User-Independent Recognition of Sports Activities From a Single Wrist-Worn Accelerometer: A Template-Matching-Based Approach
Goal: To investigate the accuracy of template matching for classifying sports activities using the acceleration signal recorded with a wearable sensor. Methods: A population of 29 normal weight and 19 overweight subjects was recruited to perform eight common sports activities, while body movement wa...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 63; no. 4; pp. 788 - 796 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.04.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9294 1558-2531 1558-2531 |
DOI | 10.1109/TBME.2015.2471094 |
Cover
Abstract | Goal: To investigate the accuracy of template matching for classifying sports activities using the acceleration signal recorded with a wearable sensor. Methods: A population of 29 normal weight and 19 overweight subjects was recruited to perform eight common sports activities, while body movement was measured using a triaxial accelerometer placed at the wrist. User- and axis-independent acceleration signal templates were automatically extracted to represent each activity category and recognize activity types. Five different similarity measures between example signals and templates were compared: Euclidean distance, dynamic time warping (DTW), derivative DTW, correlation and an innovative index, and combining distance and correlation metrics (Rce). Template-based activity recognition was compared to statistical-learning classifiers, such as Naive Bayes, decision tree, logistic regression (LR), and artificial neural network (ANN) trained using time- and frequency-domain signal features. Each algorithm was tested on data from a holdout group of 15 normal weight and 19 overweight subjects. Results: The Rce index outperformed other template-matching metrics by achieving recognition rate above 80% for the majority of the activities. Template matching showed robust classification accuracy when tested on unseen data and in case of limited training examples. LR and ANN achieved the highest overall recognition accuracy ~85% but showed to be more vulnerable to misclassification error than template matching on overweight subjects' data. Conclusion: Template matching can be used to classify sports activities using the wrist acceleration signal. Significance: Automatically extracted template prototypes from the acceleration signal may be used to enhance accuracy and generalization properties of statistical-learning classifiers. |
---|---|
AbstractList | Goal: To investigate the accuracy of template matching for classifying sports activities using the acceleration signal recorded with a wearable sensor. Methods: A population of 29 normal weight and 19 overweight subjects was recruited to perform eight common sports activities, while body movement was measured using a triaxial accelerometer placed at the wrist. User- and axis-independent acceleration signal templates were automatically extracted to represent each activity category and recognize activity types. Five different similarity measures between example signals and templates were compared: Euclidean distance, dynamic time warping (DTW), derivative DTW, correlation and an innovative index, and combining distance and correlation metrics (Rce). Template-based activity recognition was compared to statistical-learning classifiers, such as Naive Bayes, decision tree, logistic regression (LR), and artificial neural network (ANN) trained using time- and frequency-domain signal features. Each algorithm was tested on data from a holdout group of 15 normal weight and 19 overweight subjects. Results: The Rce index outperformed other template-matching metrics by achieving recognition rate above 80% for the majority of