User-Independent Recognition of Sports Activities From a Single Wrist-Worn Accelerometer: A Template-Matching-Based Approach

Goal: To investigate the accuracy of template matching for classifying sports activities using the acceleration signal recorded with a wearable sensor. Methods: A population of 29 normal weight and 19 overweight subjects was recruited to perform eight common sports activities, while body movement wa...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 63; no. 4; pp. 788 - 796
Main Authors Margarito, Jenny, Helaoui, Rim, Bianchi, Anna M., Sartor, Francesco, Bonomi, Alberto G.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2015.2471094

Cover

Abstract Goal: To investigate the accuracy of template matching for classifying sports activities using the acceleration signal recorded with a wearable sensor. Methods: A population of 29 normal weight and 19 overweight subjects was recruited to perform eight common sports activities, while body movement was measured using a triaxial accelerometer placed at the wrist. User- and axis-independent acceleration signal templates were automatically extracted to represent each activity category and recognize activity types. Five different similarity measures between example signals and templates were compared: Euclidean distance, dynamic time warping (DTW), derivative DTW, correlation and an innovative index, and combining distance and correlation metrics (Rce). Template-based activity recognition was compared to statistical-learning classifiers, such as Naive Bayes, decision tree, logistic regression (LR), and artificial neural network (ANN) trained using time- and frequency-domain signal features. Each algorithm was tested on data from a holdout group of 15 normal weight and 19 overweight subjects. Results: The Rce index outperformed other template-matching metrics by achieving recognition rate above 80% for the majority of the activities. Template matching showed robust classification accuracy when tested on unseen data and in case of limited training examples. LR and ANN achieved the highest overall recognition accuracy ~85% but showed to be more vulnerable to misclassification error than template matching on overweight subjects' data. Conclusion: Template matching can be used to classify sports activities using the wrist acceleration signal. Significance: Automatically extracted template prototypes from the acceleration signal may be used to enhance accuracy and generalization properties of statistical-learning classifiers.
AbstractList Goal: To investigate the accuracy of template matching for classifying sports activities using the acceleration signal recorded with a wearable sensor. Methods: A population of 29 normal weight and 19 overweight subjects was recruited to perform eight common sports activities, while body movement was measured using a triaxial accelerometer placed at the wrist. User- and axis-independent acceleration signal templates were automatically extracted to represent each activity category and recognize activity types. Five different similarity measures between example signals and templates were compared: Euclidean distance, dynamic time warping (DTW), derivative DTW, correlation and an innovative index, and combining distance and correlation metrics (Rce). Template-based activity recognition was compared to statistical-learning classifiers, such as Naive Bayes, decision tree, logistic regression (LR), and artificial neural network (ANN) trained using time- and frequency-domain signal features. Each algorithm was tested on data from a holdout group of 15 normal weight and 19 overweight subjects. Results: The Rce index outperformed other template-matching metrics by achieving recognition rate above 80% for the majority of the activities. Template matching showed robust classification accuracy when tested on unseen data and in case of limited training examples. LR and ANN achieved the highest overall recognition accuracy ~85% but showed to be more vulnerable to misclassification error than template matching on overweight subjects' data. Conclusion: Template matching can be used to classify sports activities using the wrist acceleration signal. Significance: Automatically extracted template prototypes from the acceleration signal may be used to enhance accuracy and generalization properties of statistical-learning classifiers.
GOALTo investigate the accuracy of template matching for classifying sports activities using the acceleration signal recorded with a wearable sensor.METHODSA population of 29 normal weight and 19 overweight subjects was recruited to perform eight common sports activities, while body movement was measured using a triaxial accelerometer placed at the wrist. User- and axis-independent acceleration signal templates were automatically extracted to represent each activity category and recognize activity types. Five different similarity measures between example signals and templates were compared: Euclidean distance, dynamic time warping (DTW), derivative DTW, correlation and an innovative index, and combining distance and correlation metrics ( Rce). Template-based activity recognition was compared to statistical-learning classifiers, such as Naïve Bayes, decision tree, logistic regression (LR), and artificial neural network (ANN) trained using time- and frequency-domain signal features. Each algorithm was tested on data from a holdout group of 15 normal weight and 19 overweight subjects.RESULTSThe Rce index outperformed other template-matching metrics by achieving recognition rate above 80% for the majority of the activities. Template matching showed robust classification accuracy when tested on unseen data and in case of limited training examples. LR and ANN achieved the highest overall recognition accuracy ∼ 85% but showed to be more vulnerable to misclassification error than template matching on overweight subjects' data.CONCLUSIONTemplate matching can be used to classify sports activities using the wrist acceleration signal.SIGNIFICANCEAutomatically extracted template prototypes from the acceleration signal may be used to enhance accuracy and generalization properties of statistical-learning classifiers.
To investigate the accuracy of template matching for classifying sports activities using the acceleration signal recorded with a wearable sensor. A population of 29 normal weight and 19 overweight subjects was recruited to perform eight common sports activities, while body movement was measured using a triaxial accelerometer placed at the wrist. User- and axis-independent acceleration signal templates were automatically extracted to represent each activity category and recognize activity types. Five different similarity measures between example signals and templates were compared: Euclidean distance, dynamic time warping (DTW), derivative DTW, correlation and an innovative index, and combining distance and correlation metrics ( Rce). Template-based activity recognition was compared to statistical-learning classifiers, such as Naïve Bayes, decision tree, logistic regression (LR), and artificial neural network (ANN) trained using time- and frequency-domain signal features. Each algorithm was tested on data from a holdout group of 15 normal weight and 19 overweight subjects. The Rce index outperformed other template-matching metrics by achieving recognition rate above 80% for the majority of the activities. Template matching showed robust classification accuracy when tested on unseen data and in case of limited training examples. LR and ANN achieved the highest overall recognition accuracy  ∼  85% but showed to be more vulnerable to misclassification error than template matching on overweight subjects' data. Template matching can be used to classify sports activities using the wrist acceleration signal. Automatically extracted template prototypes from the acceleration signal may be used to enhance accuracy and generalization properties of statistical-learning classifiers.
Goal : To investigate the accuracy of template matching for classifying sports activities using the acceleration signal recorded with a wearable sensor. Methods : A population of 29 normal weight and 19 overweight subjects was recruited to perform eight common sports activities, while body movement was measured using a triaxial accelerometer placed at the wrist. User- and axis-independent acceleration signal templates were automatically extracted to represent each activity category and recognize activity types. Five different similarity measures between example signals and templates were compared: Euclidean distance, dynamic time warping (DTW), derivative DTW, correlation and an innovative index, and combining distance and correlation metrics ( Rce ). Template-based activity recognition was compared to statistical-learning classifiers, such as Nïve Bayes, decision tree, logistic regression (LR), and artificial neural network (ANN) trained using time- and frequency-domain signal features. Each algorithm was tested on data from a holdout group of 15 normal weight and 19 overweight subjects. Results : The Rce index outperformed other template-matching metrics by achieving recognition rate above 80% for the majority of the activities. Template matching showed robust classification accuracy when tested on unseen data and in case of limited training examples. LR and ANN achieved the highest overall recognition accuracy [Formula Omitted] 85% but showed to be more vulnerable to misclassification error than template matching on overweight subjects' data. Conclusion : Template matching can be used to classify sports activities using the wrist acceleration signal. Significance : Automatically extracted template prototypes from the acceleration signal may be used to enhance accuracy and generalization properties of statistical-learning classifiers.
Author Sartor, Francesco
Margarito, Jenny
Bonomi, Alberto G.
Bianchi, Anna M.
Helaoui, Rim
Author_xml – sequence: 1
  givenname: Jenny
  surname: Margarito
  fullname: Margarito, Jenny
  email: jenny.margarito@philips.com
  organization: Philips Research, Eindhoven, EC, The Netherlands
– sequence: 2
  givenname: Rim
  surname: Helaoui
  fullname: Helaoui, Rim
  organization: Philips Research
– sequence: 3
  givenname: Anna M.
  surname: Bianchi
  fullname: Bianchi, Anna M.
  organization: Politecnico di Milano
– sequence: 4
  givenname: Francesco
  surname: Sartor
  fullname: Sartor, Francesco
  organization: Philips Research
– sequence: 5
  givenname: Alberto G.
  surname: Bonomi
  fullname: Bonomi, Alberto G.
  organization: Philips Research
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26302509$$D View this record in MEDLINE/PubMed
BookMark eNp9kV9LHDEUxYNYdLV-gFIogb70Zbb5OzPp2yraCkqhu-LjkMnc1chMMiaZFqEfvll268MW-pKQm9_JPTn3BB067wChd5TMKSXq8-r89nLOCJVzJqpcEAdoRqWsCyY5PUQzQmhdKKbEMTqJ8SkfRS3KI3TMSk6YJGqGft9FCMW162CEvLiEf4DxD84m6x32a7wcfUgRL0yyP3MRIr4KfsAaL6176AHfBxtTce-Dy4yBHvItJAhf8AKvYBh7naC41ck8Zr441xE6vBjH4LV5fIverHUf4Wy3n6Ll1eXq4ltx8_3r9cXipjBcsVSsW6h52zHNyxKYULWRGpQqhWqBEyLLlhvCOGWtIJ1kLc2J1HVLVce1EfwUse2rkxv1yy_d980Y7KDDS0NJswmySe0AzSbIZhdkFn3airLT5wliagYb8_d67cBPsaFVVRLFqSAZ_biHPvkpuPyhTNWlUpJVMlMfdtSUm3WvFv6OIgN0C5jgYwyw_sflZtz7Lqs9jbFJb0aXgrb9f5Xvt0oLAK-dKpYdZ0d_AHUhtOQ
CODEN IEBEAX
CitedBy_id crossref_primary_10_1109_ACCESS_2018_2890675
crossref_primary_10_1109_TII_2017_2712746
crossref_primary_10_1109_ACCESS_2018_2839766
crossref_primary_10_1109_ACCESS_2020_3025938
crossref_primary_10_3390_s20071871
crossref_primary_10_1063_5_0194376
crossref_primary_10_1109_ACCESS_2020_2982225
crossref_primary_10_1109_JSEN_2016_2628346
crossref_primary_10_1109_JSEN_2021_3130761
crossref_primary_10_3390_electronics8111257
crossref_primary_10_1088_1361_6579_ad2c12
crossref_primary_10_1123_jmpb_2019_0012
crossref_primary_10_1007_s00521_018_3759_8
crossref_primary_10_1109_ACCESS_2024_3428309
crossref_primary_10_1155_2016_7128201
crossref_primary_10_1109_JSEN_2020_2985374
crossref_primary_10_1155_2021_7892902
crossref_primary_10_1109_ACCESS_2019_2933852
crossref_primary_10_1109_ACCESS_2019_2955545
crossref_primary_10_2196_17216
crossref_primary_10_1109_ACCESS_2023_3311261
crossref_primary_10_1109_TNSRE_2017_2705285
crossref_primary_10_1109_ACCESS_2020_2971579
crossref_primary_10_1109_JTEHM_2018_2829208
crossref_primary_10_1155_2017_1260734
crossref_primary_10_1109_ACCESS_2022_3174813
crossref_primary_10_1109_ACCESS_2024_3363437
crossref_primary_10_1155_2022_9446175
crossref_primary_10_1109_ACCESS_2020_3037715
crossref_primary_10_1109_JIOT_2023_3330372
Cites_doi 10.1016/j.medengphy.2014.02.012
10.1096/fasebj.2.3.3350235
10.1249/MSS.0b013e31829736d6
10.1249/MSS.0b013e3181e5797d
10.1109/IEMBS.2007.4353446
10.1088/0967-3334/30/4/R01
10.1137/1.9781611972719.1
10.1109/TBME.2011.2160723
10.1007/s11036-010-0260-8
10.1002/9780470753866
10.1109/TITB.2007.899496
10.1016/j.compbiomed.2011.01.007
10.1109/TBCAS.2011.2160540
10.1016/j.patrec.2011.06.025
10.1002/9780470744055
10.1152/japplphysiol.00150.2009
10.1109/ISWC.2007.4373775
10.1109/JBHI.2014.2313039
10.1007/BF02348434
10.1109/TBME.2014.2307069
10.1007/s40279-013-0068-3
10.1016/j.clinph.2008.07.281
10.1007/978-3-642-34459-6
10.1109/ICSPCC.2013.6664038
10.1007/978-3-540-24646-6_1
10.1038/ijo.2011.99
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ADTOC
UNPAY
DOI 10.1109/TBME.2015.2471094
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Xplore
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 796
ExternalDocumentID oai:re.public.polimi.it:11311/982893
4045933041
26302509
10_1109_TBME_2015_2471094
7217826
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: SWELL
– fundername: COMMIT-NL
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c392t-fbe83bd2a366e2498c5ae99649be30056b3c02312b40d52b101588b19d3ac43
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Tue Aug 19 15:59:17 EDT 2025
Sat Sep 27 20:16:55 EDT 2025
Mon Jun 30 08:35:37 EDT 2025
Mon Jul 21 06:04:45 EDT 2025
Thu Apr 24 22:57:03 EDT 2025
Wed Oct 01 04:08:42 EDT 2025
Wed Aug 27 02:53:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords dynamic time warping
template prototypes
Activity classification
overweight subjects
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-fbe83bd2a366e2498c5ae99649be30056b3c02312b40d52b101588b19d3ac43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/11311/982893
PMID 26302509
PQID 1786995275
PQPubID 85474
PageCount 9
ParticipantIDs ieee_primary_7217826
crossref_citationtrail_10_1109_TBME_2015_2471094
pubmed_primary_26302509
crossref_primary_10_1109_TBME_2015_2471094
proquest_journals_1786995275
unpaywall_primary_10_1109_tbme_2015_2471094
proquest_miscellaneous_1776093140
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-04-01
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref30
ref11
ref32
ref10
ref2
ref1
ref17
guardabasso (ref26) 1988; 2
ref16
ref19
ref18
tou (ref25) 1974
avci (ref3) 0
jolliffe (ref31) 2005
ref20
ref22
ref21
deng (ref23) 0
zhang (ref24) 2011; 7
ref28
ref27
ref8
ref7
ref9
ref4
akay (ref29) 2012
ref6
ref5
References_xml – start-page: 1
  year: 0
  ident: ref3
  article-title: Activity recognition using inertial sensing for healthcare, wellbeing and sports applications: A survey
  publication-title: Proc 23rd Int Conf Archit Comput Syst
– ident: ref4
  doi: 10.1016/j.medengphy.2014.02.012
– volume: 2
  start-page: 209
  year: 1988
  ident: ref26
  article-title: A versatile method for simultaneous analysis of families of curves
  publication-title: FASEB J
  doi: 10.1096/fasebj.2.3.3350235
– ident: ref11
  doi: 10.1249/MSS.0b013e31829736d6
– ident: ref14
  doi: 10.1249/MSS.0b013e3181e5797d
– start-page: 898
  year: 0
  ident: ref23
  article-title: Structure-based and template-based automatic speech recognition-Comparing parametric and non-parametric approaches
  publication-title: Proc INTERSPEECH
– year: 2012
  ident: ref29
  publication-title: Biomedical Signal Processing
– ident: ref21
  doi: 10.1109/IEMBS.2007.4353446
– ident: ref10
  doi: 10.1088/0967-3334/30/4/R01
– ident: ref28
  doi: 10.1137/1.9781611972719.1
– ident: ref16
  doi: 10.1109/TBME.2011.2160723
– ident: ref1
  doi: 10.1007/s11036-010-0260-8
– ident: ref27
  doi: 10.1002/9780470753866
– ident: ref15
  doi: 10.1109/TITB.2007.899496
– year: 2005
  ident: ref31
  publication-title: Principal Component Analysis
– ident: ref18
  doi: 10.1016/j.compbiomed.2011.01.007
– ident: ref5
  doi: 10.1109/TBCAS.2011.2160540
– ident: ref32
  doi: 10.1016/j.patrec.2011.06.025
– ident: ref22
  doi: 10.1002/9780470744055
– year: 1974
  ident: ref25
  publication-title: Pattern Recognition Principles
– volume: 7
  start-page: 1155
  year: 2011
  ident: ref24
  article-title: Gait modeling and identifying based on dynamic template matching
  publication-title: J Comput Inform Syst
– ident: ref7
  doi: 10.1152/japplphysiol.00150.2009
– ident: ref20
  doi: 10.1109/ISWC.2007.4373775
– ident: ref6
  doi: 10.1109/JBHI.2014.2313039
– ident: ref9
  doi: 10.1007/BF02348434
– ident: ref13
  doi: 10.1109/TBME.2014.2307069
– ident: ref17
  doi: 10.1007/s40279-013-0068-3
– ident: ref30
  doi: 10.1016/j.clinph.2008.07.281
– ident: ref12
  doi: 10.1007/978-3-642-34459-6
– ident: ref19
  doi: 10.1109/ICSPCC.2013.6664038
– ident: ref8
  doi: 10.1007/978-3-540-24646-6_1
– ident: ref2
  doi: 10.1038/ijo.2011.99
SSID ssj0014846
Score 2.509126
Snippet Goal: To investigate the accuracy of template matching for classifying sports activities using the acceleration signal recorded with a wearable sensor....
To investigate the accuracy of template matching for classifying sports activities using the acceleration signal recorded with a wearable sensor. A population...
Goal : To investigate the accuracy of template matching for classifying sports activities using the acceleration signal recorded with a wearable sensor....
GOALTo investigate the accuracy of template matching for classifying sports activities using the acceleration signal recorded with a wearable sensor.METHODSA...
SourceID unpaywall
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 788
SubjectTerms Acceleration
Accelerometers
Accelerometry - methods
Accuracy
Activity classification
Adult
Correlation
Dynamic Time Warping
Female
Humans
Indexes
Male
Overweight subjects
Pattern Recognition, Automated - methods
Signal Processing, Computer-Assisted - instrumentation
Sports - classification
Sports - physiology
Template prototypes
Time series analysis
Wrist
Wrist - physiology
Young Adult
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfGTQL2wMfGR2GgIPEE6q1NmrTlrZs2DaSbELsT46lK0vSF0p62niYQfzx226s2hibxWMWNUtmO7dr-GeBtmJgC7aD0YyOpJceVvpGB9mO8DHXigsAV1Ds8O1HHi-jTmTzbgPXUtb_gBUICg9lLKSoQd2BTURJpApuLk8_Zt_6KRW3l3bRDtIvIcpSoIXUZBuleixaFqrfklEdUcxhdMz7dNJV_OZZbcG9VL_XPS11VV4zN0UM4WLfs9DUm36er1kztr5sIjrd8xyN4MPiaLOuF4zFsuHobtq4gEG7D3dmQW9-B3wuURv_jOBa3ZV_WxUVNzZqSdQPRL1hmu4ETGGEz6k1hmp3iVpVjX-m-8C-b8xppLJozQkJAtn1gGZu7H8sK3Vo2w6uffnqxfTSfBcsGSPMncHp0OD849ofZDL5Fj6r1S-MSYQquhVIOQ7jESu0wdopS4wgBXxlhCVqOmygoJDeo-TJJTJgWQttIPIVJ3dTuOTCb8NJFiSjDkkelEjrg2saxLrksFdfag2DNstwOsOU0PaPKu_AlSPP5_uwwJy7nA5c9eDe-suwxO24j3iE5GAkxIkanSXmwu5aLfNDqixxXVJpKHksP3ozLqI-UZNG1a1ZEE6sgFRi3evCsl6dxb64EuZypB-9HAbtxQhLaayd88V_UL-E-Pqq-uGgXJu35yr1Cv6k1rwfF-QNsiQ5N
  priority: 102
  providerName: Unpaywall
Title User-Independent Recognition of Sports Activities From a Single Wrist-Worn Accelerometer: A Template-Matching-Based Approach
URI https://ieeexplore.ieee.org/document/7217826
https://www.ncbi.nlm.nih.gov/pubmed/26302509
https://www.proquest.com/docview/1786995275
https://www.proquest.com/docview/1776093140
http://hdl.handle.net/11311/982893
UnpaywallVersion submittedVersion
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 1558-2531
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1Nb9UwzNqGBOzAxzagMKYgcQL61qZN2nDr0J4GUifE3tPGqUrS9ELXPr21QiB-PE6_tMGEuFWKE7myHdvxF8BrP1Y56kHmRorZkhxTuIp50o3wMpSx8TyT29rh9JSfLMNPF-xiA95NtTDGmC75zMzsZxfLz2vd2qeyQ_RWUKHxTdiMItHXak0RgzDui3I8HwWYinCIYPqeOFwcpcc2iYvNaGhTD-0sHsoDq_3FDXXUzVe5zdTchntttZI_vsuyvKZ-5g8hHRHvs06-zdpGzfTPP3o6_u-fPYIHgx1Kkp5xHsOGqXZg-1p3wh24mw5x9134tUROdT9OI3Mb8mVMPKorUhekG5Z-RRLdDaNA75vM1_UlkeQMjyoNObd3iXteryuE0ajqbJcEJOl7kpCFuVyVaPK6KaoF-yDmHqFqzUkytDvfg7P58eLDiTvMbXA1WluNWygTByqnMuDcoHsXayYN-lWhUMZ2x-cq0LbtHFWhlzOq8FZgcax8kQdSh8ET2KrqyjwDomNamDAOCr-gYcED6VGpo0gWlBWcSumANxIv00NLcztZo8w618YTmSV9ZkmfDaR34M20ZdX38_gX8K4l1QQ4UMmB_ZFDskHirzJc4UIwGjEHXk3LKKs2ACMrU7cWJuKeCNCndeBpz1nT2SNDOvB2YrW_MGxwyw0Mn9-O4Qu4j1C8zzDah61m3ZqXaDw16qCTmgO4szz9nHz9DVeGEzc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbtQwcFSKROmBRwttoICROEG9TZzYSbhtUVdbaHqgW7W3yHacC2my2iZCID6ecV5qoULcInlsTTQznhnPC-CdF6kM9SCnoeK2JMfkVHFX0hAvQxkZ1zWZrR1OTsX8PPh8yS_XYH-shTHGtMlnZmI_21h-VunGPpUdoLeCCk3cg_scvYqwq9YaYwZB1JXluB6KMIuDPobpufHB4jA5smlcfMICm3xop_Ew4Vv9H99SSO2ElbuMzU3YaMql_PFdFsUNBTR7DMmAepd38m3S1Gqif_7R1fF__-0JPOotUTLtWOcprJlyCzZv9CfcggdJH3nfhl_nyKv0eByaW5OvQ-pRVZIqJ-249Gsy1e04CvS_yWxVXRFJzvCowpALe5vQi2pVIoxGZWf7JCBRP5IpWZirZYFGL01QMdgnMXqIyjUj077h-TM4mx0tPs1pP7mBarS3aporE_kqY9IXwqCDF2kuDXpWQayM7Y8vlK9t4zmmAjfjTOG9wKNIeXHmSx34z2G9rEqzC0RHLDdB5OdezoJc-NJlUoehzBnPBZPSAXcgXqr7puZ2tkaRts6NG6eW9KklfdqT3oH345Zl19HjX8DbllQjYE8lB_YGDkl7mb9OcUXEMWchd-DtuIzSakMwsjRVY2FC4cY-erUO7HScNZ49MKQDH0ZW-wvDGrfcwvDF3Ri-gY35IjlJT45Pv7yEh7hDdPlGe7BerxrzCk2pWr1uJeg3RJwU2A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfGTQL2wMfGR2GgIPEE6q1NmrTlrZs2DaSbELsT46lK0vSF0p62niYQfzx226s2hibxWMWNUtmO7dr-GeBtmJgC7aD0YyOpJceVvpGB9mO8DHXigsAV1Ds8O1HHi-jTmTzbgPXUtb_gBUICg9lLKSoQd2BTURJpApuLk8_Zt_6KRW3l3bRDtIvIcpSoIXUZBuleixaFqrfklEdUcxhdMz7dNJV_OZZbcG9VL_XPS11VV4zN0UM4WLfs9DUm36er1kztr5sIjrd8xyN4MPiaLOuF4zFsuHobtq4gEG7D3dmQW9-B3wuURv_jOBa3ZV_WxUVNzZqSdQPRL1hmu4ETGGEz6k1hmp3iVpVjX-m-8C-b8xppLJozQkJAtn1gGZu7H8sK3Vo2w6uffnqxfTSfBcsGSPMncHp0OD849ofZDL5Fj6r1S-MSYQquhVIOQ7jESu0wdopS4wgBXxlhCVqOmygoJDeo-TJJTJgWQttIPIVJ3dTuOTCb8NJFiSjDkkelEjrg2saxLrksFdfag2DNstwOsOU0PaPKu_AlSPP5_uwwJy7nA5c9eDe-suwxO24j3iE5GAkxIkanSXmwu5aLfNDqixxXVJpKHksP3ozLqI-UZNG1a1ZEE6sgFRi3evCsl6dxb64EuZypB-9HAbtxQhLaayd88V_UL-E-Pqq-uGgXJu35yr1Cv6k1rwfF-QNsiQ5N
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=User-Independent+Recognition+of+Sports+Activities+from+a+Single+Wrist-worn+Accelerometer%3A+A+Template+Matching+Based+Approach&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Margarito%2C+Jenny&rft.au=Helaoui%2C+Rim&rft.au=Bianchi%2C+Anna&rft.au=Sartor%2C+Francesco&rft.date=2016-04-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTBME.2015.2471094&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBME_2015_2471094
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon