic waves in the resonance region II
  publication-title: SIAM Journal on Applied Mathematics
– volume: 45
  start-page: 1039
  year: 1985
  end-page: 1053
  article-title: A novel method for solving the inverse scattering problem for time‐harmonic waves in the resonance region
  publication-title: SIAM Journal on Applied Mathematics
– volume: 61
  start-page: 119
  year: 1998
  end-page: 140
  article-title: A point‐source method for inverse acoustic and electromagnetic obstacle scattering problems
  publication-title: IMA Journal of Applied Mathematics
– volume: 19
  start-page: 533
  issue: 3
  year: 2003
  end-page: 547
  article-title: A ‘range test’ for determining scatterers with unknown physical properties
  publication-title: Inverse Problems
– volume: 66
  start-page: 297
  issue: 4–5
  year: 2004
  end-page: 314
  article-title: Multifrequency inverse obstacle scattering: the point source method and generalized filtered backprojection
  publication-title: Mathematics and Computers in Simulation
– year: 2002
– year: 2001
– year: 1988
– year: 1989
– volume: 12
  start-page: 731
  year: 1996
  end-page: 742
  article-title: A fast new method to solve inverse scattering problems
  publication-title: Inverse Problems
– year: 2004
– year: 2003
– year: 1974
– volume: 14
  start-page: 1489
  year: 1998
  end-page: 1512
  article-title: Characterization of the shape of a scattering obstacle using the spectral data of the far field operator
  publication-title: Inverse Problems
– start-page: 67
  year: 1997
  end-page: 92
– volume: 12
  start-page: 383
  issue: 4
  year: 1996
  end-page: 393
  article-title: A simple method for solving inverse scattering problems in the resonance region
  publication-title: Inverse Problems
– year: 1998
– ident: e_1_2_1_6_2
  doi: 10.1137/0145064
– volume-title: Fourier Analysis
  year: 1988
  ident: e_1_2_1_16_2
  doi: 10.1017/CBO9781107049949
– ident: e_1_2_1_11_2
  doi: 10.1088/0266-5611/14/4/012
– ident: e_1_2_1_8_2
  doi: 10.1201/9781420035483
– ident: e_1_2_1_15_2
  doi: 10.1002/cpa.3160150303
– ident: e_1_2_1_2_2
  doi: 10.1007/978-3-662-03537-5
– ident: e_1_2_1_5_2
  doi: 10.1007/978-94-009-4544-9
– ident: e_1_2_1_23_2
  doi: 10.1093/imamat/61.2.119
– volume-title: Scattering Theory
  year: 1989
  ident: e_1_2_1_3_2
– ident: e_1_2_1_4_2
  doi: 10.1007/978-3-663-10649-4
– ident: e_1_2_1_7_2
  doi: 10.1137/0146034
– ident: e_1_2_1_13_2
  doi: 10.1088/0266-5611/19/3/304
– ident: e_1_2_1_19_2
– ident: e_1_2_1_20_2
  doi: 10.1016/j.matcom.2004.02.009
– ident: e_1_2_1_9_2
  doi: 10.1088/0266-5611/12/4/003
– volume-title: Elliptic Partial Differential Equations of Second Order
  year: 1998
  ident: e_1_2_1_14_2
– ident: e_1_2_1_21_2
  doi: 10.1109/ICASSP.2002.5745419
– start-page: 67
  volume-title: Boundary Integral Formulations for Inverse Analysis
  year: 1997
  ident: e_1_2_1_18_2
– ident: e_1_2_1_10_2
  doi: 10.1088/0266-5611/14/6/009
– ident: e_1_2_1_22_2
  doi: 10.1088/0266-5611/12/5/014
– volume-title: Distributed and Parallel Application Toolbox (DP Toolbox)
  year: 2003
  ident: e_1_2_1_24_2
– ident: e_1_2_1_12_2
  doi: 10.1137/S0036139902406887
– volume-title: Real and Complex Analysis
  year: 1974
  ident: e_1_2_1_17_2
SSID ssj0008112
Score 1.8268132
Snippet Many recent inverse scattering techniques have been designed for single frequency scattered fields in the frequency domain. In practice, however, the data is...
SourceID unpaywall
proquest
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1501
SubjectTerms Applied sciences
Artificial intelligence
Classical and quantum physics: mechanics and fields
Computer science; control theory; systems
Exact sciences and technology
Fourier analysis
General theory of scattering
image reconstruction
inverse problems
Mathematical analysis
Mathematics
Pattern recognition. Digital image processing. Computational geometry
Physics
scattering theory
Sciences and techniques of general use
time-domain scattering
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBele2j3sK3dxrKPVoNStgensSVb0mMYa0tp-lBWWvYiJEWC0MQJdcI-_vrdWY6zbBRKnwz2SVinO-lOuvsdIQcu-NSCm5z4IsOUHOMTyznKcnCmSB0PBs8hBxfF6RU_u8lv_ir1FfEh2gM31Ix6vUYFN7Y6WoGGTiamKxim-aasqJ2pyxVwlEzre04Eh0l4lvKYLostj5p2a_vQE2TpT4yLNBWwJsSaFmtG59ainJlfP8x4vG7G1vvQ8XPyfTmCGH5y213Mbdf9_gfc8VFDfEGeNdYp7Udx2iEbvtwlTwcttGu1S3aa1aCinxrI6s8vSR-kjc6mo3JO420AjZWpKZjEdFRi6IenMGZMHYK9El5R6JJiYXs6nE7MqHxFro6_fvtymjTFGRLHFCySuZfMi8KyLLcCbF-Z--HQ9VzPhowVhvV63sgQEO9NGnBSGfcB3CfJuOMqBMZek81yWvo3hAqXgxnkrXUW_CcppFEBrE4nVBGEd6pDDpdTpV2DXI4FNMY6Yi5nGhilgVEdQlvCWQTr-J_ksJ7r9ru5u8XYNpHr64sTfXauJD-_VBoI99aEYdWhUJKBgHXI_lI6NKgk3rOY0k8Xlc7Q50w5UHxsheb-_zmoJeC-73ow6MPj7cPI3pHteESkYHt9Tzbndwv_AYymud2r9eMPb1oTdA
  priority: 102
  providerName: Wiley-Blackwell
Title The point source method for inverse scattering in the time domain
URI https://api.istex.fr/ark:/67375/WNG-JL984LR9-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.738
https://www.proquest.com/docview/29560141
https://resolver.sub.uni-goettingen.de/purl?gro-2/5080
UnpaywallVersion submittedVersion
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1099-1476
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-1476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008112
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFLWm9gF4ADZAlI9ipGmCh3Rp7NjOE6oQY5rWCk1UG0-W7dpTtdap2kZ8_Hqu47RQ0CR4ipRcObF9k5xrn3suQofG2b6GMDmxLAspOcommtLgy84o1jfUqbAOORyx0zE9u8qv9hDb5MJAjFkGSnBdASowLq5LWxOArQ-ci0W1nL27XpZJdgzIAkL1NssBg7dQezz6NPhS8xV5mtCsFvUOuz5Jn3IWs2WD2ujxfK56dTbKb7-hdhjRb4EWqVYwMi6WtNjBnHcqv1Dfv6rZbBfF1r-hkwfoctOByD656VVr3TM__tB2_P8ePkT3G2SKB9GV9tGe9Qfo3nAr67o6QPvNl2CF3zRy1W8foQF4Gl6UU7_GcScAx6rUGOAwnvpA-7AYOhzShuD-cApDkzgUtceTcq6m_jEan3z4_P40aQozJIYU8IHMrSCWM02yXHPAvSK3k4lJTapdRpgiaWqVcC5ovQkFASqh1kHoJAg1tHCOkCeo5UtvnyLMTQ4QyGptNMROggtVOECchhfMcWuKDjrazJM0jWp5KJ4xk1FvOZMwoRImtIPw1nARhTr-NjmqJ3p7XS1vAq-N5_Jy9FGenReCnl8UEgy7O57wq0FeCAIgqoNebVxDwusY9liUt2W1klmIN_sULF5vPeb25zmsPem263I4HMDh2T809RzdjWtD4O_pC9RaLyv7EtDSWnchTrjIus0L8hMtaxXN
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgexh7ADZAdIzNSNMED-ma2Imdxwoxymj6MG1iEg-W7dpStTat1lb8-Ot3F6epCpqEeIqUnK3YPtvfnc_fEXJivYsNmMmRyxK8kqNdZDhHXfZWZ7HlXqMfshhkvWt-cZPe1FGVeBcm8EM0DjecGdV6jRMcHdJna9bQyUS3BZOPyTbPwEpBQHS5po6ScXXSifQwEU9iHi7MYtGzuuDGTrSNnfoTIyP1HDrHh6wWG7BzZ1nO9K8fejzeBLLVTnT-jHxftSEEoNy2lwvTtr__oHf8v0Y-J09rgEq7QaP2yCNX7pPdomF3ne-TvXpBmNP3NWv1hxekCwpHZ9NRuaDhQICG5NQUUDEdlRj94Sg0Gm8PwXYJryhUSTG3PR1OJ3pUviTX55-uPvaiOj9DZFkO62TqJHMiMyxJjQD4K1M3HNqO7RifsEyzTsdp6T1SvkkNdirjzoMFJRm3PPeesVdkq5yW7jWhwqaAhJwx1oAJJYXUuQfgaUWeeeFs3iKnq7FStiYvxxwaYxVolxMFHaWgo1qENoKzwNfxt8hpNdjNd313i-FtIlXfBp_VRT-XvH-ZKxA82tCGdYUilww0rEWOV-qhYFbiUYsu3XQ5VwmanTEHiXeN1jz8PyeVCjz0XRVFFx4H_yZ2THZ6V0Vf9b8Mvr4hT4LHKIfd9pBsLe6W7i1gqIU5qibLPaB5F5U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELZgk4A9ABugFcZmpGmCh3RN7CT2Y7VRxmgrNDExiQfLdm2pWptWaytgv353cZqqoEmIp0jJ2YrPd_adffcdIYfWu9iAmxy5LMGUHO0iwznKsrc6iy33Gs8he_3s7JKfX6VXVVQl5sIEfIj6wA01o1yvUcHddOCPV6ih47Fu5kw8JJs8lQLD-U4vVtBRIi5vOhEeJuJJzEPCLDY9rhqu7USbyNRfGBmpZ8AcH6parJmdjxfFVP_-qUejdUO23Ik6z8iP5RhCAMp1czE3TXv7B7zj_w3yOXlaGai0HSRqmzxwxQ7Z6tXorrMdsl0tCDP6vkKt_vCCtEHg6HQyLOY0XAjQUJyaglVMhwVGfzgKg8bsIdgu4RWFLinWtqeDyVgPi5fksvPx28lZVNVniCyTsE6mTjCXZ4YlqcnB_BWpGwxsy7aMT1imWavltPAeId-EBj-VcefBgxKMWy69Z-wV2SgmhdslNLcpWELOGGvAhRK50NKD4WlzmfncWdkgR8u5UrYCL8caGiMVYJcTBYxSwKgGoTXhNOB1_E1yVE52_V3fXGN4W56q7_1P6rwrBe9eSAWE-2vSsOowl4KBhDXIwVI8FGglXrXowk0WM5Wg2xlzoHhXS839_3NYisB931Wv14bH638jOyCPvp52VPdz_8sb8iQcGEnYbPfIxvxm4d6CCTU3-6Wu3AEqsBcZ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLam9gAcGBuglcEw0jTBIV0aO7ZzQhViTNNaIUS1cbJs156qtU7VNuLHX89znBYKmgSnSMmTE9svyffs730PoWPjbE9DmJxYloWUHGUTTWnwZWcU6xnqVFiHHAzZ-YheXOfXO4itc2EgxiwDJbiuABUYFzelrQnA1gfOxbxaTN_eLMokOwVkAaF6m-WAwVuoPRp-7H-p-Yo8TWhWi3qHXZ-kRzmL2bJBbfR0NlPdOhvlt99QO4zot0CLVEsYGRdLWmxhznuVn6vvX9V0uo1i69_Q2S66Wncgsk9uu9VKd82PP7Qd_7-Hj9DDBpnifnSlPbRj_T56MNjIui730V7zJVji141c9ZvHqA-ehuflxK9w3AnAsSo1BjiMJz7QPiyGDoe0Ibg_nMLQJA5F7fG4nKmJf4JGZ-8_vztPmsIMiSEFfCBzK4jlTJMs1xxwr8jteGxSk2qXEaZImlolnAtab0JBgEqodRA6CUINLZwj5Clq-dLbA4S5yQECWa2NhthJcKEKB4jT8II5bk3RQSfreZKmUS0PxTOmMuotZxImVMKEdhDeGM6jUMffJif1RG-uq8Vt4LXxXF4NP8iLy0LQy0-FBMOjLU_41SAvBAEQ1UEv164h4XUMeyzK27JayizEmz0KFq82HnP38xzXnnTXdTkY9OHw7B-aOkT349oQ-Hv6HLVWi8q-ALS00kfNq_ETsHoU5A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+point+source+method+for+inverse+scattering+in+the+time+domain&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Luke%2C+D+Russell&rft.au=Potthast%2C+Roland&rft.date=2006-09-10&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=29&rft.issue=13&rft.spage=1501&rft.epage=1521&rft_id=info:doi/10.1002%2Fmma.738&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon