Monocytes of patients with amyotrophic lateral sclerosis linked to gene mutations display altered TDP‐43 subcellular distribution
Aims Cytoplasmic accumulation of the nuclear protein transactive response DNA‐binding protein 43 (TDP‐43) is an early determinant of motor neuron degeneration in most amyotrophic lateral sclerosis (ALS) cases. We previously disclosed this accumulation in circulating lymphomonocytes (CLM) of ALS pati...
Saved in:
Published in | Neuropathology and applied neurobiology Vol. 43; no. 2; pp. 133 - 153 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.02.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0305-1846 1365-2990 1365-2990 |
DOI | 10.1111/nan.12328 |
Cover
Abstract | Aims
Cytoplasmic accumulation of the nuclear protein transactive response DNA‐binding protein 43 (TDP‐43) is an early determinant of motor neuron degeneration in most amyotrophic lateral sclerosis (ALS) cases. We previously disclosed this accumulation in circulating lymphomonocytes (CLM) of ALS patients with mutant TARDBP, the TDP‐43‐coding gene, as well as of a healthy individual carrying the parental TARDBP mutation. Here, we investigate TDP‐43 subcellular localization in CLM and in the constituent cells, lymphocytes and monocytes, of patients with various ALS‐linked mutant genes.
Methods
TDP‐43 subcellular localization was analysed with western immunoblotting and immunocytofluorescence in CLM of healthy controls (n = 10), patients with mutant TARDBP (n = 4, 1 homozygous), valosin‐containing protein (VCP; n = 2), fused in sarcoma/translocated in liposarcoma (FUS; n = 2), Cu/Zn superoxide dismutase 1 (SOD1; n = 6), chromosome 9 open reading frame 72 (C9ORF72; n = 4), without mutations (n = 5) and neurologically unaffected subjects with mutant TARDBP (n = 2).
Results
TDP‐43 cytoplasmic accumulation was found (P < 0.05 vs. controls) in CLM of patients with mutant TARDBP or VCP, but not FUS, in line with TDP‐43 subcellular localization described for motor neurons of corresponding groups. Accumulation also characterized CLM of the healthy individuals with mutant TARDBP and of some patients with mutant SOD1 or C9ORF72. In 5 patients, belonging to categories described to carry TDP‐43 mislocalization in motor neurons (3 C9ORF72, 1 TARDBP and 1 without mutations), TDP‐43 cytoplasmic accumulation was not detected in CLM or in lymphocytes but was in monocytes.
Conclusions
In ALS forms characterized by TDP‐43 mislocalization in motor neurons, monocytes display this alteration, even when not manifest in CLM. Monocytes may be used to support diagnosis, as well as to identify subjects at risk, of ALS and to develop/monitor targeted treatments.
Altered sub‐cellular localisation of TDP‐43 in monocytes may represent a new diagnostic tool and investigation of monocytes may improve our understanding of disease mechanisms in ALS. |
---|---|
AbstractList | Aims Cytoplasmic accumulation of the nuclear protein transactive response DNA-binding protein 43 (TDP-43) is an early determinant of motor neuron degeneration in most amyotrophic lateral sclerosis (ALS) cases. We previously disclosed this accumulation in circulating lymphomonocytes (CLM) of ALS patients with mutant TARDBP, the TDP-43-coding gene, as well as of a healthy individual carrying the parental TARDBP mutation. Here, we investigate TDP-43 subcellular localization in CLM and in the constituent cells, lymphocytes and monocytes, of patients with various ALS-linked mutant genes. Methods TDP-43 subcellular localization was analysed with western immunoblotting and immunocytofluorescence in CLM of healthy controls (n = 10), patients with mutant TARDBP (n = 4, 1 homozygous), valosin-containing protein (VCP; n = 2), fused in sarcoma/translocated in liposarcoma (FUS; n = 2), Cu/Zn superoxide dismutase 1 (SOD1; n = 6), chromosome 9 open reading frame 72 (C9ORF72; n = 4), without mutations (n = 5) and neurologically unaffected subjects with mutant TARDBP (n = 2). Results TDP-43 cytoplasmic accumulation was found (P < 0.05 vs. controls) in CLM of patients with mutant TARDBP or VCP, but not FUS, in line with TDP-43 subcellular localization described for motor neurons of corresponding groups. Accumulation also characterized CLM of the healthy individuals with mutant TARDBP and of some patients with mutant SOD1 or C9ORF72. In 5 patients, belonging to categories described to carry TDP-43 mislocalization in motor neurons (3 C9ORF72, 1 TARDBP and 1 without mutations), TDP-43 cytoplasmic accumulation was not detected in CLM or in lymphocytes but was in monocytes. Conclusions In ALS forms characterized by TDP-43 mislocalization in motor neurons, monocytes display this alteration, even when not manifest in CLM. Monocytes may be used to support diagnosis, as well as to identify subjects at risk, of ALS and to develop/monitor targeted treatments. Cytoplasmic accumulation of the nuclear protein transactive response DNA-binding protein 43 (TDP-43) is an early determinant of motor neuron degeneration in most amyotrophic lateral sclerosis (ALS) cases. We previously disclosed this accumulation in circulating lymphomonocytes (CLM) of ALS patients with mutant TARDBP, the TDP-43-coding gene, as well as of a healthy individual carrying the parental TARDBP mutation. Here, we investigate TDP-43 subcellular localization in CLM and in the constituent cells, lymphocytes and monocytes, of patients with various ALS-linked mutant genes. TDP-43 subcellular localization was analysed with western immunoblotting and immunocytofluorescence in CLM of healthy controls (n = 10), patients with mutant TARDBP (n = 4, 1 homozygous), valosin-containing protein (VCP; n = 2), fused in sarcoma/translocated in liposarcoma (FUS; n = 2), Cu/Zn superoxide dismutase 1 (SOD1; n = 6), chromosome 9 open reading frame 72 (C9ORF72; n = 4), without mutations (n = 5) and neurologically unaffected subjects with mutant TARDBP (n = 2). TDP-43 cytoplasmic accumulation was found (P < 0.05 vs. controls) in CLM of patients with mutant TARDBP or VCP, but not FUS, in line with TDP-43 subcellular localization described for motor neurons of corresponding groups. Accumulation also characterized CLM of the healthy individuals with mutant TARDBP and of some patients with mutant SOD1 or C9ORF72. In 5 patients, belonging to categories described to carry TDP-43 mislocalization in motor neurons (3 C9ORF72, 1 TARDBP and 1 without mutations), TDP-43 cytoplasmic accumulation was not detected in CLM or in lymphocytes but was in monocytes. In ALS forms characterized by TDP-43 mislocalization in motor neurons, monocytes display this alteration, even when not manifest in CLM. Monocytes may be used to support diagnosis, as well as to identify subjects at risk, of ALS and to develop/monitor targeted treatments. Aims Cytoplasmic accumulation of the nuclear protein transactive response DNA‐binding protein 43 (TDP‐43) is an early determinant of motor neuron degeneration in most amyotrophic lateral sclerosis (ALS) cases. We previously disclosed this accumulation in circulating lymphomonocytes (CLM) of ALS patients with mutant TARDBP, the TDP‐43‐coding gene, as well as of a healthy individual carrying the parental TARDBP mutation. Here, we investigate TDP‐43 subcellular localization in CLM and in the constituent cells, lymphocytes and monocytes, of patients with various ALS‐linked mutant genes. Methods TDP‐43 subcellular localization was analysed with western immunoblotting and immunocytofluorescence in CLM of healthy controls (n = 10), patients with mutant TARDBP (n = 4, 1 homozygous), valosin‐containing protein (VCP; n = 2), fused in sarcoma/translocated in liposarcoma (FUS; n = 2), Cu/Zn superoxide dismutase 1 (SOD1; n = 6), chromosome 9 open reading frame 72 (C9ORF72; n = 4), without mutations (n = 5) and neurologically unaffected subjects with mutant TARDBP (n = 2). Results TDP‐43 cytoplasmic accumulation was found (P < 0.05 vs. controls) in CLM of patients with mutant TARDBP or VCP, but not FUS, in line with TDP‐43 subcellular localization described for motor neurons of corresponding groups. Accumulation also characterized CLM of the healthy individuals with mutant TARDBP and of some patients with mutant SOD1 or C9ORF72. In 5 patients, belonging to categories described to carry TDP‐43 mislocalization in motor neurons (3 C9ORF72, 1 TARDBP and 1 without mutations), TDP‐43 cytoplasmic accumulation was not detected in CLM or in lymphocytes but was in monocytes. Conclusions In ALS forms characterized by TDP‐43 mislocalization in motor neurons, monocytes display this alteration, even when not manifest in CLM. Monocytes may be used to support diagnosis, as well as to identify subjects at risk, of ALS and to develop/monitor targeted treatments. Altered sub‐cellular localisation of TDP‐43 in monocytes may represent a new diagnostic tool and investigation of monocytes may improve our understanding of disease mechanisms in ALS. Cytoplasmic accumulation of the nuclear protein transactive response DNA-binding protein 43 (TDP-43) is an early determinant of motor neuron degeneration in most amyotrophic lateral sclerosis (ALS) cases. We previously disclosed this accumulation in circulating lymphomonocytes (CLM) of ALS patients with mutant TARDBP, the TDP-43-coding gene, as well as of a healthy individual carrying the parental TARDBP mutation. Here, we investigate TDP-43 subcellular localization in CLM and in the constituent cells, lymphocytes and monocytes, of patients with various ALS-linked mutant genes.AIMSCytoplasmic accumulation of the nuclear protein transactive response DNA-binding protein 43 (TDP-43) is an early determinant of motor neuron degeneration in most amyotrophic lateral sclerosis (ALS) cases. We previously disclosed this accumulation in circulating lymphomonocytes (CLM) of ALS patients with mutant TARDBP, the TDP-43-coding gene, as well as of a healthy individual carrying the parental TARDBP mutation. Here, we investigate TDP-43 subcellular localization in CLM and in the constituent cells, lymphocytes and monocytes, of patients with various ALS-linked mutant genes.TDP-43 subcellular localization was analysed with western immunoblotting and immunocytofluorescence in CLM of healthy controls (n = 10), patients with mutant TARDBP (n = 4, 1 homozygous), valosin-containing protein (VCP; n = 2), fused in sarcoma/translocated in liposarcoma (FUS; n = 2), Cu/Zn superoxide dismutase 1 (SOD1; n = 6), chromosome 9 open reading frame 72 (C9ORF72; n = 4), without mutations (n = 5) and neurologically unaffected subjects with mutant TARDBP (n = 2).METHODSTDP-43 subcellular localization was analysed with western immunoblotting and immunocytofluorescence in CLM of healthy controls (n = 10), patients with mutant TARDBP (n = 4, 1 homozygous), valosin-containing protein (VCP; n = 2), fused in sarcoma/translocated in liposarcoma (FUS; n = 2), Cu/Zn superoxide dismutase 1 (SOD1; n = 6), chromosome 9 open reading frame 72 (C9ORF72; n = 4), without mutations (n = 5) and neurologically unaffected subjects with mutant TARDBP (n = 2).TDP-43 cytoplasmic accumulation was found (P < 0.05 vs. controls) in CLM of patients with mutant TARDBP or VCP, but not FUS, in line with TDP-43 subcellular localization described for motor neurons of corresponding groups. Accumulation also characterized CLM of the healthy individuals with mutant TARDBP and of some patients with mutant SOD1 or C9ORF72. In 5 patients, belonging to categories described to carry TDP-43 mislocalization in motor neurons (3 C9ORF72, 1 TARDBP and 1 without mutations), TDP-43 cytoplasmic accumulation was not detected in CLM or in lymphocytes but was in monocytes.RESULTSTDP-43 cytoplasmic accumulation was found (P < 0.05 vs. controls) in CLM of patients with mutant TARDBP or VCP, but not FUS, in line with TDP-43 subcellular localization described for motor neurons of corresponding groups. Accumulation also characterized CLM of the healthy individuals with mutant TARDBP and of some patients with mutant SOD1 or C9ORF72. In 5 patients, belonging to categories described to carry TDP-43 mislocalization in motor neurons (3 C9ORF72, 1 TARDBP and 1 without mutations), TDP-43 cytoplasmic accumulation was not detected in CLM or in lymphocytes but was in monocytes.In ALS forms characterized by TDP-43 mislocalization in motor neurons, monocytes display this alteration, even when not manifest in CLM. Monocytes may be used to support diagnosis, as well as to identify subjects at risk, of ALS and to develop/monitor targeted treatments.CONCLUSIONSIn ALS forms characterized by TDP-43 mislocalization in motor neurons, monocytes display this alteration, even when not manifest in CLM. Monocytes may be used to support diagnosis, as well as to identify subjects at risk, of ALS and to develop/monitor targeted treatments. |
Author | De Marco, G. Calvo, A. Fini, N. Mostert, M. Chiò, A. Tarella, C. Manera, U. Canosa, A. Moglia, C. Borghero, G. Restagno, G. Giordana, M. T. Caponnetto, C. De Luca, E. Lomartire, A. Risso, A. Rinaudo, M. T. Mandrioli, J. |
Author_xml | – sequence: 1 givenname: G. orcidid: 0000-0002-3966-8695 surname: De Marco fullname: De Marco, G. organization: University of Turin – sequence: 2 givenname: A. surname: Lomartire fullname: Lomartire, A. organization: University of Turin – sequence: 3 givenname: A. surname: Calvo fullname: Calvo, A. organization: University of Turin and AOU Città della Salute e della Scienza – sequence: 4 givenname: A. surname: Risso fullname: Risso, A. organization: University of Turin – sequence: 5 givenname: E. surname: De Luca fullname: De Luca, E. organization: University of Turin – sequence: 6 givenname: M. surname: Mostert fullname: Mostert, M. organization: University of Turin – sequence: 7 givenname: J. surname: Mandrioli fullname: Mandrioli, J. organization: University of Modena – sequence: 8 givenname: C. surname: Caponnetto fullname: Caponnetto, C. organization: University of Genoa – sequence: 9 givenname: G. surname: Borghero fullname: Borghero, G. organization: AOU and University of Cagliari – sequence: 10 givenname: U. surname: Manera fullname: Manera, U. organization: University of Turin and AOU Città della Salute e della Scienza – sequence: 11 givenname: A. surname: Canosa fullname: Canosa, A. organization: University of Genoa – sequence: 12 givenname: C. surname: Moglia fullname: Moglia, C. organization: University of Turin and AOU Città della Salute e della Scienza – sequence: 13 givenname: G. surname: Restagno fullname: Restagno, G. organization: University of Turin – sequence: 14 givenname: N. surname: Fini fullname: Fini, N. organization: University of Modena – sequence: 15 givenname: C. surname: Tarella fullname: Tarella, C. organization: European Institute of Oncology (IEO) – sequence: 16 givenname: M. T. surname: Giordana fullname: Giordana, M. T. organization: University of Turin – sequence: 17 givenname: M. T. surname: Rinaudo fullname: Rinaudo, M. T. email: mariateresa.rinaudo@unito.it organization: University of Turin – sequence: 18 givenname: A. surname: Chiò fullname: Chiò, A. organization: University of Turin and AOU Città della Salute e della Scienza |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27178390$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkb1O3TAYhi1EVQ60AzeAPNIhYMc4sUcE_ZMoMNDZcpwvxdSxg-0IZavUG-g19krq03NYqlaql295nlfW--6jXR88IHRIyQkt79Rrf0JrVosdtKKs4VUtJdlFK8IIr6g4a_bQfkoPhBDeNvIl2qtb2gomyQp9_xR8MEuGhMOAJ50t-Jzwk833WI9LyDFM99ZgpzNE7XAyDmJINmFn_VfocQ74C3jA45yLHHzCvU2T0wvWriiFuLu8_fntxxnDae4MODc7HddQjrab18or9GLQLsHr7T1An9-9vbv4UF3dvP94cX5VGSaZqHgjesElMx3TvJODGPqOAa9b3jBBBW-JbKXsOKVEdsBob0zdDAMAIVoPQrIDdLzJnWJ4nCFlNdq0_pH2EOakqBC05aT09R9o3TRCiLot6NEWnbsRejVFO-q4qOeOC3C6AUwpLkUYlLGbrnLU1ilK1HpFVVZUv1csxps_jOfQv7Hb9CfrYPk3qK7PrzfGL6IWrms |
CitedBy_id | crossref_primary_10_1186_s40035_024_00419_8 crossref_primary_10_3389_fnmol_2017_00119 crossref_primary_10_3389_fnmol_2020_00078 crossref_primary_10_1016_j_jneumeth_2021_109281 crossref_primary_10_3390_biomedicines9070717 crossref_primary_10_1016_j_nbd_2020_104815 crossref_primary_10_1093_brain_awz078 crossref_primary_10_1007_s10517_019_04595_w crossref_primary_10_1038_s41582_024_01046_7 crossref_primary_10_4103_1673_5374_282257 crossref_primary_10_1080_21678421_2021_1909065 crossref_primary_10_1007_s00415_018_8897_5 crossref_primary_10_1080_21678421_2022_2120683 crossref_primary_10_1186_s12974_022_02421_1 crossref_primary_10_3390_ijms23126829 crossref_primary_10_1007_s00415_020_09704_8 crossref_primary_10_1016_j_jns_2018_01_035 crossref_primary_10_3390_ijms231911881 crossref_primary_10_1136_bmjopen_2018_028486 crossref_primary_10_1038_s41598_021_81599_5 crossref_primary_10_3390_cells11020209 crossref_primary_10_1080_21678421_2019_1672749 crossref_primary_10_3389_fneur_2020_00279 crossref_primary_10_1093_brain_awad410 crossref_primary_10_3389_fneur_2022_841394 |
Cites_doi | 10.1242/jcs.038950 10.1212/WNL.0b013e31822e563c 10.1016/j.neurobiolaging.2011.10.006 10.1007/s00401-011-0937-5 10.1126/science.1194637 10.1093/hmg/ddq050 10.1002/ana.21147 10.2741/2727 10.2196/mhealth.2706 10.1007/s00401-011-0919-7 10.3389/fncel.2013.00045 10.1523/JNEUROSCI.4988-09.2010 10.1038/ng.132 10.1371/journal.pone.0035050 10.1097/nen.0b013e31803020b9 10.1016/S1474-4422(08)70071-1 10.1038/emboj.2010.143 10.1093/brain/awr365 10.1007/s00401-011-0913-0 10.1016/j.jneuroim.2004.10.009 10.1126/science.1134108 10.1007/s00401-013-1237-z 10.1016/j.neulet.2009.04.031 10.1155/2014/525097 10.1038/nm1066 10.1097/NEN.0b013e3181919cb5 10.1111/j.1440-1789.2008.00999.x 10.1074/jbc.M900992200 10.1111/j.1440-1789.2011.01286.x 10.1093/brain/114.2.775 10.1083/jcb.200908115 10.1016/j.febslet.2008.05.024 10.1016/j.neurobiolaging.2011.06.009 10.1371/journal.pone.0035818 10.1007/s00401-013-1149-y 10.1016/j.jneuroim.2009.02.012 10.1016/j.neuron.2010.11.036 10.1523/JNEUROSCI.5894-09.2010 10.1172/JCI62636 10.1016/j.neurobiolaging.2015.02.009 10.3109/17482960802566824 10.1016/j.neuron.2014.02.040 10.1001/archneur.65.5.636 10.1038/nm1113 10.1007/s00401-007-0206-9 10.1126/science.1166066 10.1007/s00401-011-0907-y 10.1038/nn.3584 10.1212/WNL.0b013e31823a0cfc 10.1016/j.neuron.2011.09.010 10.1126/science.1123511 10.1016/j.bbrc.2006.10.093 10.1111/j.1440-1789.2009.01091.x 10.1186/s40478-014-0181-z 10.1073/pnas.0900688106 10.1111/febs.12087 10.1016/j.neulet.2008.01.060 10.1038/nrn3121 10.1074/jbc.M809462200 10.1016/j.nbd.2014.12.010 10.1212/WNL.0b013e3182343365 10.1093/hmg/ddq137 10.1016/j.it.2009.09.003 10.1017/S1740925X04000043 10.1016/j.neulet.2007.03.066 10.1038/cddis.2012.115 10.1007/s00401-011-0911-2 10.1126/science.1232927 10.1016/j.neuron.2011.09.011 10.1136/jnnp.2007.131334 10.1002/ana.21543 10.1016/j.tins.2011.05.002 10.1111/j.1750-3639.2009.00284.x 10.1096/fj.10-174482 10.1016/S1474-4422(10)70195-2 10.1007/s00401-010-0786-7 10.1093/brain/awq111 10.3389/fphys.2013.00356 10.1111/j.1365-2990.2010.01060.x 10.1186/1742-2094-7-8 10.1007/s00401-011-0932-x 10.1126/science.1165942 |
ContentType | Journal Article |
Copyright | 2016 British Neuropathological Society 2016 British Neuropathological Society. |
Copyright_xml | – notice: 2016 British Neuropathological Society – notice: 2016 British Neuropathological Society. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK |
DOI | 10.1111/nan.12328 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | Neurosciences Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1365-2990 |
EndPage | 153 |
ExternalDocumentID | 27178390 10_1111_nan_12328 NAN12328 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Associazione Piemontese per l'Assistenza alla SLA (APASLA), Torino – fundername: Italian Ministry of Health funderid: RF‐2010‐2309849 – fundername: European Community's Health Seventh Framework Programme funderid: FP7/2007–2013; 259867 – fundername: Agenzia Italiana per la Ricerca sulla SLA (ARISLA) – fundername: Joint Programme–Neurodegenerative Disease Research |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 123 1OB 1OC 29N 31~ 33P 36B 3SF 3UE 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AHMBA AIACR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA GSXLS H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 Q~Q R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WH7 WHWMO WIH WIJ WIK WOHZO WOW WQJ WVDHM WXI WXSBR XG1 YFH ZGI ZXP ZZTAW ~IA ~WT AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION AEUQT AFPWT CGR CUY CVF ECM EIF NPM WRC WUP 7X8 7TK |
ID | FETCH-LOGICAL-c3938-568d8593cb3a5b9f8fdb3e5275638185709799b51109be31dcc26ffee00aaf893 |
IEDL.DBID | DR2 |
ISSN | 0305-1846 1365-2990 |
IngestDate | Fri Sep 05 06:08:36 EDT 2025 Fri Sep 05 10:28:54 EDT 2025 Wed Feb 19 02:40:19 EST 2025 Tue Jul 01 02:24:14 EDT 2025 Thu Apr 24 23:07:04 EDT 2025 Thu Sep 25 07:34:51 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | monocytes gene mutations amyotrophic lateral sclerosis transactive response DNA-binding protein 43 subcellular localization |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 British Neuropathological Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3938-568d8593cb3a5b9f8fdb3e5275638185709799b51109be31dcc26ffee00aaf893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3966-8695 |
OpenAccessLink | http://hdl.handle.net/11380/1237946 |
PMID | 27178390 |
PQID | 1826688827 |
PQPubID | 23479 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_1881750846 proquest_miscellaneous_1826688827 pubmed_primary_27178390 crossref_citationtrail_10_1111_nan_12328 crossref_primary_10_1111_nan_12328 wiley_primary_10_1111_nan_12328_NAN12328 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2017 2017-02-00 2017-Feb 20170201 |
PublicationDateYYYYMMDD | 2017-02-01 |
PublicationDate_xml | – month: 02 year: 2017 text: February 2017 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Neuropathology and applied neurobiology |
PublicationTitleAlternate | Neuropathol Appl Neurobiol |
PublicationYear | 2017 |
References | 2007; 420 2015; 36 1991; 114 2013; 4 2012; 122 2013; 1 2012; 123 2010; 19 2013; 126 2008; 7 2008; 79 2004; 1 2013; 280 2013; 7 2012; 13 2008; 582 2014; 127 2010; 20 2009; 10 2010; 68 2012; 135 2010; 29 2011; 72 2008; 65 2007; 61 2008; 434 2009; 284 2014; 17 2011; 25 2007; 66 2010; 7 2010; 30 2009; 323 2011; 122 2010; 9 2011; 121 2010; 31 2009; 68 2009; 65 2010; 36 2015; 3 2014; 75C 2005; 159 2009; 210 2011; 77 2008; 13 2006; 351 2011; 32 2014; 2014 2011; 34 2006; 314 2008; 121 2012; 33 2014; 82 2012; 32 2006; 312 2009; 29 2009; 458 2004; 10 2007; 113 2012; 3 2013; 339 2009; 187 2010; 330 2010; 133 2008; 40 2012; 7 2009; 106 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 Mutihac R (e_1_2_8_32_1) 2014; 75 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 75C start-page: 64 year: 2014 end-page: 77 article-title: TARDBP pathogenic mutations increase cytoplasmic translocation of TDP‐43 and cause reduction of endoplasmic reticulum Ca signaling in motor neurons publication-title: Neurobiol Dis – volume: 582 start-page: 2252 year: 2008 end-page: 6 article-title: A90V TDP‐43 variant results in the aberrant localization of TDP‐43 in vitro publication-title: FEBS Lett – volume: 68 start-page: 857 year: 2010 end-page: 64 article-title: Exome sequencing reveals VCP mutations as a cause of familial ALS publication-title: Neuron – volume: 66 start-page: 152 year: 2007 end-page: 7 article-title: TDP‐43 in the ubiquitin pathology of frontotemporal dementia with VCP gene mutations publication-title: J Neuropathol Exp Neurol – volume: 82 start-page: 380 year: 2014 end-page: 97 article-title: Colony‐stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain publication-title: Neuron – volume: 61 start-page: 427 year: 2007 end-page: 34 article-title: Pathological TDP‐43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations publication-title: Ann Neurol – volume: 458 start-page: 70 year: 2009 end-page: 74 article-title: Mislocalization of TDP‐43 in the G93A mutant SOD1 transgenic mouse model of ALS publication-title: Neurosci Lett – volume: 30 start-page: 7729 year: 2010 end-page: 39 article-title: TDP‐43 mediates degeneration in a novel Drosophila model of disease caused by mutations in VCP/p97 publication-title: J Neurosci – volume: 34 start-page: 339 year: 2011 end-page: 48 article-title: TDP‐43 and FUS: a nuclear affair publication-title: Trends Neurosci – volume: 32 start-page: 2327 year: 2011 article-title: A patient carrying a homozygous p.A382T TARDBP missense mutation shows a syndrome including ALS, extrapyramidal symptoms, and FTD publication-title: Neurobiol Aging – volume: 121 start-page: 611 year: 2011 end-page: 22 article-title: Cytoplasmic accumulation of TDP‐43 in circulating lymphomonocytes of ALS patients with and without TARDBP mutations publication-title: Acta Neuropathol – volume: 17 start-page: 17 year: 2014 end-page: 23 article-title: State of play in amyotrophic lateral sclerosis genetics publication-title: Nat Neurosci – volume: 31 start-page: 7 year: 2010 end-page: 17 article-title: T cell‐microglial dialogue in Parkinson's disease and amyotrophic lateral sclerosis: are we listening? publication-title: Trends Immunol – volume: 10 start-page: S10 issue: Suppl. year: 2004 end-page: S17 article-title: Protein aggregation and neurodegenerative disease publication-title: Nat Med – volume: 323 start-page: 1205 year: 2009 end-page: 8 article-title: Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis publication-title: Science – volume: 113 start-page: 535 year: 2007 end-page: 42 article-title: TDP‐43 immunoreactivity in neuronal inclusions in familial amyotrophic lateral sclerosis with or without SOD1 gene mutation publication-title: Acta Neuropathol – volume: 106 start-page: 7607 year: 2009 end-page: 12 article-title: Aberrant cleavage of TDP‐43 enhances aggregation and cellular toxicity publication-title: Proc Natl Acad Sci U S A – volume: 29 start-page: 2841 year: 2010 end-page: 57 article-title: ALS‐associated fused in sarcoma (FUS) mutations disrupt Transportin‐mediated nuclear import publication-title: EMBO J – volume: 122 start-page: 3063 year: 2012 end-page: 87 article-title: Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS publication-title: J Clin Investig – volume: 420 start-page: 128 year: 2007 end-page: 32 article-title: Lack of TDP‐43 abnormalities in mutant SOD1 transgenic mice shows disparity with ALS publication-title: Neurosci Lett – volume: 30 start-page: 103 year: 2010 end-page: 12 article-title: Amyotrophic lateral sclerosis and frontotemporal lobar degeneration: a spectrum of TDP‐43 proteinopathies publication-title: Neuropathology – volume: 330 start-page: 841 year: 2010 end-page: 5 article-title: Fate mapping analysis reveals that adult microglia derive from primitive macrophages publication-title: Science – volume: 7 start-page: e35818 year: 2012 article-title: TDP‐43 identified from a genome wide RNAi screen for SOD1 regulators publication-title: PLoS ONE – volume: 126 start-page: 385 year: 2013 end-page: 99 article-title: Modeling key pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC‐derived human neurons publication-title: Acta Neuropathol – volume: 122 start-page: 691 year: 2011 end-page: 702 article-title: p62 positive, TDP‐43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72‐linked FTLD and MND/ALS publication-title: Acta Neuropathol – volume: 159 start-page: 215 year: 2005 end-page: 24 article-title: Evidence for systemic immune system alterations in sporadic amyotrophic lateral sclerosis (sALS) publication-title: J Neuroimmunol – volume: 123 start-page: 409 year: 2012 end-page: 17 article-title: Clinical and pathological features of amyotrophic lateral sclerosis caused by mutation in the C9ORF72 gene on chromosome 9p publication-title: Acta Neuropathol – volume: 7 start-page: 409 year: 2008 end-page: 16 article-title: TARDBP mutations in amyotrophic lateral sclerosis with TDP‐43 neuropathology: a genetic and histopathological analysis publication-title: Lancet Neurol – volume: 351 start-page: 602 year: 2006 end-page: 11 article-title: TDP‐43 is a component of ubiquitin‐positive tau‐negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis publication-title: Biochem Biophys Res Commun – volume: 65 start-page: 636 year: 2008 end-page: 41 article-title: Evidence of multisystem disorder in whole‐brain map of pathological TDP‐43 in amyotrophic lateral sclerosis publication-title: Arch Neurol – volume: 2014 start-page: 525097 year: 2014 article-title: Blood biomarkers for amyotrophic lateral sclerosis: myth or reality? publication-title: Biomed Res Int – volume: 4 start-page: 356 year: 2013 article-title: More than a bystander: the contributions of intrinsic skeletal muscle defects in motor neuron diseases publication-title: Front Physiol – volume: 32 start-page: 505 year: 2012 end-page: 14 article-title: An MND/ALS phenotype associated with C9orf72 repeat expansion: abundant p62‐positive, TDP‐43‐negative inclusions in cerebral cortex, hippocampus and cerebellum but without associated cognitive decline publication-title: Neuropathology – volume: 323 start-page: 1208 year: 2009 end-page: 11 article-title: Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6 publication-title: Science – volume: 121 start-page: 3778 year: 2008 end-page: 85 article-title: Structural determinants of the cellular localization and shuttling of TDP‐43 publication-title: J Cell Sci – volume: 3 start-page: 5 year: 2015 article-title: Early detection of structural abnormalities and cytoplasmic accumulation of TDP‐43 in tissue‐engineered skins derived from ALS patients publication-title: Acta Neuropathol Commun – volume: 284 start-page: 12384 year: 2009 end-page: 98 article-title: VCP mutations causing frontotemporal lobar degeneration disrupt localization of TDP‐43 and induce cell death publication-title: J Biol Chem – volume: 65 start-page: S3 issue: Suppl. 1 year: 2009 end-page: S9 article-title: Current hypotheses for the underlying biology of amyotrophic lateral sclerosis publication-title: Ann Neurol – volume: 114 start-page: 775 year: 1991 end-page: 88 article-title: Ubiquitin‐immunoreactive intraneuronal inclusions in amyotrophic lateral sclerosis. Morphology, distribution, and specificity publication-title: Brain – volume: 122 start-page: 657 year: 2011 end-page: 71 article-title: Molecular pathology and genetic advances in amyotrophic lateral sclerosis: an emerging molecular pathway and the significance of glial pathology publication-title: Acta Neuropathol – volume: 13 start-page: 867 year: 2008 end-page: 78 article-title: Multiple roles of TDP‐43 in gene expression, splicing regulation, and human disease publication-title: Front Biosci – volume: 77 start-page: 1636 year: 2011 end-page: 43 article-title: Conjoint pathologic cascades mediated by ALS/FTLD‐U linked RNA‐binding proteins TDP‐43 and FUS publication-title: Neurology – volume: 133 start-page: 1763 year: 2010 end-page: 71 article-title: Nuclear import impairment causes cytoplasmic trans‐activation response DNA‐binding protein accumulation and is associated with frontotemporal lobar degeneration publication-title: Brain – volume: 29 start-page: 689 year: 2009 end-page: 96 article-title: Sporadic amyotrophic lateral sclerosis: widespread multisystem degeneration with TDP‐43 pathology in a patient after long‐term survival on a respirator publication-title: Neuropathology – volume: 68 start-page: 37 year: 2009 end-page: 47 article-title: Nuclear TAR DNA binding protein 43 expression in spinal cord neurons correlates with the clinical course in amyotrophic lateral sclerosis publication-title: J Neuropathol Exp Neurol – volume: 79 start-page: 1186 year: 2008 end-page: 9 article-title: TDP‐43 accumulation in inclusion body myopathy muscle suggests a common pathogenic mechanism with frontotemporal dementia publication-title: J Neurol Neurosurg Psychiatry – volume: 13 start-page: 38 year: 2012 end-page: 50 article-title: Gains or losses: molecular mechanisms of TDP43‐mediated neurodegeneration publication-title: Nat Rev Neurosci – volume: 122 start-page: 673 year: 2011 end-page: 90 article-title: Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72 publication-title: Acta Neuropathol – volume: 7 start-page: e35050 year: 2012 article-title: Aberrant localization of FUS and TDP43 is associated with misfolding of SOD1 in amyotrophic lateral sclerosis publication-title: PLoS ONE – volume: 3 start-page: e374 year: 2012 article-title: Slow development of ALS‐like spinal cord pathology in mutant valosin‐containing protein gene knock‐in mice publication-title: Cell Death Dis – volume: 123 start-page: 395 year: 2012 end-page: 407 article-title: Microglial activation and TDP‐43 pathology correlate with executive dysfunction in amyotrophic lateral sclerosis publication-title: Acta Neuropathol – volume: 72 start-page: 245 year: 2011 end-page: 56 article-title: Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p‐linked FTD and ALS publication-title: Neuron – volume: 187 start-page: 875 year: 2009 end-page: 88 article-title: Valosin‐containing protein (VCP) is required for autophagy and is disrupted in VCP disease publication-title: J Cell Biol – volume: 9 start-page: 995 year: 2010 end-page: 1007 article-title: TDP‐43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia publication-title: Lancet Neurol – volume: 314 start-page: 130 year: 2006 end-page: 3 article-title: Ubiquitinated TDP‐43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis publication-title: Science – volume: 7 start-page: 45 year: 2013 article-title: Origin and differentiation of microglia publication-title: Front Cell Neurosci – volume: 1 start-page: e18 year: 2013 article-title: Development of a smartphone app for a genetics website: the amyotrophic lateral sclerosis online genetics database (ALSoD) publication-title: JMIR Mhealth Uhealth – volume: 20 start-page: 351 year: 2010 end-page: 60 article-title: TDP‐43 redistribution is an early event in sporadic amyotrophic lateral sclerosis publication-title: Brain Pathol – volume: 36 start-page: 97 year: 2010 end-page: 112 article-title: Review: transactive response DNA‐binding protein 43 (TDP‐43): mechanisms of neurodegeneration publication-title: Neuropathol Appl Neurobiol – volume: 284 start-page: 8516 year: 2009 end-page: 24 article-title: Expression of TDP‐43 C‐terminal fragments in vitro recapitulates pathological features of TDP‐43 proteinopathies publication-title: J Biol Chem – volume: 19 start-page: R46 year: 2010 end-page: 64 article-title: TDP‐43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration publication-title: Hum Mol Genet – volume: 77 start-page: 1102 year: 2011 end-page: 3 article-title: Novel p.Ile151Val mutation in VCP in a patient of African American descent with sporadic ALS publication-title: Neurology – volume: 210 start-page: 73 year: 2009 end-page: 79 article-title: Immune system alterations in sporadic amyotrophic lateral sclerosis patients suggest an ongoing neuroinflammatory process publication-title: J Neuroimmunol – volume: 434 start-page: 170 year: 2008 end-page: 4 article-title: Epitope mapping of 2E2‐D3, a monoclonal antibody directed against human TDP‐43 publication-title: Neurosci Lett – volume: 72 start-page: 257 year: 2011 end-page: 68 article-title: A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21‐linked ALS‐FTD publication-title: Neuron – volume: 122 start-page: 653 year: 2011 end-page: 5 article-title: C9ORF72, the new gene on the block, causes C9FTD/ALS: new insights provided by neuropathology publication-title: Acta Neuropathol – volume: 33 start-page: 837 year: 2012 article-title: VCP mutations in familial and sporadic amyotrophic lateral sclerosis publication-title: Neurobiol Aging – volume: 127 start-page: 359 year: 2014 end-page: 76 article-title: Mechanisms of toxicity in C9FTLD/ALS publication-title: Acta Neuropathol – volume: 339 start-page: 1335 year: 2013 end-page: 8 article-title: The C9orf72 GGGGCC repeat is translated into aggregating dipeptide‐repeat proteins in FTLD/ALS publication-title: Science – volume: 10 start-page: 1055 year: 2004 end-page: 63 article-title: Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs publication-title: Nat Med – volume: 30 start-page: 639 year: 2010 end-page: 49 article-title: Cytoplasmic mislocalization of TDP‐43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis publication-title: J Neurosci – volume: 10 start-page: 310 year: 2009 end-page: 23 article-title: Prognostic factors in ALS: a critical review publication-title: Amyotroph Lateral Scler – volume: 312 start-page: 1389 year: 2006 end-page: 92 article-title: Onset and progression in inherited ALS determined by motor neurons and microglia publication-title: Science – volume: 7 start-page: 8 year: 2010 article-title: Progressive changes in microglia and macrophages in spinal cord and peripheral nerve in the transgenic rat model of amyotrophic lateral sclerosis publication-title: J Neuroinflammation – volume: 77 start-page: 1993 year: 2011 end-page: 5 article-title: An autopsy case of SOD1‐related ALS with TDP‐43 positive inclusions publication-title: Neurology – volume: 25 start-page: 2344 year: 2011 end-page: 53 article-title: Aggregation of the 35‐kDa fragment of TDP‐43 causes formation of cytoplasmic inclusions and alteration of RNA processing publication-title: FASEB J – volume: 40 start-page: 572 year: 2008 end-page: 4 article-title: TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis publication-title: Nat Genet – volume: 19 start-page: 1741 year: 2010 end-page: 55 article-title: Transgenic mice expressing mutant forms VCP/p97 recapitulate the full spectrum of IBMPFD including degeneration in muscle, brain and bone publication-title: Hum Mol Genet – volume: 280 start-page: 4315 year: 2013 end-page: 22 article-title: Understanding ALS: new therapeutic approaches publication-title: FEBS J – volume: 135 start-page: 751 year: 2012 end-page: 64 article-title: Clinico‐pathological features in amyotrophic lateral sclerosis with expansions in C9ORF72 publication-title: Brain – volume: 1 start-page: 13 year: 2004 end-page: 21 article-title: Glial cell inclusions and the pathogenesis of neurodegenerative diseases publication-title: Neuron Glia Biol – volume: 36 start-page: 2005 year: 2015 article-title: Primary fibroblasts cultures reveal TDP‐43 abnormalities in amyotrophic lateral sclerosis patients with and without SOD1 mutations publication-title: Neurobiol Aging – ident: e_1_2_8_21_1 doi: 10.1242/jcs.038950 – ident: e_1_2_8_44_1 doi: 10.1212/WNL.0b013e31822e563c – ident: e_1_2_8_45_1 doi: 10.1016/j.neurobiolaging.2011.10.006 – ident: e_1_2_8_69_1 doi: 10.1007/s00401-011-0937-5 – ident: e_1_2_8_78_1 doi: 10.1126/science.1194637 – ident: e_1_2_8_46_1 doi: 10.1093/hmg/ddq050 – ident: e_1_2_8_24_1 doi: 10.1002/ana.21147 – ident: e_1_2_8_22_1 doi: 10.2741/2727 – ident: e_1_2_8_4_1 doi: 10.2196/mhealth.2706 – ident: e_1_2_8_70_1 doi: 10.1007/s00401-011-0919-7 – ident: e_1_2_8_79_1 doi: 10.3389/fncel.2013.00045 – ident: e_1_2_8_29_1 doi: 10.1523/JNEUROSCI.4988-09.2010 – ident: e_1_2_8_31_1 doi: 10.1038/ng.132 – ident: e_1_2_8_62_1 doi: 10.1371/journal.pone.0035050 – ident: e_1_2_8_43_1 doi: 10.1097/nen.0b013e31803020b9 – ident: e_1_2_8_33_1 doi: 10.1016/S1474-4422(08)70071-1 – ident: e_1_2_8_55_1 doi: 10.1038/emboj.2010.143 – ident: e_1_2_8_67_1 doi: 10.1093/brain/awr365 – ident: e_1_2_8_50_1 doi: 10.1007/s00401-011-0913-0 – ident: e_1_2_8_76_1 doi: 10.1016/j.jneuroim.2004.10.009 – ident: e_1_2_8_25_1 doi: 10.1126/science.1134108 – ident: e_1_2_8_66_1 doi: 10.1007/s00401-013-1237-z – ident: e_1_2_8_61_1 doi: 10.1016/j.neulet.2009.04.031 – ident: e_1_2_8_14_1 doi: 10.1155/2014/525097 – ident: e_1_2_8_20_1 doi: 10.1038/nm1066 – ident: e_1_2_8_60_1 doi: 10.1097/NEN.0b013e3181919cb5 – ident: e_1_2_8_80_1 doi: 10.1111/j.1440-1789.2008.00999.x – ident: e_1_2_8_42_1 doi: 10.1074/jbc.M900992200 – ident: e_1_2_8_71_1 doi: 10.1111/j.1440-1789.2011.01286.x – ident: e_1_2_8_17_1 doi: 10.1093/brain/114.2.775 – ident: e_1_2_8_47_1 doi: 10.1083/jcb.200908115 – ident: e_1_2_8_34_1 doi: 10.1016/j.febslet.2008.05.024 – ident: e_1_2_8_39_1 doi: 10.1016/j.neurobiolaging.2011.06.009 – ident: e_1_2_8_64_1 doi: 10.1371/journal.pone.0035818 – ident: e_1_2_8_73_1 doi: 10.1007/s00401-013-1149-y – ident: e_1_2_8_13_1 doi: 10.1016/j.jneuroim.2009.02.012 – ident: e_1_2_8_36_1 doi: 10.1016/j.neuron.2010.11.036 – ident: e_1_2_8_48_1 doi: 10.1523/JNEUROSCI.5894-09.2010 – ident: e_1_2_8_75_1 doi: 10.1172/JCI62636 – ident: e_1_2_8_63_1 doi: 10.1016/j.neurobiolaging.2015.02.009 – ident: e_1_2_8_2_1 doi: 10.3109/17482960802566824 – ident: e_1_2_8_77_1 doi: 10.1016/j.neuron.2014.02.040 – ident: e_1_2_8_7_1 doi: 10.1001/archneur.65.5.636 – ident: e_1_2_8_19_1 doi: 10.1038/nm1113 – ident: e_1_2_8_57_1 doi: 10.1007/s00401-007-0206-9 – ident: e_1_2_8_52_1 doi: 10.1126/science.1166066 – ident: e_1_2_8_68_1 doi: 10.1007/s00401-011-0907-y – ident: e_1_2_8_3_1 doi: 10.1038/nn.3584 – ident: e_1_2_8_58_1 doi: 10.1212/WNL.0b013e31823a0cfc – ident: e_1_2_8_65_1 doi: 10.1016/j.neuron.2011.09.010 – ident: e_1_2_8_15_1 doi: 10.1126/science.1123511 – ident: e_1_2_8_23_1 doi: 10.1016/j.bbrc.2006.10.093 – ident: e_1_2_8_30_1 doi: 10.1111/j.1440-1789.2009.01091.x – ident: e_1_2_8_74_1 doi: 10.1186/s40478-014-0181-z – ident: e_1_2_8_83_1 doi: 10.1073/pnas.0900688106 – ident: e_1_2_8_8_1 doi: 10.1111/febs.12087 – ident: e_1_2_8_40_1 doi: 10.1016/j.neulet.2008.01.060 – ident: e_1_2_8_27_1 doi: 10.1038/nrn3121 – ident: e_1_2_8_82_1 doi: 10.1074/jbc.M809462200 – volume: 75 start-page: 64 year: 2014 ident: e_1_2_8_32_1 article-title: TARDBP pathogenic mutations increase cytoplasmic translocation of TDP‐43 and cause reduction of endoplasmic reticulum Ca signaling in motor neurons publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2014.12.010 – ident: e_1_2_8_51_1 doi: 10.1212/WNL.0b013e3182343365 – ident: e_1_2_8_5_1 doi: 10.1093/hmg/ddq137 – ident: e_1_2_8_10_1 doi: 10.1016/j.it.2009.09.003 – ident: e_1_2_8_18_1 doi: 10.1017/S1740925X04000043 – ident: e_1_2_8_59_1 doi: 10.1016/j.neulet.2007.03.066 – ident: e_1_2_8_49_1 doi: 10.1038/cddis.2012.115 – ident: e_1_2_8_37_1 doi: 10.1007/s00401-011-0911-2 – ident: e_1_2_8_72_1 doi: 10.1126/science.1232927 – ident: e_1_2_8_38_1 doi: 10.1016/j.neuron.2011.09.011 – ident: e_1_2_8_41_1 doi: 10.1136/jnnp.2007.131334 – ident: e_1_2_8_9_1 doi: 10.1002/ana.21543 – ident: e_1_2_8_26_1 doi: 10.1016/j.tins.2011.05.002 – ident: e_1_2_8_28_1 doi: 10.1111/j.1750-3639.2009.00284.x – ident: e_1_2_8_81_1 doi: 10.1096/fj.10-174482 – ident: e_1_2_8_6_1 doi: 10.1016/S1474-4422(10)70195-2 – ident: e_1_2_8_35_1 doi: 10.1007/s00401-010-0786-7 – ident: e_1_2_8_56_1 doi: 10.1093/brain/awq111 – ident: e_1_2_8_16_1 doi: 10.3389/fphys.2013.00356 – ident: e_1_2_8_54_1 doi: 10.1111/j.1365-2990.2010.01060.x – ident: e_1_2_8_12_1 doi: 10.1186/1742-2094-7-8 – ident: e_1_2_8_11_1 doi: 10.1007/s00401-011-0932-x – ident: e_1_2_8_53_1 doi: 10.1126/science.1165942 |
SSID | ssj0005769 |
Score | 2.29283 |
Snippet | Aims
Cytoplasmic accumulation of the nuclear protein transactive response DNA‐binding protein 43 (TDP‐43) is an early determinant of motor neuron degeneration... Cytoplasmic accumulation of the nuclear protein transactive response DNA-binding protein 43 (TDP-43) is an early determinant of motor neuron degeneration in... Aims Cytoplasmic accumulation of the nuclear protein transactive response DNA-binding protein 43 (TDP-43) is an early determinant of motor neuron degeneration... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 133 |
SubjectTerms | Adult Aged amyotrophic lateral sclerosis Amyotrophic Lateral Sclerosis - genetics Amyotrophic Lateral Sclerosis - metabolism DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Female gene mutations Humans Male Middle Aged monocytes Monocytes - metabolism Mutation transactive response DNA‐binding protein 43 subcellular localization |
Title | Monocytes of patients with amyotrophic lateral sclerosis linked to gene mutations display altered TDP‐43 subcellular distribution |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnan.12328 https://www.ncbi.nlm.nih.gov/pubmed/27178390 https://www.proquest.com/docview/1826688827 https://www.proquest.com/docview/1881750846 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZLDqWXpk2bZts0qCGHXrx4bUu2ySkkXZZClhA2kEPA6EmXbOwltg_bU6F_oL-xvyQz8qNJ-qD0ZsNYluQZ-RvNzCdCDmQ4tjEX0otSEXuR1cxLg1jDrS9soGOduELh0xmfXkSfLtnlgBx2tTANP0S_4YaW4dZrNHAhy3tGnot8hHgAC33HIUfe_JPzn9RRgKPTJoLAPPBieMsqhFk8_ZMP_0W_AMyHeNX9cCab5KrrapNncj2qKzlSXx6xOP7nWJ6TZy0QpUeN5rwgA5NvkSenbaj9JfkG1l6oNSBRWlja0q-WFPdtqbhZF9Vtsfq8UHQpsIZ5SUtoBUa5KCnGhI2mVUFBOQ29qZtof0n1olwtxZq6CD1IzE_Ofnz9HoW0rCUGEDAjFoX6Q7hekYvJx_nx1GtPbPBUmMLKyXiikUBNyVAwmdrEahkahhTzDhnEPkYRJUOaU2nCsVYq4NYa4_tCWIBO22QjL3KzQygDX9AEWitoKMJlgwO0s-BtxrEUgqdD8qH7dplq6czxVI1l1rk1MKmZm9Qh2e9FVw2Hx--E3ncKkIGF4ahFboq6zNAD4wl4IvHfZBLAYT7o2ZC8brSnf1UAHjPAUB967HTgz33IZkczd_Hm30XfkqcBIg2XSL5LNqrb2rwDnFTJPWcQdzzlEL4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVoJeoOXVLZQaxIFLVmnekbhU0GqB7gqhrdQLivwUK7bJqkkOy6kSf4Df2F_SGefRlpcQt0SaOLYz43zjz_4M8FL4eyaOuHCClMdOYFTopF6s8NblxlOxSuxG4fEkGh0H70_CkxV43e2FafQh-gk3igw7XlOA04T0tSjPeT4kQJDcgjXLzxEk-nQlHoVIOm04hNDBPCZqdYVoHU__6M2_0S8Q8yZitb-cw3vwuatss9Lk67CuxFB--0nH8X9bswF3WyzK9hvn2YQVnd-H2-OWbX8A3zHgC7lEMMoKw1oF1pLR1C3jp8uiOisWX2aSzTltY56zEkvBZs5KRrSwVqwqGPqnZqd1Q_iXTM3KxZwvmSXp0WL69uPF-Y_AZ2UtiEOgRbFk1J_D9RCODw-mb0ZOe2iDI_0UB88wShRpqEnh81CkJjFK-DoklXkLDmKXiEQRktKp0P6ektKLjNHadTk3iJ4ewWpe5HoLWIjpoPaUklhQQCNHhOjOYMIZx4LzKB3Aq-7jZbJVNKeDNeZZl9lgp2a2UwfwojddNDIevzN63nlAhkFGrea5LuoyoyQsSjAZif9mkyAUc9HRBvC4cZ_-VR4mzYhEXayxdYI_1yGb7E_sxfa_m-7CndF0fJQdvZt8eALrHgEPu678KaxWZ7XeQdhUiWc2Oi4BN1YU3A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlVcoLzK0hYM4sAlqzQPJxGnqmVVKF1VqJV6QIr8FCu2yapJDssJqX-A38gvYcZ5QHkJ9ZZIY8d2ZuxvPOPPAC9kuGMTLqQXZSLxIqtjLwsSja--sIFOdOoOCh9N-cFp9PYsPluBV_1ZmJYfYthwI8tw8zUZ-ELbn4y8EMWY8EB6A25GHJdJQkTvf3BHIZDO2hBC7KEbwztaIUrjGYpeXYx-Q5hXAatbcSZ34EPf1jbR5NO4qeVYff6FxvGanVmH2x0SZbut6tyFFVPcg7WjLtZ-Hy7R3Eu1RCjKSss6_tWK0cYtE-fLsr4oFx9nis0FHWKeswprwV7OKkZBYaNZXTLUTsPOmzbcXzE9qxZzsWQuRI8SJ_vH3758jUJWNZIiCJQSS0LDLVwP4HTy-mTvwOuubPBUmOHUGfNUE4OakqGIZWZTq2VoYuKYd9Ag8SmMKGPiOZUm3NFKBdxaY3xfCIvY6SGsFmVhHgGL0Rk0gdYKK4po3uCI7Sy6m0kiheDZCF72_y5XHZ85Xasxz3u_Bgc1d4M6gueD6KIl8fiT0LNeAXI0Meq1KEzZVDm5YDxFVyT5l0yKQMxHPRvBRqs9w6cCdJkRh_rYYqcDf29DPt2duofH_y_6FNaO9yf5uzfTw024FRDqcEnlW7BaXzRmGzFTLZ842_gO80YTiw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monocytes+of+patients+with+amyotrophic+lateral+sclerosis+linked+to+gene+mutations+display+altered+TDP-43+subcellular+distribution&rft.jtitle=Neuropathology+and+applied+neurobiology&rft.au=De+Marco%2C+G&rft.au=Lomartire%2C+A&rft.au=Calvo%2C+A&rft.au=Risso%2C+A&rft.date=2017-02-01&rft.issn=0305-1846&rft.eissn=1365-2990&rft.volume=43&rft.issue=2&rft.spage=133&rft.epage=153&rft_id=info:doi/10.1111%2Fnan.12328&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1846&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1846&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1846&client=summon |