the activities. Template matching showed robust classification accuracy when tested on unseen data and in case of limited training examples. LR and ANN achieved the highest overall recognition accuracy ~85% but showed to be more vulnerable to misclassification error than template matching on overweight subjects' data. Conclusion: Template matching can be used to classify sports activities using the wrist acceleration signal. Significance: Automatically extracted template prototypes from the acceleration signal may be used to enhance accuracy and generalization properties of statistical-learning classifiers. GOALTo investigate the accuracy of template matching for classifying sports activities using the acceleration signal recorded with a wearable sensor.METHODSA population of 29 normal weight and 19 overweight subjects was recruited to perform eight common sports activities, while body movement was measured using a triaxial accelerometer placed at the wrist. User- and axis-independent acceleration signal templates were automatically extracted to represent each activity category and recognize activity types. Five different similarity measures between example signals and templates were compared: Euclidean distance, dynamic time warping (DTW), derivative DTW, correlation and an innovative index, and combining distance and correlation metrics ( Rce). Template-based activity recognition was compared to statistical-learning classifiers, such as Naïve Bayes, decision tree, logistic regression (LR), and artificial neural network (ANN) trained using time- and frequency-domain signal features. Each algorithm was tested on data from a holdout group of 15 normal weight and 19 overweight subjects.RESULTSThe Rce index outperformed other template-matching metrics by achieving recognition rate above 80% for the majority of the activities. Template matching showed robust classification accuracy when tested on unseen data and in case of limited training examples. LR and ANN achieved the highest overall recognition accuracy ∼ 85% but showed to be more vulnerable to misclassification error than template matching on overweight subjects' data.CONCLUSIONTemplate matching can be used to classify sports activities using the wrist acceleration signal.SIGNIFICANCEAutomatically extracted template prototypes from the acceleration signal may be used to enhance accuracy and generalization properties of statistical-learning classifiers. To investigate the accuracy of template matching for classifying sports activities using the acceleration signal recorded with a wearable sensor. A population of 29 normal weight and 19 overweight subjects was recruited to perform eight common sports activities, while body movement was measured using a triaxial accelerometer placed at the wrist. User- and axis-independent acceleration signal templates were automatically extracted to represent each activity category and recognize activity types. Five different similarity measures between example signals and templates were compared: Euclidean distance, dynamic time warping (DTW), derivative DTW, correlation and an innovative index, and combining distance and correlation metrics ( Rce). Template-based activity recognition was compared to statistical-learning classifiers, such as Naïve Bayes, decision tree, logistic regression (LR), and artificial neural network (ANN) trained using time- and frequency-domain signal features. Each algorithm was tested on data from a holdout group of 15 normal weight and 19 overweight subjects. The Rce index outperformed other template-matching metrics by achieving recognition rate above 80% for the majority of the activities. Template matching showed robust classification accuracy when tested on unseen data and in case of limited training examples. LR and ANN achieved the highest overall recognition accuracy ∼ 85% but showed to be more vulnerable to misclassification error than template matching on overweight subjects' data. Template matching can be used to classify sports activities using the wrist acceleration signal. Automatically extracted template prototypes from the acceleration signal may be used to enhance accuracy and generalization properties of statistical-learning classifiers. Goal : To investigate the accuracy of template matching for classifying sports activities using the acceleration signal recorded with a wearable sensor. Methods : A population of 29 normal weight and 19 overweight subjects was recruited to perform eight common sports activities, while body movement was measured using a triaxial accelerometer placed at the wrist. User- and axis-independent acceleration signal templates were automatically extracted to represent each activity category and recognize activity types. Five different similarity measures between example signals and templates were compared: Euclidean distance, dynamic time warping (DTW), derivative DTW, correlation and an innovative index, and combining distance and correlation metrics ( Rce ). Template-based activity recognition was compared to statistical-learning classifiers, such as Nïve Bayes, decision tree, logistic regression (LR), and artificial neural network (ANN) trained using time- and frequency-domain signal features. Each algorithm was tested on data from a holdout group of 15 normal weight and 19 overweight subjects. Results : The Rce index outperformed other template-matching metrics by achieving recognition rate above 80% for the majority of the activities. Template matching showed robust classification accuracy when tested on unseen data and in case of limited training examples. LR and ANN achieved the highest overall recognition accuracy [Formula Omitted] 85% but showed to be more vulnerable to misclassification error than template matching on overweight subjects' data. Conclusion : Template matching can be used to classify sports activities using the wrist acceleration signal. Significance : Automatically extracted template prototypes from the acceleration signal may be used to enhance accuracy and generalization properties of statistical-learning classifiers. |
Author | Sartor, Francesco Margarito, Jenny Bonomi, Alberto G. Bianchi, Anna M. Helaoui, Rim |
Author_xml | – sequence: 1 givenname: Jenny surname: Margarito fullname: Margarito, Jenny email: jenny.margarito@philips.com organization: Philips Research, Eindhoven, EC, The Netherlands – sequence: 2 givenname: Rim surname: Helaoui fullname: Helaoui, Rim organization: Philips Research – sequence: 3 givenname: Anna M. surname: Bianchi fullname: Bianchi, Anna M. organization: Politecnico di Milano – sequence: 4 givenname: Francesco surname: Sartor fullname: Sartor, Francesco organization: Philips Research – sequence: 5 givenname: Alberto G. surname: Bonomi fullname: Bonomi, Alberto G. organization: Philips Research |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26302509$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV9LHDEUxYNYdLV-gFIogb70Zbb5OzPp2yraCkqhu-LjkMnc1chMMiaZFqEfvll268MW-pKQm9_JPTn3BB067wChd5TMKSXq8-r89nLOCJVzJqpcEAdoRqWsCyY5PUQzQmhdKKbEMTqJ8SkfRS3KI3TMSk6YJGqGft9FCMW162CEvLiEf4DxD84m6x32a7wcfUgRL0yyP3MRIr4KfsAaL6176AHfBxtTce-Dy4yBHvItJAhf8AKvYBh7naC41ck8Zr441xE6vBjH4LV5fIverHUf4Wy3n6Ll1eXq4ltx8_3r9cXipjBcsVSsW6h52zHNyxKYULWRGpQqhWqBEyLLlhvCOGWtIJ1kLc2J1HVLVce1EfwUse2rkxv1yy_d980Y7KDDS0NJswmySe0AzSbIZhdkFn3airLT5wliagYb8_d67cBPsaFVVRLFqSAZ_biHPvkpuPyhTNWlUpJVMlMfdtSUm3WvFv6OIgN0C5jgYwyw_sflZtz7Lqs9jbFJb0aXgrb9f5Xvt0oLAK-dKpYdZ0d_AHUhtOQ |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1109_ACCESS_2018_2890675 crossref_primary_10_1109_TII_2017_2712746 crossref_primary_10_1109_ACCESS_2018_2839766 crossref_primary_10_1109_ACCESS_2020_3025938 crossref_primary_10_3390_s20071871 crossref_primary_10_1063_5_0194376 crossref_primary_10_1109_ACCESS_2020_2982225 crossref_primary_10_1109_JSEN_2016_2628346 crossref_primary_10_1109_JSEN_2021_3130761 crossref_primary_10_3390_electronics8111257 crossref_primary_10_1088_1361_6579_ad2c12 crossref_primary_10_1123_jmpb_2019_0012 crossref_primary_10_1007_s00521_018_3759_8 crossref_primary_10_1109_ACCESS_2024_3428309 crossref_primary_10_1155_2016_7128201 crossref_primary_10_1109_JSEN_2020_2985374 crossref_primary_10_1155_2021_7892902 crossref_primary_10_1109_ACCESS_2019_2933852 crossref_primary_10_1109_ACCESS_2019_2955545 crossref_primary_10_2196_17216 crossref_primary_10_1109_ACCESS_2023_3311261 crossref_primary_10_1109_TNSRE_2017_2705285 crossref_primary_10_1109_ACCESS_2020_2971579 crossref_primary_10_1109_JTEHM_2018_2829208 crossref_primary_10_1155_2017_1260734 crossref_primary_10_1109_ACCESS_2022_3174813 crossref_primary_10_1109_ACCESS_2024_3363437 crossref_primary_10_1155_2022_9446175 crossref_primary_10_1109_ACCESS_2020_3037715 crossref_primary_10_1109_JIOT_2023_3330372 |
Cites_doi | 10.1016/j.medengphy.2014.02.012 10.1096/fasebj.2.3.3350235 10.1249/MSS.0b013e31829736d6 10.1249/MSS.0b013e3181e5797d 10.1109/IEMBS.2007.4353446 10.1088/0967-3334/30/4/R01 10.1137/1.9781611972719.1 10.1109/TBME.2011.2160723 10.1007/s11036-010-0260-8 10.1002/9780470753866 10.1109/TITB.2007.899496 10.1016/j.compbiomed.2011.01.007 10.1109/TBCAS.2011.2160540 10.1016/j.patrec.2011.06.025 10.1002/9780470744055 10.1152/japplphysiol.00150.2009 10.1109/ISWC.2007.4373775 10.1109/JBHI.2014.2313039 10.1007/BF02348434 10.1109/TBME.2014.2307069 10.1007/s40279-013-0068-3 10.1016/j.clinph.2008.07.281 10.1007/978-3-642-34459-6 10.1109/ICSPCC.2013.6664038 10.1007/978-3-540-24646-6_1 10.1038/ijo.2011.99 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 ADTOC UNPAY |
DOI | 10.1109/TBME.2015.2471094 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Xplore CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 796 |
ExternalDocumentID | oai:re.public.polimi.it:11311/982893 4045933041 26302509 10_1109_TBME_2015_2471094 7217826 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: SWELL – fundername: COMMIT-NL |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 ADTOC UNPAY |
ID | FETCH-LOGICAL-c392t-fbe83bd2a366e2498c5ae99649be30056b3c02312b40d52b101588b19d3ac43 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Tue Aug 19 15:59:17 EDT 2025 Sat Sep 27 20:16:55 EDT 2025 Mon Jun 30 08:35:37 EDT 2025 Mon Jul 21 06:04:45 EDT 2025 Thu Apr 24 22:57:03 EDT 2025 Wed Oct 01 04:08:42 EDT 2025 Wed Aug 27 02:53:45 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | dynamic time warping template prototypes Activity classification overweight subjects |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html other-oa |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-fbe83bd2a366e2498c5ae99649be30056b3c02312b40d52b101588b19d3ac43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=http://hdl.handle.net/11311/982893 |
PMID | 26302509 |
PQID | 1786995275 |
PQPubID | 85474 |
PageCount | 9 |
ParticipantIDs | ieee_primary_7217826 crossref_citationtrail_10_1109_TBME_2015_2471094 pubmed_primary_26302509 crossref_primary_10_1109_TBME_2015_2471094 proquest_journals_1786995275 unpaywall_primary_10_1109_tbme_2015_2471094 proquest_miscellaneous_1776093140 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-04-01 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref30 ref11 ref32 ref10 ref2 ref1 ref17 guardabasso (ref26) 1988; 2 ref16 ref19 ref18 tou (ref25) 1974 avci (ref3) 0 jolliffe (ref31) 2005 ref20 ref22 ref21 deng (ref23) 0 zhang (ref24) 2011; 7 ref28 ref27 ref8 ref7 ref9 ref4 akay (ref29) 2012 ref6 ref5 |
References_xml | – start-page: 1 year: 0 ident: ref3 article-title: Activity recognition using inertial sensing for healthcare, wellbeing and sports applications: A survey publication-title: Proc 23rd Int Conf Archit Comput Syst – ident: ref4 doi: 10.1016/j.medengphy.2014.02.012 – volume: 2 start-page: 209 year: 1988 ident: ref26 article-title: A versatile method for simultaneous analysis of families of curves publication-title: FASEB J doi: 10.1096/fasebj.2.3.3350235 – ident: ref11 doi: 10.1249/MSS.0b013e31829736d6 – ident: ref14 doi: 10.1249/MSS.0b013e3181e5797d – start-page: 898 year: 0 ident: ref23 article-title: Structure-based and template-based automatic speech recognition-Comparing parametric and non-parametric approaches publication-title: Proc INTERSPEECH – year: 2012 ident: ref29 publication-title: Biomedical Signal Processing – ident: ref21 doi: 10.1109/IEMBS.2007.4353446 – ident: ref10 doi: 10.1088/0967-3334/30/4/R01 – ident: ref28 doi: 10.1137/1.9781611972719.1 – ident: ref16 doi: 10.1109/TBME.2011.2160723 – ident: ref1 doi: 10.1007/s11036-010-0260-8 – ident: ref27 doi: 10.1002/9780470753866 – ident: ref15 doi: 10.1109/TITB.2007.899496 – year: 2005 ident: ref31 publication-title: Principal Component Analysis – ident: ref18 doi: 10.1016/j.compbiomed.2011.01.007 – ident: ref5 doi: 10.1109/TBCAS.2011.2160540 – ident: ref32 doi: 10.1016/j.patrec.2011.06.025 – ident: ref22 doi: 10.1002/9780470744055 – year: 1974 ident: ref25 publication-title: Pattern Recognition Principles – volume: 7 start-page: 1155 year: 2011 ident: ref24 article-title: Gait modeling and identifying based on dynamic template matching publication-title: J Comput Inform Syst – ident: ref7 doi: 10.1152/japplphysiol.00150.2009 – ident: ref20 doi: 10.1109/ISWC.2007.4373775 – ident: ref6 doi: 10.1109/JBHI.2014.2313039 – ident: ref9 doi: 10.1007/BF02348434 – ident: ref13 doi: 10.1109/TBME.2014.2307069 – ident: ref17 doi: 10.1007/s40279-013-0068-3 – ident: ref30 doi: 10.1016/j.clinph.2008.07.281 – ident: ref12 doi: 10.1007/978-3-642-34459-6 – ident: ref19 doi: 10.1109/ICSPCC.2013.6664038 – ident: ref8 doi: 10.1007/978-3-540-24646-6_1 – ident: ref2 doi: 10.1038/ijo.2011.99 |
SSID | ssj0014846 |
Score | 2.509126 |
Snippet | Goal: To investigate the accuracy of template matching for classifying sports activities using the acceleration signal recorded with a wearable sensor.... To investigate the accuracy of template matching for classifying sports activities using the acceleration signal recorded with a wearable sensor. A population... Goal : To investigate the accuracy of template matching for classifying sports activities using the acceleration signal recorded with a wearable sensor.... GOALTo investigate the accuracy of template matching for classifying sports activities using the acceleration signal recorded with a wearable sensor.METHODSA... |
SourceID | unpaywall proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 788 |
SubjectTerms | Acceleration Accelerometers Accelerometry - methods Accuracy Activity classification Adult Correlation Dynamic Time Warping Female Humans Indexes Male Overweight subjects Pattern Recognition, Automated - methods Signal Processing, Computer-Assisted - instrumentation Sports - classification Sports - physiology Template prototypes Time series analysis Wrist Wrist - physiology Young Adult |
SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfGTQL2wMfGR2GgIPEE6q1NmrTlrZs2DaSbELsT46lK0vSF0p62niYQfzx226s2hibxWMWNUtmO7dr-GeBtmJgC7aD0YyOpJceVvpGB9mO8DHXigsAV1Ds8O1HHi-jTmTzbgPXUtb_gBUICg9lLKSoQd2BTURJpApuLk8_Zt_6KRW3l3bRDtIvIcpSoIXUZBuleixaFqrfklEdUcxhdMz7dNJV_OZZbcG9VL_XPS11VV4zN0UM4WLfs9DUm36er1kztr5sIjrd8xyN4MPiaLOuF4zFsuHobtq4gEG7D3dmQW9-B3wuURv_jOBa3ZV_WxUVNzZqSdQPRL1hmu4ETGGEz6k1hmp3iVpVjX-m-8C-b8xppLJozQkJAtn1gGZu7H8sK3Vo2w6uffnqxfTSfBcsGSPMncHp0OD849ofZDL5Fj6r1S-MSYQquhVIOQ7jESu0wdopS4wgBXxlhCVqOmygoJDeo-TJJTJgWQttIPIVJ3dTuOTCb8NJFiSjDkkelEjrg2saxLrksFdfag2DNstwOsOU0PaPKu_AlSPP5_uwwJy7nA5c9eDe-suwxO24j3iE5GAkxIkanSXmwu5aLfNDqixxXVJpKHksP3ozLqI-UZNG1a1ZEE6sgFRi3evCsl6dxb64EuZypB-9HAbtxQhLaayd88V_UL-E-Pqq-uGgXJu35yr1Cv6k1rwfF-QNsiQ5N priority: 102 providerName: Unpaywall |
Title | User-Independent Recognition of Sports Activities From a Single Wrist-Worn Accelerometer: A Template-Matching-Based Approach |
URI | https://ieeexplore.ieee.org/document/7217826 https://www.ncbi.nlm.nih.gov/pubmed/26302509 https://www.proquest.com/docview/1786995275 https://www.proquest.com/docview/1776093140 http://hdl.handle.net/11311/982893 |
UnpaywallVersion | submittedVersion |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2531 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014846 issn: 1558-2531 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1Nb9UwzNqGBOzAxzagMKYgcQL61qZN2nDr0J4GUifE3tPGqUrS9ELXPr21QiB-PE6_tMGEuFWKE7myHdvxF8BrP1Y56kHmRorZkhxTuIp50o3wMpSx8TyT29rh9JSfLMNPF-xiA95NtTDGmC75zMzsZxfLz2vd2qeyQ_RWUKHxTdiMItHXak0RgzDui3I8HwWYinCIYPqeOFwcpcc2iYvNaGhTD-0sHsoDq_3FDXXUzVe5zdTchntttZI_vsuyvKZ-5g8hHRHvs06-zdpGzfTPP3o6_u-fPYIHgx1Kkp5xHsOGqXZg-1p3wh24mw5x9134tUROdT9OI3Mb8mVMPKorUhekG5Z-RRLdDaNA75vM1_UlkeQMjyoNObd3iXteryuE0ajqbJcEJOl7kpCFuVyVaPK6KaoF-yDmHqFqzUkytDvfg7P58eLDiTvMbXA1WluNWygTByqnMuDcoHsXayYN-lWhUMZ2x-cq0LbtHFWhlzOq8FZgcax8kQdSh8ET2KrqyjwDomNamDAOCr-gYcED6VGpo0gWlBWcSumANxIv00NLcztZo8w618YTmSV9ZkmfDaR34M20ZdX38_gX8K4l1QQ4UMmB_ZFDskHirzJc4UIwGjEHXk3LKKs2ACMrU7cWJuKeCNCndeBpz1nT2SNDOvB2YrW_MGxwyw0Mn9-O4Qu4j1C8zzDah61m3ZqXaDw16qCTmgO4szz9nHz9DVeGEzc |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbtQwcFSKROmBRwttoICROEG9TZzYSbhtUVdbaHqgW7W3yHacC2my2iZCID6ecV5qoULcInlsTTQznhnPC-CdF6kM9SCnoeK2JMfkVHFX0hAvQxkZ1zWZrR1OTsX8PPh8yS_XYH-shTHGtMlnZmI_21h-VunGPpUdoLeCCk3cg_scvYqwq9YaYwZB1JXluB6KMIuDPobpufHB4jA5smlcfMICm3xop_Ew4Vv9H99SSO2ElbuMzU3YaMql_PFdFsUNBTR7DMmAepd38m3S1Gqif_7R1fF__-0JPOotUTLtWOcprJlyCzZv9CfcggdJH3nfhl_nyKv0eByaW5OvQ-pRVZIqJ-249Gsy1e04CvS_yWxVXRFJzvCowpALe5vQi2pVIoxGZWf7JCBRP5IpWZirZYFGL01QMdgnMXqIyjUj077h-TM4mx0tPs1pP7mBarS3aporE_kqY9IXwqCDF2kuDXpWQayM7Y8vlK9t4zmmAjfjTOG9wKNIeXHmSx34z2G9rEqzC0RHLDdB5OdezoJc-NJlUoehzBnPBZPSAXcgXqr7puZ2tkaRts6NG6eW9KklfdqT3oH345Zl19HjX8DbllQjYE8lB_YGDkl7mb9OcUXEMWchd-DtuIzSakMwsjRVY2FC4cY-erUO7HScNZ49MKQDH0ZW-wvDGrfcwvDF3Ri-gY35IjlJT45Pv7yEh7hDdPlGe7BerxrzCk2pWr1uJeg3RJwU2A |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfGTQL2wMfGR2GgIPEE6q1NmrTlrZs2DaSbELsT46lK0vSF0p62niYQfzx226s2hibxWMWNUtmO7dr-GeBtmJgC7aD0YyOpJceVvpGB9mO8DHXigsAV1Ds8O1HHi-jTmTzbgPXUtb_gBUICg9lLKSoQd2BTURJpApuLk8_Zt_6KRW3l3bRDtIvIcpSoIXUZBuleixaFqrfklEdUcxhdMz7dNJV_OZZbcG9VL_XPS11VV4zN0UM4WLfs9DUm36er1kztr5sIjrd8xyN4MPiaLOuF4zFsuHobtq4gEG7D3dmQW9-B3wuURv_jOBa3ZV_WxUVNzZqSdQPRL1hmu4ETGGEz6k1hmp3iVpVjX-m-8C-b8xppLJozQkJAtn1gGZu7H8sK3Vo2w6uffnqxfTSfBcsGSPMncHp0OD849ofZDL5Fj6r1S-MSYQquhVIOQ7jESu0wdopS4wgBXxlhCVqOmygoJDeo-TJJTJgWQttIPIVJ3dTuOTCb8NJFiSjDkkelEjrg2saxLrksFdfag2DNstwOsOU0PaPKu_AlSPP5_uwwJy7nA5c9eDe-suwxO24j3iE5GAkxIkanSXmwu5aLfNDqixxXVJpKHksP3ozLqI-UZNG1a1ZEE6sgFRi3evCsl6dxb64EuZypB-9HAbtxQhLaayd88V_UL-E-Pqq-uGgXJu35yr1Cv6k1rwfF-QNsiQ5N |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=User-Independent+Recognition+of+Sports+Activities+from+a+Single+Wrist-worn+Accelerometer%3A+A+Template+Matching+Based+Approach&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Margarito%2C+Jenny&rft.au=Helaoui%2C+Rim&rft.au=Bianchi%2C+Anna&rft.au=Sartor%2C+Francesco&rft.date=2016-04-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTBME.2015.2471094&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBME_2015_2471094 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |