RCMVis: A Visual Analytics System for Route Choice Modeling

We present RCMVis, a visual analytics system to support interactive Route Choice Modeling analysis. It aims to model which characteristics of routes, such as distance and the number of traffic lights, affect travelers' route choice behaviors and how much they affect the choice during their trip...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on visualization and computer graphics Vol. 29; no. 3; pp. 1799 - 1817
Main Authors Shin, DongHwa, Jo, Jaemin, Kim, Bohyoung, Song, Hyunjoo, Cho, Shin-Hyung, Seo, Jinwook
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1077-2626
1941-0506
2160-9306
1941-0506
DOI10.1109/TVCG.2021.3131824

Cover

Abstract We present RCMVis, a visual analytics system to support interactive Route Choice Modeling analysis. It aims to model which characteristics of routes, such as distance and the number of traffic lights, affect travelers' route choice behaviors and how much they affect the choice during their trips. Through close collaboration with domain experts, we designed a visual analytics framework for Route Choice Modeling. The framework supports three interactive analysis stages: exploration, modeling, and reasoning. In the exploration stage, we help analysts interactively explore trip data from multiple origin-destination (OD) pairs and choose a subset of data they want to focus on. To this end, we provide coordinated multiple OD views with different foci that allow analysts to inspect, rank, and compare OD pairs in terms of their multidimensional attributes. In the modeling stage, we integrate a <inline-formula><tex-math notation="LaTeX">k</tex-math> <mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href="seo-ieq1-3131824.gif"/> </inline-formula>-medoids clustering method and a path-size logit model into our system to enable analysts to model route choice behaviors from trips with support for feature selection, hyperparameter tuning, and model comparison. Finally, in the reasoning stage, we help analysts rationalize and refine the model by selectively inspecting the trips that strongly support the modeling result. For evaluation, we conducted a case study and interviews with domain experts. The domain experts discovered unexpected insights from numerous modeling results, allowing them to explore the hyperparameter space more effectively to gain better results. In addition, they gained OD- and road-level insights into which data mainly supported the modeling result, enabling further discussion of the model.
AbstractList We present RCMVis, a visual analytics system to support interactive Route Choice Modeling analysis. It aims to model which characteristics of routes, such as distance and the number of traffic lights, affect travelers' route choice behaviors and how much they affect the choice during their trips. Through close collaboration with domain experts, we designed a visual analytics framework for Route Choice Modeling. The framework supports three interactive analysis stages: exploration, modeling, and reasoning. In the exploration stage, we help analysts interactively explore trip data from multiple origin-destination (OD) pairs and choose a subset of data they want to focus on. To this end, we provide coordinated multiple OD views with different foci that allow analysts to inspect, rank, and compare OD pairs in terms of their multidimensional attributes. In the modeling stage, we integrate a k-medoids clustering method and a path-size logit model into our system to enable analysts to model route choice behaviors from trips with support for feature selection, hyperparameter tuning, and model comparison. Finally, in the reasoning stage, we help analysts rationalize and refine the model by selectively inspecting the trips that strongly support the modeling result. For evaluation, we conducted a case study and interviews with domain experts. The domain experts discovered unexpected insights from numerous modeling results, allowing them to explore the hyperparameter space more effectively to gain better results. In addition, they gained OD- and road-level insights into which data mainly supported the modeling result, enabling further discussion of the model.We present RCMVis, a visual analytics system to support interactive Route Choice Modeling analysis. It aims to model which characteristics of routes, such as distance and the number of traffic lights, affect travelers' route choice behaviors and how much they affect the choice during their trips. Through close collaboration with domain experts, we designed a visual analytics framework for Route Choice Modeling. The framework supports three interactive analysis stages: exploration, modeling, and reasoning. In the exploration stage, we help analysts interactively explore trip data from multiple origin-destination (OD) pairs and choose a subset of data they want to focus on. To this end, we provide coordinated multiple OD views with different foci that allow analysts to inspect, rank, and compare OD pairs in terms of their multidimensional attributes. In the modeling stage, we integrate a k-medoids clustering method and a path-size logit model into our system to enable analysts to model route choice behaviors from trips with support for feature selection, hyperparameter tuning, and model comparison. Finally, in the reasoning stage, we help analysts rationalize and refine the model by selectively inspecting the trips that strongly support the modeling result. For evaluation, we conducted a case study and interviews with domain experts. The domain experts discovered unexpected insights from numerous modeling results, allowing them to explore the hyperparameter space more effectively to gain better results. In addition, they gained OD- and road-level insights into which data mainly supported the modeling result, enabling further discussion of the model.
We present RCMVis, a visual analytics system to support interactive Route Choice Modeling analysis. It aims to model which characteristics of routes, such as distance and the number of traffic lights, affect travelers' route choice behaviors and how much they affect the choice during their trips. Through close collaboration with domain experts, we designed a visual analytics framework for Route Choice Modeling. The framework supports three interactive analysis stages: exploration, modeling, and reasoning. In the exploration stage, we help analysts interactively explore trip data from multiple origin-destination (OD) pairs and choose a subset of data they want to focus on. To this end, we provide coordinated multiple OD views with different foci that allow analysts to inspect, rank, and compare OD pairs in terms of their multidimensional attributes. In the modeling stage, we integrate a <inline-formula><tex-math notation="LaTeX">k</tex-math> <mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href="seo-ieq1-3131824.gif"/> </inline-formula>-medoids clustering method and a path-size logit model into our system to enable analysts to model route choice behaviors from trips with support for feature selection, hyperparameter tuning, and model comparison. Finally, in the reasoning stage, we help analysts rationalize and refine the model by selectively inspecting the trips that strongly support the modeling result. For evaluation, we conducted a case study and interviews with domain experts. The domain experts discovered unexpected insights from numerous modeling results, allowing them to explore the hyperparameter space more effectively to gain better results. In addition, they gained OD- and road-level insights into which data mainly supported the modeling result, enabling further discussion of the model.
We present RCMVis, a visual analytics system to support interactive Route Choice Modeling analysis. It aims to model which characteristics of routes, such as distance and the number of traffic lights, affect travelers' route choice behaviors and how much they affect the choice during their trips. Through close collaboration with domain experts, we designed a visual analytics framework for Route Choice Modeling. The framework supports three interactive analysis stages: exploration, modeling, and reasoning. In the exploration stage, we help analysts interactively explore trip data from multiple origin-destination (OD) pairs and choose a subset of data they want to focus on. To this end, we provide coordinated multiple OD views with different foci that allow analysts to inspect, rank, and compare OD pairs in terms of their multidimensional attributes. In the modeling stage, we integrate a k-medoids clustering method and a path-size logit model into our system to enable analysts to model route choice behaviors from trips with support for feature selection, hyperparameter tuning, and model comparison. Finally, in the reasoning stage, we help analysts rationalize and refine the model by selectively inspecting the trips that strongly support the modeling result. For evaluation, we conducted a case study and interviews with domain experts. The domain experts discovered unexpected insights from numerous modeling results, allowing them to explore the hyperparameter space more effectively to gain better results. In addition, they gained OD- and road-level insights into which data mainly supported the modeling result, enabling further discussion of the model.
We present RCMVis, a visual analytics system to support interactive Route Choice Modeling analysis. It aims to model which characteristics of routes, such as distance and the number of traffic lights, affect travelers’ route choice behaviors and how much they affect the choice during their trips. Through close collaboration with domain experts, we designed a visual analytics framework for Route Choice Modeling. The framework supports three interactive analysis stages: exploration, modeling, and reasoning. In the exploration stage, we help analysts interactively explore trip data from multiple origin-destination (OD) pairs and choose a subset of data they want to focus on. To this end, we provide coordinated multiple OD views with different foci that allow analysts to inspect, rank, and compare OD pairs in terms of their multidimensional attributes. In the modeling stage, we integrate a [Formula Omitted]-medoids clustering method and a path-size logit model into our system to enable analysts to model route choice behaviors from trips with support for feature selection, hyperparameter tuning, and model comparison. Finally, in the reasoning stage, we help analysts rationalize and refine the model by selectively inspecting the trips that strongly support the modeling result. For evaluation, we conducted a case study and interviews with domain experts. The domain experts discovered unexpected insights from numerous modeling results, allowing them to explore the hyperparameter space more effectively to gain better results. In addition, they gained OD- and road-level insights into which data mainly supported the modeling result, enabling further discussion of the model.
Author Seo, Jinwook
Jo, Jaemin
Shin, DongHwa
Kim, Bohyoung
Song, Hyunjoo
Cho, Shin-Hyung
Author_xml – sequence: 1
  givenname: DongHwa
  orcidid: 0000-0001-9460-809X
  surname: Shin
  fullname: Shin, DongHwa
  email: dhshin@hcil.snu.ac.kr
  organization: Department of Computer Science and Engineering, Seoul National University, Seoul, South Korea
– sequence: 2
  givenname: Jaemin
  orcidid: 0000-0002-5207-6010
  surname: Jo
  fullname: Jo, Jaemin
  email: jmjo@skku.edu
  organization: College of Computing and Informatics, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
– sequence: 3
  givenname: Bohyoung
  orcidid: 0000-0002-2183-5651
  surname: Kim
  fullname: Kim, Bohyoung
  email: bkim@hufs.ac.kr
  organization: Division of Biomedical Engineering, Hankuk University of Foreign Studies, Seoul, South Korea
– sequence: 4
  givenname: Hyunjoo
  orcidid: 0000-0002-4931-2940
  surname: Song
  fullname: Song, Hyunjoo
  email: hsong@ssu.ac.kr
  organization: School of Computer Science and Engineering, Soongsil University, Seoul, South Korea
– sequence: 5
  givenname: Shin-Hyung
  orcidid: 0000-0001-6499-1497
  surname: Cho
  fullname: Cho, Shin-Hyung
  email: scho370@gatech.edu
  organization: School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
– sequence: 6
  givenname: Jinwook
  orcidid: 0000-0002-7734-822X
  surname: Seo
  fullname: Seo, Jinwook
  email: jseo@snu.ac.kr
  organization: Department of Computer Science and Engineering, Seoul National University, Seoul, South Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34851827$$D View this record in MEDLINE/PubMed
BookMark eNptkU1rGzEQhkVJaT7aH1ACYaGXXNbVSNqVlZ7Mko9CQiFNcxWydjZRkFfOStvifx8ZOz6YnmYOzyveeXRMDvrQIyFfgU4AqPr-8NhcTxhlMOHAYcrEB3IESkBJK1of5J1KWbKa1YfkOMYXSkGIqfpEDrmYVpmXR-THfXP36OJFMSvyGI0vZr3xq-RsLH6vYsJF0YWhuA9jwqJ5Ds5icRda9K5_-kw-dsZH_LKdJ-TP1eVDc1Pe_rr-2cxuS8sVSyWCUrWp2rZTjE8lZdTkqkzMqWItn0suWGUlIEjJpOVWtJWam07aFq3ooOMnhG3eHfulWf0z3uvl4BZmWGmgem1Cp7_2Sa9N6K2JHDrfhJZDeB0xJr1w0aL3pscwRs1qWlVK5W4Z_baHvoRxyBoyJSVUjEq6ps621DhfYLur8O4yA3ID2CHEOGCnrUsmudCnwTi_67r-tf2usJfcv-9_mdNNxiHijlc1ZwI4fwPXP50p
CODEN ITVGEA
CitedBy_id crossref_primary_10_1007_s41095_023_0351_7
crossref_primary_10_1109_MCG_2024_3454645
crossref_primary_10_1007_s12650_025_01049_6
crossref_primary_10_1109_TVCG_2023_3333356
crossref_primary_10_1007_s12650_022_00861_8
crossref_primary_10_1111_cgf_15091
Cites_doi 10.1201/b17511
10.1109/TITS.2019.2924796
10.1109/TITS.2018.2843298
10.1016/j.tbs.2018.07.001
10.1002/9781118771075
10.1145/1345448.1345455
10.1109/TVCG.2013.228
10.1109/TBDATA.2016.2586447
10.1109/MDM.2013.23
10.1109/TVCG.2020.3030458
10.3141/2197-11
10.2307/2684808
10.3138/carto.46.4.239
10.1111/cgf.12114
10.1007/978-1-4615-5203-1_2
10.1137/0108044
10.1109/PACIFICVIS.2011.5742386
10.1109/INFVIS.2000.885098
10.1109/TITS.2015.2436897
10.1109/TVCG.2009.122
10.1109/TBDATA.2017.2667700
10.1109/TITS.2017.2683539
10.1109/TVCG.2016.2598432
10.1016/S1755-5345(13)70005-8
10.1109/TITS.2018.2888994
10.1177/1473871612457601
10.1016/j.eswa.2008.01.039
10.1109/VAST.2011.6102455
10.1017/cbo9780511753930
10.1145/1653771.1653820
10.1109/VAST.2014.7042486
10.3141/2662-09
10.1109/TVCG.2013.124
10.1109/TVCG.2019.2922597
10.1016/0377-0427(87)90125-7
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ADTOC
UNPAY
DOI 10.1109/TVCG.2021.3131824
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0506
EndPage 1817
ExternalDocumentID 10.1109/tvcg.2021.3131824
34851827
10_1109_TVCG_2021_3131824
9632413
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Research Foundation of Korea
  funderid: 10.13039/501100003725
– fundername: Hankuk University of Foreign Studies Research Fund
– fundername: Korea government
  grantid: NRF-2019R1A2C2089062; NRF-2019R1A2C1088900
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
AAYXX
CITATION
5VS
AAYOK
AETIX
AGSQL
AI.
AIBXA
ALLEH
H~9
IFJZH
NPM
PKN
RIC
RIG
RNI
RZB
VH1
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c392t-e1996a5ddf92387020a82424b092d3b73425c71e17727c3c4d59baf7cdec4f1f3
IEDL.DBID UNPAY
ISSN 1077-2626
1941-0506
2160-9306
IngestDate Tue Aug 19 18:22:10 EDT 2025
Sun Sep 28 04:28:26 EDT 2025
Sun Jun 29 13:51:34 EDT 2025
Wed Feb 19 02:24:38 EST 2025
Wed Oct 01 02:54:52 EDT 2025
Thu Apr 24 23:12:14 EDT 2025
Wed Aug 27 02:18:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-e1996a5ddf92387020a82424b092d3b73425c71e17727c3c4d59baf7cdec4f1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5207-6010
0000-0002-7734-822X
0000-0002-2183-5651
0000-0002-4931-2940
0000-0001-9460-809X
0000-0001-6499-1497
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/2945/10032251/09632413.pdf
PMID 34851827
PQID 2771520709
PQPubID 75741
PageCount 19
ParticipantIDs proquest_journals_2771520709
pubmed_primary_34851827
unpaywall_primary_10_1109_tvcg_2021_3131824
crossref_primary_10_1109_TVCG_2021_3131824
crossref_citationtrail_10_1109_TVCG_2021_3131824
ieee_primary_9632413
proquest_miscellaneous_2605599199
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref32
ref1
ref17
ref16
ref38
ref19
ref18
Bierlaire (ref39) 2018
Fekete (ref42)
ref24
ref23
ref26
ref25
ref20
ref41
ref22
(ref35) 2017
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref4
ref6
ref5
ref40
References_xml – ident: ref31
  doi: 10.1201/b17511
– ident: ref26
  doi: 10.1109/TITS.2019.2924796
– ident: ref16
  doi: 10.1109/TITS.2018.2843298
– ident: ref6
  doi: 10.1016/j.tbs.2018.07.001
– ident: ref38
  doi: 10.1002/9781118771075
– ident: ref12
  doi: 10.1145/1345448.1345455
– ident: ref18
  doi: 10.1109/TVCG.2013.228
– ident: ref14
  doi: 10.1109/TBDATA.2016.2586447
– start-page: 82
  volume-title: Proc. IEEE Symp. Inf. Vis. Conf. Compendium
  ident: ref42
  article-title: Interactive poster: Overlaying graph links on treemaps
– ident: ref17
  doi: 10.1109/MDM.2013.23
– ident: ref25
  doi: 10.1109/TVCG.2020.3030458
– ident: ref5
  doi: 10.3141/2197-11
– ident: ref32
  doi: 10.2307/2684808
– ident: ref41
  doi: 10.3138/carto.46.4.239
– year: 2017
  ident: ref35
  article-title: Planet dump retrieved from Planet OSM
– ident: ref22
  doi: 10.1111/cgf.12114
– year: 2018
  ident: ref39
  article-title: PandasBiogeme: A short introduction
– ident: ref8
  doi: 10.1007/978-1-4615-5203-1_2
– ident: ref4
  doi: 10.1137/0108044
– ident: ref20
  doi: 10.1109/PACIFICVIS.2011.5742386
– ident: ref29
  doi: 10.1109/INFVIS.2000.885098
– ident: ref13
  doi: 10.1109/TITS.2015.2436897
– ident: ref43
  doi: 10.1109/TVCG.2009.122
– ident: ref28
  doi: 10.1109/TBDATA.2017.2667700
– ident: ref15
  doi: 10.1109/TITS.2017.2683539
– ident: ref24
  doi: 10.1109/TVCG.2016.2598432
– ident: ref1
  doi: 10.1016/S1755-5345(13)70005-8
– ident: ref27
  doi: 10.1109/TITS.2018.2888994
– ident: ref11
  doi: 10.1177/1473871612457601
– ident: ref36
  doi: 10.1016/j.eswa.2008.01.039
– ident: ref21
  doi: 10.1109/VAST.2011.6102455
– ident: ref40
  doi: 10.1017/cbo9780511753930
– ident: ref34
  doi: 10.1145/1653771.1653820
– ident: ref23
  doi: 10.1109/VAST.2014.7042486
– ident: ref7
  doi: 10.3141/2662-09
– ident: ref30
  doi: 10.1109/TVCG.2013.124
– ident: ref19
  doi: 10.1109/TVCG.2019.2922597
– ident: ref37
  doi: 10.1016/0377-0427(87)90125-7
SSID ssj0014489
Score 2.4246063
Snippet We present RCMVis, a visual analytics system to support interactive Route Choice Modeling analysis. It aims to model which characteristics of routes, such as...
SourceID unpaywall
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1799
SubjectTerms Analytical models
Clustering
Computational modeling
Data models
Data visualization
Domains
Foci
Interactive systems
Logit models
Mathematical analysis
Modelling
origin-destination
Reasoning
Roads
Route choice
Route choice modeling
Route selection
Subject specialists
Traffic signals
Trajectory
trajectory data
urban planning
Visual analytics
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7RvRQOhUJL0y6VK3GCZsnDjuNyQqtSVGk5IEDcosQPqLrKopK0gl_PTJKNlodQT4mUieXYY_ubzMw3ANuIwbVQRLPveOBzJ4Wf4sHtO61CnebGpZKykSfHydEZ_3khLpbga58LY61tgs_siG4bX76Z6Zp-le0p4hanErWvZJq0uVq9xwDNDNXGF0o_QpTeeTDDQO2dno9_oCUYhWigogpHVIsn5gg1Uqols3AcNfVVnoOaK_C6Lq_z23_5dLpw_ByuwmTe8Tbq5PeoroqRvnvE6fi_X7YGbzocyg5axXkLS7Zch5UFdsIN2D8ZT85_3XxjBwwvNUkTgwnxOrOW6Jwh4mUUU2TZ-GqGWw6j0mqU4P4Ozg6_n46P_K7Wgq8RIVW-pWjkXBjjEPHhGo6CPKXMkSJQkYkLGePa1jK0IaJxqWPNjVBF7qQ2VnMXuvg9DMpZaT8AS4xKOD4TQgc8dLpwziVcGIcNiTDXHgTzIc90R0RO9TCmWWOQBCqjCctowrJuwjzY6V-5blk4XhLeoAHuBbux9WA4n9esW6c3WSQlAhjc9pQHX_rHuMLIbZKXdlajDFp8AmG0QpnNVh_6tudq5MFuryBPelj91ZcPevjx-R5-gmUqZt9GuA1hUP2p7RZCnqr43Oj6PTzv9pk
  priority: 102
  providerName: IEEE
Title RCMVis: A Visual Analytics System for Route Choice Modeling
URI https://ieeexplore.ieee.org/document/9632413
https://www.ncbi.nlm.nih.gov/pubmed/34851827
https://www.proquest.com/docview/2771520709
https://www.proquest.com/docview/2605599199
https://ieeexplore.ieee.org/ielx7/2945/10032251/09632413.pdf
UnpaywallVersion publishedVersion
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014489
  issn: 1941-0506
  databaseCode: RIE
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QF64FUKgVIZiRMou7ZjxzFwWa0oFVIrhLpVOaAo8QMqVtkVTXj9esZJNmoBIcEpiTyx_Jixv9G8AB4jBjdShzT7XtBYeCXjDC_u2BvNTFZYn6kQjXx4lB7MxetTeboBL4ZYGOdc63zmxuG1teWfucU3NeFaSJRxGjiQTRB5J8EkNF5ZfwU2U4lIfASb86M303edm6GKedpWW0M1HTVm2ZbZ5CylsUaY3Bs4GdWT-ov5gIoiZ6i_IodzcemKamuu_Al-bsHVploV378Wi8WFK2n_BrxfT6bzRPk0bupybH78kufxf2d7E673WJVMO-a6BRuuug1bFzIYbsPzt7PDk7PzZ2RK8NEE6pDlJOR-Jl0ydIKomAS_I0dmH5d4LJFQfi0Ewd-B-f7L49lB3NdjiA2iqDp2wWO5kNZ6RIUo55wWWYguKanmNilVgvJvFHMMEbsyiRFW6rLwylhnhGc-2YFRtazcPSCp1anANikNFcyb0nufCmk9diRZYSKg6y3ITZ-sPNTMWOSt0kJ1fnwye5WHXcv7XYvgyfDLqsvU8Tfi7bDgA2G_vhHsrvc572X5POdKIcjBo1FH8GhoRikMppWicssGaVArlAi1NdLc7fhj6DsRiGozriJ4OjDMbyMMTHhphPf_ifoBXMPPpHOO24VR_blxDxEt1eVeG9K414vGT_OIBnU
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9RAEJ8QeEAeQMGPwqlL4pPaox-7t119ulyEUzgezEF4a9r9UMKlR6CF6F_vTNtrTiXGpzbpdLPdnd39TWfmNwBvEINroYhm3_HA504KP8GD23dahTrJjEskZSNPTgfjM_7lQlyswPsuF8ZaWwef2T7d1r58M9cV_So7UMQtTiVq1wTnXDTZWp3PAA0N1UQYSj9CnN76MMNAHUzPR0doC0YhmqioxBFV44k5go2EqsksHUh1hZWHwOYGrFfFdfbjPpvNlg6gwy2YLLrexJ1c9asy7-uff7A6_u-3PYbNFomyYaM6T2DFFtuwscRPuAMfv44m55e3H9iQ4aUiaeIwIWZn1lCdM8S8jKKKLBt9n-Omw6i4GqW4P4Wzw0_T0dhvqy34GjFS6VuKR86EMQ4xH67iKMgSyh3JAxWZOJcxrm4tQxsiHpc61twIlWdOamM1d6GLn8FqMS_sC2ADowYcnwmhAx46nTvnBlwYhw2JMNMeBIshT3VLRU4VMWZpbZIEKqUJS2nC0nbCPHjbvXLd8HD8S3iHBrgTbMfWg95iXtN2pd6mkZQIYXDjUx7sd49xjZHjJCvsvEIZtPkEAmmFMs8bfejaXqiRB-86Bfmrh-Wd_vZbD3cf7uFrWB9PJyfpyefT4z14RKXtm3i3HqyWN5V9iQCozF_Vev8LT0f55g
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QF64FWggYKMxAmUXdux4xi4rFaUCqkVQt2qHFCU-AFVV9kVTXj9esZJNmoBIcEpiTyx_Jixv9G8AJ4gBjdShzT7XtBYeCXjDC_u2BvNTFZYn6kQjXxwmO7PxZsTebIBL4dYGOdc63zmxuG1teWfusU3NeFaSJRxGjiQTRB5J8EkNF5ZfwU2U4lIfASb88O30_edm6GKedpWW0M1HTVm2ZbZ5CylsUaY3Bs4GdWT-ov5iIoiZ6i_IodzcemKamuu_Al-bsHVploV378Wi8WFK2nvBnxYT6bzRDkbN3U5Nj9-yfP4v7O9Cdd7rEqmHXPdgg1X3YatCxkMt-HFu9nB8en5czIl-GgCdchyEnI_ky4ZOkFUTILfkSOzT0s8lkgovxaC4O_AfO_V0Ww_7usxxAZRVB274LFcSGs9okKUc06LLESXlFRzm5QqQfk3ijmGiF2ZxAgrdVl4ZawzwjOf3IVRtazcDpDU6lRgm5SGCuZN6b1PhbQeO5KsMBHQ9Rbkpk9WHmpmLPJWaaE6Pzqevc7DruX9rkXwdPhl1WXq-BvxdljwgbBf3wh21_uc97J8nnOlEOTg0agjeDw0oxQG00pRuWWDNKgVSoTaGmnudfwx9J0IRLUZVxE8GxjmtxEGJrw0wvv_RP0AruFn0jnH7cKo_ty4h4iW6vJRLxQ_AdJbBXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RCMVis%3A+A+Visual+Analytics+System+for+Route+Choice+Modeling&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Shin%2C+DongHwa&rft.au=Jaemin+Jo&rft.au=Kim%2C+Bohyoung&rft.au=Song%2C+Hyunjoo&rft.date=2023-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1077-2626&rft.eissn=1941-0506&rft.volume=29&rft.issue=3&rft.spage=1799&rft_id=info:doi/10.1109%2FTVCG.2021.3131824&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon