Comparison of Myocardial Blood Flow Quantification Models for Double ECG Gating Arterial Spin Labeling MRI: Reproducibility Assessment

Background Arterial spin labeling (ASL) allows non‐invasive quantification of myocardial blood flow (MBF). Double‐ECG gating (DG) ASL is more robust to heart rate variability than single‐ECG gating (SG), but its reproducibility requires further investigation. Moreover, the existence of multiple quan...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 60; no. 4; pp. 1577 - 1588
Main Authors Aramendía‐Vidaurreta, Verónica, Solís‐Barquero, Sergio M., Vidorreta, Marta, Ezponda, Ana, Echeverria‐Chasco, Rebeca, Bastarrika, Gorka, Fernández‐Seara, María A.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.10.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1053-1807
1522-2586
1522-2586
DOI10.1002/jmri.29220

Cover

Abstract Background Arterial spin labeling (ASL) allows non‐invasive quantification of myocardial blood flow (MBF). Double‐ECG gating (DG) ASL is more robust to heart rate variability than single‐ECG gating (SG), but its reproducibility requires further investigation. Moreover, the existence of multiple quantification models hinders its application. Frequency‐offset‐corrected‐inversion (FOCI) pulses provide sharper edge profiles than hyperbolic‐secant (HS), which could benefit myocardial ASL. Purpose To assess the performance of MBF quantification models for DG compared to SG ASL, to evaluate their reproducibility and to compare the effects of HS and FOCI pulses. Study Type Prospective. Subjects Sixteen subjects (27 ± 8 years). Field Strength/Sequence 1.5 T/DG and SG flow‐sensitive alternating inversion recovery ASL. Assessment Three models for DG MBF quantification were compared using Monte Carlo simulations and in vivo experiments. Two models used a fitting approach (one using only a single label and control image pair per fit, the other using all available image pairs), while the third model used a T1 correction approach. Slice profile simulations were conducted for HS and FOCI pulses with varying B0 and B1. Temporal signal‐to‐noise ratio (tSNR) was computed for different acquisition/quantification strategies and inversion pulses. The number of images that minimized MBF error was investigated in the model with highest tSNR. Intra and intersession reproducibility were assessed in 10 subjects. Statistical Tests Within‐subject coefficient of variation, analysis of variance. P‐value <0.05 was considered significant. Results MBF was not different across acquisition/quantification strategies (P = 0.27) nor pulses (P = 0.9). DG MBF quantification models exhibited significantly higher tSNR and superior reproducibility, particularly for the fitting model using multiple images (tSNR was 3.46 ± 2.18 in vivo and 3.32 ± 1.16 in simulations, respectively; wsCV = 16%). Reducing the number of ASL pairs to 13/15 did not increase MBF error (minimum = 0.22 mL/g/min). Data Conclusion Reproducibility of MBF was better for DG than SG acquisitions, especially when employing a fitting model. Level of Evidence 2 Technical Efficacy Stage 1
AbstractList BackgroundArterial spin labeling (ASL) allows non‐invasive quantification of myocardial blood flow (MBF). Double‐ECG gating (DG) ASL is more robust to heart rate variability than single‐ECG gating (SG), but its reproducibility requires further investigation. Moreover, the existence of multiple quantification models hinders its application. Frequency‐offset‐corrected‐inversion (FOCI) pulses provide sharper edge profiles than hyperbolic‐secant (HS), which could benefit myocardial ASL.PurposeTo assess the performance of MBF quantification models for DG compared to SG ASL, to evaluate their reproducibility and to compare the effects of HS and FOCI pulses.Study TypeProspective.SubjectsSixteen subjects (27 ± 8 years).Field Strength/Sequence1.5 T/DG and SG flow‐sensitive alternating inversion recovery ASL.AssessmentThree models for DG MBF quantification were compared using Monte Carlo simulations and in vivo experiments. Two models used a fitting approach (one using only a single label and control image pair per fit, the other using all available image pairs), while the third model used a T1 correction approach. Slice profile simulations were conducted for HS and FOCI pulses with varying B0 and B1. Temporal signal‐to‐noise ratio (tSNR) was computed for different acquisition/quantification strategies and inversion pulses. The number of images that minimized MBF error was investigated in the model with highest tSNR. Intra and intersession reproducibility were assessed in 10 subjects.Statistical TestsWithin‐subject coefficient of variation, analysis of variance. P‐value <0.05 was considered significant.ResultsMBF was not different across acquisition/quantification strategies (P = 0.27) nor pulses (P = 0.9). DG MBF quantification models exhibited significantly higher tSNR and superior reproducibility, particularly for the fitting model using multiple images (tSNR was 3.46 ± 2.18 in vivo and 3.32 ± 1.16 in simulations, respectively; wsCV = 16%). Reducing the number of ASL pairs to 13/15 did not increase MBF error (minimum = 0.22 mL/g/min).Data ConclusionReproducibility of MBF was better for DG than SG acquisitions, especially when employing a fitting model.Level of Evidence2Technical EfficacyStage 1
Background Arterial spin labeling (ASL) allows non‐invasive quantification of myocardial blood flow (MBF). Double‐ECG gating (DG) ASL is more robust to heart rate variability than single‐ECG gating (SG), but its reproducibility requires further investigation. Moreover, the existence of multiple quantification models hinders its application. Frequency‐offset‐corrected‐inversion (FOCI) pulses provide sharper edge profiles than hyperbolic‐secant (HS), which could benefit myocardial ASL. Purpose To assess the performance of MBF quantification models for DG compared to SG ASL, to evaluate their reproducibility and to compare the effects of HS and FOCI pulses. Study Type Prospective. Subjects Sixteen subjects (27 ± 8 years). Field Strength/Sequence 1.5 T/DG and SG flow‐sensitive alternating inversion recovery ASL. Assessment Three models for DG MBF quantification were compared using Monte Carlo simulations and in vivo experiments. Two models used a fitting approach (one using only a single label and control image pair per fit, the other using all available image pairs), while the third model used a T1 correction approach. Slice profile simulations were conducted for HS and FOCI pulses with varying B0 and B1. Temporal signal‐to‐noise ratio (tSNR) was computed for different acquisition/quantification strategies and inversion pulses. The number of images that minimized MBF error was investigated in the model with highest tSNR. Intra and intersession reproducibility were assessed in 10 subjects. Statistical Tests Within‐subject coefficient of variation, analysis of variance. P‐value <0.05 was considered significant. Results MBF was not different across acquisition/quantification strategies (P = 0.27) nor pulses (P = 0.9). DG MBF quantification models exhibited significantly higher tSNR and superior reproducibility, particularly for the fitting model using multiple images (tSNR was 3.46 ± 2.18 in vivo and 3.32 ± 1.16 in simulations, respectively; wsCV = 16%). Reducing the number of ASL pairs to 13/15 did not increase MBF error (minimum = 0.22 mL/g/min). Data Conclusion Reproducibility of MBF was better for DG than SG acquisitions, especially when employing a fitting model. Level of Evidence 2 Technical Efficacy Stage 1
Arterial spin labeling (ASL) allows non-invasive quantification of myocardial blood flow (MBF). Double-ECG gating (DG) ASL is more robust to heart rate variability than single-ECG gating (SG), but its reproducibility requires further investigation. Moreover, the existence of multiple quantification models hinders its application. Frequency-offset-corrected-inversion (FOCI) pulses provide sharper edge profiles than hyperbolic-secant (HS), which could benefit myocardial ASL.BACKGROUNDArterial spin labeling (ASL) allows non-invasive quantification of myocardial blood flow (MBF). Double-ECG gating (DG) ASL is more robust to heart rate variability than single-ECG gating (SG), but its reproducibility requires further investigation. Moreover, the existence of multiple quantification models hinders its application. Frequency-offset-corrected-inversion (FOCI) pulses provide sharper edge profiles than hyperbolic-secant (HS), which could benefit myocardial ASL.To assess the performance of MBF quantification models for DG compared to SG ASL, to evaluate their reproducibility and to compare the effects of HS and FOCI pulses.PURPOSETo assess the performance of MBF quantification models for DG compared to SG ASL, to evaluate their reproducibility and to compare the effects of HS and FOCI pulses.Prospective.STUDY TYPEProspective.Sixteen subjects (27 ± 8 years).SUBJECTSSixteen subjects (27 ± 8 years).1.5 T/DG and SG flow-sensitive alternating inversion recovery ASL.FIELD STRENGTH/SEQUENCE1.5 T/DG and SG flow-sensitive alternating inversion recovery ASL.Three models for DG MBF quantification were compared using Monte Carlo simulations and in vivo experiments. Two models used a fitting approach (one using only a single label and control image pair per fit, the other using all available image pairs), while the third model used a T1 correction approach. Slice profile simulations were conducted for HS and FOCI pulses with varying B0 and B1. Temporal signal-to-noise ratio (tSNR) was computed for different acquisition/quantification strategies and inversion pulses. The number of images that minimized MBF error was investigated in the model with highest tSNR. Intra and intersession reproducibility were assessed in 10 subjects.ASSESSMENTThree models for DG MBF quantification were compared using Monte Carlo simulations and in vivo experiments. Two models used a fitting approach (one using only a single label and control image pair per fit, the other using all available image pairs), while the third model used a T1 correction approach. Slice profile simulations were conducted for HS and FOCI pulses with varying B0 and B1. Temporal signal-to-noise ratio (tSNR) was computed for different acquisition/quantification strategies and inversion pulses. The number of images that minimized MBF error was investigated in the model with highest tSNR. Intra and intersession reproducibility were assessed in 10 subjects.Within-subject coefficient of variation, analysis of variance. P-value <0.05 was considered significant.STATISTICAL TESTSWithin-subject coefficient of variation, analysis of variance. P-value <0.05 was considered significant.MBF was not different across acquisition/quantification strategies (P = 0.27) nor pulses (P = 0.9). DG MBF quantification models exhibited significantly higher tSNR and superior reproducibility, particularly for the fitting model using multiple images (tSNR was 3.46 ± 2.18 in vivo and 3.32 ± 1.16 in simulations, respectively; wsCV = 16%). Reducing the number of ASL pairs to 13/15 did not increase MBF error (minimum = 0.22 mL/g/min).RESULTSMBF was not different across acquisition/quantification strategies (P = 0.27) nor pulses (P = 0.9). DG MBF quantification models exhibited significantly higher tSNR and superior reproducibility, particularly for the fitting model using multiple images (tSNR was 3.46 ± 2.18 in vivo and 3.32 ± 1.16 in simulations, respectively; wsCV = 16%). Reducing the number of ASL pairs to 13/15 did not increase MBF error (minimum = 0.22 mL/g/min).Reproducibility of MBF was better for DG than SG acquisitions, especially when employing a fitting model.DATA CONCLUSIONReproducibility of MBF was better for DG than SG acquisitions, especially when employing a fitting model.2 TECHNICAL EFFICACY: Stage 1.LEVEL OF EVIDENCE2 TECHNICAL EFFICACY: Stage 1.
Arterial spin labeling (ASL) allows non-invasive quantification of myocardial blood flow (MBF). Double-ECG gating (DG) ASL is more robust to heart rate variability than single-ECG gating (SG), but its reproducibility requires further investigation. Moreover, the existence of multiple quantification models hinders its application. Frequency-offset-corrected-inversion (FOCI) pulses provide sharper edge profiles than hyperbolic-secant (HS), which could benefit myocardial ASL. To assess the performance of MBF quantification models for DG compared to SG ASL, to evaluate their reproducibility and to compare the effects of HS and FOCI pulses. Prospective. Sixteen subjects (27 ± 8 years). 1.5 T/DG and SG flow-sensitive alternating inversion recovery ASL. Three models for DG MBF quantification were compared using Monte Carlo simulations and in vivo experiments. Two models used a fitting approach (one using only a single label and control image pair per fit, the other using all available image pairs), while the third model used a T1 correction approach. Slice profile simulations were conducted for HS and FOCI pulses with varying B0 and B1. Temporal signal-to-noise ratio (tSNR) was computed for different acquisition/quantification strategies and inversion pulses. The number of images that minimized MBF error was investigated in the model with highest tSNR. Intra and intersession reproducibility were assessed in 10 subjects. Within-subject coefficient of variation, analysis of variance. P-value <0.05 was considered significant. MBF was not different across acquisition/quantification strategies (P = 0.27) nor pulses (P = 0.9). DG MBF quantification models exhibited significantly higher tSNR and superior reproducibility, particularly for the fitting model using multiple images (tSNR was 3.46 ± 2.18 in vivo and 3.32 ± 1.16 in simulations, respectively; wsCV = 16%). Reducing the number of ASL pairs to 13/15 did not increase MBF error (minimum = 0.22 mL/g/min). Reproducibility of MBF was better for DG than SG acquisitions, especially when employing a fitting model. 2 TECHNICAL EFFICACY: Stage 1.
Author Bastarrika, Gorka
Solís‐Barquero, Sergio M.
Aramendía‐Vidaurreta, Verónica
Ezponda, Ana
Vidorreta, Marta
Echeverria‐Chasco, Rebeca
Fernández‐Seara, María A.
Author_xml – sequence: 1
  givenname: Verónica
  orcidid: 0000-0001-9834-2866
  surname: Aramendía‐Vidaurreta
  fullname: Aramendía‐Vidaurreta, Verónica
  organization: Instituto de Investigación Sanitaria de Navarra
– sequence: 2
  givenname: Sergio M.
  orcidid: 0000-0002-2513-0747
  surname: Solís‐Barquero
  fullname: Solís‐Barquero, Sergio M.
  organization: Instituto de Investigación Sanitaria de Navarra
– sequence: 3
  givenname: Marta
  surname: Vidorreta
  fullname: Vidorreta, Marta
  organization: Siemens Healthcare
– sequence: 4
  givenname: Ana
  surname: Ezponda
  fullname: Ezponda, Ana
  organization: Instituto de Investigación Sanitaria de Navarra
– sequence: 5
  givenname: Rebeca
  orcidid: 0000-0003-0199-2593
  surname: Echeverria‐Chasco
  fullname: Echeverria‐Chasco, Rebeca
  organization: Instituto de Investigación Sanitaria de Navarra
– sequence: 6
  givenname: Gorka
  surname: Bastarrika
  fullname: Bastarrika, Gorka
  organization: Instituto de Investigación Sanitaria de Navarra
– sequence: 7
  givenname: María A.
  orcidid: 0000-0001-8536-6295
  surname: Fernández‐Seara
  fullname: Fernández‐Seara, María A.
  email: mfseara@unav.es
  organization: Instituto de Investigación Sanitaria de Navarra
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38206090$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9q3DAQxkVJaP40lz5AEfRSCk5HkmVbvW23ySZll9KkPQvZkooW2dpINmFfIM8dbTa5hNLTDKPfNxq-7wQdDGEwCL0ncE4A6Jd1H905FZTCG3RMOKUF5U11kHvgrCAN1EfoJKU1AAhR8rfoiDUUKhBwjB7mod-o6FIYcLB4tQ2ditopj7_5EDS-9OEe_5rUMDrrOjW6zK2CNj5hGyL-HqbWG3wxX-BFfhz-4lkcTdzpbzduwEvVGr8br26uv-Ibs4lBT51rnXfjFs9SMin1ZhjfoUOrfDJnz_UU_bm8-D2_KpY_F9fz2bLomGBQcFFb1TWKEcoIY7XiqiwtZdDVVaOzGSXP1WplmsoaAiWDVoPmRLUl1w1np-jTfm8-5G4yaZS9S53xXg0mTElSQVhZVpUQGf34Cl2HKQ75Opm_bwgvBdSZ-vBMTW1vtNxE16u4lS8OZwD2QBdDStFY2bnxyccxKuclAbkLUe5ClE8hZsnnV5KXrf-EyR6-d95s_0PKHzmDveYRZxCsGQ
CitedBy_id crossref_primary_10_1002_jmri_29243
Cites_doi 10.1002/jmri.23889
10.1186/s12968-017-0355-5
10.1002/jmri.1880080610
10.1002/mrm.24793
10.1016/j.ejrad.2007.11.005
10.1002/mrm.26282
10.1002/mrm.22630
10.1053/j.ajkd.2020.07.012
10.1118/1.598163
10.1016/j.jcmg.2011.06.023
10.1186/s12968-018-0462-y
10.1002/nbm.4077
10.1002/mrm.1910400622
10.1186/s12968-020-00607-1
10.1002/jmri.21383
10.1016/j.jmpt.2007.04.001
10.1002/mrm.1910400308
10.1002/mrm.20461
10.1007/s12350-009-9156-z
10.1002/jmri.20054
10.1002/mrm.22088
10.3389/fpubh.2017.00258
10.1002/(SICI)1522-2594(199904)41:4<686::AID-MRM6>3.0.CO;2-9
10.1016/S0008-6363(01)00202-4
10.1002/jmri.27396
10.1161/CIRCEP.118.006273
10.1002/mrm.26388
10.1073/pnas.89.1.212
10.1002/nbm.4436
10.1002/(SICI)1522-2594(199903)41:3<510::AID-MRM13>3.0.CO;2-G
10.1016/j.jacc.2021.08.022
10.1002/mrm.25479
ContentType Journal Article
Copyright 2024 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2024 The Authors. Journal of Magnetic Resonance Imaging published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2024 The Authors. Journal of Magnetic Resonance Imaging published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
DOI 10.1002/jmri.29220
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (WRLC)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 1588
ExternalDocumentID 38206090
10_1002_jmri_29220
JMRI29220
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: Siemens Healthcare Spain
– fundername: Spanish Ministry of Science and Innovation
  funderid: PI21/00578
– fundername: Spanish Ministry of Science and Innovation
  grantid: PI21/00578
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c3930-597fac8a31231337a5a44f230c768d1004568dfdae86fe10430bd0d51ab45d853
IEDL.DBID DR2
ISSN 1053-1807
1522-2586
IngestDate Fri Jul 11 14:29:47 EDT 2025
Fri Jul 25 11:56:52 EDT 2025
Mon Jul 21 05:39:13 EDT 2025
Tue Jul 01 03:57:02 EDT 2025
Thu Apr 24 23:09:56 EDT 2025
Wed Jan 22 17:12:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords myocardial perfusion
quantification model
adiabatic inversion pulses
reproducibility
arterial spin labeling
Language English
License Attribution-NonCommercial-NoDerivs
2024 The Authors. Journal of Magnetic Resonance Imaging published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3930-597fac8a31231337a5a44f230c768d1004568dfdae86fe10430bd0d51ab45d853
Notes Gorka Bastarrika and María A. Fernández‐Seara are joint last authors.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8536-6295
0000-0001-9834-2866
0000-0002-2513-0747
0000-0003-0199-2593
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.29220
PMID 38206090
PQID 3128154907
PQPubID 1006400
PageCount 12
ParticipantIDs proquest_miscellaneous_2913446699
proquest_journals_3128154907
pubmed_primary_38206090
crossref_citationtrail_10_1002_jmri_29220
crossref_primary_10_1002_jmri_29220
wiley_primary_10_1002_jmri_29220_JMRI29220
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
2024-Oct
20241001
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Nashville
PublicationSubtitle JMRI
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J Magn Reson Imaging
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 5
2004; 20
2001; 50
2009; 62
1997; 43
2010; 17
2019; 32
2015; 74
1997
1999; 41
2022; 87
2007; 30
2011; 4
1998; 40
2018; 20
1998; 25
2016; 77
2010; 64
2013; 37
2021; 53
2021; 78
2021; 34
2021; 77
2023; 89
2015; 64
2008; 27
2017; 78
2005; 53
2017; 19
2008; 65
2020; 22
2018; 11
1992; 89
2014; 71
1998; 8
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
Aramendía‐Vidaurreta V (e_1_2_8_28_1) 2022; 87
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
Jones R (e_1_2_8_29_1) 1997
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Taso M (e_1_2_8_11_1) 2023; 89
Buchanan CE (e_1_2_8_33_1) 2015; 64
Barth M (e_1_2_8_24_1) 1997; 43
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_30_1
References_xml – volume: 41
  start-page: 686
  year: 1999
  end-page: 695
  article-title: Changes in myocardial oxygenation and perfusion under pharmacological stress with dipyridamole: Assessment using T*2 and T1 measurements
  publication-title: Magn Reson Med
– volume: 4
  start-page: 1253
  year: 2011
  end-page: 1261
  article-title: Arterial spin labeled CMR detects clinically relevant increase in myocardial blood flow with vasodilation
  publication-title: JACC Cardiovasc Imaging
– volume: 62
  start-page: 975
  year: 2009
  end-page: 983
  article-title: Assessment of myocardial blood flow (MBF) in humans using arterial spin labeling (ASL): Feasibility and noise analysis
  publication-title: Magn Reson Med.
– volume: 71
  start-page: 1428
  year: 2014
  end-page: 1434
  article-title: Adiabatic inversion pulses for myocardial T1 mapping
  publication-title: Magn Reson Med
– volume: 74
  start-page: 990
  year: 2015
  end-page: 998
  article-title: Myocardial perfusion assessment in humans using steady‐pulsed arterial spin labeling
  publication-title: Magn Reson Med.
– volume: 8
  start-page: 1240
  year: 1998
  end-page: 1245
  article-title: In vivo quantitative mapping of cardiac perfusion in rats using a noninvasive MR spin‐labeling method
  publication-title: J Magn Reson Imaging
– volume: 17
  start-page: 27
  year: 2010
  end-page: 37
  article-title: Direct comparison of rest and adenosine stress myocardial perfusion CT with rest and stress SPECT
  publication-title: J Nucl Cardiol
– volume: 40
  start-page: 938
  year: 1998
  end-page: 943
  article-title: Perfusion imaging using FOCI RF pulses
  publication-title: Magn Reson Med.
– volume: 20
  start-page: 1
  year: 2018
  end-page: 12
  article-title: Fully automated, inline quantification of myocardial blood flow with cardiovascular magnetic resonance: Repeatability of measurements in healthy subjects
  publication-title: J Cardiovasc Magn Reson
– volume: 22
  start-page: 1
  year: 2020
  end-page: 18
  article-title: Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update
  publication-title: J Cardiovasc Magn Reson
– volume: 50
  start-page: 151
  year: 2001
  end-page: 161
  article-title: Heterogeneity of resting and hyperemic myocardial blood flow in healthy humans
  publication-title: Cardiovasc Res
– volume: 41
  start-page: 510
  year: 1999
  end-page: 519
  article-title: Measurement of human myocardial perfusion by double‐gated flow alternating inversion recovery EPI
  publication-title: Magn Reson Med
– volume: 78
  start-page: 541
  year: 2017
  end-page: 549
  article-title: A look‐locker acquisition scheme for quantitative myocardial perfusion imaging with FAIR arterial spin labeling in humans at 3 Tesla
  publication-title: Magn Reson Med
– volume: 78
  start-page: 1655
  year: 2021
  end-page: 1668
  article-title: Stress cardiac magnetic resonance myocardial perfusion imaging: JACC review topic of the week
  publication-title: J Am Coll Cardiol
– volume: 43
  start-page: 783
  year: 1997
  end-page: 791
  article-title: Proton NMR relaxation times of human blood samples at 1.5 T and implications for functional MRI
  publication-title: Cell Mol Biol.
– volume: 53
  start-page: 1135
  year: 2005
  end-page: 1142
  article-title: Accurate myocardial T1 measurements: Toward quantification of myocardial blood flow with arterial spin labeling
  publication-title: Magn Reson Med
– volume: 87
  start-page: 1261
  year: 2022
  end-page: 1275
  article-title: Reduction of motion effects in myocardial arterial spin labeling
  publication-title: Magn Reson Imaging
– volume: 89
  start-page: 212
  year: 1992
  end-page: 216
  article-title: Magnetic resonance imaging of perfusion using spin inversion of arterial water
  publication-title: Proc Natl Acad Sci
– volume: 11
  start-page: 1
  year: 2018
  end-page: 9
  article-title: Frequency of cardiac rhythm abnormalities in a half million adults
  publication-title: Circ Arrhythmia Electrophysiol
– volume: 65
  start-page: 29
  year: 2008
  end-page: 35
  article-title: Artifacts in 3‐T MRI: Physical background and reduction strategies
  publication-title: Eur J Radiol
– volume: 25
  start-page: 73
  year: 1998
  end-page: 84
  article-title: Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution
  publication-title: Med Phys
– volume: 64
  start-page: 2015
  year: 2015
  article-title: Measuring myocardial blood flow using modified look locker inversion (MOLLI) recovery arterial spin labelling (ASL)
  publication-title: Proc Intl Soc Mag Reson Med
– volume: 37
  start-page: 865
  year: 2013
  end-page: 874
  article-title: Reproducibility of first‐pass cardiovascular magnetic resonance myocardial perfusion
  publication-title: J Magn Reson Imaging
– volume: 77
  start-page: 517
  year: 2021
  end-page: 528
  article-title: Risks and options with gadolinium‐based contrast agents in patients with CKD: A review
  publication-title: Am J Kidney Dis
– volume: 40
  start-page: 383
  year: 1998
  end-page: 396
  article-title: A general kinetic model for quantitative perfusion imaging with arterial spin labeling
  publication-title: Magn Reson Med
– volume: 27
  start-page: 1271
  year: 2008
  end-page: 1277
  article-title: Estimation of absolute myocardial blood flow during first‐pass MR perfusion imaging using a dual‐bolus injection technique: Comparison to single‐bolus injection method
  publication-title: J Magn Reson Imaging
– volume: 30
  start-page: 374
  year: 2007
  end-page: 379
  article-title: Effect of age and sex on heart rate variability in healthy subjects
  publication-title: J Manipulative Physiol Ther
– volume: 5
  start-page: 1
  year: 2017
  end-page: 17
  article-title: An overview of heart rate variability metrics and norms
  publication-title: Front Public Health
– volume: 77
  start-page: 1975
  year: 2016
  end-page: 1980
  article-title: Double‐gated myocardial ASL perfusion imaging is robust to heart rate variation
  publication-title: Magn Reson Med
– volume: 89
  start-page: 1754
  year: 2023
  end-page: 1776
  article-title: Update on state‐of‐the‐art for arterial spin labeling (ASL) human perfusion imaging outside ofthe brain
  publication-title: Magn Reson Imaging
– volume: 32
  year: 2019
  article-title: Optimal repetition time for free breathing myocardial arterial spin labeling
  publication-title: NMR Biomed
– year: 1997
– volume: 19
  start-page: 1
  year: 2017
  end-page: 14
  article-title: Myocardial perfusion cardiovascular magnetic resonance: Optimized dual sequence and reconstruction for quantification
  publication-title: J Cardiovasc Magn Reson
– volume: 20
  start-page: 39
  year: 2004
  end-page: 45
  article-title: Accurate assessment of the arterial input function during high‐dose myocardial perfusion cardiovascular magnetic resonance
  publication-title: J Magn Reson Imaging
– volume: 53
  start-page: 777
  year: 2021
  end-page: 788
  article-title: Quantification of myocardial perfusion with vasodilation using arterial spin labeling at 1.5 T
  publication-title: J Magn Reson Imaging
– volume: 34
  year: 2021
  article-title: Myocardial arterial spin labeling in systole and diastole using flow‐sensitive alternating inversion recovery with parallel imaging and compressed sensing
  publication-title: NMR Biomed.
– volume: 64
  start-page: 1289
  year: 2010
  end-page: 1295
  article-title: Estimation of perfusion and arterial transit time in myocardium using free‐breathing myocardial arterial spin labeling with navigator‐echo
  publication-title: Magn Reson Med
– volume: 64
  start-page: 2015
  year: 2015
  ident: e_1_2_8_33_1
  article-title: Measuring myocardial blood flow using modified look locker inversion (MOLLI) recovery arterial spin labelling (ASL)
  publication-title: Proc Intl Soc Mag Reson Med
– ident: e_1_2_8_37_1
  doi: 10.1002/jmri.23889
– ident: e_1_2_8_6_1
  doi: 10.1186/s12968-017-0355-5
– ident: e_1_2_8_27_1
  doi: 10.1002/jmri.1880080610
– ident: e_1_2_8_38_1
  doi: 10.1002/mrm.24793
– ident: e_1_2_8_39_1
  doi: 10.1016/j.ejrad.2007.11.005
– ident: e_1_2_8_16_1
  doi: 10.1002/mrm.26282
– volume: 87
  start-page: 1261
  year: 2022
  ident: e_1_2_8_28_1
  article-title: Reduction of motion effects in myocardial arterial spin labeling
  publication-title: Magn Reson Imaging
– ident: e_1_2_8_35_1
  doi: 10.1002/mrm.22630
– ident: e_1_2_8_8_1
  doi: 10.1053/j.ajkd.2020.07.012
– volume: 89
  start-page: 1754
  year: 2023
  ident: e_1_2_8_11_1
  article-title: Update on state‐of‐the‐art for arterial spin labeling (ASL) human perfusion imaging outside ofthe brain
  publication-title: Magn Reson Imaging
– ident: e_1_2_8_7_1
  doi: 10.1118/1.598163
– ident: e_1_2_8_19_1
  doi: 10.1016/j.jcmg.2011.06.023
– ident: e_1_2_8_36_1
  doi: 10.1186/s12968-018-0462-y
– ident: e_1_2_8_20_1
  doi: 10.1002/nbm.4077
– ident: e_1_2_8_23_1
  doi: 10.1002/mrm.1910400622
– ident: e_1_2_8_3_1
  doi: 10.1186/s12968-020-00607-1
– ident: e_1_2_8_4_1
  doi: 10.1002/jmri.21383
– ident: e_1_2_8_12_1
  doi: 10.1016/j.jmpt.2007.04.001
– ident: e_1_2_8_25_1
  doi: 10.1002/mrm.1910400308
– ident: e_1_2_8_32_1
  doi: 10.1002/mrm.20461
– ident: e_1_2_8_15_1
  doi: 10.1007/s12350-009-9156-z
– ident: e_1_2_8_5_1
  doi: 10.1002/jmri.20054
– ident: e_1_2_8_21_1
  doi: 10.1002/mrm.22088
– ident: e_1_2_8_13_1
  doi: 10.3389/fpubh.2017.00258
– ident: e_1_2_8_26_1
  doi: 10.1002/(SICI)1522-2594(199904)41:4<686::AID-MRM6>3.0.CO;2-9
– volume-title: Clinical investigation and statistics in laboratory medicine
  year: 1997
  ident: e_1_2_8_29_1
– ident: e_1_2_8_31_1
  doi: 10.1016/S0008-6363(01)00202-4
– ident: e_1_2_8_18_1
  doi: 10.1002/jmri.27396
– ident: e_1_2_8_30_1
– ident: e_1_2_8_14_1
  doi: 10.1161/CIRCEP.118.006273
– ident: e_1_2_8_34_1
  doi: 10.1002/mrm.26388
– ident: e_1_2_8_9_1
  doi: 10.1073/pnas.89.1.212
– ident: e_1_2_8_17_1
  doi: 10.1002/nbm.4436
– volume: 43
  start-page: 783
  year: 1997
  ident: e_1_2_8_24_1
  article-title: Proton NMR relaxation times of human blood samples at 1.5 T and implications for functional MRI
  publication-title: Cell Mol Biol.
– ident: e_1_2_8_10_1
  doi: 10.1002/(SICI)1522-2594(199903)41:3<510::AID-MRM13>3.0.CO;2-G
– ident: e_1_2_8_2_1
  doi: 10.1016/j.jacc.2021.08.022
– ident: e_1_2_8_22_1
  doi: 10.1002/mrm.25479
SSID ssj0009945
Score 2.459372
Snippet Background Arterial spin labeling (ASL) allows non‐invasive quantification of myocardial blood flow (MBF). Double‐ECG gating (DG) ASL is more robust to heart...
Arterial spin labeling (ASL) allows non-invasive quantification of myocardial blood flow (MBF). Double-ECG gating (DG) ASL is more robust to heart rate...
BackgroundArterial spin labeling (ASL) allows non‐invasive quantification of myocardial blood flow (MBF). Double‐ECG gating (DG) ASL is more robust to heart...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1577
SubjectTerms adiabatic inversion pulses
arterial spin labeling
Blood flow
Coefficient of variation
Data acquisition
EKG
Error analysis
Error correction
Field strength
Gating
Heart rate
Image acquisition
Image processing
In vivo methods and tests
Labeling
Labels
Monte Carlo simulation
myocardial perfusion
Performance assessment
quantification model
Reproducibility
Simulation
Spin labeling
Statistical analysis
Statistical models
Statistical tests
Variance analysis
Title Comparison of Myocardial Blood Flow Quantification Models for Double ECG Gating Arterial Spin Labeling MRI: Reproducibility Assessment
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.29220
https://www.ncbi.nlm.nih.gov/pubmed/38206090
https://www.proquest.com/docview/3128154907
https://www.proquest.com/docview/2913446699
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1053-1807
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2586
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009945
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VHhAX3tD0JSO4gJRt4sRJjHopq25LxSIoVOoFRX4kUmmarbq7QuUH8LuZsbNZFRAS3CLFjmNnJvONZ_wNwAu0OXGutQgjI1SY0paVTmURKllHha1UzB3Fxvh9dniSHp2K0xXYXZyF8fwQ_YYbaYb7X5OCKz3dWZKGfr24OhtwyTk57HEiXIz2eMkdJaWrUIz4IQnjIsp7blK-s-x60xr9BjFvIlZnckb34MviZX2myflgPtMD8_0XHsf_nc19uNthUbbnhecBrFTtQ7g97qLtj-DHsC9SyCY1G1-j3SN5atgbSndno2byjX2cK59v5D4xo9pqzZQhFGaIzXVTsf3hATtQlF1NIzmBZ58uz1r2Tml3GJ6Nj9--ZugJOPJZn617zfZ6ytDHcDLa_zw8DLu6DaFJZBKF6KPUyhQqQauILnCuhErTGn0dg76NjR2KLGxtVVVkdRUT65i2kRWx0qmwiB-ewGo7aas1YIYLnptIRspm-Ihc5dJmFLrMpBG5TgN4ufh-pelIzam2RlN6OmZe0sKWbmEDeN63vfRUHn9stbkQg7JT52mZULwRPekoD-BZfxsVkaIrqq0m8yn2jhMKjksZwFMvPv0wCbHk4ywCeOWE4C_jl0e46O5q_V8ab8AdjnDLpxluwursal5tIVya6W24xdMP2045fgLwVhA1
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtQwEB2hIgEviHsDBQbBC0ihjuNczFtZdbstm4pLK_UtsuNEKgrZqtsV6g_w3cw4aVYVCIm3SHFixcfOnPGMzwC8IZsTZdYmoagSEyresrJK56HRjchdbSLpJTaKw3R2rA5OkpMhN4fPwvT6EOOGG68M_7_mBc4b0ttr1dDvP85P30stJXnsN1UqBU9qqT6vNXe1r1FMDCIOo1xkozqp3F4_e90e_UEyr3NWb3Sm9-DuwBZxp4f3Ptyouwdwqxji4Q_h12QsI4iLBotLskyMeIsfOSEdp-3iJ35ZmT4jyIOAXP2sXSKRVST2bNsadyd7uGc4_5l78lMSv52ddjg31h9Xx-Lr_gckru7lYft82kvcGUU9H8HxdPdoMguHygphFetYhORFNKbKTUx2i5zUzCRGqYa8kYq8Dxd5npe7xpk6T5s6Yl0w64RLImNV4sjCP4aNbtHVm4CVTGRWCS2MS-kVmcm0Szm4mOoqyawK4O3V-JbVIDvO1S_ashdMliVjUXosAng9tj3rxTb-2mrrCqZyWHDLMuaIIPm6Igvg1XiblgrHP0xXL1ZLejqKOXytdQBPenjHbmLWsaevCOCdx_sf_ZcHNOj-6un_NH4Jt2dHxbyc7x9-egZ3JJGjPilwCzYuzlf1cyI3F_aFn8K_AbXG8kU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5VrVTxwn2ktGAELyBlmzinK17K0u1Bt4JCpb5UkY9EagnZVXdXVfkB_G5m7GxWBYQEb5Fix7Ezk_nGM_4G4BXanDBTKvEDnUg_pi0rFYvcl6IKclPKkFuKjeFRuncSH5wmp0vwdn4WxvFDdBtupBn2f00KPjbV5oI09OLb5XmPC87RYV-JU3SvCBIdL8ijhLAlihFARH6YB1lHTso3F31vmqPfMOZNyGptzuAOnM3f1qWafO3Npqqnv_9C5Pi_07kLt1swyrad9NyDpbK5D6vDNtz-AH70uyqFbFSx4TUaPhKomr2jfHc2qEdX7NNMuoQj-40ZFVerJwyxMENwruqS7fR32a6k9GoayUo8-zw-b9ihVPY0PBse728xdAUs-6xL171m2x1n6EM4Gex86e_5beEGX0ciCnx0UiqpcxmhWUQfOJOJjOMKnR2Nzo0JLYzMTWVkmadVGRLtmDKBSUKp4sQggHgEy82oKZ8A0zzhmQ5EIE2Kj8hkJkxKsctU6CRTsQev59-v0C2rORXXqAvHx8wLWtjCLqwHL7u2Y8fl8cdW63MxKFp9nhQRBRzRlQ4yD150t1ETKbwim3I0m2DvMKLouBAePHbi0w0TEU0-zsKDN1YI_jJ-cYCLbq_W_qXxc1j9-H5QHO4ffXgKtzhCL5dyuA7L08tZuYHQaaqeWQ35CTTrEik
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Myocardial+Blood+Flow+Quantification+Models+for+Double+ECG+Gating+Arterial+Spin+Labeling+MRI%3A+Reproducibility+Assessment&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Aramend%C3%ADa-Vidaurreta%2C+Ver%C3%B3nica&rft.au=Sol%C3%ADs-Barquero%2C+Sergio+M&rft.au=Vidorreta%2C+Marta&rft.au=Ezponda%2C+Ana&rft.date=2024-10-01&rft.issn=1522-2586&rft.eissn=1522-2586&rft.volume=60&rft.issue=4&rft.spage=1577&rft_id=info:doi/10.1002%2Fjmri.29220&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon